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Abstract
This article focuses on the implications of a noncommutative formulation of
branch-cut quantum gravity. Based on a mini-superspace structure that obeys
the noncommutative Poisson algebra, combined with the Wheeler–DeWitt
equation and Hořava–Lifshitz quantum gravity, we explore the impact of a
scalar field of the inflaton-type in the evolution of the Universe’s wave function.
Taking as a starting point the Hořava–Lifshitz action, which depends on the
scalar curvature of the branched Universe and its derivatives, the correspond-
ing wave equations are derived and solved. The noncommutative quantum
gravity approach adopted preserves the diffeomorphism property of General
Relativity, maintaining compatibility with the Arnowitt–Deser–Misner Formal-
ism. In this work we delve deeper into a mini-superspace of noncommutative
variables, incorporating scalar inflaton fields and exploring inflationary mod-
els, particularly chaotic and nonchaotic scenarios. We obtained solutions to the
wave equationswithout resorting to numerical approximations. The results indi-
cate that the noncommutative algebraic space captures low and high spacetime
scales, driving the exponential acceleration of the Universe.
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1 INTRODUCTION

Branch cut gravity (BCG), a theoretical alternative
to the inflation model, based on the mathematical
augmentation technique of closure and existential com-
pleteness (Manders 1989), represents an analytically
continuous extension of general relativity (Einstein 1916,
1917) to the complex plane (Bodmann et al. 2022; Bod-
mann et al. 2023a,b; de Freitas Pacheco et al. 2022;
Hess et al. 2022; Weber et al. 2024a,b; Zen Vasconcel-
los et al. 2019; Zen Vasconcellos et al. 2021a,b; Zen
Vasconcellos et al. 2022). Such mathematical proce-
dures have proven extremely useful both in quantum
mechanics (Dirac 1937) and in pseudocomplex general
relativity (pc-GR) (Hess & Greiner 2009) with direct
physical (Aharonov & Bohm 1959;Wu et al. 2021) and cos-
mological (Hess 2017; Hess et al. 2016; Hess & Boller 2020)
manifestations.

The branch-cut formulation corresponds to the com-
plexification of the Friedman-Lemaître-Robertson-Walker
(FLRW) metric (Friedman 1922; Lemaître 1927;
Robertson 1935; Walker 1937), resulting in a sum of
field equations associated to continuously distributed
single-poles with infinitesimal residues, arranged along a
line in the complex plane (for details, see ref. Bodmann
et al. 2022; Bodmann et al. 2023a,b; de Freitas Pacheco
et al. 2022; Hess et al. 2022; Weber et al. 2024a,b; Zen
Vasconcellos et al. 2019, 2022; Zen Vasconcellos
et al. 2021a,b). Through a Riemann integration pro-
cess, this complexification procedure gives rise to a new
scale factor, denoted as ln−1[𝛽(t)], which characterizes a
topological foliated spacetime structure.

In this work, based on a recently developed commu-
tative and noncommutative formulation of the Poisson
algebra, which combines the branch-cut cosmology, the
Wheeler–DeWitt equation and the Hořava–Lifshitz quan-
tum gravity (Bodmann et al. 2023a,b;Weber et al. 2024a,b).
We will show that the introduction of a noncommutative
structure, which is equivalent to introducing a minimal
length will lead to sensible changes in the development of
the universe.

Considering a mini-superspace framework, we study
the implications of an inflaton-type scalar field and the
corresponding potential in the acceleration of the Uni-
verse. Given a set of elements a, b, c … , usually over the
field of real or complex numbers, equipped with a bilinear
mapping, a Poisson algebra A corresponds to an associa-
tive algebra together with a Lie algebra structure {, }, that
satisfies Leibniz’s law:

{a, bc} = {a, b}c + b{a, c}, (1)

with a, b, c … ∈ A. The element {a, b} is called the
Poisson bracket of a and b. The Poisson algebra is generally
associated with a associative commutative algebra over a
commutative ring Rwhose structure on A is defined by an
R-bilinear skew-symmetric mapping {., .} ∶ A × A → A,
such that (A, {., .}) is a Lie algebra over R. The Poisson
algebra however can be extended to the noncommutative
environment, as addressed in this work.

2 NONCOMMUTATIVE
BRANCH-CUT QUANTUM GRAVITY

The starting point of this study is a recently developed
noncommutative formulation of branch-cut cosmology
based on the Wheeler–DeWitt–Hořava–Lifshitz quantum
gravity (Bodmann et al. 2023a,b; Weber et al. 2024a,b),
a renormalizable theory that obeys Lorentz invariance at
low energy while breaking this symmetry at high energy
is a consequence of the implicit presence of a minimal
length (Bertolami & Zarro 2011; Hořava 2009).

In the BCG formulation, the corresponding quan-
tum action BCG depends on the scalar curvature of the
branched Universe, , and on its derivatives, in different
orders (Abreu et al. 2019; Bertolami & Zarro 2011; Bod-
mann et al. 2023a,b; Cordero et al. 2019; García-Compe
& Mata-Pacheco 2022; Hess et al. 2022; Hořava 2009;
Vieira et al. 2020). Based on this formulation, we investi-
gate the effects of noncommutativity in a mini-superspace
of variables obeying Poisson’s algebra on the accelerating
behavior of the wave function of the Universe (Bodmann
et al. 2023a,b).

The development of a formalism based on a non-
commutative algebra, follows the paths shown in (Abreu
et al. 2019): (a) The insertion, in the Hořava–Lifshitz
formalism, of the action of a perfect fluid, character-
ized by a dimensionless number 𝜔, associated with the
variable v(t), a quantum variable that spans, with u(t),
dual reciprocal spaces, and whose canonically conju-
gated momentum is represented by pv. (b) The former
commutative variables {u, pu, v, pv} satisfy now a noncom-
mutative algebra, defined as:

{u, v} = 𝜎 ; {pu, pv} = 𝛼 ; {u, pv} = 𝛾;
{v, pu} = 𝜒 ; {u, pu} = {v, pv} = 1, (2)

where pu and pv represent the canonically conjugated
momenta associated to u and v.

The final step in building the formalism is (c)
to carry out a linear transformation of the original
noncommutative phase space configuration into a com-
mutative representation. This transformation allows the
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incorporation of the noncommutative algebra, through
the insertion of the new set of variables {ũ, p̃u, ṽ, p̃v} and
the consequentmodification of the quantum gravity phase
space, into the intrinsic structure of the cosmic quantum
dynamics. In this new set, the momentum variables can
be substituted by derivatives in terms of the coordinates,
as done in the standard quantization procedure.

We introduce a mapping which relates the commuta-
tive {ũ, p̃u, ṽ, p̃v} and the noncommutative phase space set
of variables {u, pu, v, pv} and we adopt a canonical quan-
tization procedure for the variables u(t) and v(t) along
with their corresponding conjugate momenta pu and pv,
in order to be treated as quantum operators (for details,
please consult Bodmann et al. (2023a)).

For convenience, we choose 𝜎 = 0, which results
in ũ = u and ṽ = v. Furthermore, from now on, we
skip the tilde symbol of the commuting variables. We
adopt the canonical quantization procedure, arriving at
a canonical super-Hamiltonian equation for the wave
function of the Universe on the basis of a characteristic
equation (Bodmann et al. 2023a),

(𝜉, 𝜂)Ψ(𝜉, 𝜂) = 1
2
N
𝜂

[
− p2

𝜂,𝛾,𝛼

+ gr − gm𝜂 − gk𝜂2 − gq𝜂3

+gΛ𝜂4 +
gs
𝜂

2 + 𝛼

𝜂

3𝛼−2 − 𝛼𝜉

𝜂

3𝛼−1 + 1
𝜂

3𝛼−1 p𝜉
]
Ψ(𝜉, 𝜂) = 0, (3)

where −p2
𝜂,𝛾,𝛼

is defined as

− p2
𝜂,𝛾,𝛼

≡
𝜕

2

𝜕𝜂

2 + 𝛾

𝜂

3𝛼−1
𝜕

𝜕𝜂

= −
(
−i 𝜕

𝜕𝜂

)(
−i 𝜕

𝜕𝜂

)
+ i|𝛾|

𝜂

3𝛼−1
𝜕

𝜕𝜂

≡ −p2
𝜂

− p
𝜂,𝛾,𝛼

,

(4)

with

p
𝜂,𝛾,𝛼

≡ − i|𝛾|
𝜂

3𝛼−1
𝜕

𝜕𝜂

→
𝛾

𝜂

3𝛼−1

(
−i 𝜕

𝜕𝜂

)
= 𝛾

𝜂

3𝛼−1 p𝜂. (5)

In expression (3) the following change of the variables
u and v in terms of new independent variables 𝜉 and 𝜂 was
introduced:

𝜉 = 𝜑(u, v), and 𝜂 = 𝜂(u, v), (6)

where 𝜂(u, v) is a differentiable function that satisfies the
nondegeneracy condition of the Jacobian D(𝜉, 𝜂)∕D(u, v)
in the given domain and 𝜑(u, v) represents the general
integral.

Still with respect to expression (3), gi denote running
coupling constants: gk, gΛ, gr, and gs represent respectively
the curvature, cosmological constant, radiation, and

stiff matter running coupling constants (Bertolami &
Zarro 2011; Maeda et al. 2010), gmu describes the contri-
bution of baryon matter combined with dark matter, and
gqu3 denotes a quintessence contribution. The gr, and gs
running coupling constants can be positive or negative,
without affecting the stability of the solutions. Because
𝜎 = 0 we can set 𝜂 = u and 𝜉 = v.

Stiff matter contribution in turn is determined by the
p = 𝜔𝜌 condition in the corresponding equation of state.

The parameterization of curvature, cosmological con-
stant, radiation, stiff matter, baryonmatter combined with
darkmatter, and quintessence running coupling constants
are in tune with the Wilkinson Microwave Anisotropy
Probe (WMAP) observations (Hinshaw et al. 2013).

The solutions of the WdW equation, represented by
a geometric functional of compact manifolds and mat-
ter fields, describe the evolution of the quantum wave
function of the Universe (Hartle & Hawking 1983; Hawk-
ing 1982), Ψ(𝜂, 𝜉).

The corresponding expression for the wave function of
the Universe is defined here in terms of the variables 𝜂(t)
that characterize the scale factor of the branch-cut cosmol-
ogy and its dual complementary counterpart, represented
by 𝜉(t). The meaning of this solution in the BCG allows,
under certain conditions, the separation of variables in
such a way that the final solution Ψ(𝜂, 𝜉) can be written
in the form of a product Ψ(𝜂)Ψ(𝜉) so that the correspond-
ing component solutions represent, in the same way as the
variables 𝜂 and 𝜉, complementary dual spaces solutions.
Said simply, its meaning can be summarized as: the wave
function describes different states of the branch-cut Uni-
versewhich corresponds to different stages of its evolution.
Another possible interpretation: the wave function is a
probability amplitude for the Universe to have some space
geometry, or to be found in some point of theWheelermini
superspace, evolving as a function of the variables 𝜂 and 𝜉.

3 MINI-SUPERSPACE OF
VARIABLES

We consider in the following a mini-superspace of vari-
ables (𝜂(t), 𝜉(t), 𝜙(t)), where𝜙(t) represents the scalar infla-
ton quantum field. We adopt for the action of the scalar
field the following expression (Kiritsis & Kofinas 2009;
Tavakoli et al. 2021)

S
𝜙

=
∫


d3x dt N
√
g
[ 1
N2

(
̇

𝜙 − Ni
𝜕i𝜙

)2 − (𝜕i𝜙, 𝜙)
]
.

(7)
Assuming homogeneous and isotropic cosmological set-
tings we have Ni = 0 (Kiritsis & Kofinas 2009; Tavakoli
et al. 2021), and the action of the scalar field 𝜙(t), given by
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expression (7), may be written as

S
𝜙

=
∫


d3x dt N
√
g
(1
2
1
N2F(𝜙) ̇𝜙

2 − V(𝜙)
)
, (8)

with V(𝜙) denoting the inflation potential and where F(𝜙)
represents a coupling function. In the following, from the
total action determined by adding theHořava–Lifshitz and
the scalar field actions, the Hamiltonian associated with
the mini-superspace of variables may be obtained.

3.1 Noncommutative Hamiltonian

As noted above, the 𝜂 variable can be identified with the
scale parameter of the universe, u, and 𝜉, its complemen-
tary dual counterpart, with v. We are familiar with the
fact that, in quantum mechanics, energy-momentum and
space-time correspond to dual and complementary vector
spaces. In noncommutative branch-cut cosmology, 𝜂 − 𝜉

scan, in the same way as in standard quantum mechan-
ics, complementary dual vector spaces, bringing to light
the complexity of an algebraic structure that captures
small and large spatial-temporal scales. The question that
arises, and which we do not intend to discuss in this
work, in view of the comparison with standard quan-
tum mechanics, back to Snyder’s vision for a minimum
space-time scale (Snyder 1947), is whether these dual vari-
ables are coupled through a minimum uncertainty-like
relation.

The momenta conjugate to the dynamical variables
(𝜂(t), 𝜉(t), 𝜙(t)) can be obtained by definition as pq =
𝜕L∕𝜕q̇, where L defines the total Lagrangian of the system,
resulting in

p
𝜂

= − 1
N
𝜂𝜂̇ ; p

𝜉

= − 1
N
𝜉

̇

𝜉 ; and p
𝜙

= 1
N
F(𝜙)u3 ̇

𝜙. (9)

The total Hamiltonian then reads

 = 1
2
N
𝜂

[
−p2

𝜂,𝛾,𝛼

+ gr − gm𝜂 − gk𝜂2 − gq𝜂3 + gΛ𝜂4 +
gs
𝜂

2

]

+ 1
2
N
𝜂

[
𝛼

𝜂

3𝛼−2 − 𝛼𝜉

𝜂

3𝛼−1 + 1
𝜂

3𝛼−1 p𝜉
]

+ 1
2
N
𝜂

[
1

u3𝜔−1F(𝜙)
p2
𝜙

+ 2V(𝜙)
]
. (10)

In the following we promote the canonical conjugate
momenta p

𝜂

, p
𝜉

and p
𝜙

into operators

p
𝜂

→ −i 𝜕
𝜕𝜂

; p
𝜉

→ −i 𝜕
𝜕𝜉

; and p
𝜙

→ −i 𝜕
𝜕𝜙

. (11)

For𝜔 = 𝛼 = 1∕3, the conditionHΨ(𝜂, 𝜉, 𝜙) = 0 implies the
following separable equations

(
𝜕

2

𝜕𝜂

2 + 𝛾

𝜕

𝜕𝜂

+ g̃r − g̃m𝜂 − gk𝜂2 − gq𝜂3 + gΛ𝜂4 +
gs
𝜂

2

)
Ψ(𝜂) = 0;

(12)
with g̃r ≡ gr −  and g̃m ≡ gm − 1∕3,

(
i 𝜕
𝜕𝜉

− 1
3
𝜉 + 

)
Ψ(𝜉) = 0; (13)

and (
1

F(𝜙)
p2
𝜙

+ 2V(𝜙) − 

)
Ψ(𝜙) = 0. (14)

In these expressions,Ψ(𝜂, 𝜉, 𝜙) = Ψ(𝜂)Ψ(𝜉)Ψ(𝜙) represents
the wave function of the Universe in a separable form.
Following the interpretation given previously for the wave
function Ψ(𝜂, 𝜉), here 𝜂, 𝜉, and 𝜙 scan a complementary
dual space of variables and its solutions also scan, from
the point of view of quantum gravitation, a dual and com-
plementary space of solutions for the wave function of the
branch-cut Universe.

In Figure 1, we present the solutions Ψ(𝜂) of
Equation (12), for different initial conditions and a collec-
tion of parameters.1 In the left panel, the wave function
increases continuously in the negative sector of the scale
𝜂 (= u) of the universe. The right figure shows the pos-
itive sector of 𝜂. A strong increase of the wave function
indicates an accelerating behavior of the universe. Note,
the significant change provoked by a change of sign of
the 𝛾 parameter. In Figure 2 the function Ψ(𝜉) is plot-
ted, for 𝛼 = 1∕3 and  = 1, for different ranges, reflecting
again a significant change in the properties of the wave
function.

Here, we have to make a comment on the inter-
pretation of the wave function, which is not solved yet
definitively. The result, presented here, gives only a rough
idea of what is happening. In a future contribution (in
preparation) we intend to discuss this matter in further
detail.

3.2 Modeling chaotic and nonchaotic
inflation

In what follows, we assume a polynomial coupling func-
tion for the scalar field, F(𝜙) = 𝜆𝜙

m, and wemodel chaotic
and nonchaotic inflation. We model chaotic inflation by

1In order to solve the differential equations, we used MATHEMATICA
PRO PREMIUM (Wolfram Research, Inc., 2023), which enabled us to
obtain the solutions without recurring to approximations.
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F I GURE 1 Typical individual solutions of the 𝜂(t)-component (Ψ(𝜂)) of the wave function of the Universe, Ψ(𝜂, 𝜉, 𝜙), using the
noncommutative approach given by Equation (12) and the boundary conditions Ψ(−1) = −1, on the left figure, and Ψ(1) = 1 on the right
figure. Concerning the 𝛼, 𝜒 , and 𝛾 set of parameter of the noncommutative Poisson algebra, 𝛼 = 1∕3, 𝜒 is implicitly considered in the
structure of the scale factor 𝜂 and its dual counterpart 𝜉 as a result of the variable transformation and imposition of a canonical solution. With
respect to the 𝛾 parameter, 𝛾 = −1 in both figures. In the calculation of Equation (12), the parameter values are: g̃r = 0.4; g̃m = 0.6138; gk = 1;
gq = 0.7; gΛ = 0.333; gs = 0.03.

F IGURE 2 Typical individual solutions of the 𝜉-component (Ψ(𝜉)) of the wave function of the Universe, Ψ(𝜂, 𝜉, 𝜙), for the
noncommutative approach according to Equation (13), and different ranges.

using the potential V(𝜙) = 1
2
g2
𝜙

𝜙

2, so Equation (14) then
reads [

− 𝜕

2

𝜕𝜙

2 + 𝜆𝜙

m
(
g2
𝜙

𝜙

2 − 

)]
Ψ(𝜙) = 0. (15)

For the nonchaotic inflation we adopt in the following the
Fubini potential to simulate inflation

V(𝜙) = 𝛽

4
(𝜙 − 𝜙c)4 −

1
2
g2
𝜙

(𝜙 − 𝜙c)2. (16)

Combining this equation with expression (16), we obtain

[
𝜕

2

𝜕𝜙

2 − 𝜆𝜙

m
(
𝛽

2
(𝜙 − 𝜙c)4 − g2

𝜙

(𝜙 − 𝜙c)2 − 

)]
Ψ(𝜙) = 0.

(17)
In Figure 3 two types of potentials are plotted, the

left one for the chaotic inflation and the right one for

the original nonchaotic inflationary model. For reasons of
completeness, Figure 4 show typical individual solutions
for Ψ(𝜙), the Φ-component of the wave function of the
Universe, Ψ(u, 𝜙). The figure on the left corresponds to
chaotic inflation according to Equation (15), with the ini-
tial condition Ψ(1) = 1 and 𝜆g2

𝜙

< 0. In turn, the figure on
the right corresponds to nonchaotic inflation, according to
Equation (17), with the initial condition Ψ(1) = 1, 𝜆𝛽 < 0,
𝜆g2

𝜙

< 0, and 𝜆 < 0. Although the solutions exhibit some
similarity to Figure 1, it is important to highlight that
the presence of the inflaton field anticipates the effects
of the acceleration of the Universe towards the boundary
region of separation between the two evolutionary cos-
mic phases: the current phase and its mirror counterpart.
This is in comparison with results that do not include the
presence of this scalar field. Also here, the wave equations
are solved without recurring to approximations. The left
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F IGURE 3 On the left, generic form of the potential for the chaotic inflationary scenario. On the right, a typical form of the potential
for the original nonchaotic inflationary model, based on the Fubini proposal (de Alfaro et al. 1976).

F IGURE 4 For reasons of completeness, the figures show typical individual solutions for Ψ(𝜙), the Φ-component of the wave function
of the Universe, Ψ(u, 𝜙). The figure on the left corresponds to chaotic inflation according to Equation (15), with the initial condition Ψ(1) = 1
and 𝜆g2

𝜙

< 0. The figure on the right corresponds to nonchaotic inflation, according to Equation (17), with the initial condition Ψ(1) = 1,
𝜆𝛽 < 0, 𝜆g2

𝜙

< 0, and 𝜆 < 0. Although the solutions exhibit some similarity to Figure 1, it is important to highlight that the presence of the
inflaton field anticipates the effects of the acceleration of the Universe towards the boundary region of separation between the two
evolutionary cosmic phases: the current phase and its mirror counterpart. This is in comparison with results that do not include the presence
of this scalar field.

figure is for a negative 𝜆g2
𝜙

and the right one for a positive
𝜆g2

𝜙

. The behavior of Ψ(𝜙) is quite distinct for the two
cases. While for a negative 𝜆g2

𝜙

the wave function shows
an oscillatory behavior, for a positive 𝜆g2

𝜙

it is exploding
for positive 𝜙. The oscillatory behavior is a remnant of
the phase contribution, that is, Ψ(𝜙) = |Ψ(𝜙)|ei𝜇 with 𝜇

as the phase. The real part is then |Ψ(𝜙)| cos(𝜇). For the
interpretation of the wave function as a probability dis-
tribution, only the absolute value of the wave function
matters.

A crucial point in our results: these solutions are sim-
ilar to the commutative formulation considering that the
inflaton field was not inserted in the original algebraic

structure, being introduced into the formalism in an adhoc
manner. This raises a relevant question to be considered in
a future contribution to this volume. There is still the ques-
tion of the correct interpretation of thewave function. This
is a still unresolved issue and we plan to investigate it in a
future contribution.

4 SUMMARY AND FINAL
REMARKS

One main motivation was to study the effects of a
noncommutative Poisson algebra of the coordinates and
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momenta on the evolution of the universe. We demon-
strated that the effects are important and change the
outcome, compared to the commutative structure.

We have studied the properties of the wave func-
tion of the universe, taking into account the effects of
a noncommutative Poisson algebra for the coordinates
and momenta. This corresponds to effectively introduc-
ing a minimal length scale. A transformation was used
to obtain a new set of coordinates and momenta, satis-
fying the standard algebra. The Hamiltonian in terms
of the new variables was constructed and the corre-
sponding Wheeler–DeWitt equations derived. These
equations were solved without recurring to approx-
imations. Different scenarios were studied, varying
not only the parameters involved but also the initial
conditions.

Which of the set of parameters finally describes our
universe and which initial condition has to be applied, is
still out of our possibilities to determine. Nevertheless, we
hope that the results presented can help to understand bet-
ter the BCG but also the effects of a minimal length on
the evolution of the universe, leading at the end to testable
predictions.
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