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Abstract: Neutron stars provide a unique opportunity to study strongly interacting matter
under extreme density conditions. The intricacies of matter inside neutron stars and their
equation of state are not directly visible, but determine bulk properties, such as mass and
radius, which affect the star’s thermal X-ray emissions. However, the telescope spectra of
these emissions are also affected by the stellar distance, hydrogen column, and effective
surface temperature, which are not always well-constrained. Uncertainties on these nuisance
parameters must be accounted for when making a robust estimation of the equation of state.
In this study, we develop a novel methodology that, for the first time, can infer the full
posterior distribution of both the equation of state and nuisance parameters directly from
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telescope observations. This method relies on the use of neural likelihood estimation, in
which normalizing flows use samples of simulated telescope data to learn the likelihood of the
neutron star spectra as a function of these parameters, coupled with Hamiltonian Monte Carlo
methods to efficiently sample from the corresponding posterior distribution. Our approach
surpasses the accuracy of previous methods, improves the interpretability of the results by
providing access to the full posterior distribution, and naturally scales to a growing number
of neutron star observations expected in the coming years.

Keywords: Machine learning, neutron stars, Bayesian reasoning, X-ray binaries
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1 Introduction

The study of neutron stars provides a window into the fundamental nature of matter under
extreme conditions, a long-standing area of research in nuclear and astrophysics [1]. The
core of a neutron star contains matter at densities that far surpass those encountered in
terrestrial experiments. Under such conditions, matter could exist in various exotic states [2],
such as baryons in the form of hyperons and ∆ isobars [3–7], deconfined quarks [8–11], color
superconducting phases [12–14], quarkyonic matter [15, 16], or possibly meson condensates [17–
21]. Understanding the physics of matter under the extreme conditions within a neutron
star hinges crucially on unveiling the equation of state (EoS), which represents its internal
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Figure 1. Traditional inference of EoS parameters (left) from telescope spectra (right) is done
by first inferring intermediate mass-radius constraints (green arrows), involving additional implicit
assumptions. In contrast, neural likelihood estimation allows for inference of the EoS directly from
telescope spectra (orange arrow), robustly accounting for uncertainties.

composition through the intricate relationship between pressure and energy density [22].
Knowledge of the EoS is also vital in determining the macroscopic properties of neutron stars,
such as their mass and radius, via the relativistic stellar structure equations [23, 24].

Observations of neutron stars have been the primary source for advancing our knowledge
of the EoS of superdense matter. In the last two decades, there has been an increasing
amount of high-quality data from X-ray and radio emissions, and gravitational waves [25–35].
In particular, spectroscopic measurements from the thermal surface emission of low-mass
X-ray binaries in quiescence have provided constraints on the neutron star mass-radius
relation. The constraints on the mass-radius relation from observations can be translated
into constraints on the EoS of neutron star matter through the use of Bayesian inference
techniques [36–50], with a recent interest in complementary methods based on machine
learning (ML) [51–72]. Beyond the star’s mass and radius, emitted stellar spectra are also
affected by physical quantities like the stellar distance, hydrogen column, and effective surface
temperature. Uncertainties on these so-called nuisance parameters must be accounted for
when analyzing stellar spectra and making a robust estimation of the equation of state.
Traditionally, inference is done in two steps, first by extracting the mass and radius of
a neutron star from an observed telescope spectrum, followed by EoS inference from a
set of stellar masses and radii [73, 74]. This two-step procedure often requires additional
assumptions, though recently it has been demonstrated that a single-step inference is possible
while fully propagating uncertainties [71, 72]. While these advancements allow access to the
posterior of the EoS parameters by marginalizing nuisance parameters, the computational
expense involved has hindered access to the full posterior.

This paper introduces a novel method that provides access to the full posterior distribution
of the equation of state and the nuisance parameters directly from telescope spectra. We
employ a recently developed simulation-based inference technique known as neural likelihood
estimation (NLE) [75] in which normalizing flows [76, 77] use samples of simulated X-ray
telescope spectra to learn the likelihood of an observation as a function of the EoS and
nuisance parameters. The direct inference of the neutron star EoS from telescope spectra
via neural likelihood estimation in contrast to the traditional two-step inference is shown
schematically in figure 1.

– 2 –
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Once trained, the likelihood evaluation is computationally inexpensive, allowing for
the calculation of the posterior across the high-dimensional parameter space for inference,
marginalization, profiling, or visualization. Since neural networks are, by design, differentiable
functions, we can efficiently sample the posterior using state-of-the-art Markov Chain Monte
Carlo (MCMC) methods, such as Hamiltonian Monte Carlo (HMC). On simulated test
spectra, this method outperforms previous approaches in terms of accuracy and precision
of EoS estimation, while improving the interpretability of results with available posterior
nuisance parameters. This approach also naturally scales to a growing number of neutron
stars, as it does not require retraining to apply to larger datasets.

This paper is organized as follows: section 2 reviews the connection between the equation
of state of neutron stars and their observed X-ray spectra. This section also outlines the
simulation process employed for generating samples of simulated telescope spectra. Section 3
summarizes related previous work to infer the neutron star EoS. Section 4 then describes
our new simulation-based neural likelihood estimation (NLE) approach developed in this
paper. The performance of this method is quantitatively compared to previous approaches
in section 5, with a qualitative discussion on its merits in section 6. Finally, we present
our conclusions in section 7.

2 Simulated neutron stars

Samples of simulated neutron stars with varying values of EoS and nuisance parameters are
prepared for training the normalizing flows and evaluation of their performance. Samples
from refs. [71, 72] are used to facilitate direct comparison to previous methods.

2.1 Equation of state

Matter inside neutron stars can be described in terms of the EoS, which provides the
thermodynamic relationship between pressure P and energy density ε within the star. To
generate samples for the EoS, we begin with the relativistic mean field model GM1L [78] (see
appendix A for more details), represented by a second-order spectral expansion as described
in refs. [79, 80]. Thus the full EoS can be described succinctly by the expansion coefficients,
which we refer to as λ1 and λ2. We draw EoS samples by uniformly sampling the coefficients
in the intervals λ1 ∈ [4.75, 5.25] and λ2 ∈ [−2.05,−1.85].

The underlying physics captured in the star’s EoS directly influences bulk properties
like mass and radius through the relativistic stellar structure equations. We determine mass-
radius relations for each EoS using the Tolman-Oppenheimer-Volkoff (TOV) equations, which
determine the structure of non-rotating, spherically symmetric neutron stars in equilibrium [23,
24]. Using the EoS variations described above, the TOV equations are numerically solved to
produce mass-radius relations which are sampled to generate the mass M and radius R for
∼100 stars per EoS sample. For the sampling of stars we choose a log-uniform distribution
of central enthalpies [81] for the boundary condition to solve the stellar structure equations.
This leads to a higher weighting of larger masses close to the maximum supported mass
in the distribution of stars for each EoS.
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Parameter Distribution Range
EoS λ1 uniform [4.75, 5.25]

λ2 uniform [−2.05,−1.85]

nuisance d uniform [2.3, 12.3] kpc

NH log uniform [0.01, 3.16] 1021 cm−2

Teff exponential [1, 2]106 K,a

aThis corresponds to a uniform distribution of log(Teff) in the range [6, 6.3].

Table 1. Distributions and ranges of the equation of state parameters (λ1 and λ2) and nuisance
parameters (NH , d, and log(Teff)) used to generate the samples of simulated neutron stars. See text
for parameter definitions.

2.2 Modeling X-ray spectra with XSPEC

Traditional statistical methods infer macroscopic neutron star properties from the emitted
X-ray spectra of quiescent low-mass X-ray binaries (LMXBs) by fitting the observed spectrum
to well-motivated theoretical models [82–84]. The open-source software xspec contains many
such models and is widely regarded as the state-of-the-art for spectral fitting [85] and can
additionally be used in the generation of simulated spectra. The spectra used in this study were
generated using the NSATMOS model in xspec, a hydrogen atmospheric model with electron
conduction and self-irradiation [84]. Beyond stellar mass and radius, this model also depends
on three additional nuisance parameters, described in the next section. The simulated spectra
are subjected to the Chandra telescope response function corresponding to the instrument
ACIS-S [84, 86] and to Poisson noise corresponding to an observation time of 100 ks.1

2.3 Nuisance parameters

Each simulated X-ray spectrum from the NSATMOS model depends on the stellar mass, radius,
and three additional nuisance parameters: the effective temperature of the surface, Teff , the
distance to the star, d, and the hydrogen column, NH , which parameterizes the reddening of
the spectrum by the interstellar medium. Values for the nuisance parameters are sampled
from ranges with distributions motivated by observation as described in refs. [25, 26]; details
of each range are given in table 1.

The values of nuisance parameters can be informed by independent observations, which
can vary significantly from star to star and provide prior information. We consider three
scenarios for nuisance parameter priors, referred to as ‘true’, ‘tight’, and ‘loose’ [71, 72]. In
the ‘true’ scenario, the nuisance parameters are known exactly, while the ‘tight’ and ‘loose’
scenarios have narrow or wide Gaussian priors, respectively; see table 2 for a description
of the prior widths for the three scenarios.

1The simulated spectra do not yield detectable photons at high energies. Therefore, we follow previous
works [71, 72] to use only the first 250 bins of the telescope spectra.
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Parameter true tight loose
d exact 5% 20%
NH exact 30% 50%
log(Teff) exact ±0.1 ±0.2

Table 2. Prior distributions on nuisance parameters under three scenarios, ‘true’, ‘tight’, and ‘loose’.
Shown are the widths of the Gaussian priors.

3 Previous work

The likelihood, p(s|λ), of the spectra s given the EoS parameters λ is not analytically
known. Many traditional methods that infer the EoS from telescope spectra approximate
the unknown likelihood in a two-step method [73, 74], first inferring posterior distributions
p(M,R|s) for the stellar mass and radius from an observed spectrum. Uncertainties on the
nuisance parameters can produce non-trivial [71], occasionally multimodal [26] contours in the
posterior probabilities of stellar mass and radius. Subsequently, these posterior distributions,
approximated with a Kernel Density Estimator (KDE),2 are used as likelihoods in a second
step to infer the EoS parameters [37–50]. This is valid only if the (M,R) priors used in
the inference are sufficiently flat [73, 88].

Some previous machine learning (ML) approaches infer the EoS by focusing only on the
second of the two steps, starting directly from the posterior probabilities of mass and radius.
In refs. [51–53], neural networks are used to perform regression of EoS parameters from a
fixed number of stars described by their masses and radii, where the posterior probabilities are
simplified as uncorrelated Gaussians. These neural networks need to be retrained when the
number of measurements increases. Several other machine learning methods follow a similar
approach with varying architectures [54–69]. The mass and radius standard deviations can
be estimated directly from xspec by varying the nuisance parameters [71]; a neural network
approach that regresses EoS parameters from the resulting mass, radius and uncertainties
is referred to below as ‘NN(M , R via xspec)’.

However, deep neural networks are capable of analyzing high-dimensional inputs, allowing
instead for regression of EoS parameters directly from a set of stellar spectra [71] and effectively
removing the intermediate step in the two-step approach. This method, referred to below
as ‘NN(Spectra)’, uses an uncertainty-aware and permutation-invariant neural network and
captures the complex correlations between uncertainties, but only produces a point-estimate
rather than the full posterior as a function of the EoS and nuisance parameters. Calculation of
the full likelihood is intractable, but ref. [72] showed that two neural networks can be used to
replace the unavailable elements, granting access to the likelihood of the expected spectra given
stellar mass, radius, and nuisance parameters, p(s|M,R, ν). While this method, referred to as
‘ML-LikelihoodEOS’, succeeds in obtaining a posterior in EoS, it is computationally expensive
to run. This makes it a prohibitively expensive method if access to the nuisance parameter
posteriors is also desired. These three approaches are used for comparison in this work.

2KDE corresponds to summing a Gaussian kernel at each posterior sample with a standard deviation equal
to a bandwidth parameter h [87].
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4 Bayesian inference with neural likelihood estimation

We introduce a single-step approach, which uses neural likelihood estimation to directly
learn the likelihood of telescope spectra (s) as a function of the EoS parameters (λ) and
the nuisance parameters (ν) for a star, p(s|λ, ν). This extends the strategy in ref. [72],
which learned p(s|M,R, ν), but avoids needing to integrate over the M–R plane to achieve a
connection to the EoS parameters, saving significant computational complexity. In addition,
we apply a Hamiltonian Monte Carlo (HMC) method to efficiently draw samples from the
posterior distribution, p(λ, ν|s).

4.1 Neural likelihood estimation

Neural likelihood estimation (NLE) [75] is a type of simulation-based inference [89, 90]
technique, successfully used for inference with gravitational waves [91–93], particle physics [94–
96] and cosmology [97–101] when the likelihood of the observed data are not analytically
available but must be estimated from samples of simulated data.

In this approach a neural density estimator (qΦ, with parameters Φ) approximates the
likelihood:

qΦ(s|λ, ν) ≈ p(s|λ, ν). (4.1)

Normalizing flows (NF), powerful neural networks capable of modeling complicated
probability distributions even in high dimensions [77], are used as the density estimator. A
brief introduction to NFs is provided in appendix B. Once trained, NFs can easily generate
new samples as well as estimate the likelihood of a given sample. Specifically, a Masked
Autoregressive Flow (MAF) [102] is used for the density estimator qΦ. To fit the parameters
Φ such that the learned distribution qΦ approximates the target likelihood distribution p,
we minimize the Kullback-Leibler divergence (DKL) between the two distributions, which
is equivalent to maximizing the approximate log-probability of the samples generated from
the likelihood distribution:

arg min
Φ
DKL

(
p(s|λ, ν)

∣∣∣∣qΦ(s|λ, ν)
)

= arg max
Φ

∑
si∼p(s|λi,νi)

log qΦ(si|λi, νi) . (4.2)

A derivation of this equivalence is given in appendix B. With samples si drawn from
the likelihood via simulation, as described above,

si ∼ p(s|λi, νi) , (4.3)

the sbi package [103] is used to train the MAF as a neural likelihood estimator. To make our
analysis robust to stochasticities in training the neural network, we perform a hyperparameter
search by training 100 different MAFs with different architectures. After training, we use
an ensemble average [104] over the N = 5 best-performing density estimators such that the
log-likelihood of any given telescope spectrum s0 is

log p(s0|λ, ν) ≈ 1
N

∑
j

log qΦj (s0|λ, ν) . (4.4)

– 6 –
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4.2 Posterior sampling with Hamiltonian Monte Carlo

The posterior distribution can be built from the estimated likelihood and prior distributions:

p(λ, ν|s) ∝ p(s|λ, ν)p(λ)p(ν) . (4.5)

The prior distribution on the nuisance parameters, p(ν), is given in table 2, while the prior
on the EoS parameters, p(λ), is taken to be uniform in the intervals λ1 ∈ [4.75, 5.25] and
λ2 ∈ [−2.05,−1.85], the same as the distribution of training samples described in table 1.

To draw samples from the posterior distribution, sampling algorithms like Markov Chain
Monte Carlo (MCMC) or nested sampling can be employed. Given that the normalizing flows,
priors and, consequently, the full posterior distribution are differentiable, we draw samples
from the posterior using Hamiltonian Monte Carlo (HMC) [105, 106] sampling, which can
use the gradient information and scales much more efficiently to high dimensional parameter
spaces. For a brief introduction to HMC and our implementation details, see appendix C.

Unlike standard approaches, our methodology allows for the simultaneous inference of
EoS parameters λ and nuisance parameters ν, which minimizes assumptions made about these
parameters and therefore makes the approach more robust. Additionally, any supplemental
information on these parameters coming from other observations can be naturally included
in the analysis through the prior distribution p(ν) without retraining the neural density
estimators.

4.3 Scaling to multiple observations

The estimation of the per-star likelihood as a function of the EoS parameters, p(s|λ, ν), makes
the calculation of the joint likelihood for J stars straightforward:

p(s1...J |λ, ν1...J) =
∏
j

p(sj |λ, νj) . (4.6)

Each star has a specific set of nuisance parameters, νj , such that the posterior is

p(λ, ν1...J |s1...J) ∝

∏
j

p(sj |λ, νj)p(νj)

 p(λ) . (4.7)

Scaling to multiple observations is straightforward for several reasons. Estimation of the
likelihood in the EoS parameters rather than M and R, means that no additional integration
over the M–R plane is required. In addition, the likelihood itself is estimated, rather than
posteriors which cannot be trivially combined [107–110]. Learning the likelihood conditioned
on the nuisance parameters for each star rather than implicitly marginalizing over them
allows for the joint likelihood to be simply a product of the individual stellar likelihoods.

A consequence of these choices is that we infer not only the equation of state parameters
but also the nuisance parameters corresponding to every star. The stellar nuisance parameter
priors are independent and can encode prior information for each star separately, for maximum
flexibility and robustness. While this increases the dimensionality of the problem, the
availability of gradients of the posterior distribution enables the use of powerful algorithms
like HMC, ensuring that the inference remains computationally tractable.

– 7 –
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5 Results

Inference of the full posterior distribution of neutron star EoS and nuisance parameters
directly from telescope spectra is now feasible. Following refs. [71, 72], we apply the method
to a set of ten simulated neutron stars for a given point in EoS space, each with three
independent nuisance parameters defined above. The complete parameter space comprises
two parameters of interest and thirty nuisance parameters. Results are shown for a single
representative EoS point, we then demonstrate the scaling of the NLE approach to more
observations and finally present a comparison with previous approaches by evaluating the
average performance over 100 randomly sampled test points in EoS space.

5.1 Example posterior distribution

An example of the posterior distributions marginalized to one and two dimensions is shown
in the corner plot in figure 2. The figure depicts both EoS parameters, λ1 and λ2, and
the nuisance parameters for the first neutron star, N (1)

H , d(1) and log(Teff)(1). While the
marginalized posteriors of the nuisance parameters for the other nine stars are also available,
they are not shown here. In all three nuisance parameter scenarios from table 2, the EoS
parameters are strongly correlated, similar to the log-likelihoods computed in ref. [72]. The
marginal posterior distribution of λ1 is relatively tight compared to its prior range, while for
the second parameter λ2 it is not as well constrained compared to the parameter’s prior range.

As expected, in the true scenario where the nuisance parameters are exactly known, the
marginal posterior distributions are sharply centered around the ground-truth values. In
the tight scenario, the uncertainty in the nuisance parameter distributions leads to wider
distributions for the EoS parameters. This is further pronounced for the loose case, where
less prior information on the nuisance parameters is available. Figure 2 illustrates that the
hydrogen column NH as well as the logarithm of the effective surface temperature log(Teff)
can be significantly constrained from the spectrum data compared to their prior ranges. In
the tight scenario, the marginal posterior for the distance d is almost indistinguishable from
the prior, indicating that the telescope spectra do not contribute any more information for
this parameter over the tight priors. However, in the loose case, the marginal posterior
distribution of d becomes tighter than the loose prior, which implies that we can indeed
extract information about the distance of a neutron star from its X-ray spectrum.

We can transform the posterior distribution for the EoS parameters λ1 and λ2 into 95%
(highest density) posterior credible bands for the pressure as a function of energy density as
depicted in figure 3. As before, the constraints are much tighter in the true scenario and
become increasingly broader in the tight and loose cases. By solving the TOV equations, we
can translate the EoS into mass-radius constraints. The 95% posterior credible bands for the
radius as a function of mass are depicted in figure 3. The credible bands terminate at the 95%
upper limits of the maximum mass. Focusing only on the tight case in figure 4, there is a very
close agreement of the inferred median for P (ε) and R(M) to the ground-truth values. Note
that for this particular example, the mass of one of the simulated stars is very close to the
respective maximum supported mass such that a good reconstruction even of the high-density
part for this particular EoS is possible. In other cases, the reconstruction might be worse.

– 8 –
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Figure 2. Corner plot depicting the posterior distribution of the parameters λ1 and λ2 of one example
EoS as well as the first 3 (of 30) nuisance parameters N (1)

H , d(1) and log(Teff)(1). The posterior is
computed based on the simulated spectra of 10 stars with the nuisance parameters known exactly in
the true scenario (green), and known with the uncertainties in table 2 in the tight (orange) and loose
(blue) scenarios. The ground-truth parameter values are depicted as black crosses/lines. The marginal
posterior distributions of the nuisance parameters are compared to the respective priors (dotted) of
the tight and loose scenarios.

5.2 Increasing the number of observations

With an anticipated surge in the number of available neutron star observations in the
upcoming years, the inference method must be able to scale to a large set of data. In our
approach, normalizing flows approximate the likelihood p(s|λ, ν) per observed star. These
likelihoods are then combined to obtain the total likelihood for a set of neutron stars, see
eq. (4.6). Consequently, the method does not need to assume a fixed number of observed
neutron stars, nor a particular ordering of the stars, and works out-of-the-box for a growing
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Figure 3. Posterior 95% (highest density) credible bands for the pressure as a function of energy
density and the radius as a function of mass for the three (true, tight, loose) scenarios. Similar to
figure 2, the posterior is derived based on the simulated spectra of 10 stars. The ground-truth value
for the equation of state and the corresponding mass-radius relation is depicted as a dashed black line.
Black dots indicate ground-truth mass-radius values of the 10 simulated stars.
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Figure 4. Similar to figure 3, but only for the tight scenario the median and the 68% and 95%
posterior credible bands are shown for the pressure as a function of energy density and the radius as a
function of mass. The ground-truth value for the equation of state and the corresponding mass-radius
relation is depicted as a dashed black line. Black dots indicate the mass-radius values of the 10
simulated stars.

set of observed neutron stars without the need for retraining any networks. To demonstrate
this, we present the marginal posterior distributions for one example EoS in figure 5, for 5,
10, and 20 observed neutron stars, and with loose uncertainties on the nuisance parameters.

The figure illustrates that the increase of available spectra significantly refines the
inference of the EoS parameters. Notably, the transition from 5 to 10 observed spectra
has a substantial impact on the posterior constraints, reducing the standard deviation of
λ1 by 23% from 0.061 to 0.047, while further increasing the number of measurements to
20 shows a comparatively smaller reduction in the standard deviation by only 6.4% to
0.044 for the given example. For λ2 the increase in accuracy from 10 to 20 observations
is even smaller. It is worth noting that in the numerical implementation of Hamiltonian
Monte Carlo for posterior sampling, the computation time is predominantly consumed by
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Figure 5. Corner plot depicting the posterior distribution of the parameters λ1 and λ2 of one example
EoS. The posterior is computed based on the simulated spectra of 5 (olive), 10 (blue), or 20 (purple)
stars with the nuisance parameters known with the uncertainties in table 2 of the loose scenario. The
ground-truth parameter values are depicted as black crosses/lines.

the evaluation of the likelihood and its gradient. While the availability of more observations
increases the per-iteration computational time in sampling the posterior, it also speeds up
the convergence of the algorithm. Furthermore, HMC algorithms can easily be scaled to
thousands of dimensions, hence we do not anticipate the dimensionality to be a limiting
factor in the scaling of our approach.

5.3 Average performance on test set

After discussing one example EoS, now we turn to the average performance of NLE with a
test set of simulated data from 100 different equations of states. To compare the average
performance to the previous ML approaches that infer the neutron star EoS directly from
telescope spectra described in section 3, we use the same accuracy measure as refs. [71, 72].
For each EoS in the test set, we simulate 10 spectra with random nuisance parameters. Based
on the spectra and the prior nuisance parameter information, we then sample the posterior
using the methodology outlined in section 4. From the marginal posterior distributions,
similar to the example in figure 2, we determine the maximum-a-posteriori estimates (MAP)3

for the two EoS parameters (λ1,pred, λ2,pred) and compare them to the ground-truth values
(λ1,truth, λ2,truth). The distributions of the differences between the marginal MAP estimates
and the ground-truth values, (λ1,pred − λ1,truth, λ2,pred − λ2,truth), on the test data set are
depicted in figure 6. As before, the equation of state parameters can be maximally constrained
in the true nuisance parameter scenario. In all three scenarios, the distributions are centered

3Note that this is the maximum-a-posteriori estimate of the marginal and not of the full posterior.
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Figure 6. Distribution of the predicted maximum-a-posteriori estimates versus the ground-truth
values for the two equation of state parameters λ1 and λ2. In the true scenario, the nuisance parameters
are fixed to their exact values; in the tight and loose cases, they are drawn from the narrow or wide
priors in table 2.

around zero, indicating that there is no systematic bias in the posterior prediction. Compared
to the previous ML analyses in refs. [71, 72], the distributions of λ1 are much narrower in
the tight and loose scenarios (see for example figure 8 in [72]).

To quantitatively compare these distributions to the previous ML analyses, we compute
the mean µ and standard deviation σ of the distribution of differences in figure 6. We can
combine both standard deviations into

σtot =
√
σ2

λ1
+ σ2

λ2
. (5.1)

The resulting values are listed in table 3 and illustrated in figure 7. The mean µ of the
difference between the posterior prediction of λ1 and its ground-truth value is much smaller in
the NLE approach compared to previous approaches in all three prior distributions considered
in table 2. In the true case, the NLE approach performs better than ML-LikelihoodEOS
from ref. [72] and NN(Spectra) from ref. [71] (see section 3 for more details about these
methods). For realistic scenarios of nuisance parameters (loose and tight), NLE outperforms
all other methods as quantified by σtot, while for the true scenario, it outperforms all methods
besides NN(M , R via xspec), which uses xspec itself for part of the inference and involves
simplifying assumptions about the mass-radius uncertainties. Interestingly, from table 3 it
becomes clear that the NLE approach is better than all other approaches to constrain the
first EoS parameter λ1, while for λ2 the accuracy of the xspec based two-step approach,
with its simplifying assumptions regarding the impact of nuisance parameters, is always
much better than all other approaches. Note that the central enthalpies used to solve the
stellar structure equations are sampled from log-uniform intervals, such that the masses near
the maximum supported mass are weighted more heavily for each EoS. Consequently, for
each EoS in the test set, the largest of the ten randomly selected masses is close to the
respective maximum supported mass. This is also true for the previous approaches with
which we compare our results.

With our neural likelihood estimation approach, we can now, for the first time, infer
the posterior for nuisance parameters. The means and standard deviations of the differences
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λ1,pred − λ1,truth λ2,pred − λ2,truth Combined

p(ν) Method µ σ µ σ σtot

true ML-LikelihoodEOS −0.02 0.066 0.01 0.070 0.096
NN(Spectra) −0.02 0.066 0.01 0.075 0.099

NN(M , R via xspec) −0.03 0.065 0.01 0.055 0.085
NLE 0.00 0.056 −0.01 0.070 0.090

tight ML-LikelihoodEOS −0.02 0.078 0.03 0.081 0.112
NN(Spectra) 0.02 0.085 −0.02 0.077 0.115

NN(M , R via xspec) −0.03 0.081 0.01 0.056 0.098
NLE 0.00 0.066 −0.02 0.071 0.097

loose ML-LikelihoodEOS −0.04 0.089 0.03 0.081 0.120
NN(Spectra) −0.03 0.131 −0.01 0.078 0.152

NN(M , R via xspec) −0.03 0.123 0.01 0.058 0.136
NLE 0.00 0.085 −0.01 0.074 0.113

Table 3. Average accuracy for the prediction of neutron star EoS parameters λ1 and λ2. Shown are the
means (µ) and standard deviations (σ) of the distributions in figure 6, i.e., of the differences between
the predicted maximum-a-posteriori and ground-truth values. Both standard deviations are combined
to σtot according to eq. (5.1). The neural likelihood estimation (NLE) approach is compared to three
previous approaches; neural networks that regress the EoS parameters from the spectra (NN(Spectra))
and from M , R estimates by xspec (NN(M , R via xspec)), both from ref. [71], as well as an approach
using an approximate likelihood that incorporates two neural networks, ML-LikelihoodEOS, from [72].
In the true scenario, the nuisance parameters are fixed to their exact values; in the tight and loose
cases, they are drawn from the narrow or wide priors in table 2.

true

tight

loose

ML-LikelihoodEOS
NN(Spectra)
NN(M,R via xspec)
NLE

ML-LikelihoodEOS
NN(Spectra)
NN(M,R via xspec)
NLE

ML-LikelihoodEOS
NN(Spectra)
NN(M,R via xspec)
NLE

λ1,pred − λ1,truth λ2,pred − λ2,truth σtot

0.096
0.099
0.085
0.090

0.112
0.115
0.098
0.097

0.120
0.152
0.136
0.113

Figure 7. Illustrated mean and standard deviation of the difference between the predicted maximum-
a-posteriori values to the ground-truth values for the three different scenarios from table 3.

between the marginal MAP estimates and the ground-truth values on the test data are
listed in table 4. While we obtain excellent constraints on the hydrogen fraction NH and
the effective surface temperature log(Teff), our ability to constrain the distance d from the

– 13 –



J
C
A
P
0
9
(
2
0
2
4
)
0
0
9

NH,pred −NH,truth dpred − dtruth log(Teff)pred − log(Teff)truth

Method p(ν) µ σ µ σ µ σ

NLE tight 0.00 0.063 −0.06 0.419 0.00 0.034
loose 0.01 0.070 −0.26 1.149 −0.01 0.047

Table 4. Similar to table 3, but with mean and standard deviation of the predicted maximum-a-
posteriori estimate versus the ground-truth value for the three nuisance parameters.

spectra is limited. When going from the tight to the loose scenario, the inference on the
distance estimates suffers the most, indicating that these constraints are primarily driven by
the prior in the tight case, as seen in figure 2. However, this is not as limiting as it might
seem because it is much easier to obtain precise constraints on the distance of a neutron star
from external measurements than it is for the other nuisance parameters.

6 Discussion & outlook

In addition to the performance gains seen in the preceding sections, the NLE+HMC approach
has several advantages relative to previous work.

(i) The single-step estimation of the likelihood in terms of the EoS avoids collapsing
the information into the mass-radius plane as an intermediate step. EoS-dependent
quantities like temperature inhomogeneities [111] can impact a star’s spectrum but
are not captured by the mass and radius. Uncertainties from nuisance parameters
can also be more accurately propagated by using the full high-dimensional data. In
addition, this avoids assuming the mass-radius posteriors can be used as a likelihood,
making simplifying approximations regarding the nature of the intermediate likelihood,
or integrating over the M–R plane.

(ii) Neural likelihood estimation allows for amortization; after training the neural density
estimators once, the inclusion of additional observations is straightforward, see sec-
tion 5.2. In addition, extending to additional stars is inexpensive relative to other
methods, which require integrating over estimated mass-radius posteriors to construct
likelihoods [39, 50], such as with Kernel Density Estimation techniques.

(iii) Learning the likelihood instead of the posterior allows combination with likelihoods from
other data [112], e.g., constraints from low-energy nuclear theory at small densities [113,
114], perturbative QCD at high densities [115, 116], mass measurements from Shapiro
time delays [28–30], mass-radius constraints from analyses of the NICER telescope [31–
33] or gravitational wave signals from binary neutron star mergers [34, 35]. If these
likelihoods are computed by traditional methods, they may not be differentiable, which
precludes the use of HMC sampling methods, however it may be worthwhile extending
simulation-based inference techniques also to these cases.

(iv) Application of HMC allows for robust exploration of the high-dimensional space of
nuisance parameters, which can be of interest in other astrophysical studies.
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Improvements to the method could be pursued in several directions. To prevent degra-
dation of performance near the borders of the training data, additional simulated samples
could be included beyond the current borders. Another potential improvement may be to
additionally condition the inference on the masses M of the neutron stars, approximating
p(s|λ, ν,M) rather than p(s|λ, ν), to further enhance the interpretability and accuracy of
the method. In this way, we could infer the neutron star masses and, by solving the TOV
equations, radii simultaneously with the EoS. Moreover, to combine the information from
different observational instruments for the same neutron star, it becomes essential to compute
the likelihood as a function of the neutron star mass. Such situations arise regularly, see
e.g. [26, 117–120]. Preliminary results show, however, that the mass distributions can become
multimodal, as also seen in [26], which makes sampling the posterior difficult. Future work
may extend our method to effectively include the mass as a nuisance parameter. In addition,
one could explore alternative parameterizations of the EoS which can describe more com-
plicated phase structures possibly realized inside neutron stars like crossovers of first-order
phase transitions, such as piecewise polytropes [121], segment-wise linear interpolations of the
speed of sound [122], non-parametric representations based on a Gaussian process [37, 123]
or a neural network [124]. In that way, we could constrain the unknown phase structure
of strongly interacting matter at large densities [125]. Our approach is conducive to the
use of a more complex EoS parameterization.

7 Conclusion

Neural likelihood estimation (NLE) and Hamiltonian Monte Carlo (HMC) are used in
conjunction to allow the first inference of the full posterior for neutron star equation of
state and nuisance parameters directly from telescope spectra. In realistic scenarios for
nuisance parameter priors, this method outperforms all state-of-the-art methods in terms
of prediction accuracy.

Extracting these parameters requires simulation-based inference techniques, as the
likelihood is analytically unavailable. Previous methods either relied on inference of the mass
and radius as an intermediate step or only provided a point estimate of the EoS parameters.
NLE+HMC allows for the full posterior, avoiding simplifying assumptions and information
collapse at an intermediate step, and is trivially extendable to multiple stars and other data.

Our study considered three different scenarios for the available prior information on the
nuisance parameters coming from additional observations beyond the telescope spectra. With
tighter prior constraints, the marginal posterior distributions of the EoS parameters, and
accordingly the posterior P (ε) and R(M) credible bands, become much tighter. Both the
hydrogen column NH and effective surface temperature log(Teff) can be tightly constrained
from the spectra. For the distance d, the posterior constraints are driven by the prior
information.

These techniques can be extended to NICER or gravitational wave data [126].4 Many
more gravitational wave events from binary neutron star mergers will be detected in future
runs of LIGO, Virgo, and KAGRA. In addition, the gravitational wave database will increase

4For the analysis of NICER and gravitational waves, the telescope data is much larger compared to the
quiescent LMXBs analyzed here. In that case, it might become necessary to use an additional embedding net
to learn summary statistics [103].
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dramatically with the next generation of gravitational wave detectors. For such a large
number of expected observations, it is not numerically feasible to compute the likelihood
by integrating KDEs [63, 112, 127]. Neural simulation-based inference techniques promise
to provide a cost-efficient alternative [92, 128].

This approach can help guide decisions about future observations. Section 5.2 demon-
strated our method can easily be used to study the impact of additional measurements on
the final EoS constraints. It can therefore be used to estimate the relative value of future
measurements of one star compared to another, using simulations. Through the assessment
of the constraining power of multiple simulated test spectra, we can anticipate which stars
provide the most useful additional information required to further constrain the equation
of state, thereby guiding decisions for future experimental endeavors.

Based on the results derived in this study on simulated test data, we can conclude that
neural likelihood estimation techniques provide a promising avenue for the inference of the
neutron star equation of state, not only for X-ray measurements of neutron stars but possibly
also for gravitational waves. In future studies, this method would be applied to real telescope
measurements to draw conclusions about the internal structure of neutron stars.
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A Relativistic mean-field model

In this study, the EoS is based on a relativistic mean-field (RMF) model, which expresses
the baryon-baryon interactions through effective meson exchanges. These mesons encompass
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a scalar meson (σ) signifying attraction between baryons, a vector meson (ω) representing
repulsion, and an isovector meson (ρ) essential for elucidating nucleon-nucleon interactions in
isospin asymmetric systems. The pion, playing a key role in the long-range description of
baryon-baryon interaction, assumes odd parity and consequently disappears in the mean-field
approximation. The Lagrangian governing interacting nucleons ψN is expressed as [129]:

LN =
∑
N

ψ̄N

[
γµ

(
i∂µ − gωNω

µ − 1
2gρN τ · ρµ

)
− (mN − gσN σ)

]
ψN , (A.1)

where gσN , gωN , and gρN represent the meson-nucleon coupling constants.
In the standard RMF approach, meson-nucleon coupling constants are set to reproduce

properties of isospin symmetric nuclear matter at nuclear saturation density, n0. These
properties include the energy per nucleon E0, the nuclear incompressibility K0, the effective
nucleon mass m∗/mN , the asymmetry energy J , the asymmetry energy slope L0, and the
nucleon potential UN . For the GM1L parameter set employed in this study, the respective
values are n0 = 0.153 fm−3, E0 = −16.3 MeV, K0 = 300 MeV, m∗/mN = 0.70, J = 32.5 MeV,
L0 = 55.0 MeV, and UN = −65.5 MeV. Electrons and muons in neutron star matter are
described by the lepton Lagrangian (λ ∈ {e−, µ−}):

LL =
∑

λ

ψλ

(
iγµ∂

µ −mλ

)
ψλ , (A.2)

while the meson Lagrangian is given by [129, 130]:

LM = 1
2
(
∂µσ∂

µσ −m2
σσ

2)− 1
4ωµνω

µν + 1
2m

2
ωωµω

µ + 1
2m

2
ρρµ · ρµ − 1

4ρµν · ρµν , (A.3)

where ωµν = ∂µων − ∂νωµ and ρµν = ∂µρν − ∂νρµ. To ensure that the RMF model
reproduces the empirical values for the nuclear incompressibility and the effective nucleon
mass at saturation, additional nonlinear scalar self-interactions need to be included in the
Lagrangian [131]:

LNLσ = −1
3bσmN

[
gσN (n)σ

]3 − 1
4cσ

[
gσN (n)σ

]4
, (A.4)

where bσ and cσ are constants determined by the properties of symmetric nuclear matter.
The field equations resulting from the aforementioned Lagrangians must be solved while

adhering to the conditions of electrical charge neutrality in neutron star matter:

n qp +
∑

λ

nλqλ = 0 , (A.5)

where qp is the electric charge of a proton, and conservation of baryon number:

n−
∑

B=n,p

nB = 0 . (A.6)

The meson-field equations combined with the equations for electric charge neutrality and
baryon number conservation constitutes a set of five coupled nonlinear equations, to be
simultaneously solved to determine the meson mean-fields (σ̄, ω̄, ρ̄) and the neutron and
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electron Fermi momenta (kn, ke). The proton’s Fermi momentum is determined by the
condition that neutron star matter is in chemical equilibrium:

µp = µn − qpµe , (A.7)

where µn and µp are the chemical potentials of neutrons and protons respectively, and µe is
the electron chemical potential. The presence of muons in neutron star matter occurs when
µe ≥ µµ. For the neutron star matter EoS, we match the GM1L parametrization with the
Baym-Pethick-Sutherland (BPS) model [132] for the outer crust and the Baym-Bethe-Pethick
(BBP) model [133] for the inner crust.

To limit the number of parameters in the inference procedure, it is advantageous to
represent the EoS with only a few parameters. As described in ref. [71], we accomplish
this by constructing a parametric representation based on a spectral fit, where the EoS is
represented as a linear combination of basis functions and can therefore be reconstructed
using the coefficients of the basis functions. Using a second-order expansion, we construct a
spectral fit of the GM1L EoS using the process outlined in refs. [79, 80]. The two coefficients
from the spectral fit are hereafter referred to as λ1 and λ2. The original coefficients describing
the GM1L EoS are then used to generate many EoS scenarios using the expression:

λgenerated = λfit · (1 + 2 · c (ran2 − 0.5)) (A.8)

where λgenerated represents the newly constructed spectral parameter, λfit is the best fit
spectral parameter of GM1L, and c is a scaling parameter set to 0.05. ran2 are uniformly
distributed random numbers in the range 0 to 1 generated by the ran2 function given in [134].
This process was repeated to create around 103 different EoS models, each represented by a
unique set of spectral coefficients λ1 and λ2. Following this process, the two parameters are
uniformly distributed in the intervals λ1 ∈ [4.75, 5.25] and λ2 ∈ [−2.05,−1.85].

B Normalizing flows and simulation-based inference

Normalizing Flows are a class of generative models in machine learning that focus on learning
a bijective mapping between a simple base distribution π(u) (usually chosen to be a Gaussian
distribution) and a more complex, target distribution p(x) [77]. The main idea is to model
p(x) by transforming the base distribution π(u) through a series of invertible and differentiable
transformations fΦ with trainable parameters Φ.

Given N transformations, fΦ = fΦ1 ◦ · · · ◦ fΦN
, we can easily generate samples x from

p(x) by transforming the samples u of π(u)

u ∼ π(u) , (B.1)
x = fΦ(u) . (B.2)

From the change of variables law for probability distributions, we can compute the probability
density of the target distribution

p(x) = π(f−1
Φ (x))

∣∣∣∣∣det
(
∂f−1

Φ
∂x

)∣∣∣∣∣ . (B.3)
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Consequently, for a fast numerical evaluation of the probability density, the transformations
fΦ should be chosen such that they are easy to invert and have a Jacobian whose determinant
should be fast to compute. One popular choice is Masked Autoregressive Flows (MAF) [102],
where each dimension of the data is sequentially transformed conditioned on the previous
dimensions, making the Jacobian of f−1

Φ triangular by design. MAFs are well suited for
our purposes because they are very efficient in computing the probability density p(x), but
less efficient in generating samples, x ∼ p(x).

In simulation-based inference (SBI), our goal is to train a conditional normalizing flow
to learn the likelihood distribution, p(s|λ, ν). This is achieved my minimizing the Kullback-
Leibler divergence (DKL), which is a measure of the statistical distance between two probability
distributions, between the likelihood p(s|λ, ν) and the distribution parameterized by the
normalizing flow, qΦ(s|λ, ν). DKL becomes zero if the distributions are identical. Hence we
fit the trainable parameters Φ with the following optimization procedure:

arg min
Φ
DKL

(
p(s|λ, ν)

∣∣∣∣qΦ(s|λ, ν)
)

= arg min
Φ

∫
ds p(s|λ, ν) [log p(s|λ, ν)− log qΦ(s|λ, ν)]

≈ arg min
Φ

∑
si∼p(s|λi,νi)

log p(si|λi, νi)− log qΦ(si|λi, νi)

= arg min
Φ

∑
si∼p(s|λi,νi)

− log qΦ(si|λi, νi)

= arg max
Φ

∑
si∼p(s|λi,νi)

log qΦ(si|λi, νi) , (B.4)

where the second line is the Monte-Carlo estimator of the integral in the definition of the KL
divergence in the first line. The first term in the second line can be dropped as it is constant
with respect to the parameters Φ of the density estimator. Thus to learn the likelihood
distribution, training the density estimator to minimize the KL divergence is equivalent to
maximizing the log-probability of the sampled spectra, si, generated from the likelihood
distribution via the simulator for given EoS and nuisance parameters, (λi, νi).

C Hamiltonian Monte Carlo

Let x ∈ Rn denote the state (random variable) in a continuous state space. Our goal
is to generate samples from a target probability distribution function π(x). We assume
the normalization

∫
dxπ(x) = 1, although all MCMC methods only require un-normalized

densities.

C.1 Metropolis-Hastings

Given the target distribution π and the current state x, the random-walk Metropolis-Hastings
algorithm constructs a Markov chain by sampling a proposal y from a transition function
(proposal distribution) t(x, y). The simplest example of such a proposal distribution is a
Gaussian distribution centered on x with some width σ, i.e., y ∼ N (x, σ2). The proposal is
then accepted with some probability α(x, y), in which case the next state is y, otherwise it
remains x. We need to identify this acceptance probability to ensure that asymptotically this
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Markov chain generates samples from the target distribution, x, y ∼ π. This is equivalent to
ensuring that the target distribution π is invariant under this Markov chain, for example by
maintaining detailed balance conditions when accepting the proposed stage

π(x)t(x, y)α(x, y) = π(y)t(y, x)α(y, x) . (C.1)

Detailed balance means ensuring that the function π(x)t(x, y)α(x, y) is symmetric in ex-
changing x and y (x↔ y). This equation enforces that the probability of being in the state
x, proposing a transition to state y and accepting this transition (x → y) is the same as
making the reverse transition (y → x).

If t(x, y) is positive everywhere, the above condition is satisfied by the standard Metropolis-
Hastings acceptance formula for x, y ∈ S,

α(x, y) = min
(
π(y) t(y, x)
π(x) t(x, y) , 1

)
, (C.2)

where the denominator is never zero given the above assumptions on π and t. For each
x, y ∈ Rn, either α(x, y) or α(y, x) is 1. There are other formulae for α obeying eq. (C.1),
but with lower acceptance rates, meaning they lead to an undesirable higher asymptotic
variance for estimated expectations.

C.2 Classical Hamiltonian Monte Carlo

In high dimensions, random walk Metropolis-Hastings as described in the previous section
often leads to diffusive behavior and can be extremely inefficient. In this section, we outline
the Hamiltonian Monte Carlo (HMC) sampling algorithm which overcomes this by designing
more efficient proposal kernels, t(x, y), that utilize gradient information [105, 106]. Following
standard notation for Hamiltonian dynamics, q ∈ Rn denotes the parameter of interest that
is to be sampled. The target density, π, is assumed to be continuous, differentiable, and
positive everywhere. To draw samples q from π(q), HMC reinterprets the parameters of
interest as a position vector with associated potential energy function U(q) = − log π(q). We
introduce an auxiliary momentum vector p ∈ Rn, which contributes a kinetic energy term
K(p) = 1

2p
TM−1p, where M is some symmetric positive definite mass matrix that we take as

fixed. Then the Hamiltonian H : R2n → R gives the total energy for the state x := (q, p),

H(x) = H(q, p) = U(q) + 1
2p

TM−1p . (C.3)

The state space S = R2n is called phase space. The dynamical evolution of particles under this
Hamiltonian is called Hamiltonian flow and can be simulated by solving Hamiltonian equations.

HMC uses a Markov chain to generate samples x from the canonical distribution π̃

defined by H, namely

π̃(x) := Z−1 e−H(x) = Z−1 e−U(q) e− 1
2 pT M−1p = Z−1 π(q) e− 1

2 pT M−1p , (C.4)

where Z =
∫

R2n dx e−H(x) = (2π)n/2√detM is a normalizing constant. Since H is the sum of
potential and kinetic terms, in the Gibbs density q and p are independent, with the q-marginal
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of π̃(x) being the target density π(q). Thus, extracting the first n coordinates of samples
x(i) from π̃, one obtains samples from π.

HMC constructs a Markov chain to generate samples from this distribution. Given a
current state x(i) := (q(i), p(i)), the Markov update comprises two steps:

Step 1. Gibbs sampling: Resample the momentum p(i) from its Gaussian marginal distri-
bution p ∼ N (0,M), without changing q(i). This randomization step is needed to mix
efficiently between different H values (corresponding to energy level-sets).

Step 2. Metropolis update: Given the momentum p(i), generate a new Metropolis-Hast-
ings proposal via a deterministic map y = F (x) which approximates the Hamiltonian
flow in eq. (C.3) over a certain time T , starting from the initial point x = (q(i), p(i))
and is followed by negation of the final momentum.5 This map defines the transition
kernel t. This proposal is then accepted with the probability α(x, y).

The most commonly used dynamics for the map F approximating the Hamiltonian flow,
i.e., solving the Hamiltonian equations, is the leapfrog (Verlet) integrator. Each leapfrog
step, written (q′, p′) = Lϵ(q, p), comprises three substeps:

p̄← p− ϵ

2∇U(q) ,

q′ ← q + ϵM−1p̄ ,

p′ ← p̄− ϵ

2∇U(q′) , (C.5)

where ϵ is the step-size. We compose n = T/ϵ such steps, (Lϵ)n to integrate the Hamiltonian
flow for time T . With the momentum-flip operator P (q, p) := (q,−p), F = (Lϵ)nP (oper-
ators act left to right) is volume-preserving because each of the three substeps is a shear
transformation,6 and F is an involution7 because Lϵ(q′,−p′) = (q,−p), which can be verified
by reversing the order of the substeps, so LϵPLϵ = P and ((Lϵ)nP )2 = I. In this case, the
transition described in Step 2 preserves detailed balance when

α(x, y) = min
(
π̃(y)
π̃(x) , 1

)
, (C.6)

so that the distribution π̃ is invariant under Step 2. Since π̃ is also invariant under the Gibbs
sampling in Step 1, π̃ is invariant under their composition of both steps, i.e., under each
HMC update. Note that failure to approximate well the Hamiltonian flow by the leapfrog
integrator does not impact detailed balance, although it can drastically reduce the mixing
of the Markov chain, and hence the efficiency of the algorithm.

5This negation of momentum maintains the invertibility of every step as is necessary for detailed balance,
but is not necessary in practice for HMC as it is followed with a Gibbs momentum refresh step.

6A shear is a map of the form (q, p) 7→ (q + G(p), p) or (q, p + G(q)), and it is easy to check that the
determinant of the 2n × 2n Jacobian derivative matrix is 1.

7Involution means F −1 = F , i.e., it is time reversible.
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C.3 Implementation

To draw posterior samples with HMC, we run 16 chains of 2000 samples each. The leapfrog
integration in each chain is performed for 40 steps to generate new proposals, with a step-size
that is dynamically determined using dual averaging for 300 burn-in steps to achieve an
average acceptance probability of 0.65. The mass matrix used in this work is diagonal, except
for negative off-diagonal elements between the EoS parameters. In this work, we tuned these
values manually based on few initial runs, but in the future this can be automated using
variational approximations to the target distribution [135]. We use an importance sampling
step to determine initial values for each chain [90]. To facilitate an easy comparison of our
NLE + HMC method with future analyses, we provide working examples of the algorithms
implemented for this work in a public GitHub repository.8
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