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AbstractÐGoogle’s new congestion control algorithm, BBR,
has seen wide adoption. However, there are concerns about its
unfairness to legacy congestion control algorithms and the high
retransmissions experienced under lossy conditions. In response,
Google designed BBRv2 to address these concerns. However, the
performance of BBRv2 with respect to BBR or Cubic has not
been studied systematically. This paper presents a fine-grained
performance study of BBRv2 under a variety of RTTs, band-
widths, buffer sizes, and loss conditions, in both LAN and WAN
environments. We construct a decision tree to determine whether
BBR or BBRv2 performs better under different conditions. We
observe that BBRv2’s goodput is significantly low compared to
BBR’s under induced loss and bursty losses, and the effect is
magnified under large BDP. Our results suggest that BBRv2
trades performance for better fairness under losses. To bridge this
gap, we investigate the workings of BBRv2 and find that BBRv2
employs a long-term upper bound on sending rate that is not
robust to losses. This upper bound is continually decremented in
the presence of persistent losses, thereby depressing goodput. We
show that by aligning BBRv2’s upper bound with its maximum
bandwidth estimation, BBRv2’s performance can be greatly
improved while maintaining its fairness.

I. INTRODUCTION

In the past few years, the Bottleneck Bandwidth and Round-

Trip Propagation Time (BBR) congestion control algorithm [1]

has seen widespread adoption throughout the Internet, and now

accounts for over 40% of web traffic [2]. BBR’s popularity

is largely driven by its ability to achieve high goodput while

incurring low latency [3]. However, recent studies have uncov-

ered significant drawbacks of BBR including its unfairness to

other flows and its high retransmission rate [4], [5].

Consequently, BBRv2 [6] is being actively developed (with

an alpha release of 2019) to address the drawbacks of BBR.

Google has already begun to use BBRv2 internally [7], and

once it is added to the Linux kernel, it is likely to be

widely deployed in the Internet. Recent studies conducted

in specialized networks [8] or using Mininet [9] have noted

the improvements afforded by BBRv2 over BBR. However, a

detailed study of the performance of BBRv2, especially when

compared to BBR, in generic networks and under realistic

conditions is lacking.

In this paper, we conduct an empirical measurement study to

analyze the performance of BBRv2 versus BBR. We focus on

goodput and fairness, as well as video quality, and experiment

with diverse network conditions over a LAN and a WAN

setting. In addition to buffer losses and induced random

losses, we also experiment with bursty losses experienced in

cellular networks using real cellular traces [10]. We construct a

decision tree to characterize the conditions under which BBR

and BBRv2 performance considerably vary.

Our key finding is that under both persistent random losses

and bursty losses, BBRv2 performs significantly poorly com-

pared to BBR. This is not surprising given BBRv2 has been

explicitly designed to react to losses, while the original BBR

does not react to losses. What is surprising is the extent

of the poor performance. For example, under a 500mbps

connection, when a 2% loss is induced, across all buffer

conditions, BBRv2 performs 8×±17× worse than BBR. This

poor performance holds in the WAN and in cellular networks

that experience burst losses. While not as pronounced, we

also see a reduction in video quality for BBRv2 under 2%

loss when streaming a DASH video. However, BBRv2 does

improve fairness compared to BBR, in terms of the recently

introduced harm metric [5]. Further, under only buffer losses

(i.e, no induced random loss or burst loss), BBR and BBRv2

perform similarly in terms of goodput.

To better understand this shortcoming of BBRv2, we in-

vestigate the BBRv2 congestion control logic under losses to

identify potential culprits. BBRv2 uses two mechanisms to

react to losses: (i) an upper bound on inflight packets that is

determined based on a long-term loss rate estimate, and (ii) a

lower bound on the inflight packets that is determined based

on a single loss event. BBRv2 sets the packet in flight between

this upper bound and lower bound values.

Based on a fine-grained investigation of these two param-

eters, we find that the lower bound parameter is effective in

the presence of buffer losses, reducing the sending rate and

subsequent congestion. However, when losses are persistent or

bursty, the upper bound parameter is continually decremented.

Since the packets in flight cannot exceed the upper bound, the

goodput reduces significantly. However, completely removing

the upper bound parameter affects fairness.

To improve BBRv2 performance under losses while main-

taining fairness, we propose an adaptive version of BBRv2.

In the adaptive version, the long-term upper bound is reset to

BBRv2’s maximum bandwidth estimate in each cycle rather

than allowing it to decrement continuously under loss. The

lower bound parameter remains unchanged. We implemented

this adaptive BBRv2 version in the Linux kernel by modifying

existing BBRv2. We evaluate the adaptive BBRv2 implemen-

tation under diverse network conditions and find that it is

able to achieve goodput 8× greater than unmodified BBRv2

(and only 8% less than BBR) while being fairer to Cubic

than BBR in the LAN and reducing the retransmission rate

by 70%. Our results suggest that, with some modifications,

BBRv2 can address the drawbacks of BBR without impacting

performance, and replace BBR in production environments.

II. BACKGROUND

BBR: Loss-based congestion control algorithms such as Cubic

use loss as their only congestion signal, and are known to



RTTs (ms) 10, 100

BWs (mbps) 25, 50, 100, 300, 500, 1000

Buffer Sizes 100KB, 2MB, 10MB, 50MB, 100MB

Loss Rates 0%, 1%, 2%

TABLE I: Network settings employed in our experiments.

suffer from bufferbloat. To alleviate these issues, the Bot-

tleneck Bandwidth and Round-Trip Propagation Time (BBR)

congestion control algorithm [1] was introduced. BBR does

not react to loss. Instead, BBR aims to send at a rate that

matches the available network capacity, called the bandwidth-

delay product (BDP). BBR measures the available bandwidth

and the minimum RTT over a period of time and computes the

BDP as the product of bandwidth and minimum RTT. Since

BBR will keep sending even in the presence of losses as long

as the delivery rate can be maintained, BBR tends to be unfair

to other flows and has high retransmission counts [3].

BBRv2: To address the poor fairness and high retransmissions

of BBR, the designers of BBR made some key changes and

released a new version, BBRv2, in 2019 [6]. BBRv2 also

determines its sending rate based on estimated BDP; however,

unlike BBR, BBRv2 does react to loss. BBRv2 introduces

new upper and lower bounds on the number of packets in

flight. The upper bound reacts to loss over the long term, and

the lower bound reacts to short-term losses. We discuss these

values further in Section IV-A.

BBRv2 operates in different phases (shown later in Fig-

ure 4). In the startup phase, BBRv2 increases its sending

rate quickly. When BBRv2 exits the startup phase, it enters

a set of four phasesÐPROBE_DOWN, PROBE_CRUISE,

PROBE_REFILL, and PROBE_UP, which are part of the

steady state. The number of packets in flight in steady state

is between the long-term upper and short-term lower bound

values. Periodically (every 5 secs), BBRv2 reduces its sending

rate to half. This phase is called PROBE_RTT, and it elimi-

nates queues in bottleneck routers.

III. COMPARING BBRV2 WITH BBR

A. Experimental Setup, Metrics, and Methodology

We consider three types of networks in our experiments:

LAN, WAN, and emulated cellular network using real cellular

traces. We evaluate BBR and BBRv2 using iPerf3 and measure

peak goodput under the network conditions. We also conduct

DASH video experiments and evaluate video quality.

a) LAN and WAN: In our LAN setup, we connected

a client and a server, both running Ubuntu 18.04, through

a Linksys WRT1900ACS router with OpenWRT 19.07.1 in-

stalled. This setup allows us to abstract away all effects of the

network other than those of the bottleneck router, where we

set RTT, bandwidth, buffer size, and loss rate. The kernel has

been modified to include BBRv2, which is not included in the

Linux kernel by default. We also modify BBRv2’s module

parameters to allow us to collect debug logs of BBRv2’s

internal variables.

In our WAN experiments, the client is located in South

Korea while the iPerf3 sender is located in the Northeast

US, resulting in an RTT of around 200 ms and maximum

goodput of approximately 100 mbps. In both LAN and WAN

experiments, we induce up to 2% packet loss at the sender.

Other recent studies induced or observed packet loss at similar

rates [11], [12].

b) Cellular: The cellular experiments are also run on the

aforementioned LAN with cellular conditions emulated using

cell-emulation-util [13]that replays cellular traces collected by

Akamai from a cellular ISP [10].

To understand the difference in performance between BBR

and BBRv2, we ran experiments under a variety of network

conditions, including varied bandwidth, RTT, buffer size, and

random loss rates. The network conditions used in these

experiments are shown in Table I. All experiments were run

for five minutes at least five times per condition.

We measure performance using goodput and fairness using

the harm metric. Goodput is total bytes received by the iperf

server divided by the experiment length. Harm is a recently

proposed metric [4] as an alternative to the classical Jain’s

fairness index. Jain’s fairness index is an appropriate fairness

metric when all flows are able to reach their full potential.

However, it does not work well when one or more flows is

unable to use its full share of the bandwidth due to factors

not caused by other flows. To calculate the harm done by a

new congestion control x to a legacy congestion control y, we

need to know the throughput of x and y in competition, as

well as the throughput of y alone. Then the harm done by x

to y is:

throughput(y alone) − throughput(y with x)

throughput(y alone)
.

For example, if legacy congestion control y’s throughput is 2

mbps alone and 1 mbps in competition with new congestion

control x, the harm done by x to y is 0.5, meaning that y’s

throughput decreases by 50% when it competes with a flow

using x. While there are many thresholds for the amount of

harm considered acceptable, we reason that a new congestion

control’s harm to legacy congestion control is acceptable if it

is less than or equal to the harm the legacy congestion control

would do to itself. Therefore, to evaluate the harm inflicted by

BBR and BBRv2 on Cubic, we calculate their harm values,

as well as Cubic’s harm to itself as a baseline.

For DASH experiments, we evaluate video quality between

0 (1 mbps bitrate) and 10 (25 mbps bitrate).

B. Decision Tree for BBRv2 vs. BBR

We present all our experimental results using the conditions

in Table I as a decision tree in Figure 1. We create the decision

tree using scikit-learn’s decision tree classifier. The target class

for each pair of experiments is BBR or BBRv2. The decision

tree returns BBR, if BBR achieves better throughput than

BBRv2 in more experimental runs under a set of conditions,

and returns BBRv2 otherwise. The BBR version that provides

better throughput under each set of conditions is indicated in

each node. To better illustrate the difference in throughput, we

color code the nodes such that darker shades indicate larger



Fig. 1: Decision tree based on our experiments highlighting the choice between BBRv2 and BBR. Blue node indicate that

BBR performs better than BBRv2 and orange node is vice versa (darker color indicate higher performance difference). Nodes

in white indicate negligible goodput difference. Highlighted leaves are those where we see improvement of at least 10%.
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Fig. 2: The goodput for BBR and BBRv2, under 100 ms RTT,

500 mbps bandwidth, and a 2 MB buffer on LAN and in the

WAN with 2% loss. BBRv2 experiences poor goodput under

high loss

differences in throughput. If the difference is negligible (less

than 1%), the node is colored white. For ease of readability,

we highlight nodes (with a darker bounding box) where the

difference is at least 10%.

a) No induced loss: BBR and BBRv2 largely perform

similarly when no additional random loss is induced; see the

left sub-tree under the root node in Figure 1. Both achieve

goodput close to the full bandwidth, though BBR incurs more

retransmissions in the process (results not shown). The only

case in which the difference in goodput is greater than 10% is

the smallest BDP and large buffer size (leaf node that is second

from left), where BBRv2 outperforms BBR by 13%. This is

because we use a burst size of 1MB which is proportionally

large for the smallest BDP. Under these conditions, BBR is

known to perform poorly due to bufferbloat [14].

b) Induced loss and Large BDP: Under induced loss,

BBR consistently achieves higher goodput than BBRv2; see

the right sub-tree under the root node in Figure 1. The

difference in goodput ranges from 7% to 871%. Figure 2

takes a closer look at the goodput for BBR and BBRv2 under

high bandwidth (500mbps), a 2 MB buffer, and 2% induced

loss, which is the condition where we see the most difference

between BBR and BBRv2. In this setting, BBRv2 has very low

goodputÐas much as 7.8× (with 2 MB buffer) ± 21.2× (with

10 MB buffer) lower compared to BBR. This observation also

holds in the WAN, as shown in the right plot of Figure 2; we

see that BBRv2 achieves about 6.5× lower goodput compared

to BBR under 2% induced loss. For video experiments, BBRv2

continues to suffer under high losses, though the performance

drop is not as pronounced. Under 2% loss, we find that BBRv2

has 18% lower quality than BBR.

One of the reasons BBR has higher goodput compared to

BBRv2 is that it does not react to losses. Consequently, BBR

sends a large number of packets even under losses, resulting in

as much as 3.3× higher retransmissions compared to BBRv2.

To summarize, our analysis suggests that under high loss rate,

BBR significantly outperforms BBRv2 in terms of goodput.

C. Evaluating fairness under BBRv2 and BBR

For a complete performance evaluation of BBRv2 vs. BBR,

we now empirically contrast the fairness of BBRv2 and BBR

when they (individually) coexist with Cubic flow(s). We use

the same experimental methodology to run LAN experiments

with iPerf3 as described in Section III-A.

We evaluate the harm fairness metric under a large BDP

and small, medium, and large bottleneck buffers. We include

results for no induced loss and 2% induced random loss. Ta-

ble II shows the full set of results. Recall, from Section III-A,

that a lower harm value is better, with Cubic Cubic Harm

values being ideal. To understand how to interpret these values,



Loss Buffer Size BBR Cubic Harm BBRv2 Cubic Harm Cubic Cubic Harm

0%
Small 0.98 0.61 0.48
Medium 0.50 0.33 0.47
Large 0.39 0.33 0.54

2%
Small 0.38 0.03 0.05
Medium 0.40 0.05 0.03
Large 0.42 0.02 0.01

TABLE II: Harm results when BBR, BBRv2, and Cubic coexist with Cubic under large BDP setting (500mbps bandwidth and

100ms RTT) and various loss and buffer settings.

consider the following example. Under 0% induced loss and a

small buffer, the Cubic Cubic Harm value is 0.48, meaning that

a Cubic flow’s goodput decreased by 48% when competing

with another Cubic flow, compared to its goodput alone. The

corresponding BBR Cubic Harm value is 0.98, meaning that

the Cubic flow’s goodput decreased by 98% when competing

with a BBR flow, compared to its goodput alone.

Under no induced loss, we see that BBRv2 is more fair

than BBR, especially for a small buffer. Because BBR does

not react to losses, it is particularly unfair to Cubic in small

buffers where losses occur frequently. BBRv2 reacts to loss

and is therefore fairer to Cubic in this situation. Under a 2%

induced loss, again BBRv2 is significantly more fair to Cubic

than BBR; this is because, again, BBR does not react to losses

and aggressively consumes available bandwidth, starving other

flows. In summary, BBRv2 is consistently fairer than BBR,

especially under losses.

D. Cellular

All experiments described thus far have been under con-

trolled conditions, as well as persistent (induced) random loss.

To strengthen our findings about BBRv2’s poor performance

under loss, we ran experiments using cellular network traces.

In cellular networks, losses do not occur at uniform random

intervals. Instead they come in short bursts of high loss, and

the timing and duration of these bursts is not deterministic.

Condition BW (mbps) Loss (%) Buffer (KB)

Good 3 1.5 9, 40, 128 KB

Median 1.7 5 9, 20, 128 KB

Poor 1.4 10 9, 18, 128 KB

TABLE III: Average bandwidth, loss rate for the good, median,

and poor cellular conditions from traces [10]. The latency is

50ms for all traces.

We use existing cellular traces [10] where the traces are

divided into good, median, and poor conditions. The charac-

teristics of the three traces are shown in Table III. We emulate

these conditions in our LAN and set different buffer sizes for

the three conditions as shown in the table.

In all cases, BBR’s average goodput is greater than BBRv2’s

average goodput. Figure 3 shows the results for the median

network condition; results are similar for the poor and good

network conditions. In these experiments, we use two band-

width settings. One is the default bandwidth, which refers to

the bandwidth seen by the cellular network. We also increase

the bandwidth to 10mbps to simulate a high bandwidth cellular

condition. In the small and medium buffers, BBR significantly
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Fig. 3: Cellular: Goodput for BBR and BBRv2 under the

median cellular condition.

outperforms BBRv2, by as much 6.6×; the difference is

smaller in the large buffer case. The difference in goodput

between BBR and BBRv2 is greater under the simulated

high bandwidth condition; for all three buffer sizes, BBR

outperforms BBRv2 by at least 2×. This is because BBR

does not react to losses and so continues to aggressively use

the available bandwidth. By contrast, under the burst losses

experienced under cellular conditions, BBRv2 backs off its

delivery rate substantially (as discussed later in Section IV-A).

We also analyze the fairness when BBR and BBRv2 coexist

with Cubic under cellular conditions. Similarly to LAN con-

ditions, BBRv2 is fair to Cubic while BBR is unfair. These

results are omitted for brevity.

IV. EXAMINING BBRV2’S PERFORMANCE UNDER LOSS

Our results above show that BBRv2 sees a huge perfor-

mance hit (as much as 16.9×) under sustained and bursty

losses. In this section, we analyze BBRv2 to understand why.

A. BBRv2’s Behavior Under Loss

Figure 4 shows how losses affect BBRv2’s sending rate dur-

ing different phases of its operation. Recall from Section II that

BBRv2 maintains a short-term lower bound (called inflight_lo)

and a long-term upper bound (called inflight_hi). The number

of packets in flight (cwnd) is bound between these two values.

Losses affect both these bounds, as we describe below

a) STARTUP: Both BBR and BBRv2 have a startup

phase where sending rate increases quickly. In both cases, the

protocol exits the startup phase when the delivery rate plateaus.

In addition, BBRv2 can also exit the startup phase when the

loss rate (calculated from the beginning of the startup) exceeds

the loss threshold of 2%. When the loss threshold is exceeded,

BBRv2 sets the long-term upper bound to the current cwnd.

The short-term lower bound is not set in this phase.

b) PROBE_DOWN, PROBE_CRUISE, PROBE_REFILL,

PROBE_UP: These four phases represent the steady state

for BBRv2. Together, they last one cycle of 2±3 seconds

from the start of the last PROBE_DOWN, plus one RTT
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Fig. 4: Flowchart showing phases of BBRv2’s cycle including

transition conditions.

for PROBE_REFILL and a maximum of one RTT for

PROBE_UP. The short-term lower bound is set to the current

cwnd at the start of the cycle. Thereafter, each time a (single)

loss occurs, the short-term lower bound is reduced by 30% or

set to the maximum number of packets in flight in the previous

roundtrip, whichever is greater. Since this is a short-term

bound, it is reset once per cycle, before each PROBE_REFILL.

But the long-term upper bound is set differently in response

to losses. If the long-term upper bound is not set in the startup

phase, it is set to infinity. In the steady state, the long-term

upper bound is decreased when the loss threshold is exceeded

(rather than reacting to a single loss). Specifically, the upper

bound is set to 30% less than BDP or the packets in flight,

whichever is greater. The loss threshold is estimated over the

cycle, so it is a longer-term loss estimate. If the loss threshold

is not exceeded, upper bound value is increased incrementally

(there are some corner cases that we omit).

In other words, the short-term lower bound is affected by

a single loss, but the value does not carry over beyond a

cycle. In contrast, the long-term upper bound is set based on

loss calculated over a longer period of time and the value

persists. The cwnd is set between the short-term lower bound

and long-term upper bound, but is always 15% less than the

upper bound, also referred to as the headroom.

c) PROBE_RTT: The short-term lower bound is reset to

infinity at the end of each PROBE_RTT to prevent the low

sending rate from persisting.

B. Importance of Upper and Lower Bounds

To illustrate the effects of the short-term lower bound and

long-term upper bound on BBRv2’s delivery rate, we show

their values, along with the values of delivery rate and the

(a) 0% random loss

(b) 2% random loss

Fig. 5: BBRv2’s delivery rate, the short-term lower bound,

and the long-term upper bound during a five-minute run with

100 ms RTT, 500 mbps bandwidth, and a 2 MB buffer. Black

vertical lines indicate times when loss threshold was exceeded.

times when the loss threshold was exceeded (indicated with a

black vertical line).

Figure 5a shows a scenario with no induced loss. In this

case, losses do occur due to relatively small buffers. But,

every time a single loss occurs, the short-term lower bound

value reduces the sending rate. By doing so, further losses are

avoided and the long-term loss rate rarely exceeds the loss

threshold. Consequently, the long-term upper bound persists

at a high value. The delivery rate stays at 15% lower than the

long-term upper bound value, resulting in high goodput.

In contrast, Figure 5b shows BBRv2’s behavior under the

same condition but with 2% induced random loss. When the

loss threshold is exceeded repeatedly, the long-term upper

bound and short-term lower bound decrease rapidly until cwnd

converges to a very small value (by the end of the run).

Because the long-term upper bound never gets reset, its value

remains low and the sending rate is never given an opportunity

to recover. At the beginning of each cycle, the short-term lower

bound is set to the minimum of the short-term lower bound

and long-term upper bound. Therefore, even though the short-

term lower bound is reset and given a chance to increase every

cycle, its value is influenced by the long-term upper bound,

limiting its ability to increase goodput.

The main takeaway is that the short-term lower bound reacts

to short-term buffer losses and is able to control the sending

rate. However, when the losses persist (either because we

induce the loss or when the losses are bursty as in the case

of cellular conditions), the long-term upper bound reduces

significantly, resulting in poor goodput.

V. MAKING BBRV2 ROBUST TO LOSSES

Our goal is to improve BBRv2’s goodput under loss while

maintaining most of its fairness improvements. Our approach

is to modify the loss response of BBRv2.

A. How important is the long-term upper bound?

A natural first step is to not set the long-term upper bound

at all, essentially leaving it at infinity. To do this, we set the



loss threshold to an arbitrarily high value (1000%, in our

experiments) so that the long-term upper bound will almost

never be set. Recall that the upper bound value is set only when

the loss estimate exceeds the loss threshold. By not setting the

long-term upper bound, this version of BBRv2 will react to

losses solely via the short-term lower bound value.

With this setting, the goodput dramatically improves, with

BBRv2 (removing upper bound) performing similarly to BBR.

However, it also results in poor fairness. The unfairness is not

as bad as BBR, but is considerably worse than BBRv2.

The reason for the unfairness is that, without an upper

bound value, the delivery rate can increase in an unbounded

manner. Recall that the packets in flight is set to 15% less than

the upper bound in the original BBRv2, providing an upper

limit. Thus, removing the loss threshold and eliminating the

long-term upper bound meets our performance goal (of high

goodput), but at the expense of fairness.

B. Adaptive long-term upper bound

Instead of removing the upper bound entirely, we propose to

set it adaptively. The problem with the upper bound regulation

algorithm in unmodified BBRv2 is that the value can drop to

arbitrarily low numbers across cycles when loss persists. Our

approach to stem this free fall of the upper bound value is to

reset it periodically and adaptively.
a) When should the upper bound be reset?: Setting the

long-term upper bound only once at the beginning of the flow

means that the long-term upper bound will reflect the unsus-

tainably high sending rate during the startup phase. Setting it

once per cycle at the beginning of the steady state causes the

long-term upper bound to reflect the low sending rates used

during PROBE_RTT, which reduces goodput unnecessarily.

We verified both of the above scenarios empirically.

Instead, we set the long-term upper bound after the

steady state is reached, specifically, at the beginning of

PROBE_REFILL (see Figure 4). When BBRv2 is in steady

state, the number of packets sent is a near-accurate estimate

of the capacity of the network. We update the value at every

PROBE_REFILL, allowing the upper bound to reflect changes

in bandwidth.
b) What value should the upper bound be reset to?:

Rather than devising a complicated algorithm, we consider

a simple heuristic that is easy to deploy: we set the long-

term upper bound to the maximum number of packets in-flight

during the last round trip. BBRv2 already tracks this value (as

inflight_latest), making it easy to implement.

The intuition here is that, as stated above, the number of

packets in flight during steady state is a good estimate of the

capacity of the network. This value represents a high but safe

sending rate, even in the presence of losses. Since BBRv2

must send at least 15% less than this upper bound, BBRv2

will send more conservatively and consequently be more fair.

VI. EVALUATION

We now evaluate the performance and fairness of our

BBRv2 with adaptive long-term upper bound; we refer to this

version of BBRv2 as ªour solutionº in the results.

Fig. 6: Packets delivered, short-term lower bound, and long-

term upper bound for our adaptive version of BBRv2. Experi-

ment settings are the same as in Figure 5 (a) and (b). The loss

threshold is never exceeded, but the long-term upper bound is

reset every cycle.

A. Methodology

The evaluation setup is similar to the one described in

Section III. In addition to BBR and BBRv2, we evaluate the

performance of our adaptive variant of BBRv2. Unless stated

otherwise, we report results averaged over at least 5 runs. We

present results from four network environments:

• LAN, WAN, and cellular setups (see Section III-A)

• LAN with changing bandwidth: In this scenario, we

change the bandwidth during the course of the experiment

to study how well our solution can adapt its sending rate.

B. Performance evaluation under LAN and WAN settings

Figure 6 shows the long-term upper bound, short-term lower

bound, and the delivery rate for each ack during a five-

minute run using a 2 MB buffer and 2% induced loss. Our

modification causes the long-term upper bound to be set to

the maximum number of packets in flight during the latest

round trip at the beginning of each PROBE_REFILL, limiting

the long-term upper bound to 85% of that value. The long-

term upper bound remains steady throughout the flow, unlike

unmodified BBRv2 (in Figure 5b). The experiment length in

Figure 6 is the same as in Figure 5b, but the significantly

increased delivery rate with our solution results in more acks

on the x-axis in Figure 6.
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Fig. 7: Goodput for BBRv2 and our adaptive solution in the

LAN, under a 100 ms RTT and 500 mbps bandwidth, and in

the WAN with 0%, 1%, and 2% induced random loss.

Figure 7 shows goodput for our modified BBRv2 alongside

unmodified BBRv2 in the LAN and in the WAN. When no

additional loss is induced, the two BBRv2 versions perform

similarly, achieving goodput comparable to BBR. Under 1%

and 2% loss, the our modified BBRv2 vastly outperforms
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standard BBRv2 due to its reduced loss response. The re-

transmission rate (not shown) is similarly low for both BBRv2

variants, showing that unlike BBR, our modified BBRv2 does

not incur excessive retransmissions to maximize goodput.

We also find that our modified BBRv2 achieves optimal

video quality similar to that of BBR under 2% induced loss

(results not shown).

Figure 8 shows the harm metric [5] for our LAN exper-

iments under 2% induced loss. Under the 2% induced loss

setting, our solution is significantly more fair than BBR, but

more unfair than BBRv2. This is because BBRv2, with its

default loss threshold of 2%, significantly reduces its delivery

rate (resulting in its unusually low goodput in Figure 7),

leaving more bandwidth for Cubic to leverage. By contrast, our

solution maintains high goodput while significantly improving

fairness over BBR.

In summary, our adaptive solution achieves high goodput

compared to BBRv2 while improving fairness over BBR.

C. Performance under changing bandwidth

We confirm that our adaptive BBRv2 is able to respond to

changes in bandwidth. We consider a five-minute changing

bandwidth scenario which starts with a bandwidth of 500

mbps, followed by 50 mbps decrements in available bandwidth

every 20 secs until the bandwidth reaches 250 mbps. The

bandwidth remains at 250 mbps for 50 secs before increasing

by 50 mbps every 20 secs until reaching 500 mbps, where it

stays for the remainder of the run. The buffer size is 10 MB.

We include experiments with 0% and 2% induced loss.

Figure 9 shows that our adaptive BBRv2 responds to

changes in bandwidth as quickly as BBR. Thus, setting the

long-term upper bound once per cycle suffices to allow our

version of BBRv2 to respond quickly to changes in bandwidth.

BBR, BBRv2, and our adaptive BBRv2 achieve similar good-

put under the changing bandwidth condition except for BBRv2

under 2% induced loss. In this case, BBRv2 has low goodput

due to its loss response, rather than an inability to respond

to changes in bandwidth. Thus, our solution responds well to

BBR BBRv2 BBRv2 (our solution)

0% induced loss 363 360 364

2% induced loss 359 23 342

TABLE IV: Goodput (mbps) for BBR, BBRv2, and our

adaptive BBRv2 under the changing bandwidth condition.

changing bandwidth and maintains high goodput (on par with

BBR) under these conditions as well, as shown in Table IV.

D. Performance evaluation under cellular setting

We also analyze the performance of our modified BBRv2

under emulated cellular conditions.

Our adaptive BBRv2 provides significant goodput improve-

ments over unmodified BBRv2 under cellular conditions.

Figure 10 shows the goodput achieved by BBRv2 and our

adaptive BBRv2 under the median cellular condition and

10mbps bandwidth. Our version provides, on average, 143%

improvement across all cases, and as much as 191% for

the small buffer setting. We see similar improvements under

good and poor cellular conditions for 10mbps and 100mbps

bandwidth (not shown here).

Our solution is much fairer than BBR under the small buffer.

Our solution is slightly more fair than BBR under the medium

and large; however, BBRv2 is much more fairer than our

solution in all cases.

In the small buffer case, all variants of BBRv2 achieve

low goodput compared to BBR. Our adaptive BBRv2 solution

does increase goodput by nearly 3× compared to unmodified

BBRv2, but this throughput is still lower than BBR (not

shown). Thus, when run with Cubic, all versions of BBRv2

leave significant bandwidth for Cubic, decreasing their harm.

While our solution’s fairness is better than that of BBR

under cellular conditions, there is much room for improvement

when comparing with BBRv2. In results not shown here,

we find that under some conditions, goodput improves while

fairness suffers, and under others, fairness is acceptable but

goodput is still low. The problem here is the extreme loss. The

median cellular condition in some cases sees a burst of loss

where as much as 80% of packets are lost, with the average

loss rate being about 5% overall. Our solution is currently

unable to gracefully tradeoff fairness with Cubic at the expense

of increased goodput under such large loss bursts.

E. Performance evaluation for DASH video application

We compare the performance of our BBRv2 modification

on a DASH video application to that of BBR and unmodified

BBRv2. As shown in Table V, when no loss is induced,

all three BBR variants achieve near-optimal video quality.

However, under 2% loss, BBRv2’s video quality decreases.

Our modified BBRv2 improves video quality over standard

BBRv2 in this case by 20%.

VII. RELATED WORK

Given that BBRv2 recently had its alpha release in 2019 [6],

there is little published work on BBRv2’s performance. The

work by Ivanov at al. [8] study BBRv2 on the Dropbox edge
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Fig. 9: Changing bandwidth set up: Throughput for BBR, BBRv2, and our adaptive BBRv2 under a changing bandwidth

scenario with 2% induced loss.
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BBR BBRv2 BBRv2 (our solution)

0% induced loss 9.614 9.43 9.542

2% induced loss 9.754 8.002 9.746

TABLE V: Video quality, where 0 is the lowest bitrate and

10 is the highest, for BBR, BBRv2, and our adaptive BBRv2

under 100 ms RTT, 25 mbps bandwidth, and a 100 KB buffer.

network and show that the throughput of BBRv2 is comparable

to BBR under high bandwidth and low buffer conditions.

The study reports lower packet loss rates, less data in flight,

lower RTTs, and higher fairness as compared to BBR. Yang

et al. [9] evaluate BBRv2 using Mininet and find that it has

slow receptivity to changing bandwidth and low resilience

to random losses. To this end, they propose BBRv2+ which

alters the bandwidth probe phase of BBRv2 to include a delay

parameter based on the network conditions while providing

more fair behavior.

Tierney et al. [15] study BBR and BBRv2 on Data Transfer

Nodes (DTNs), which are characterized by high speed hosts,

a large number of parallel flows, and high latency paths. The

authors find that BBR performs much better on high latency

and high loss paths, but at the expense of high retransmis-

sions. They also state that long BBRv2 flows are unfair to

Cubic flows on long latency and high loss paths. Nandagiri

et al. [16] perform an experimental evaluation of BBR vs.

BBRv2, focusing on fairness, queue delay, and link utilization.

The authors confirm BBR’s unfairness to Cubic due to its lack

of response to losses. Our focus in this paper is primarily on

BBRv2’s poor performance under loss. Recently, there have

been modeling works on BBRv2. Scherrer et al. [17] model

the performance and fairness of BBR and BBRv2 and validate

their model using Mininet. Mishra et al. [18] model BBR’s

performance when it competes with differing proportions of

BBR and Cubic flows and conclude that BBR’s throughput

advantage over Cubic diminishes as more BBR flows join.

Their model also gives accurate throughput predictions for

BBRv2 when RTT is small.

However, to the best of our knowledge, ours is the first

measurement study that evaluates BBRv2’s performance in

LAN and WAN settings under diverse network conditions.

In contrast, there have been several studies that evaluate

the performance of BBR. For example, Cao et al. [3] study

the performance of BBR under various network conditions

and find that BBR is unfair to conventional TCP congestion

algorithms and does not perform well under deep buffer

conditions. Ware et al. [5] show that BBR is especially unfair

when competing with multiple Cubic flows and Philip et

al. [19] find that BBR can be unfair even to itself when

experiments are not run at the edge but at the core.

VIII. CONCLUSION

This work presents the first performance evaluation of

BBRv2 versus BBR under a diverse set of network and

loss conditions. We construct a decision tree based on our

empirical measurements to compare the performance of BBR

and BBRv2. Our key finding is that, under induced random

loss and bursty losses, BBRv2 experiences significant goodput

degradation (as much as 871%) compared to BBR. This

performance degradation extends to the WAN, cellular network

conditions, and video quality. Our investigation of BBRv2’s

code reveals that the long-term upper bound on packets-in-

flight employed by BBRv2 excessively suppresses the goodput

under lossy conditions. To address this problem, we devise a

modification to BBRv2 that sets the upper bound adaptively,

making BBRv2 react to losses without reducing performance.

Our adaptive BBRv2 achieves goodput comparable to BBR

and achieves close to the fairness achieved by BBRv2. We

conclude that, with our modifications, BBRv2 can be a suitable

replacement for BBR, especially under losses.
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