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1. Introduction and results

1.1. Gegenbauer polynomials

The Gegenbauer polynomials Cλ
n : R → R are defined recursively via Cλ

0 (x) = 1, 
Cλ

1 (x) = 2λx and

Cλ
n(x) = n + λ − 1

n
2x · Cλ

n−1(x) − n + 2λ − 2
n

· Cλ
n−2(x).

Gegenbauer polynomials are orthogonal on the interval [−1, 1] with respect to the weight 
w(x) = (1 − x2)λ−1/2. They also satisfy the normalization

1∫
−1

Cλ
n(x)2(1 − x2)λ−1/2dx = π21−2λ

Γ(λ)2
Γ(n + 2λ)
n!(n + λ) = cλ · n2λ−2 + O(n2λ−1).

In particular, we see that for a typical x ∈ (−1, 1) we would expect that, at least on 
average, |Cλ

n(x)| ∼ nλ−1. We note that larger growth is possible at the boundary since the 
weight w(x) decays at ±1. In particular, Cλ

n(1) ∼ n2λ−1. Our main question is whether 
there exist suitable x ∈ (−1, 1) such that |Cλ

n(x)| is always ‘large’. The difficulty comes 
from the oscillatory nature of these polynomials, one needs to ensure that x is always 
‘far’ away from a root, where the notion of ‘far’ shrinks with n. We will now formally 
define these numbers.

Definition. Let λ > 0. We say that x ∈ (−1, 1) is gegenbadly approximable (with respect 
to λ > 0) if there exists a constant cx > 0 such that, for all n ∈ N,

|Cλ
n(x)| ≥ cx · nλ−1. (1)

We start by explaining our choice of terminology. Recall that a real number α ∈ R is 
said to be badly approximable if there exists cα > 0 such that

∀ p

q
∈ Q

∣∣∣∣α − p

q

∣∣∣∣ ≥ cα

q2 .

The case λ = 1 essentially reduces to the classical notion of badly approximable numbers. 
This is made precise in the next Theorem which also shows that the case where λ =
2k + 1 ∈ N is an odd integer is somewhat atypical.

Theorem 1. If λ is an odd integer, no λ-gegenbadly approximable numbers exist. More-
over, for every x ∈ (−1, 1), there exists a constant cx ≥ 0, such that∣∣Cλ

n(x)
∣∣ ≤ cx · nλ−2 holds for infinitely many values n ∈ N.
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Fig. 1. Left: the sequence n−1/2 · C3/2
n (1/2) for 1 ≤ n ≤ 500. Right: the sequence n−1/2 · C3/2

n (1/3) for 
1 ≤ n ≤ 500. The number x = 1/2 is 3/2-gegenbadly approximable, x = 1/3 is not.

When λ = 1 and x ∈ (−1, 1), then there exists cx > 0 such that for all n ∈ N

|C(1)
n (x)| >

cx

n

if and only if x = cos θ where θ/π is a badly approximable number.

The Theorem is illustrated in Fig. 1. We will always restrict ourselves to the case where 
λ > 0 is not an odd integer. Our next theorem suggests that gegenbadly approximable 
numbers do exist for other values of λ > 0 and characterizes the set of such numbers. This 
result also provides a way of explicitly constructing gegenbadly approximable numbers.

Theorem 2. Suppose 0 < λ < ∞ is not an odd integer. If x ∈ (−1, 1) is λ-gegenbadly 
approximable, then

(i) x = cos (π(p/q)) where p/q ∈ Q

(ii) for all 1 ≤ n ≤ q

λ (2p − q) + 2np − q is not divisible by 2q.

Conversely, for any x satisfying these two properties, there exists Nx.λ ∈ N such that 
either there exists n ≤ Nx,λ such that Cλ

n(x) = 0 or x is λ-gegenbadly approximable. 
Moreover, we have

Nx,λ ≤ π

2
λ|1 − λ| · cot(π p

q )

min1≤n≤q

∥∥∥(n + λ) p
q − λ+1

2

∥∥∥ , (2)

where ‖x‖ = minm∈Z |x − m| is the distance to the nearest integer.

Remarks.

(1) If conditions (i) and (ii) are satisfied, our argument implies the inequality |Cλ
n(x)| ≥

cx ·nλ−1 for all n sufficiently large. Nx,λ in (2) quantifies ‘sufficiently large’ to ensure 
that it holds for all n.
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(2) The result makes it fairly easy to check whether any given number is λ-gegenbadly 
approximable with a finite amount of computation.

(3) For most real λ > 0 condition (ii) is automatically satisfied since then the number 
λ (2p − q) + 2np − q will usually not even be an integer.

(4) The cases that carry the most geometric significance are when the Gegenbauer poly-
nomials Cλ

n correspond to a natural rotationally invariant function basis on the 
sphere Sd, which happens exactly when λ = (d − 1)/2, i.e. 2λ ∈ N and in these 
cases, condition (ii) is often relevant.

(5) Checking the first few values of n can usually not be avoided. For example, it is 
not difficult to see that the function λ → Cλ

11(cos (π/5)) has a sign change around 
λ ∼ 7.918 . . . . The conditions (i) and (ii) are satisfied for λ close to that number for 
x = cos (π/5) while there exists a λ∗ ∼ 7.918 for which Cλ∗

11 (cos (π/5)) = 0. Thus, 
while |Cλ∗

n (π/5)| ≥ c · nλ∗−1 is asymptotically true, it fails for n = 11. We have 
Ncos (π/5),λ∗ ∼ 1570 ≥ 11. Many other such examples can be constructed.

Theorem 2 indicates that the set of gegenbadly approximable numbers is rather small. 
While more precise information about its size and structure is still elusive, the set is 
definitely non-empty. We now give a particular example of gegenbadly approximable 
numbers which will be relevant to applications (see Corollary 6).

Example 3. The numbers ±1/2 and ±1/
√

2 are 3/2-gegenbadly approximable.

This follows from 1/2 = cos (π/3) and 1/
√

2 = cos (π/4). The numbers Nx,λ are 
easy to compute in these cases (8 and 9, respectively) which then implies the desired 
conclusion after checking that the first Nx,λ terms are not 0. These two examples are 
actually quite special: there are only two gegenbadly approximable numbers that are 
rational. There are only six such numbers whose square is rational.

Corollary 4. Assume that x ∈ (−1, 1) satisfies x2 ∈ Q. Then x is λ-gegenbadly approx-
imable for some λ > 0 if and only if

x ∈
{

±1
2 , ± 1√

2
, ±

√
3

2

}
. (3)

The proof of Corollary 4 is presented in Section 2.3. We remark that the character-
ization of gegenbadly approximable numbers akin to Theorem 1 could be completed if 
one could describe the set of values x = cos θ ∈ (−1, 1), with θ a rational multiple of 
π, which are not roots of Gegenbauer polynomials for any n ∈ N for a fixed λ > 0. We 
are not aware of any relevant results in this direction. It is proved in [21] that for many 
values of λ > 0, one has Cλ

n(
√

b/c) �= 0 when b, c ∈ N are relatively prime and b �∈ {1, 3}. 
Corollary 4 shows that this result does not apply to our setting. It may be most natural 
to restrict oneself to the case 2λ ∈ N.
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1.2. Single radius spherical cap discrepancy

We now turn to an interesting application of the results about gegenbadly approx-
imable numbers to discrepancy theory and irregularities of distribution. For a point 
x ∈ Sd and t ∈ [−1, 1], the spherical cap B(x, t) ⊂ Sd of ‘height’ t centered at x is 
defined by

B(x, t) =
{

y ∈ Sd : x · y ≥ t
}

. (4)

Given a finite set of points Z = {z1, . . . , zN } ⊂ Sd, one could argue that this set is 
regularly distributed if, with respect to all spherical caps B(x, t), the proportion of 
points that lies in the spherical cap is close to the volume of the spherical cap, i.e.

1
N

· # (Z ∩ B(x, t)) ∼ σ(B(x, t)),

where σ is the normalized surface measure on Sd. This motivates the definition of the 
L2 spherical cap discrepancy as

DL2,cap(Z)2 =
1∫

−1

∫
Sd

∣∣∣∣# (Z ∩ B(x, t))
N

− σ(B(x, t))
∣∣∣∣2

dσ(x)dt.

This is the average of the squared difference of the aforementioned quantities over all 
spherical caps of all sizes. There is a different way of arriving at this quantity (motivated 
by sums of pairs of distances), known as the Stolarsky Invariance Principle [24,25] which 
will not be relevant for our paper (but see [7,11]).

We start by introducing a seminal result of Beck [3] showing that the discrepancy of 
any discrete point set can never be too small: avoiding irregularity is impossible.

Theorem (J. Beck, [3]). For any set Z = {z1, . . . , zN } ⊂ Sd, we have

1∫
−1

∫
Sd

∣∣∣∣# (Z ∩ B(x, t))
N

− σ(B(x, t))
∣∣∣∣2

dσ(x)dt ≥ cd · N−1− 1
d . (5)

This result is known to be best possible and has inspired a lot of subsequent work 
(see [2,6,8,13,14,28,29]). It implies, for example, that for any set of N points on S2 there 
always exists a spherical cap containing ∼ N1/4 more or less points than expected. This 
statement is also asymptotically optimal, up to logarithms.

Averaging over all sizes (radii) was crucial in the proof of Beck’s theorem. The phe-
nomenon of averaging over size (radii, side length, dilations) also appeared in the proofs 
of discrepancy bounds similar to (5) in other geometric contexts: rotated rectangles [4], 
disks (balls) in the torus [19], convex sets [3,9], and many others. The example of disks 
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in the torus [19] is particularly interesting as it allowed for averaging over only two 
values: it implies that there is a disk of radius 1/4 or 1/2 with large discrepancy, but 
it is still absolutely unclear whether only one of these radii is enough (see [5] for some 
results in this direction). We also refer to a recent more general result of Brandolini-
Gariboldi-Gigante [10] that is in a similar spirit. More generally, in all of these geometric 
settings it remained an open question whether averaging over sizes is necessary, or if 
large discrepancy is already achieved by a single size?

Our main result is a refinement of Beck’s theorem, which answers the question above 
in the case of the spherical cap discrepancy. It is enough to consider spherical caps of a 
fixed size provided that size is gegenbadly approximable.

Theorem 5. Let d �≡ 1 mod 4. Suppose t ∈ (−1, 1) is (d + 1)/2-gegenbadly approximable. 
Then for some cd,t > 0 and all Z = {z1, . . . , zN } ⊂ Sd we have

∫
Sd

∣∣∣∣# (Z ∩ B(x, t))
N

− σ(B(x, t))
∣∣∣∣2

dσ(x) ≥ cd,t · N−1− 1
d .

Theorem 5 can be considered a de-randomization of Beck’s result since one layer of 
averaging is removed. The following corollary follows from the above theorem and the 
fact that t = 1/2 and t = 1/

√
2 are 3/2-gegenbadly approximable (Example 3).

Corollary 6. For t ∈ {1/2, 1/
√

2} and any set of N points on S2, there always exists 
x ∈ S2 such that

∣∣∣∣# (Z ∩ B(x, t))
N

− σ(B(x, t))
∣∣∣∣ ≥ c · N−3/4.

We conclude with some related remarks.

1.2.1. The condition d �≡ 1 mod 4
This condition, which is equivalent to the condition that λ is not an odd integer 

in Theorem 2, is necessary for the existence of gegenbadly approximable numbers in 
view of Theorem 1. It is also relatively easy to see that the statement of Theorem 5
is false when d = 1. The first open case that is not covered by our results is the case 
of S5. We notice that the same restriction d �≡ 1 mod 4 appeared in several results 
in analysis and discrepancy theory related to balls in Rd: lattice points in balls [18], 
orthogonal exponentials on balls [17], L2 discrepancy with respect to balls [12]. In all 
of these results, this effect appeared due to a phase shift in the oscillatory term of the 
asymptotic relations for the Bessel functions. In our case, it stems from a similar phase 
shift in the asymptotics of the Gegenbauer polynomials, see (6) and (8).
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1.2.2. The ‘freak theorem’ and uniform distribution
These single radius spherical cap discrepancy results are related to other interesting 

problems on the sphere. Consider the following two questions: assume a function f ∈
C(Sd) has mean zero on every spherical cap B(x, t) of fixed size t, is it true that f =
0? Assume that a sequence of points on the sphere Sd is uniformly distributed with 
respect to every spherical cap B(x, t) of fixed size t, is it true that it is a uniformly 
distributed sequence? The answer to both questions turns out to be no! The former has 
been answered by Ungar ([23], d = 2) and Schneider ([22], d ≥ 3) and is sometimes 
referred to as the ‘freak theorem’, while the latter was dealt with by Volčič [27]. The 
exceptional values of t ∈ (−1, 1) in both cases are exactly the roots of Gegenbauer 
polynomials Cλ

n corresponding to dimension d +2, i.e. with λ = (d +1)/2 as in Theorem 5. 
Our result lies on the opposite end of the spectrum, as being a root may be viewed as 
an extreme case of failing the gegenbadly approximable property.

1.2.3. Characterizing single radius spherical cap discrepancy
Theorem 2 characterizes gegenbadly approximable numbers: it characterizes x ∈

(−1, 1) for which the inequality |Cλ
n(x)| ≥ cx · nλ−1 is true for all n sufficiently large 

and it also quantifies ‘sufficiently large’ turning it into an effective computable criterion. 
Theorem 5 shows that gegenbadly approximable numbers admit an irregularities of dis-
tribution phenomenon with respect to a spherical caps of fixed radius (provided that 
the corresponding height is (d + 1)/2-gegenbadly approximable). The main purpose of 
Theorem 5 is to show that such radii indeed exist, however, it is unlikely that it provides 
a characterization of such radii. This raises a natural question which, on S2, assumes 
the following form: Corollary 6 is true for t ∈ {1/2, 1/

√
2}, for which other values of 

t does it hold? It seems likely that the condition |Cλ
n(x)| ≥ cx · nλ−1 is only required 

to be true asymptotically or on average (in some suitable sense) and it is conceivable 
that Corollary 6 is true for many more values of t. We believe this to be an interesting 
question which is going to require a completely new idea. The converse question, which 
can be viewed as a quantitative version of the aforementioned result of Volčič [27], is 
also interesting, but wide open: under which conditions on the radius there always exist 
discrete sets of N points on the sphere such that their single radius spherical cap dis-
crepancy is ‘small’? We would like to note that at least one obvious example exists: it is 
easy to see that for t = 0, i.e. for hemispheres, placing �N/2� and �N/2� points in two 
opposite poles produces L2 discrepancy at most 1/2N (zero for even N), see [6,7].

2. Proof of Theorem 1

We investigate whether x ∈ (−1, 1) can be gegenbadly approximable. It will be con-
venient to set x = cos (θ) for a suitable θ. We use a result of Kalton & Tzafriri [15]: for 
any 0 < λ < ∞, there exists a constant cλ such that, provided n is sufficiently large, 
meaning n sin θ ≥ 1,
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∣∣∣∣Cλ
n(cos θ) − nλ−1

2λ−1Γ(λ)
1

(sin θ)λ
cos

(
(n + λ)θ − λ

π

2

)∣∣∣∣ ≤ cλ

(sin θ)λ+1 nλ−2. (6)

This asymptotic expansion shows that it suffices to understand, for n ≥ (sin θ)−1, 
whether there exists a constant c > 0 (depending on λ, θ) such that, uniformly for 
all n sufficiently large ∣∣∣cos

(
(n + λ)θ − λ

π

2

)∣∣∣ ≥ cθ,λ > 0.

The cosine vanishes, cos x = 0, for reals of the form x = (m + 1/2)π where m ∈ Z. Thus, 
by continuity and periodicity, our problem is equivalent to understanding whether there 
exists another constant c∗

θ,λ such that for all sufficiently large n,

inf
m∈Z

∣∣∣∣(n + λ)θ − λ
π

2 −
(

m + 1
2

)
π

∣∣∣∣ ≥ c∗
θ,λ > 0,

or equivalently, whether there exists another constant c∗∗
θ,λ = c∗

θ,λ/π > 0 such that for all 
sufficiently large n

inf
m∈Z

∣∣∣∣(n + λ) θ

π
−

(
m + λ + 1

2

)∣∣∣∣ ≥ c∗∗
θ,λ > 0.

It is convenient to denote the distance from x to the nearest integer by ‖x‖, i.e.

‖x‖ = min
k∈Z

|x − k|.

Using this abbreviation, we are interested in studying

inf
m∈Z

∣∣∣∣(n + λ) θ

π
−

(
m + λ + 1

2

)∣∣∣∣ =
∥∥∥∥(n + λ) θ

π
− λ + 1

2

∥∥∥∥
Now we make a case distinction.

2.1. λ is an odd integer

If λ is an odd integer, then (λ +1)/2 ∈ N and the question simplifies to whether there 
exists c∗∗∗

θ,λ > 0 such that for all n ∈ N

inf
n∈N

∥∥∥∥(n + λ) θ

π

∥∥∥∥ ≥ c∗∗∗
θ,λ > 0.

If θ/π = p/q ∈ Q is a rational number, then it is clear that no such constant exists since 
the expression is 0 whenever n + λ is a multiple of q. We can thus assume that θ/π is 
irrational. In that case, however, the sequence (n +λ)θ/π mod 1 is an irrational rotation 
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on the torus and thus uniformly distributed and, in particular, gets arbitrarily close 
to 0 (meaning an integer). Indeed, we can make this more quantitative: by Dirichlet’s 
pigeonhole principle we can conclude that

min
1≤n≤N

∥∥∥∥(n + λ) θ

π

∥∥∥∥ � 1
N

.

This implies that for infinitely many n ∈ N∣∣∣cos
(

(n + λ)θ − λ
π

2

)∣∣∣ � 1
n

from which we deduce that for infinitely many n ∈ N∣∣Cλ
n(cos θ)

∣∣ � nλ−2.

2.2. The case λ = 1

If λ = 1, then the previous argument already implies that

∣∣Cλ
n(cos θ)

∣∣ � 1
n

for infinitely many n.

We will now show that this result is sharp. When λ = 1, the Gegenbauer polynomials 
C1

n simplify and C1
n(x) = Un(x), where Un(x) denotes the Chebychev polynomials of the 

second kind. Chebychev polynomials of the second kind satisfy

Un(cos (θ)) = sin ((n + 1)θ)
sin (θ) (7)

for θ ∈ (0, π). We will now analyze the cases of θ/π being irrational and θ/π being 
rational. If θ/π = p/q is rational, then sin ((n + 1)θ) = sin (π(n + 1)p/q) cannot be 
bounded away from 0 and will assume the value 0 infinitely many times at regularly 
spaced intervals. We will now argue that there exists a constant cθ > 0 such that

∀ n ∈ N : |Un(cos (θ))| ≥ cθ

n

if and only if θ/π is badly approximable. Identity (7) shifts the question to whether 
nθ can ever be close to being a multiple of π. This question is well studied in classical 
number theory and we see that we have∥∥∥∥nθ

π

∥∥∥∥ = inf
m∈N

∣∣∣∣nθ

π
− m

∣∣∣∣ ≥ cθ

n

for some universal cθ > 0 if and only if θ/π is a badly approximable number.
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2.3. Proof of Corollary 4

Proof. If x2 = r ∈ Q and x is gegenbadly approximable, then, according to Theorem 1, 
arccos (

√
r) is a rational multiple of π. A result of Varona [26] (see also [16]) states this 

is the case if and only if r ∈ {0, 1/4, 1/2, 3/4, 1}. If r = 1, then x = ±1 is not in (−1, 1). 
It is also easy to discard the case x = 0 = cos (π/2) = 0, since in that case p = 1 and 
q = 2, and we see that

2n − 2 = λ(2p − q) + 2np − q = 2qm = 4m

has a solution (n = 1 and m = 4), hence x = 0 is not gegenbadly approximable. Thus 
(3) holds. Conversely, assume (3). The cases r = 1/4 and r = 1/2, corresponding to 
x = ±1/2 and x = ±1/

√
2, have already been dealt with in Example 3. It remains 

to deal with x = ±
√

3/2 = ± cos (π/6). The condition that remains to be checked is 
whether, for p = 1 and q = 6, the equation

−4λ + 2n − 6 = λ(2p − q) + 2np − q = 2qm = 12m

can avoid having a solution. Setting λ = 4/3, it is not hard to check that 
√

3/2 is indeed 
4/3-gegenbadly approximable. This can be seen by computing N√

3/2,4/3 ∼ 21.7 and 
checking the first 22 elements of the sequence. �
3. Proof of Theorem 2

The proof comes in two parts: in the first part we show that any λ-gegenbadly ap-
proximable numbers has to necessarily have the desired form. In the second part, we 
will show that these properties are sufficient in the sense that |Cλ

n(x)| � nλ−1 for all n
sufficiently large: the remaining problem is to quantify ‘sufficiently large’.

3.1. Part 1: necessity

Let us now assume that λ is not an odd integer and x = cos θ is λ-gegenbadly approx-
imable. Recalling the beginning of the proof of Theorem 1, it remains to see whether 
there is a uniform bound

inf
n∈N

∥∥∥∥(n + λ) θ

π
− λ + 1

2

∥∥∥∥ ≥ c∗∗
θ,λ > 0.

If θ/π is irrational, then nθ/π is dense modulo 1, and therefore so is (n + λ)θ/π and no 
such estimate can be true. We therefore deduce that θ/π = p/q is rational, i.e. condition 
(i) of Theorem 2 holds. The problem thus simplifies to understanding whether there 
exists c∗∗

θ,λ > 0 such that
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inf
n∈N

∥∥∥∥(n + λ)p

q
− λ + 1

2

∥∥∥∥ > c∗∗
θ,λ > 0.

This is a q-periodic sequence and it suffices to understand whether

min
1≤n≤q

∥∥∥∥(n + λ)p

q
− λ + 1

2

∥∥∥∥ > 0.

This minimum will be positive unless it vanishes somewhere which happens if there exists 
1 ≤ n ≤ q and m ∈ Z such that

(n + λ)p

q
− λ + 1

2 = m

or, equivalently, unless there exists 1 ≤ n ≤ q and m ∈ Z such that

λ

(
p

q
− 1

2

)
+ n

p

q
= m + 1

2 .

Multiplying both sides with 2q we see that this happens if and only if condition (ii) in 
Theorem 2 is satisfied, i.e. for some 1 ≤ n ≤ q there exists an m ∈ Z such that

λ (2p − q) + 2np = 2qm + q

which is equivalent to saying that

λ (2p − q) + 2np − q is divisible by 2q for some 1 ≤ n ≤ q.

3.2. Part 2: sufficiency

If we now assume conditions (i) and (ii) to hold, then we know that

X = inf
1≤n≤q

∥∥∥∥(n + λ)p

q
− λ + 1

2

∥∥∥∥ > 0

since Condition (i) implies that θ/π is rational and condition (ii) was derived to be 
equivalent to this statement. Since X denotes a distance to a nearest integer, we also 
have 0 ≤ X ≤ 1/2. The function |cos (x)| is π-periodic and thus

∣∣∣cos
(

(n + λ)θ − λ
π

2

)∣∣∣ =
∣∣∣∣cos

[
π

(
(n + λ)p

q
− λ + 1

2

)
+ π

2

]∣∣∣∣
=

∣∣∣∣cos
[
π

∥∥∥∥(n + λ)p

q
− λ + 1

2

∥∥∥∥ + π

2

]∣∣∣∣
= sin

(
π

∥∥∥∥(n + λ)p − λ + 1
∥∥∥∥)
q 2
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≥ 2
π

∥∥∥∥(n + λ)p

q
− λ + 1

2

∥∥∥∥ ≥ 2
π

X.

We invoke an asymptotic expansion of Natanson–Glagovskii [20] who showed that

Cλ
n(cos θ) = An

(sin θ)λ

(
cos

(
(n + λ)θ − λ

π

2

)
+ αn(θ)λ(1 − λ) cot θ

n + λ

)
, (8)

where |αn(θ)| ≤ 1. It remains to check the validity of the inequality

λ|1 − λ| cot θ

n + λ
<

2
π

X,

which is easily seen to be satisfied as soon as

n ≥ π

2
λ|1 − λ| cot θ

X
.

This means that the Gegenbauer polynomial never vanishes and from the previous ar-
guments we already know that it has the correct asymptotic growth as n → ∞. This 
establishes the desired result.

4. Lower bound for the single radius spherical cap discrepancy: proof of Theorem 5

4.1. Preliminary results

We first collect a number of relevant results. Throughout the remainder of this section, 
we will always set

λ = d − 1
2 .

For any bounded function f : [−1, 1] → R, we can define an associated notion of discrep-
ancy for any set Z = {z1, . . . , zN } ⊂ Sd via

[
DL2,f (Z)

]2 =
∫
Sd

∣∣∣∣∣∣
∫
Sd

f(x · y)dσ(y) − 1
N

N∑
j=1

f(x · zj)

∣∣∣∣∣∣
2

dσ(x).

This notion can be defined for any function f : [−1, 1] → R but, naturally, some are 
easier to interpret than others. We will focus on the spherical cap discrepancy with fixed 
radius which corresponds to the function

ft(τ) = 1[t,1](τ),
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where the parameter t ∈ (−1, 1) governs the size of the spherical cap B(x, t) as defined 
in (4). Fourier Analysis on the sphere naturally leads to the Gegenbauer polynomial 
expansion. For any λ ≥ 0 and g ∈ L1([−1, 1], (1 − x2)λ−1/2) we have

g(x) ∼
∞∑

n=0
ĝ(n, λ)n + λ

λ
Cλ

n(x),

where Cλ
n(x) are the Gegenbauer polynomials and ĝ(n, λ) is the associated Fourier coef-

ficient

ĝ(n, λ) = Γ(λ + 1)
Γ(λ + 1/2)Γ(1/2)

1
Cλ

n(1)

1∫
−1

g(x)Cλ
n(x)(1 − x2)λ−1/2dx.

Having established the notation, we can now state our main ingredient.

Theorem (Bilyk & Dai [6]). Let λ = (d − 1)/2. There exists a constant cd > 0 depending 
only on the dimensions such that for all f ∈ L2

wλ
[−1, 1] and all Z = {z1, . . . , zN } ⊂ Sd

we have

D2
L2,f (Z) ≥ cd min

1≤k≤cdN1/d

∣∣∣f̂(k, λ)
∣∣∣2

.

We would like to note that the existing proof of the theorem above requires infor-
mation about all Gegenbauer coefficients, and its existing proof does not allow for an 
asymptotic version. This is the main reason that inequality (1) in the definition of gegen-
badly approximable numbers is required to hold for all n ∈ N and one has to separately 
check the values n ≤ Nx,λ in Theorem 2. We believe that a suitable asymptotic or average 
version of the “gegenbadly approximable” property should suffice for Theorem 5.

Our next ingredient is an identity for Gegenbauer polynomials that we found men-
tioned in a paper by R. Schneider [22]. Since we were unable to find the identity anywhere 
else, we quickly supply the simple proof. The proof is based on the Rodrigues formula

Cλ
n(t) = (−1)n

2nn!
Γ(λ + 1/2)Γ(n + 2λ)
Γ(2λ)Γ(λ + n + 1/2) · (1 − t2)−λ+1/2 dn

dtn

[
(1 − t2)n+λ−1/2

]
.

We will, for simplicity of exposition, abbreviate the numerical constant by aλ
n. With this 

abbreviation, we can now evaluate a weighted integral of Gegenbauer polynomials over 
the interval [α, 1] in closed form.

Lemma 7. Abbreviating the constant aλ
n ∈ R in the Rodrigues formula

Cλ
n(t) = aλ

n (1 − t2)−λ+1/2 dn

(1 − t2)n+λ−1/2,

dtn
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then, for all −1 < α < 1,

1∫
α

Cλ
n(t)(1 − t2)λ−1/2dt = − aλ

n

aλ+1
n−1

· (1 − α2)λ+1/2 · Cλ+1
n−1(α).

Proof. The proof is straightforward: we first simplify the expression on the left-hand 
side and then differentiate to argue that it leads to the right-hand side. It is easy to see 
that both sides of the equation coincide when α = 1 (since both the left-hand side and 
the right-hand side vanish in that case) and so the result follows. We start by arguing 
that appealing to the Rodrigues formula

1
aλ+1

n−1
Cλ+1

n−1(t) = 1
aλ+1

n−1
aλ+1

n−1(1 − t2)−λ−1/2 dn−1

dtn−1 (1 − t2)(n−1)+(λ+1)−1/2

= (1 − t2)−λ−1/2 dn−1

dtn−1 (1 − t2)n+λ−1/2.

Therefore

−aλ
n(1 − t2)λ+1/2 1

aλ+1
n−1

Cλ+1
n−1(t) = −aλ

n

dn−1

dtn−1 (1 − t2)n+λ−1/2. (9)

We will now use this identity to prove this Lemma. We have already established the 
validity when α = 1. Differentiating the left-hand side

∂

∂α

1∫
α

Cλ
n(t)(1 − t2)λ−1/2dt = −Cλ

n(α)(1 − α2)λ−1/2.

Differentiating the right-hand side in the statement of the Lemma becomes much simpler 
after using (9) since

∂

∂α

[
− aλ

n

aλ+1
n−1

· (1 − α2)λ+1/2 · Cλ+1
n−1(α)

]
= ∂

∂α

[
−aλ

n

dn−1

dαn−1 (1 − α2)n+λ−1/2
]

= −aλ
n

dn

dαn
(1 − α2)n+λ−1/2

Checking whether both derivatives are the same is exactly equivalent to the Rodrigues 
formula

Cλ
n(t) = aλ

n(1 − t2)−λ+1/2 dn

(1 − t2)n+λ−1/2. �

dtn
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4.2. Proof of Theorem 5

Proof. We can now combine all the different ingredients. The single radius spherical cap 
discrepancy corresponds to the choice

ft(τ) = χ[t,1](τ).

We start by computing its Gegenbauer coefficients

f̂t(n; λ) = Γ(λ + 1)
Γ(λ + 1/2)Γ(1/2)

1
Cλ

n(1)

1∫
t

Cλ
n(x)(1 − x2)λ−1/2dx.

The leading term is comprised of a constant depending only on λ and 1/Cλ
n(1). It is 

known, see Abramowitz & Stegun [1, Equation 22.14.2], that

Cλ
n(1) =

(
n + 2λ − 1

n

)
� n2λ−1

with a constant again depending only on λ. Using Lemma 7, we deduce

∣∣∣f̂t(n, λ)
∣∣∣ �λ

1
n2λ−1

∣∣∣∣∣∣
1∫

t

Cλ
n(x)(1 − x2)λ−1/2dx

∣∣∣∣∣∣
= 1

n2λ−1

∣∣∣aλ
n(aλ+1

n−1)−1(1 − t2)λ+1/2Cλ+1
n−1(t)

∣∣∣ .

Some further simplification is in order. The Rodrigues formula, and thus the coefficients 
aλ

n, are known and, ignoring constants that depend only on λ,

aλ
n = (−1)n

2nn!
Γ(λ + 1/2)Γ(n + 2λ)
Γ(2λ)Γ(λ + n + 1/2) ∼λ

(−1)n

2nn! nλ−1/2

Therefore, ∣∣∣−aλ
n(aλ+1

n−1)−1(1 − t2)λ+1/2
∣∣∣ ∼λ,t

1
n2

and the lower bound simplifies to∣∣∣f̂t(n, λ)
∣∣∣ �λ,t

1
n2λ+1

∣∣Cλ+1
n−1(t)

∣∣ .

Assuming that t is (λ + 1)-gegenbadly approximable (notice that λ + 1 = (d + 1)/2), we 
arrive at ∣∣Cλ+1

n−1(t)
∣∣ ≥ ctn

λ.
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Putting this all together, we find that

∣∣∣f̂t(n, λ)
∣∣∣ �t,λ

1
nλ+1 .

Then

|f̂t(n, λ)|2 �t,λ
1

n2λ+2 = 1
nd+1 .

Finally, appealing to the Theorem of Bilyk & Dai, we complete the proof:

D2
L2,ft

(Z) ≥ cd min
1≤k≤cdN1/d

|f̂t(n, λ)|2 � 1
N1+ 1

d

, �

We conclude with a quick analysis of what this argument gives on S1. Theorem 2 is 
not applicable since d ≡ 1 (mod 4), however, Theorem 1 can still be applied. Since d = 1, 
we obtain λ = (d − 1)/2 = 0 and λ + 1 = 1, hence Theorem 1 guarantees existence of 
suitable −1 < t < 1 such that∣∣∣f̂t(n, λ)

∣∣∣ �λ
1

n2λ+1

∣∣Cλ+1
n−1(t)

∣∣ � 1
n2 .

Then

D2
L2,ft

(Z) ≥ cd min
1≤k≤cdN1/d

|f̂t(n, λ)|2 � 1
N4 .

This is far from optimal: it is not too difficult to see that the single spherical cap L2-
discrepancy on S1 can be as small as ∼ 1/N but not smaller than that. This rate is 
attained for equispaced points. We conclude with a basic heuristic: if d = 4k + 1, then 
λ = (d − 1)/2 = 2k and λ + 1 = 2k + 1 is an odd integer, then Theorem 1 states that

∣∣Cλ+1
n (x)

∣∣ ≤ cx · nλ−1 for infinitely many n.

If one were to assume the existence of a converse bound, meaning special values −1 <
x < 1 such that 

∣∣Cλ+1
n (x)

∣∣ � cxnλ−1, then this would imply the weaker lower bound 
|f̂t(n; λ)| � 1/nλ+2 and

D2
L2,fα,N � 1

N1+ 3
d

.

We do not know whether this is true; however, if true, it would be the strongest result 
that can possibly be obtained with this method. The first open case is S5.
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