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Abstract

This article focuses on a recently developed formulation based on the non-
commutative branch-cut cosmology, the Wheeler-DeWitt (WdW) equation,
the Hofava-Lifshitz quantum gravity, chaotic and the coupling of the cor-
responding Lagrangian approach with the inflaton scalar field. Assuming a
mini-superspace of variables obeying the noncommutative Poisson algebra, we
examine the impact of the inflaton scalar field on the evolutionary dynam-
ics of the branch-cut Universe scale factor, characterized by the dimensionless
helix-like function In~'[#(¢)]. This scale factor characterizes a Riemannian foli-
ated spacetime that topologically overcomes the primordial singularities. We
take the Hofava-Lifshitz action modeled by branch-cut quantum gravity as our
starting point, which depends on the scalar curvature of the branched Universe
and its derivatives and which preserves the diffeomorphism property of General
Relativity, maintaining compatibility with the Arnowitt-Deser—Misner formal-
ism. We then investigate the sensitivity of the scale factor of the branch-cut
Universe’s dynamics.
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1 | INTRODUCTION

In a recent publication included in the present volume
(Hess et al. 2024), we examine the implications of a
noncommutative formulation of the branch-cut quan-
tum gravity on the wave function of the Universe. Based
on a mini-superspace structure that obeys the noncom-
mutative Poisson algebra, combined with the branch-cut
gravity (Bodmann et al. 2022; Bodmann, et al. 2023a,
2023b; Hess et al. 2022; Weber et al. 2024a, 2024b; Zen
Vasconcellos et al. 2019; Zen Vasconcellos et al. 2021a,
2021b; Zen Vasconcellos et al. 2022), the Wheeler-DeWitt
equation DeWitt (1967) and Hofava-Lifshitz quantum
gravity (Hofava 2009), we investigate the impact of a scalar
field of the inflaton-type in the evolution of the Universe’s
wave function. The results indicate that the noncommuta-
tive algebraic structure captures small and large spacetime
scales, driving the exponential acceleration of the Uni-
verse.

In this work, we continue this study by examining the
impact of this formulation on the spacetime evolution of
the scale factor of the branched Universe.

2 | HORAVA-LIFSHITZ
BRANCH-CUT HAMILTONIAN

The starting point of our formulation is the non-
commutative branch-cut Hofava-Lifshitz canonical
super-Hamiltonian equation for the wave function of the
Universe (for the details, see (Bodmann, Hadjimichef
et al., 2023a; Hess et al. 2024)),
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In order to reach this super-Hamiltonian, the non-
commuting variables and momenta are mapped to new
commuting variables and momenta. The expressions of
the noncommuting variables and momenta in terms of the
commuting ones are substituted into the Hotava-Lifshitz

Hamiltonian, giving rise to (1). (In Bodmann, Had-
jimichef, et al., 2023a; Hess et al. 2024, the new commut-
ing variables were assigned a tilde above, which is now
skipped.) As a consequence of these steps, new interac-
tion terms appear, which were not present before in the
commuting case.

In expression (1), g; represents the following run-
ning coupling constants: g, ga, &, and gs which denote
respectively the curvature, cosmological constant, radia-
tion, and stiff matter running coupling constants (Berto-
lami & Zarro 2011; Maeda et al. 2010), g,u in turn
describes the contribution of baryon matter combined
with dark matter, and g,u> corresponds to the quintessence
contribution. The g,, and g running coupling constants
can be positive or negative, without affecting the sta-
bility of the solutions. Stiff matter contribution is deter-
mined by the p=wp equation of state condition. A
stiff matter era was introduced in the Zel'dovich’s cos-
mological model (Zel'dovich 1972) where the primor-
dial universe was assumed to be made of a cold gas
of baryons. It may also characterize dark matter made
of a relativistic self-gravitating Bose-Einstein conden-
sates (BECs) (Chavanis 2015). The parametrization of
curvature, cosmological constant, radiation, stiff mat-
ter, baryon matter combined with dark matter, and
quintessence running coupling constants are in tune with
the Wilkinson Microwave Anisotropy Probe (WMAP)
observations (Hinshaw et al. 2013). The solutions of
the WdW equation, represented by a geometric func-
tion of compact manifolds and matter fields, describe
the evolution of the quantum wave function of the Uni-
verse (Hartle & Hawking 1983; Hawking 1982), ¥(n, &).
This expression is defined here in terms of the variables
n(t) that characterizes the scale factor of the branch-cut
cosmology and its dual complementary counterpart,
represented by &(t).

3 | MINI-SUPERSPACE OF
VARIABLES

We consider in this section an extended mini-superspace
of variables (n(?), £(t), ¢(1)), obeying the noncommutative
Poisson algebra, where ¢(t) represents the scalar inflaton
quantum field.

We adopt for the action of the scalar field the following
expression (Kiritsis & Kofinas 2009; Tavakoli et al. 2021)

Sy = /d3xdtN\/§[$ (- Niaid))z]. @
M

Assuming homogeneous and isotropic cosmological
settings we have N; = 0 (Kiritsis & Kofinas 2009; Tavakoli
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et al. 2021), and the action of the scalar field ¢(¢), given by
expression (4), may be written as

11

S, = / ExdiNyE(3 @) ) )
M

where F(¢) represents a coupling function.

The conjugate momenta to the dynamical variables
(n(1), &), ¢(1)) can be obtained by definition as p,; =
0L /04, where L defines the total Lagrangian of the system,
resulting in

1 ’ 1 / 1 3 41
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From the total action determined by adding the
Horava-Lifshitz and the scalar field actions, the Hamilto-
nian associated with the mini-superspace of variables may
be obtained:
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Adopting usual canonical quantization procedures, we

then promote the canonical conjugate momenta p,,, ps, and
D¢ into operators

0 9
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3.1 | Hamilton equations

Hamilton equations may be synthesized in the form
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Combining these equations with (7), we obtain the
following Hamilton equations:
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We have here taken an explicit time-dependence on the
variables # and &, so

. t at
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Assuming w = 1 and the time gauge N = #"(¢), by elim-
inating ps on the ¢’ and p;) equations above, we obtain

PO _1F@D 0 F@ o a0

0. (15)
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Integrating this equation we obtain

¢ , -
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Expanding F(¢)?'®, around t = 0, it results

F($)?® = F(¢)? ©{1 + log(F(¢))¢" (0)F())
+ 2 log(F(@)) (log(F(¢p)d" (0)? + ¢ (0))
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Adopting the boundary condition ¢’'(0) = 1, we obtain
from the expression above, in the first order of ¢(t) time
derivative (for convergence reasons) (see for instance
Tavakoli et al. (2021)),

P(OF(¢) = Kn(t)* "2, (18)

where K represents an integration constant.

In what follows, we use Cauchy’s implicit function
theorem, assuming that the variable # has an explicit time
dependence, so the variables # and ¢ can be separated,
thus ensuring that these variables are differentiable. We
also assume, for simplicity, in view of the high difficulty to
solve the above equations, that #’ and # act as independent
variables.

Combining Equations (13) and (18), the following
expression follows:

3ayn'(t)

e TV@0=0 (19
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where the potential V(5,t) has an explicit time depen-
dence:

_ _ 2 & &
V(1. 1) = gi + 28qn(t) = 3gan* (1) + 55 + 3-8
(20)

aBa-1) _  3a%t K

P el oo

Comparing Equation (19) with the corresponding
equation obtained through the commutative formulation
(Weber et al. 2024a, 2024b) brings to light the formal struc-
tural differences between the two approaches:

2utyu’’ (£) + u'(O)* + gk + 2gqu(t) — 3gau’(0)
& 3M _

=0, 21
u?(t) ut(t) 2

inwhicha=y =y =0.

4 | RESULTS

Figure 1 shows a graphical representation of

Equation (20). In the contour graphs, color variations
indicate the behavior of the potential V(#, t), with regions
of greater amplitudes (lighter colors) or, conversely, of
smaller amplitudes (darker colors) indicating the different
intensities of the potential in function of the variables #(t)
and t. A word of caution regarding the meaning of inten-
sity: greater intensity means in our conception effects that
may increase the dynamical behavior of the branch-cut
cosmology scale factor, driving the acceleration of the
Universe, while lower intensity means the opposite.
Therefore, a region where a singularity predominates is,
in this sense, a region of lower intensity from a dynamical
point of view and therefore with a lower probability of
driving the acceleration of the Universe. In this sense, a
region of this type may drive the opposite effect and can
lead to a big-crunch effect. The blue color signifies the
region with lower values of potential intensity, normally
around a singularity or a region where decelerating effects
of the branch-cut Universe predominate from a gravita-
tional point of view. The cream color in turn designates
regions with higher values, where the region of great-
est impulse of the primordial Universe predominates.
The white regions, although not always clearly visible in
some figures, correspond to the exact region where the
singularity that increases the probability to generate the
big-crunch effects predominates.

It is important to remember that although branch-cut
cosmology may overcome the main problem of the primor-
dial singularity, the divergence of the solutions, the model
does not eliminate it. What the model does is transform
the primordial singularity into a branch-point and describe
a foliated region around the branch-point, a branch-cut

foliated family of Riemann surfaces in the form In"*[4(#)],
which comprehends the BCG scale factor, and which in
this contribution is (partially) described by the function
n(t). These Riemann surfaces correspond to stacks of cut
complex planes, joined along the cut. The term used,
“partially”, is due to the fact that, in the noncommu-
tative formulation, the transformation of variables that
leads to a canonical equation that describes the system’s
Hamiltonian makes the variables n(t) and &(t) into dual,
complementary variables. Thus, the dual complementary
character of these variables makes the structurally descrip-
tive characteristics of the original form factor, In[4(f)], are
shared between the two new variables, although it is still
an open problem to determine the extent and meaning of
this sharing.

In short, the scale factor In~*[f(t)] corresponds to a
single-valued and holomorphic function, except at branch
point helix-like superposition of cut planes, with upper
edge of cut in n-th plane joined with lower edge of cut in
(n + 1)-th plane. And BCG describes a map of solutions
corresponding to equipotential regions that make possible
overcoming the primordial singularity that would other-
wise be inescapable in the standard model. The model
implies that, as one of these solutions approaches the
branch-point, there is a jump of 2z from a Riemann sheet,
in a continuous and coordinated manner, to a new fam-
ily of solutions but contained in another Riemann sheet.
Evidently, the physical and cosmological meaning of this
jump requires additional studies so that its meaning can
be understood in more depth. Two possibilities in the first
approach stand out. In the first, the succession of Riemann
leaves could represent the evolutionary process of the Uni-
verse in the branch-cut composition. On the other hand,
each Riemann sheet could represent a Universe from a
composition of multiverses, tightly connected.

Back to the potential V(#, t), the plotting results indi-
cate that the noncommutative algebraic structure con-
tributes in an intense way to the configuration and distri-
bution of matter in the early Universe, driving the acceler-
ation of the primordial Universe.

Figure 2 shows typical sample family solutions of
the evolution in time of the scalar factor #(t) given by
Equation (19). On the left figure, the solutions correspond
to sampling #’'(—1) and boundary condition #(-1) = —1.
The solutions on the right figure correspond to sampling
7' (1) and boundary condition #(1) = 1. Figure shows the
dramatic and intense acceleration of the Universe through
the highest exponential growth of the scale factor #(¢). In
our conception, it is exactly the potential that describes
the presence of matter and energy in the primordial Uni-
verse combined with the noncommutative algebraic struc-
ture, which captures the small and large scales of the
space-time structure that are the sources of this dramatic
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On the left figures, plotting of the potential V(y, t) given in Equation (20). On the right figures, the corresponding contour

plots. The parameters are as follows: g, = 1; g, = 0.7; g = 0.333; g, = 0.4; g = 0.03; « = —3/4; y = —1; % = 1. The parameter y in turn is

implicitly inserted in the structure of the dual variables n and &.

and accelerated expansion of the Universe. In short, these
are the ingredients that, in our conception, drive the accel-
eration of the Universe.

The comparison of typical results for the dynamic
equations corresponding to the commutative and non-
commutative formulations is enlightening. Figure 3 shows
typical results corresponding to the dynamic equation (21)
showing that depending on the choices of parameters and
initial conditions, the commutative formulation predicts
the possibility of a big crunch of the early Universe or a
moderate acceleration in its evolution.

5 | SUMMARY AND FINAL
REMARKS

The paper investigates the implications of a noncommu-
tative formulation of branch-cut quantum gravity on the

wave function of the Universe. Utilizing a mini-superspace
structure obeying a noncommutative Poisson algebra and
combining it with branch-cut gravity, the study explores
the impact of an inflaton-type scalar field on the evolution
of the Universe’s wave function. The results indicate that
the noncommutative algebraic structure captures both
small and large spacetime scales, leading to exponential
acceleration of the Universe.

The study opens avenues for further exploration of
the noncommutative formulation of branch-cut quantum
gravity and its implications on the early Universe. Future
research could delve into the physical and cosmologi-
cal interpretations of the jump between Riemann sheets
and the detailed consequences of the noncommutative
algebraic structure on different scales of spacetime. Addi-
tionally, the model’s predictions and compatibility with
observational data could be investigated to validate its
cosmological relevance.
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FIGURE 3

FIGURE 2 Typical sample
individual solutions of the evolution in
J time of the scalar factor #(t) given by
Equation (19). On the up figures, the
solutions correspond the negative sector

Re n(t) of the solutions, and to sampling #'(—1)
and boundary condition #(—1) = —1. The
solutions on the below figure correspond
to sampling #’(1) and boundary condition
n(1) = 1. The parameter adopted in the
calculations of the solutions are as
follows: g = 1; g = 0.7; g5 = 0.333;

g =04;8,=003a=-1/4y=—
K = 1. The parameter y in turn is
implicitly inserted in the structure of the
dual variables # and &.
u(t) u(1)=2
12
10
8
6
4

Typical sample family solutions of the evolution in time of the scalar factor u(t) of the commutative formulation for

different initial conditions. The figures correspond to sampling u/(1). The parameter adopted in the calculations of the solutions are as

follows: g = 1; g = 0.7; g5 = 0.333; g, = 0.4; g, = 0.03; L = 1.
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