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3D TOMOGRAPHIC PHASE RETRIEVAL AND UNWRAPPING

ALBERT FANNJIANG

ABSTRACT. This paper develops uniqueness theory for 3D phase retrieval with finite, dis-
crete measurement data for strong phase objects and weak phase objects, including;:

(i) Unique determination of (phase) projections from diffraction patterns — General mea-
surement schemes with coded and uncoded apertures are proposed and shown to ensure
unique reduction of diffraction patterns to the phase projection for a strong phase object
(respectively, the projection for a weak phase object) in each direction separately without
the knowledge of relative orientations and locations. (ii) Uniqueness for 3D phase unwrap-
ping — General conditions for unique determination of a 3D strong phase object from its
phase projection data are established, including, but not limited to, random tilt schemes
densely sampled from a spherical triangle of vertexes in three orthogonal directions and
other deterministic tilt schemes. (iii) Uniqueness for projection tomography — Unique de-
termination of an object of n? voxels from generic n projections or n + 1 coded diffraction
patterns is proved.

This approach of reducing 3D phase retrieval to the problem of (phase) projection tomog-
raphy has the practical implication of enabling classification and alignment, when relative
orientations are unknown, to be carried out in terms of (phase) projections, instead of
diffraction patterns.

The applications with the measurement schemes such as single-axis tilt, conical tilt, dual-
axis tilt, random conical tilt and general random tilt are discussed.

1. INTRODUCTION

Diffraction is crucial in structure determination via high-resolution X-ray and electron micro-
scopies due to the high sensitivity of the phase contrast mechanism [5,37,46,91]. Compared to
real-space imaging with lenses, like that in transmission electron microscopy, lensless diffrac-
tion methods are aberration-free and have the potential to deliver equivalent resolution using
fewer photons/electrons [19,49].

Although single crystal X-ray diffraction is the most commonly used technique for 3D struc-
ture determination, the limited crystallinity of many materials often makes obtaining suffi-
ciently large and well-ordered crystals for X-ray diffraction challenging [47]. This obstacle has
inspired the development of coherent diffractive imaging for non-periodic structures.

X-ray and electron diffractions for non-periodic objects can be realized in two imaging modal-
ities: diffraction tomography and single-particle imaging/reconstruction (Figure 1). The for-
mer involves a sizable object capable of enduring illuminations from various directions, while
the latter handles multiple copies of a particle, such as a biomolecule, in different orienta-
tions [3,11,12,56,73,92]. These two modalities are mathematically equivalent, except that in
single-particle reconstruction, the uncertainty levels vary concerning the relative orientations
and locations between the object and the measurement set-up and depend on the sample
delivery methods [13,20,52,75,86,98].
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FIGURE 1. Serial crystallography: A stream of identical particles in various
orientations scatter the incident wave with diffraction patterns measured in

far field.

Since the wavelengths of X-ray and electron waves are extremely short, only intensity mea-
surement data can be collected. To emphasize this aspect we refer to the two imaging
modalities as 3D phase retrieval.

Phase retrieval is the process of estimating the phase of a wave from intensity measurements
because phase information cannot be directly measured in most imaging systems. In contrast,
phase unwrapping is necessary when the phase of a wave is already known but is 'wrapped’
due to its cyclical nature. The phase of a wave, typically measured modulo 27, repeats
every 27 with values recorded between —m and 7, or between 0 and 27. When the actual
phase exceeds this range, it 'wraps’ around, creating ambiguities in the phase data. Phase
unwrapping resolves these ambiguities to recover the true phase map.

Our goal is to develop a theory of uniqueness for 3D phase retrieval with finite, discrete
measurement data for both strong phase and weak phase objects. To accomplish this, we
propose pairwise diffraction measurement schemes and analyze the conditions necessary for
the unique determination of the phase projection for a strong phase object, and the projection
for a weak phase object in each direction. For a strong phase object, the provided phase
projection data contain only the wrapped phase information, so we propose a framework and
tilt schemes to address the resulting 3D phase unwrapping problem. For a weak phase object,
we analyze the resulting problem of projection tomography and derive explicit conditions for
the unique determination of the object of n? voxels from n projection data or n + 1 coded
diffraction patterns.

1.1. Forward model. Let n(r) € C denote the complex refractive index at the point r € R3.
The real and imaginary components of n(r) describe the dispersive and absorptive aspects
of the wave-matter interaction. The real part is related to electron density in the case of
X-rays and Coulomb field in the case of electron waves.

Suppose that z is the optical axis in which the incident plane wave e** propagates. For a
quasi-monochromatic wave field u such as coherent X-rays and electron waves, it is useful to
write u = €**v to factor out the incident wave and focus on the modulation field (i.e. the

envelope), described by wv.
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The modulation field v satisfies the paraxial wave equation [76]

.0 1
(1) maz]%—ﬁALv—i—/fov:O, fi=(n*-1)/2

where A = V3,V = (0,,09,), derived from the fundamental wave equation by the so called
small-angle approximation (hence the term “paraxial wave”) which requires the wavelength
A to be smaller than the maximal distance d over which the fractional variation of f is
negligible [53].

In view of different scaling regimes involved in the set-up (Figure 1 and 2), we now break
up the forward model into two components: First, a large Fresnel number regime from the
entrance pupil to the exit plane; Second, a small Fresnel number regime from the exit plane
to the detector plane.

For the exit wave, consider the large Fresnel number regime

2

d
(2) NF_E>>1

where / is the linear size of the object. By rescaling the coordinates
Z—>€27 ('r7y) —>d((L’,y)

we non-dimensionalize (1) as

0 1
iav—l— ENF_lALv+/£€fU =0,

which has a diminishing diffraction term A under (2).

After dropping the A, term, the reduced equation in terms of the original coordinates before
rescaling is

0
i&v + rfv =0,
which can be solved by integrating along the optical axis as
3) o) = 0,
(4) (z,y,2) = / flz,y,2)d".

Alternatively, (3)-(4) can be derived by stationary phase analysis [53] or the high-frequency
Rytov approximation [71].

The exit wave is given by u = e**v evaluated at the object’s rear boundary (say, z = 0).
At z = 400, (4) is called the ray transform, or simply the projection, of the object f in the
z direction and (3) will be called the phase projection which equals the exit wave, up to a
constant phase factor [72].

By allowing significant phase fluctuations with arbitrary x|¢|, (3)-(4) is an improvement
over the weak-phase-object approximation

(5) e o~ 14iky

often used in cryo-electron microscopy (cryo-EM) [1,34,41]. Following the nomenclature

in [41] and [89], we call (3)-(4) the strong-phase-object approximation, noting, however, that
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FIGURE 2. Serial crystallography with a coded aperture

f is a complex-valued function in general (thus e*¥ not a “phase” object per se). The strong-
phase-object approximation is often invoked the high-frequency forward scattering problems
such as diffraction tomography and X-ray diffractive imaging (see, e.g. [23, 36,42, 43,93]).
In view of (5), the weak-phase-object approximation is the first order Born approximation
of the strong-phase-object approximation. The applicability and accuracy of the Born and
Rytov approximations has been well studied [14,57,58, 80, 96].

However, the exit wave described by the phase projection (3) yields only the information
of the projection of f modulo 27 /k, and therein arises the problem of phase unwrapping,
which is fundamentally unsolvable unless additional prior information is known (see Section
4) and poses a major road block to the implementation of diffraction tomography. The
solution for phase unwrapping is critical in revealing the depth dimension of the object.
In contrast, phase unwrapping problem is not present in computed tomography [71], which
neglects diffraction, or , cryo-EM which operates under the weak-phase-object approximation

(5).

Between the strong- and weak-phase-object approximations, there is a family of hybrid
approximations which take the form

] q
(6) ’Uq:<1+7>, qG[R,

[65,67]. Clearly, the weak-phase-object approximation corresponds to ¢ = 1 while v, tends
to the phase projection (3) as ¢ — oo. In the hybrid approximation, the complex phase 1) is
given by

_ 4,1/

=—(v,/7-1

wq ik ( q )

which, for ¢ > 1, has multiple values due to the ¢-th root of a complex number. This leads to
a phase unwrapping problem similar to that for the strong-phase-object approximation. The
hybrid approximation with an intermediate value of ¢ can be used to incorporate the different
features of the Born and Rytov models. Although not a focus of the present work, we will

further elaborate the phase unwrapping problem associated with (6) in Section 4.1.
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After passing through the object and the mask p immediately behind, the exit wave (3)-(4)
becomes the masked exit wave pe™¥ at the exit plane z = 0 and then undergoes the free
space propagation (with n =1, f = 0) for z > 0 described by

1 )
i—v+—Av=0, v(x,y0) = pe.

The solution is given by convolution with the Fresnel kernel as

1 ik ’ / . 1o
v(x,y,z) = & We?(lx*x|2+‘y’y|2),u(x',y')e”‘¢(x’y’o)dx'dy’

and hence, after writing out the quadratic phase term,

(7) u(l" y’ Z) = ?:ZG;($2+y2) / 6_%(xa:,—"_yy,)6%(|$/|2+‘y,|2)ﬂ(x/7y/)elﬁw(x/7y,70)daj,dy/‘
1AZ R2

Let the detector plane z = L to be sufficiently far away from the exit plane z = 0 so that

the Fresnel number is small:
2

14
(8) NF_/\_L<<1'

Then the second integrand (the quadratic phase factor) in (7) is approximately 1 because
the integration is carried out in the support of p which is taken to be a square of size ¢
around the origin. On the other hand, the first integrand in (7) (the cross phase factor) has
the effect of the Fourier transform F if the coordinates are properly rescaled to reflect the
fact that the detector area is usually much larger than (2.

Since only the intensities of u are measured, the phase factors e"%e2: @ +¥*) in (7) drop out
and

(9) [u(z,y, L) = [v(z,y, L) ~ | Flue™]P,
up to a scale factor (AL)™!, which can be neglected in our analysis.

Depending on the context we shall refer to either a diffraction pattern or a projection as a
“snapshot”.

1.2. Contributions. This paper presents a discrete framework for analyzing discrete, finite
measurement data analogous to (9) and develops a uniqueness theory for 3D phase retrieval
and unwrapping.

Our main contribution in this paper is as follows:

1) (Phase) projection recovery. We introduce pairwise measurement schemes with both
coded and un-coded apertures and derive precise conditions for unique determination
of (i) the phase projection for strong phase objects (Theorem 3.1 & 3.2) and (ii) the
projection, up to a phase factor, for weak phase objects (Theorem 3.4 & 3.5).

2) Phase unwrapping. We propose a framework for analyzing the phase unwrapping prob-
lem when the given data are phase projections and derive generic conditions for
unique phase unwrapping (Theorem 4.1). We provide explicit tilt schemes for phase

unwrapping, including, but not limited to, random tilt schemes densely sampled from
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a spherical triangle with vertexes in three orthogonal directions (Section 4.2.1) and
other deterministic tilt schemes (Section 4.2.2)

3) Projection tomography. We show that any generic set of n projections or generic set
of n + 1 coded diffraction patterns uniquely determine the object (Theorem 5.1 &
5.4).

Our numerical simulation shows that randomly initialized alternating projection algorithm
with random tilt schemes can robustly reconstruct 3D objects at high noise levels (Section
6).

1.3. Outline. The rest of the paper can be outlined as follows.

In Section 2, we set up a discrete framework for tomography which is needed for the unique-
ness question with finite, discrete measurements.

In Section 3, we prove that with pairwise measurement schemes

(10) e = "t in the case of strong phase objects
and, for a constant 0y € R,

(11) g = e%f, in the case of weak phase objects

if f,g € O, produce the same diffraction patterns for t € T, thus reducing 3D phase
retrieval to the problem of (phase) projection tomography. In Section 3.3, we introduce
pairwise measurement schemes for single-particle imaging where each particle is destroyed
after one illumination.

In Section 4 we find conditions on T that ensure g = f if (10) holds. This is a uniqueness
theory for phase unwrapping and in Section 4.2 we propose various concrete measurement
schemes that conveniently realize the uniqueness conditions.

In Section 5, we find conditions on 7 that ensure ¢ = €% f for some constant 6, € R
independent of t if (11) holds. This is a unique theory for projection tomography.

In Section 6, we show numerically that with the proposed random tilt measurement scheme
alternating projection algorithm can robustly reconstruct a 3D weak-phase object from noisy
data of a similar count to that required by the uniqueness theorem.

We discuss the design of 3D tomographic phase unwrapping algorithms and applications to
single-particle imaging with unknown orientations in Section 7.

2. DISCRETE SET-UP

Imagine an object defined on a cube of size £ in R3. If we want to discretize the object, what
would be a proper grid spacing? Obviously, the finer the grid the higher the fidelity of the
discretization. The grid system, however, would be unnecessarily large if the grid spacing is
much smaller than the resolution length which is the smallest feature size resolvable by the
imaging system.

In a diffraction-limited imaging system such as X-ray crystallography the resolution length
is roughly A\/2. In a radiation-dose-limited system such as electron diffraction, the resolution

length can be considerably larger than A/2.
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Now suppose we choose A/2 to be the grid spacing (the voxel size). For this grid system
to represent accurately the object continuum, it is necessary that the grid spacing is equal
to or smaller than the maximal distance d over which the fractional variation of the object
is negligible. On the other hand, the underlying assumption for the paraxial wave equation
(1) is exactly A < d [53]. Hence the fractional variation of the object within a voxel as
well as between adjacent grid points is negligible, two desirable properties of a grid system.
In other words, the grid system with spacing A\/2 gives an accurate representation of the
object continuum under the assumption of the paraxial wave equation without resulting in
unnecessary complexity.

We will, however, let the discrete object to take independent, arbitrary value in each voxel,
except for Section 4 where we assume the so called Itoh condition that the difference in the
object between two adjacent grid points is less than 7/x in order to obtain uniqueness for
phase unwrapping.

Let A\/2 be the unit of length and the grids (the voxels) be labelled by integer triplets (i, j, k).
In this length unit, the wavenumber x has the value 7 (i.e. 7/k = 1). The number n of grid
points in each dimension is about 2¢/A which may be large for a strong phase object.

Let [k, 1] denote the integers between and including the integers k and [. Let O,, denote the
class of discrete complex-valued objects

(12) O :={f:f(i,j,k) € C.i, j, k € Z,,}
where
(13) 7 _ [-n/2,n/2 — 1] if n is an even integer;
"o —(n—1)/2,(n—1)/2 if n is an odd integer.
[-(n—1)/2,(n—1)/2] g

To fix the idea, we consider the case of odd n in the paper.
Following the framework in [4] we discretize the projection geometry given in Section 1.1.

We define three families of line segments, the z-lines, y-lines, and z-lines. The z-lines,
denoted by £(1.4)(c1,c2) with |a|,|5]| < 1, are defined by

Y ar +c
(14) €(1,a,5)(01,02) : [z} = {ﬁaz X Cj C1,C0 € lop_1, x €L,

To avoid wraparound of z-lines with , we can zero-pad f in a larger lattice Zf’, with p > 2n—1.
This is particularly important when it comes to define the ray transform by a line sum (cf.
(19)-(21)) since wrap-around is unphysical.

Similarly, a y-line and a z-line are defined as

x ay + ¢

(15) E(a,l,ﬁ)(cluCQ) : [2} = [/BiJr c;] c1,02 € Lop—1, Y € Ly,
T az +c

(16) f(a,g,l)(cl,@) : {y] = {52 + C;] c1,¢2 € Lop—1, 2 € Ly,

with |al, |5] < 1.



Let fbe the continuous interpolation of f given by
(17) fxy, ZZ Zfzja ZL’—Z)D (y_])Dp(Z_k)7 J?,y,Z,G[R,
i€Zn JELn kEZn

where D, is the p-periodic Dirichlet kernel given by

B 1 ionit/p 1, t=mp, me/’/
(18) Dy(t) = D Z € I else.
ez, psin (t/p)

In particular, [D,(i — j)]; i€z, is the p x p identity matrix. Because D, is a continuous

p-periodic function, so is f However, we will only use the restriction of f to one period
cell [—(p — 1)/2, (p —1)/2]3 to define the discrete projections and avoid the wraparound
effect.

We define the discrete projections as the following line sums

(19) f(La,ﬁ)(Cl?CQ) = Z .]7(2705@4_017/82 +C2)7
i€ln

(20) fanp(c,c2) = Z Flaj+c1,7, 87+ )
J€Zn

(21) f(a,,B,l)(C1, c) = Z f(ak + ¢y, Bk + o, k)
keZ,

with C1,Co € Zanl-

The 3D discrete Fourier transform fof the object f € O,, is given by

(22) f(g,n, () = Z Fli, g,k —i2m (§i+nj+Ck)/p _ Z Fi 4, k)e —i27(Eit+nj+Ck)/p
1,5,k€Zy, 1,5,k€Z)p

where the range of the Fourier variables &, 7, ( can be extended from theAdiscrete interval
Z, to the continuum [—(p — 1)/2,(p — 1)/2]. Note that by definition, f is a p-periodic
band-limited function. The associated 1D and 2D (partial) Fourier transforms are similarly
defined p-periodic band-limited functions.

2.1. Fourier slicesA and common lines. The Fourier slice theorem concerns the 2D discrete
Fourier transform f(; o g) defined as

(23) f(l,a,ﬁ) (777 C) — Z f(l,a,ﬁ) (]’ k)e_iQK(nj“!‘Ck‘)/p’
j!kEZQH—l

and the 3D discrete Fourier transform given in (22).

It is straightforward, albeit somewhat tedious, to derive the discrete Fourier slice theorem
which plays an important role in our analysis.

Proposition 2.1. /4] (Discrete Fourier slice theorem) For a given family of x-lines {1 o p)
with fized slopes (o, ) and variable intercepts (cq,¢q). Then the 2D discrete Fourier trans-

form fa a.p) of the x-projection f1.45), given in (19), and the 8D discrete Fourier transform
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f of the object f satisfy the equation

(24) frap(mQ) = Fl—an—B¢n,C), 0. ez
Likewise, we have

(25) Fans(€,0) = Fl&, —at = BC,0), ECEL;
(26) Fapn(&mn) = f&n,—aE—Bn)., €&nel

Remark 2.2. For the general domain R2, it is not hard to derive the following results

27 faas(C) = (—aj — Bk, 4, k)Dy(n — §)Dyp(C — k), 1, €R;

(]

G kEZ,y

(28) farp(&¢) = (&, —aj = Bk, Q)Dp(§ = J)Dp(¢ — k), & CER

i

(29)  fasn(En) = A( —aj — Bk)Dy(& — )Dy(n — k), n,EE€R,

]7617

R‘

in the form of interpolation by the grids in the respective Fourier slices. From (18) it follows
that the right hand side of (27)-(29) are Laurent polynomials of 2 trigonometric variables
(e.g. e2™/P e27C/P for (27)), and that (27)-(29) reduce to (24)-(26) when the trigonometric

variables are integer powers of e2™/?.

Recalling the view of discretization espoused at the beginning of this section and returning to
the original scale in the continuous setting, we note that

(30) lim pD,(pt) =6(t), teR,
pP—00

the Dirac delta function. By (30) and rescaling the standard, continuous version of Fourier
slice theorem is recovered from (27)-(29).

For ease of notation, we denote by t the direction of projection, (1, «, 8), (a, 1, 5) or («, 5,1)
in the reference frame attached to the object. Let P, denote the origin-containing (contin-
uous) plane orthogonal to t in the Fourier space. The standard common line is defined by
Ly = P, N Py for t,t’ not parallel to each other.

By a slight abuse of notation, the common-line property implied by Proposition 2.1 can be
succinctly stated as

(31) fk) = fu(X), ke P nZ> X e€P N7

where k, k’ are the corresponding coordinates and may differ from each other depending on
the parametrization of P, and Py .

For example, let t ~ (a, 8,1) and t' ~ (/, 5, 1). The Fourier slices are given by
(32) al+pn+(¢=0, o'{+pfn+¢=0,

with the correspondence k = k' = (£,7) € 72
9



For a different configuration, let t ~ (o, 5,1) and t' ~ (1,5’,+’). The Fourier planes are
given by

(33) ag+pn+¢=0, {+B8n++C=0,

with the correspondence k = (£,7) € 7% and k' = (n,() € 7%

For non-integral points, however, the common lines are perturbed by interpolation (27)-(29).

For (32) and (33), the “common lines” can be generalized respectively as the traces of the
two-dimensional surfaces defined by

(34) Low(f) = {Fasn(&m = o€ n)} < B x R

(35) Lew(f) = {fA(a,ﬂ,l)(é“,n) = f(l,/sa»y')(n',C’)} C R x R%.

By the common line property (31), Ly in (34) contains the set defined by (¢',7') = (&,n) €
7* while Ly in (35) contains the set defined by

36) n'=mn (=—at—-pnez, (1—-ay)=(By—-8)m (&n) el

By (31), 0 € Ly y(f) for any t,t'. In view of (30), the trace of Lt on either Fourier slice is
near P; N Py for sufficiently large n.

We shall refer to L¢ v (f) as the common set for the Fourier slices of f orthogonal to t,t’. The
notion of common sets will be used to formulate a technical condition for Theorem 3.2.

2.2. Diffraction pattern. Let 7 denote the set of directions t employed in the 3D diffrac-
tion measurement, which can be coded (as in Figure 2) or uncoded (as in Figure 1). To fix
the idea, let p =2n —1 in (18).
Let the Fourier transform F of the projection e/t he written as

—i27w —i2mn-w ik fy(n 1 172
(37) Fy(e ™ ):Ze 2w ginfe(n) WE[—§7§].

nez2

In the absence of a random mask (u = 1), the intensities of the Fourier transform can be
written as

. . , e : 1 172
(38) |Ft(e—127rw)‘2 _ Z Z emft(n —i—n)e—mft(n) 6—127rn.w’ = [_ 5’ §:| :

nEZ%ZFl n’EZ%

which is called the uncoded diffraction pattern in the direction t. Here and below the
over-line notation means complex conjugacy. The expression in the brackets in (38) is the
autocorrelation function of el*/t.

The diffraction patterns are then uniquely determined by sampling on the grid
1

2
(39) W €& ﬁzn_l
or by Kadec’s 1/4-theorem on any following irregular grid [97]

10



With the regular (39) or irregular (40) sampling, the diffraction pattern contains the same
information as does the autocorrelation function of f;.

3. PAIRWISE REDUCTION TO (PHASE) PROJECTION

We assume the following on the coded aperture

Mask Assumption: The mask function is given by u(n) = explig(n)] with
independent, continuous random variables ¢(n) € R.

Let f¢ denote the projection f; translated by some l; € 72 i.e.

(41) fi(m) = fu(n+1),  subject to supp(f;) C 72,

We assume that each snapshot is taken for fi (not fy) with a shift 1y due to variability in
sample delivery.

In Section 3.1 and 3.2, we show for two different imaging geometries how a pair of diffraction
patterns can uniquely determine the respective (phase) projections.

3.1. Strong phase objects. The following theorem says that the two diffraction patterns,
one coded and one uncoded, uniquely determine the underlying phase projection.

Theorem 3.1. Let f,g € O,, and assume the Mask Assumption. Suppose that for any t
(42) [F(em )P = |F(e")?
(43) Fpodi)? = |Fue )

Then "9t = e*ft qlmost surely.

The proof of Theorem 3.1 is given in Appendix A.

The next theorem says that the two coded diffraction patterns in two different directions
uniquely determine the two corresponding phase projections.

Theorem 3.2. Let f,g € O, such that for t,t' not parallel to each other, the intersection
Civ = Ly (f) N Lyy(g) contains some (k, k') # 0 such that the slope of either k or k' is
not a fraction over Z,. Let the Mask Assumption hold true. Suppose that

(44) [F(p@ e )P = |F(po )P

(45) Fpo )R = |Fuodh)?

Then "9t = e%ft qnd e*9% = €%l almost surely.
The proof of Theorem 3.2 is given in Appendix B.

Corollary 3.3. If for each t € T there is at' € T to satisfy Theorem 3.2, then e*9t = elr/e

forallt € T.
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Note that Theorem 3.1, 3.2 and Corollary 3.3 do not hold for a uniform mask (p = cost.)
because the chiral ambiguity and the shift ambiguity are present, i.e. both g(-) = f(—-) and
g(-) = f(- +1),1 € R?, satisfy all the assumptions therein but €9 # el*/t in general.

Analogous results can be formulated for the hybrid approximation (6) but we will omit the
details here. Instead, we will present the dark-field imaging under the weak-phase-object
approximation next.

3.2. Weak phase objects. Under the weak-phase-object assumption (5) the exit wave is
given by

(46) vp(z,y) =1— i/dz'f(x,y,z').

The coded diffraction pattern of the exit wave is given by

1 — 1
41 ol = 1Pl S F [ fa)+ gl F [ ga)F
where & denotes the imaginary part.

As (47) represents the interference pattern between the reference wave F(u) and the masked
object wave —1F (uu [ fdz")/(2k), reconstruction based on the second term on the right hand
side of (47) can be performed by conventional holographic techniques [63,94,95].

We take the diffraction patterns of the scattered waves

(48) F(n® fo)l,

as measurement data, which is reminiscent of dark-field imaging in light and electron micro-
scopies where the unscattered wave (i.e. Fpu) is removed from view [2,34]. Dark-field imaging
mode arises naturally in X-ray coherent diffractive imaging due to the use of a beam stop
for blocking the direct beam in order to protect the detector and enhance the measurement
of weakly scattered intensities.

The next two theorems are analogous to Theorem 3.1 and 3.2. A notable effect of the dark-
field imaging is the appearance of an undetermined phase factor absent in Theorem 3.1 and
3.2.

Theorem 3.4. Let f,g € O,, and assume the Mask Assumption. Suppose that supp(f;) is
not a subset of a line and that

(49) \Flg)l? = |F(f)P°
(50) F(eog)l? = [Fpo )P

Then almost surely g, = €% f; for some constant 6; € R.

The proof of Theorem 3.4 is given in Appendix C.

~

Theorem 3.5. Let f,g € O, and suppose that f(0) # 0. Let the Mask Assumption hold
true. Suppose that neither supp(fy) nor supp(fy) is a subset of a line and that

(51) Frogo)? = [Fuo fi)?

(52) Fuog)l? = [Fuo P



where t and t' are not parallel to each other. Then almost surely
(53) either (gt —e®f, & gy = eieoft') or f{=f,
for some constant 6y € R (the two in (53) may both be true).!

Corollary 3.6. Let the assumptions of Theorem 3.5 hold for any two non-parallel t,t' € T.
Then

(54) cither (go =€ fy, Vt€T) or (ff="fo, Yt €T)
where Oy is independent of t € T .

Proof. First, let us make the following observation. Suppose g = e f, and gy = €% fu for
t # t'. By Proposition 2.1 f;(0) = fi(0) = f(0) # 0, it follows from g¢(0) = g (0) that
Qt - Gt/.

Consequently, let 77 C T be the mazimum set of all t € T for which ¢, = €% f, for 6, € R
independent of t € 7. Note that the value of 0 is arbitrary. Since 77 is maximal, it follows
that gy # €% fy for any t' & 7.

Suppose the first alternative in (54) is not true, i.e. 7; # 7. Consider any t' ¢ 77 and
t € 71. By Theorem 3.5, f¢ = f, implying the second alternative in (54).

O

3.3. Pairwise measurement for single-particle imaging. In this section, we introduce
pairwise measurement schemes for single-particle imaging where each particle is destroyed
after one illumination [10,12,56]. How can two diffraction patterns be measured, as assumed
by Theorem 3.1, 3.2, 3.4 and 3.5, if the particle is illuminated only once?

3.3.1. Beam splitter. For Theorem 3.1 & 3.4 with a unknown t, how can we be sure that the
coded and uncoded diffraction patterns are measured in the same direction?

Consider the measurement scheme stylized in Figure 3(a) where a beam splitter is inserted
behind the object and the mask placed in only one of two light paths behind the splitter.
Ideally, the beam splitter produces two identical beams to facilitate two snapshots of the same
exit wave. The reader is referred to [59,61,74,79] for recent advances in X-ray splitters.

3.3.2. Dual illuminations. For Theorem 3.2 & 3.5 we need a physical set-up that can render a
pair of diffraction patterns in two different directions. This can be achieved by simultaneous
illuminations by two beams with both exit waves masked by the coded aperture as depicted
in Figure 3(b). Note that the two beams need not be coherent with each other since no
interference between the two is called for.

If the particles can endure more than one dose of radiation then a fixed-target sample delivery
can be implemented by the cryo-EM scheme random conical tilt (RCT) or orthogonal tilt
(OT) [34,60]. As shown in Figure 4, many identical particles are randomly located and

IThe condition f(O) # 0 is missing in the statement of the theorem in [26]. The proof is corrected and
further elaborated in Appendix D.
13



uncoded diffraction pattern

{
coded diffraction pattern

light source NN - \x‘
beam

object splitter

(a) Beam splitter with coded and uncoded apertures

uncoded diffraction pattern

s 3
coded diffraction pattern

light source "> "_ " R

light source

(b) Two coded apertures in a known relative orientation

FIGURE 3. (a) Simultaneous measurement of one coded and one uncoded
diffraction patterns with a beam splitter; (b) Simultaneous illumination of the
object with two coded apertures in a known relative orientation.

oriented on a grid which can be precisely tilted about a tilt axis by a goniometer. With dose-
fractionated beams, the diffraction patterns of the identical particles in the two orientations

are measured with the coded aperture in correspondence with Figure 3(b).
14



optical axis

(a) Tilt geometry for sequential illuminations

FIGURE 4. Serial data collection implemented by the random conical tilt and
orthogonal tilt in cryo-EM both of which collect pairs of measurement data in
a fixed relative orientation corresponding to the angle about 50 deg and 90 deg,
respectively, between the two beams [34, 60].

Because only one exit wave is aimed at in Figure 3(a) instead of two in Figure 3(b), the exit
wave reconstruction as guaranteed by Theorem 3.1 and 3.4 would be much more effective and
robust than that guaranteed by Theorem 3.2 and 3.5. Indeed, the exit wave reconstruction
from the two diffraction patterns collected in Figure 3(a) is equivalent to the phase retrieval
problem well studied previously [15, 28, 31].

3.4. Sector constraint. The X-ray spectrum generally lies to the high-frequency side of
various resonances associated with the binding of electrons so the complex refractive index
can be written as

(55) n=1-6+i8, 0<68<1,

where 0 and f3, respectively, describe the dispersive and absorptive aspects of the wave-
matter interaction. The component [ is usually much smaller than ¢ which is often of the
order of 107 for X-rays [55,76].

By (4) and (55),
(56) f= g1~ 540

and hence f satisfies the so called sector condition introduced in [25], i.e. the phase angle
Zf(n) of fy(n) for each n satisfies

(57) Zf(n) € [a,b], |a—0b] <2,

where a and b are two constants independent of n. For example, for 5 > 0, a =0 and b = 7.
In particular, if 8 < 6 > 0, then a =~ 7 and b = 7w. The sector condition is a generalization
of the constraint of positivity (of electron density) which is the cornerstone of the “direct
methods” in X-ray crystallography [44].

15



In view of (30), the continuous interpolation f in (17) satisfies the sector condition

(58) Zf(n) €la,b] (a=a, bab, p>1).

If |b— | < , the sector (58) is a convex set and hence the discrete projections (19)-(21) also
satisfy the section condition (58). However, we can not expect the phase projection e/t to
satisfy the sector condition regardless of |b — al.

The sector condition (57) enables reduction from a single coded diffraction pattern for a
weak-phase object as stated below.

Theorem 3.7. [25] Let [ € O,, with the singleton T = {t} for any t such that the sector
condition (58) is convex (i.e. |b—a| < m). Assume the mask function p(n) = explig(n)]
to be uniformly distributed over the unit circle. Suppose that supp(fy) is not a subset of a
line and that for g € O,, g; produces the same coded diffraction pattern as f¢. Then with
probability at least

= [Se/2]

(59) 1-n2|2 2 > 1 —n22 1520

27

where Sy is the number of nonzero pixels of fi, we have g, = €% f, for some constant 0y € R.

If |7| > 1 and if the mask functions for different t € T are independently distributed, then
the probability for Theorem 3.7 to hold for all t € T is at least

[Se/2]

H 1—n? b-

27
teT

a

For the sake of simplicity in measurement, however, let u be the same mask for allt € 7. The
probability for Theorem 3.7 to hold for all t € T can be roughly estimated as follows.

First note that for any two events A and B,
(60) P(AnB)=P(A)+ P(B)— P(AnB)> P(A)+ P(B) — 1,

where P(-) is the probability of the respective event. Let T = {t; : j = 1,...,m}, E; be
the event that Theorem 3.7 to hold for t; and p; = P(E;). By Theorem 3.7, p; > 1 — ¢;
where

~ LSy /2]

2

cj:n

and, hence by (60),

(61) P(ExNEy) >pr+p—1>1—2¢, ¢=maxgc,.
j

Iterating the bound (60) inductively with E;, j = 1, ..., m, we obtain

PN E;) = P(N'E;NE,) >1—(m—1)c—c=1—me
16



~

Corollary 3.8. Suppose f(0) # 0. Theorem 3.7 holds true for t with the same constant
0y = 6y € R independent of t in any T with probability at least

~ s/2
b—a

2T

(62) 1—|T|n?

,  §i= mijt].,

where s is the minimum sparsity (the least number of nonzero pizels) in all directions in T .

Proof. By Proposition 2.1 ﬁ(O) = ft/(()) = A(O) # 0, it follows from g¢(0) = g (0) that
0; = Oy. Namely, g = €% f, for some constant 6, independent of t € T

The proof is complete. [l

The bound (62) is meaningful only if

~ —s/2
b—a
27

(63) IT| <n?

Usually s is at least a multiple of n (often O(n?)), (63) allows nearly exponentially large
number of projections. As we will see in Corollary 5.3 (ii), a far smaller number m = n of
projections suffices for unique determination of a weak phase object.

Note that Theorem 3.4, 3.5, 3.7, Corollary 3.3 and 3.8 do not hold for a uniform mask
(u = cost.) because the chiral ambiguity and the shift ambiguity are present, i.e. both
g(-) = f(—) and g(-) = f(- +1),1 € Z3, satisfy all the assumptions therein but gy # €% f; in
general.

4. PHASE UNWRAPPING
For a strong phase object, (10) naturally leads to the problem of phase unwrapping:
(64) gt(n) = fiy(n) mod 27/k, n € Z2,

which may have infinitely many solutions. We seek conditions on 7 that can uniquely
determine the 3D object in the sense that g = f.

A basic approach appeals to the continuity of the projection’s dependence on the direction
t, which, in turn, is the consequence of continuous interpolation (17).

Let 7. denote the graph with the nodes given by t € 7 and the edges defined between any
two nodes t1,ts € T with |Zt1ts] < € (such edges are called e-edges) where Zt ity is the
angle between t; and t;. We call T is e-connected if 7; is a connected graph. We say that
two nodes tq, ty are e-connected if there is an e-edge between them.

Suppose that T is e-connected for certain € (to be determined later). The continuous de-
pendence of g, fy on t implies that |g¢, — gt,| and |fy, — fi,| are arbitrarily small if £t ty
is sufficiently small. On the other hand, hy, — h¢, is an integer multiple of 27/k where
hy := g — f¢. Then for sufficiently small €, hy(n) is a constant for each n and hence g; — f;

is independent of t.
17



We can give a rough estimate for the required closeness € of two adjacent projections as
follows. In general, the gradient of the continuous extension f is O(1) and hence the gradient
of f¢ (being a sum of n values of f) with respect to t is O(n). Consequently, |fi, — fi,| can
be made sufficiently small with e = O(1/n) (with a sufficiently small constant).

As pointed out at the beginning of Section 2, if we make use of the property that the frac-
tional variation of f between adjacent grids is negligible, then the gradient of the continuous
extension f is o(1) and |fi, — fi,| can be made sufficiently small with e that may be much
larger than 1/n.

The main result of this section will need the diversity condition:
(65) #{aul+ Bm:al, |8 <1, l=1,...,n} =nfor each {,n € Z,, ({,n) #0.

In other words, the difference (o, — g, 5i — Bk), [ # k, is not expressible as Z,-fractions.

Theorem 4.1. Let T be an e-connected set of directions containing any of the following
three sets:

(66) ((LanB):1=1,....n}U{(0, a0, o), (0,0, 1)}
(67) {(B, 1, au) 1 1=1,...,n} U{(5o,0,0),(1,0,0)}
(68) (o, 1)t 1= 1,0} U {(a0, B, 0), (0,1,0)}

under the assumption (65) and that o # 0, |Bo| < 1.

Suppose that the maximum variation of the object f between two adjacent grid points is less
than w/k (The 3D Itoh condition) and (10) holds for a sufficiently small e = O(1/n). Then

g=1r.

Remark 4.2. As per the discussion in Section 2, with A/2 as the unit of length, 7/k = 1.

The projection fy in a direction t, however, usually violates the 2D Itoh condition. Hence
2D phase unwrapping for fi may not have a unique solution [39,54).

Remark 4.3. As shown in the following proof, the x,y and z azes in (66), (67) and (68),
respectively, show up in the analysis because they are “privileged” w.r.t. 73 which is not
isotropic. On the other hand, due to arbitrariness in choosing the orientation of the object
frame, we can always designate one of the projection directions in T as exactly one of the
coordinate axes, say, (0,0,1), and discretize the object domain into 73 accordingly.

Proof. 1t suffices to consider the case that 7 contains the set (66).

Let (64) hold true. Then the e-connected schemes with sufficiently small € ensure
h¢(n) := g¢(n) — fy(n) is independent of t € T.
Intuitively, with sufficiently diverse views in 7T, h := g — f must be a multiple of Kronecker’s

delta function as shown in the following analysis.

Let ¢(-, ) be independent of oy, 3}, such that

~

(69) h(l,al,ﬂl)(ﬁ,C) = 0(77, C)
18



and hence by Fourier Slice Theorem

(70) /};(_n7c € Zaln - /6167 n, C) = 0(777 C)a naC S Zp'
We want to show ¢ = 0.

Define the notation:

(71) hy(m,1) = > h(m,k,1)e 2k
k
(72) Bye(m) = )" Ty (m, 1)e 2/,
I
Clearly
(73) W& C) = Y hac(m)e el
By the support constraint supp(h) C Z3, (70) & (73) become the n x n Vandermonde system
(74) Ve = (1, €)1
with the all-one vector [ and
(75) Vo= [Viy], Vy=e 9P &= —am— B
for {a;, 5; 1 = 1,...,n}. The Vandermonde system is nonsingular if and only if {&; : i =
1,...,n} has n distinct members.

Since the system (74) has a unique solution, we identify Erzé( -) as

hne (+) = ¢(n, )0 (-)-
For m # 0, E,C(m) =0 for all n,( € Z and hence ﬁn(m, [) =0 for all l and m # 0. Likewise
for (71), we select n distinct values of 1 to perform inversion of the Vandermonde system
and obtain

(76) h(m,k,1) =0, m#0.

In other words, h is supported on the (y, z) plane. Consequently the projection of h in the
direction of (0, g, By), with oy # 0, would be part of a line segment and, hence by the
assumption of hy’s independence of t € T, hg is also a line object for all t € 7.

That is to say, h is supported on the z-axis. Now that (0,0,1) € T, the projection of A in
(0,0,1) is Kronecker’s delta function ¢ at the origin, h’s independence of t implies that for
some q € Z,

27
(77) g(m) = f(n) = ~g3(n)
where ¢ is Kronecker’s delta function on Z3.

The ambiguity on the right hand side of (77) can be further eliminated by limiting the
maximum variation of the object between two adjacent grid points to less than 7/k, the
so called Itoh condition [54]. This can be seen as follows: If both g and f satisfy Itoh’s
condition as well as g(n) — f(n) = 0 for n # 0, then |g — f| < 27/ at the origin, implying
¢ =01in (77). The proof is complete.

19



F1GURE 5. Unit sphere representing all directions in the object frame. A
sufficiently large set of randomly selected points from the spherical triangle (or
a larger one) contain the scheme (66) and satisfy the conditions in Theorem
4.1. Since € = O(1/n) with a small constant, |7 is at least a large multiple
of n.

O

In view of Theorem 3.1, 3.2 and 4.1, we have the following uniqueness results for 3D phase
retrieval with a strong phase object.

Corollary 4.4. Let T be a e-connected set of directions in Theorem 4.1 for a sufficiently
small e = O(1/n) satisfying (65). Consider the class of objects in O, with the maximum
variation between two adjacent grid points less than /K.

(i) Under the setting of Theorem 3.1, the pairs of coded and uncoded diffraction patterns
corresponding to t € T uniquely determine the strong phase object almost surely .

(ii) Under the setting of Corollary 3.3, the coded diffraction patterns corresponding to T
uniquely determine the strong phase object almost surely.

4.1. The hybrid approximation. Let us sketch the extension of Theorem 4.1 to the hybrid
approximation (6) with ¢ > 1 for which the phase unwrapping problem is finding conditions
on 7 such that the relation

(78) (1+@)q:<1+%)q, VteT,
q q
for f,g € O, implies g = f. Eq. (78) is equivalent to
q
_ — 2,1
(79) gt — wlt i (w )

where w is a ¢g-th root of unity.
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By the above analysis an e-connected 7 with a sufficiently small ¢ = O(1/n) implies that
w in (79) is independent of t. With a slight modification of the argument for Theorem 4.1,
we arrive the conclusion that the right hand side of (79) is zero and hence w = 1, implying

f=g

4.2. Tilt schemes for phase unwrapping. In this section, we consider a few examples as
applications of Theorem 4.1 and Corollary 4.4.

4.2.1. Random tilt. We can satisfy condition (65) with overwhelming probability by ran-
domly and independently selecting n pairs of (ay, ;) that are distributed with probabil-
ity density function bounded away from 0 and oo over any square contained in [0,1]?

(see [6]).

In the case of (66) with oy, 8; € [0, 1), for instance, this random tilt series is distributed
over the spherical rectangle of azimuth range [0, 7/4) and polar angle range (7/4,7/2]. We
can enlarge the random sampling area from this spherical rectangle to the spherical triangle
shown in Figure 5. If the sampling is sufficiently dense, then the whole scheme would include
the direction (0, 1, fy), for some By € (0,1), and e-connect to (0,0,1) (which is included by
assumption),

More generally, the conditions of Theorem 4.1 are satisfied by any tilt series of sufficiently
dense sampling from a spherical triangle with vertexes in three orthogonal directions (cf.
Remark 4.3).

Random schemes arise naturally in single-particle imaging. On the other hand, deterministic
tilt schemes are often employed in tomography.

4.2.2. Deterministic tilt. First, the single-axis tilting (with the conical angle 7/2) is not
covered by Theorem 4.1 and contains certain blindspot as exhibited in the proof, i.e. it can
not completely resolve the ambiguities in phase unwrapping.

Second, certain combinations of (66), (67), (68), can be made e-connected (for sufficiently
small €) in the following scheme:

(80) T = {(1,2,04):le,...,q}U{(é,l,a):l:O,...,q}

[ [
U{(O,l,;):Z:O,...,q}U{(O,g,l):le,...,q}, qgeN

with a fixed a € [0,1), where the first subset is from (66), the second and third from (67)
and the fourth from (68). In the limit of ¢ — oo, the scheme (80) has a continuous limit
which can be illustrated more concretely in terms of the spherical polar coordinates as in
the following example.

Example 4.5. The continuous limit of (80) consists of two circular arcs. The first arc, the

limit of the first and second subsets in (80), going from (1,0, «) to (1,1, «) and to (0,1, @), is

parametrized by the azimuthal angle ¢, € [0,7/2], at the polar angle §, = arc cot(a) > /4

(since a € [0,1)) w.r.t. the polar axis z. The second arc, the limit of the third and

fourth subsets in (80), going from (0, 1, &) to (0,1,1) and to (0,0, 1), is parametrized by the

azimuthal angle ¢, € [arctan(a), 7/2], at the polar angle 6, = 7/2 w.r.t. the polar axis .
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FIGURE 6. (a) Conical tilt geometry; (b) Conical tilt orbits of various conical
angles about an axis of obliquity. A single-axis tilt orbit is a great circle,
corresponding to a conical angle 7/2, which can not uniquely unwrap phase.

In other words, the continuous limit of (80) is an union of a conical tilting (the first arc) of
range 7/2 at the conical angle arccot(«) and an orthogonal single-axis tilting (the second
arc) of range arc cot(a).

For o = 0, the scheme is an orthogonal dual-axis tilting of a tilt range 7/2 for each axis [78].
The total length of the orbit is . 0.

Note that the total radiation dose is proportional to the number of projections, which is
O(n) with a large constant (since ¢ = O(1/n) with a small constant), and, as n — oo,
proportional to the orbit’s total length on the unit sphere.

More conveniently, instead of being split into a conical tilting and a single-axis tilting as in
(80), the schemes in Theorem 4.1 can be implemented as a single conical tilting (Figure 6)
which has a smooth circular orbit, instead of a broken one.

Example 4.6. Let (1,0,0) and (0,0, 1), respectively, be the start and the end of the orbit,
with the midpoint (0,1,0). Any three directions of the conical tilt uniquely determine the
direction of the tilt axis, (1,1, 1), with the conical angle, arccos(1/v/3) ~ 54.7°, and the tilt

range, 47/3. The total length of the orbit is %r 10 — 2/3 ~ 3.57 which is slightly larger
than the length 7 in Example 4.5 for a = 0.

The conical tilt going through (1,0, «), (0,1,a) and (0,0,1) can be similarly constructed.
We leave the details to the interested reader. [l
5. UNIQUENESS WITH WEAK PHASE OBJECTS

In this section we show that for weak phase objects, much less restrictive schemes than those
of Theorem 4.1 guarantee uniqueness of solution to 3D phase retrieval.

The following is the uniqueness result for discrete projection tomography.
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Theorem 5.1. Let T be any one of the following sets:

(81) {(1,a, ) :l=1,...,n}
(82) {(a, 1,) :1=1,...,n}
(83) {(Ckl,ﬁl, 1) = 1, cee ,n}

under the condition (65).  Suppose that g, = €% f;, for some constant 0y € R, independent
oft € T. Then g =% f.

Remark 5.2. Theorem 5.1 is the finite, discrete counterpart of the classical result that a
compactly supported function is uniquely determined by the projections in any infinite set of
directions ( [45], proposition 7.8).

Proof. To fix the idea, consider the case (83) for 7. By the discrete Fourier slice theorem,
we have

(84) /g\(& 7, _alg - Bln) = 6'190}\(5’ 7, _alg - Bl”)? [ = 17 sy T 57 ne Z.

In other words, for each £, € Z, the corresponding partial Fourier transforms defined in
(73) satisfy

(85) Z (Gen(m) — eieoJzn(m))e_m“m(_aﬁ_ﬂm)/” =0, [=1,..,n

meZn

in terms of the notation for partial Fourier transforms in the proof of Theorem 4.1. For
each &, n, (85) is a Vandermonde system which is nonsingular if and only if (65) holds. This
implies that

Gen(m) = % fep(m), mez, Vé&EneL

Therefore, g = €% f as asserted. O

It may be interesting to compare Theorem 5.1 with Crowther’s rough estimate

T
(86) N =—-n
2
for the number N of projections needed for projection tomography with a single-axis tilting

of tilt range 7 ( [55], eq. (8.3)).

We have the following uniqueness results for 3D phase retrieval with a weak phase ob-
ject.

Corollary 5.3. Let T be any one of the direction sets in Theorem 5.1.

(i) Under the setting of Theorem 3.4, the n pairs of coded and uncoded diffraction pat-
terns corresponding to T uniquely determine the weak phase object almost surely.

(i) Under the setting of Corollary 3.8, the n coded diffraction patterns corresponding to
T uniquely determine the weak phase object with high probability (for n > 1).

In contrast to Corollary 5.3 (ii), the setting of Corollary 3.6 requires an extra coded diffraction

pattern to remove the isotropy ambiguity.
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FIGURE 7. 216 x 216 image sliced and stacked unto a 36 x 36 x 36 object.

Theorem 5.4. [26] Let T be any one of the following direction sets

(87) {(La,B):1=1,...,n}U{(0, 0, Bo)}
(88) {(a, 1,5)) : l=1,...,n} U{(0,0,50)}
(89) {(ag, B,1) : 1=1,....,n} U{(0, Bo,0)}

under the condition (65) and (cw, Bo) # (0,0). Then in the setting of Corollary 3.6, g = €% f
for some constant 0y € R almost surely.

Proof. To rule out the second alternative in Corollary 3.6 that f; = f;,Vt,t' € T, define
hy :== f¢ which is independent of t € 7. Now applying the analysis in the proof of Theorem
4.1 to this hy for the scheme, e.g. (87). The argument up to (76) leads to the conclusion
that the projection of h in the direction of (0, a, fBp), with o # 0, is part of a line segment
and hence hy is a line object for all t € 7. This violates the assumption in Corollary 3.6
that no projection is part of a line. This implies that the first alternative of Corollary 3.6
holds, i.e. g¢ = €% f,, VteT. O

6. NOISE ROBUSTNESS

Let us turn to the shot noise issue not addressed by the preceding uniqueness results. At
present, there are few theoretical results on noise robustness in phase retrieval except for
simplified models [24].

In practice, noise stability has as much to do with the reconstruction method as the infor-
mation content of the given dataset. However, assessing and optimizing algorithms for 3D
reconstruction from a large number of snapshots is by itself a challenging ongoing task [77].
Herein, we limit ourselves to testing the noise robustness of alternating projection [15] (also
known as Error-Reduction [33] or Gerchberg-Saxton [38] algorithm) in the case of weak phase
objects to avoid the phase unwrapping problem altogether.

First the ideal, noiseless detection process with a weak-phase object can be written as b* =

|Af.|? in terms of a measurement matrix A representing the process f A, (fAt * ) eeT-
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with the mean sb® where the adjustable scale factor s > 0
of object-radiation interaction.

The noise level is measured by the noise-to-signal ratio (NSR)
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om + random maskggialt NSR in [0,1], 36 x 3 dﬁegtﬁn‘v_ect#s.tqfé&l aprage nOH-Slgnal phOtOHS

Let z = (z;) == b2 — sb2. The total average noise photon count is proportional to

(92) Z E|zj| or more conveniently Z \/E|z]? = H\/VM(Z?)
J J

59
where ||-||; denotes the L1-norm. In other words, the NSR (91) can be conveniently calculated

_ H\/V&I‘(gz)

blx
93 NSR : — 1 — H .
(93) IE®2)]|; V5|0l

1

6.2. Numerical results. In our simulations, we take the mask phase ¢ to be an independent

uniform random variable over [0, 27) for each pixel.
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We construct the real-valued 3D object from the 216 x 216 phantom (Fig. 7 (a)) by partition-
ing the phantom into 36 pieces, each of which is 36 x 36 and stacking them into a 36 x 36 x 36
cube (Fig. 7(b)). This is to facilitate the “eye-ball” metric for qualitative evaluation of the
reconstruction. For a quantitative metric, we use the absolute correlation

£ L/

between the true object f, and the reconstruction f.

R(f, f.) :

To avoid the missing cone problem in tomography [34], we use the random tilt scheme
comprised of the union of (87), (88) and (89), in the form

(94) T = {tl = (17 Qay, 51) ?:1 U {tl = (aia 1761) ?zl—i-n U {tl = (@i7ﬁia 1) ?22714-1
with «;, 8;,i =1, -+ ,3n, randomly chosen from (—1,1).

which has a significantly larger range of possibility than that portrayed in Figure 5. To
reduce the burden of computer memory, we do not oversample the Fourier transform in our
numerical simulation, i.e. b, b € R™* with m = 3n. Consequently, the total amount of
measurement data is about 3/4 of that assumed in Theorem 5.1.

To take advantage of the prior information that the object is real-valued, we use P; = ARA'
in AP reconstruction where R is the projection unto the real-part. As shown in Figure
8, randomly initialized AP with the data set (94) is capable of handling high levels of
noise.

The convergence rate, however, can be further improved by using more sophisticated al-
gorithms (see [31], [30] and references therein). When applicable, various sparsity priors
can enhance numerical reconstruction’s robustness to noise [8,51,70,83,84]. Finally, the
coded aperture itself needs not be known in advance and can be simultaneously calibrated
by effective algorithms with a sufficiently large set T [27,29].

7. DISCUSSION AND EXTENSION

While our results are primarily aimed at diffraction tomography with known orientations, the
idea of reducing phase retrieval to (phase) projection tomography by pair-wise measurements
(Theorem 3.1, 3.2, 3.4 and 3.5) have potential applications to single-particle imaging which
typically is subject to higher level of measurement uncertainties.

Specifically the proposed measurement schemes embodied in Figure 3 enable the recon-
struction of (phase) projections in various unknown orientations t. Since it is easier to
mitigate measurement uncertainties with projection data than diffraction data, the mea-
surement uncertainties in X-ray and electron experiments with small-sized objects such
as nano-crystals and macromolecules may be handled by projection-based methods (see
[13,16,68, 69, 75]).

For example, for a weak phase object, classification and alignment can then be carried out
with single-particle cryo-EM methods such as the common-line methods [21, 88, 90|, the
maximum-likelihood methods [66,87] and the Bayesian methods [81,82] based on projection

data instead of diffraction patterns [35,40, 50,64, 85].
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For a strong phase object, however, there remain several hurdles. The foremost is developing
effective numerical algorithms for 3D phase unwrapping which is not as well studied as 2D
phase unwrapping [39].

After the alignment of the phase projections, it is tempting to apply the 2D phase unwrapping
methods and try to recover the projection from the phase projection in each direction. The
projection in each direction, however, usually violate the 2D Itoh condition even when the 3D
Itch condition holds. If the 2D Itoh condition fails to hold at a large number of pixels, then
2D phase unwrapping becomes more complicated, requiring additional prior information.
Moreover, the unwrapped phases for different directions must be consistent with one another.
Hence the 3D phase unwrapping problem should be approached with all phase projections
together instead of one direction at a time.

A similar approach called ptychographic tomography has been proposed and studied numeri-
cally [23,42,43,48,62]. The difference from the present work is that in ptychography, instead
of simultaneous pairwise measurements of the whole object, multiple significantly overlapped
diffraction patterns are measured in each direction by sequentially shifting the aperture over
different parts of the object. As a consequence, ptychographic tomography is limited to
sizable objects capable of sustaining multiple intense illuminations and hence not suitable
for, e.g. single particle imaging.
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APPENDIX A. PROOF OF THEOREM 3.1

The following result is our basic tool.

Lemma A.1. [25] Let u be the phase mask (i.e. p(n) = explip(n)], ¢(n) € R,Vn) with
independent, continuous random variables ¢(n) € R. If €9 ©v produces the same diffraction
pattern as X' © p, then for some my € 72,0, € R

(95) er9my(n) = either e%el®femme) (n 4 m,)
or efteTiRfelndme) (4 my)

for all n.

Lemma A.1 is a special case of the more general result in [25] which is not limited to phase
masks. Note that the statement holds for any real-valued continuous random variable ¢(n).
By more advanced techniques from algebraic geometry and probability, one can relax the
conditions of continuity and independence on ¢(n).

After taking logarithm, (95) becomes

(96) kgg(n) —ilnv(n) = either 60y + kfi(n+ mg) —ilnpu(n + my)
or 0y — kfe(—n +mg) —ilnpu(—n + mg)

modulo 27.

If p1 is completely known, i.e. v = u, then (96) becomes

(97) kge(n) —ilnp(n) = either 0O + kfi(n+ me) —ilnpu(n + my)
or Oy — Kfu(—nFmy) — il (=0 £ my)

modulo 2.
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Since both diffraction patterns are from the same snapshot, we can reset the object frame
so that 1y = 0.

Suppose the first alternative in (97) holds with mg # 0. By (42), ¢/t and "% have the
same autocorrelation function and hence

§ RO HR@) 5 inlfelnme) T ) i@ )~ () i) ()

n n

for all k, or equivalently

(98) Z el fe(ntme+k)—fi (n+me))

n

_ Z i (fe(ntmetk) —fe (n+me)) Si(é(ntme+k) —¢(ntme) —¢(n+k)+(n))

by change of index, n — n + my, on the left hand side of equation. Define
Arfe(n+myg) == fi(n+mg +k) — f(n +my)

and rewrite (98) as

(99) 0 = 3 [eotmtmetio—stnrme)—glntio+om) _ 1] cinifi(omtme)

9

n

for all k. We want to show that the probability of the event (99) is zero.

Let us consider those summands in (99), for any fixed k, that share a common ¢(1), for any
fixed 1, in the expression. Clearly, there are at most four such terms:

(100) [ei(¢>(1)*¢>(17k)f¢>(17mt)+¢>(17k—mt)) _ 1] oAk fe(1-K)
L [OH—s0) gl mo t-me) ] nAkf)
+ [ei(¢(1+mt)*¢(17k+mt)*¢(1)+¢(1*k)) _ 1] eiﬂAkft(17k+mt)

+ [ei(¢(1+k+mt)—¢(1+mt)—¢(1+k)+¢(l)) _ 1] eiHAkft(H'mt).

Since the continuous random variable ¢(1) does not appear in other summands and hence
is independent of them, (99) implies that (100) (and the rest of (99)) must vanish almost
surely.

For k that are linearly independent of my, the four independent random variables
(101) p(l—-k—me), o(l+k—me), o(1—k+me), o(l+k+my)

appear separately in exactly one summand in (100). Consequently, (100) (and hence (99))
almost surely does not vanishes for k that are linearly independent of my.

On the other hand, if k is parallel to my # 0, then for any
1
k ¢ {:l:mt, :I:Emt, :]:21’111;}

the four terms in (101) appear separately in exactly one summand in (100). Consequently,
(100) almost surely does not vanishes.

Thus whenever the first alternative in (97) holds true, we have my = 0 and "9 = elftelrfe

for some constant 6y independent of the grid point.
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Next, we show that the second alternative in (95) is false. By (42), we have
3 et

n

$ il R el me) (om0 i) 6(0)

for all k, or equivalently
(102) Z el (fe(ntmetk)— fe(n+me))

n

$ iRt me)) 6 name-o)6(010) it me) (o)
n

by change of index, n — —n + my, on the left hand side of equation. With
Axfe(—n 4+ myg) == fi(—n+m¢ + k) — fi(—n + my)

we rewrite (102) as

(103) 0 = Z [ei(—¢(—n+mt+k)+¢(—n+mt)—¢(n+k)+¢(n)) 1] o~ ikAfi (—ntme)

n

for all k. We want to show that the right hand side of (103) almost surely does not vanish
for any k.

As before, consider those summands in (103), for any fixed k, that share a common ¢(1), for
any fixed 1, in the expression. Clearly, there are at most four such terms:

(104) [ei(f¢(l)+¢>(l+k)f¢(fl+mt)+¢(717k+mt)) . 1} efinAka(l)
T[R9 b lcbma) o bme) ] in A0
4 [l b rmO 6 bem)—6()+6(-10) _ 1] oindifi(-Trme)
[ ma) g ma) gl 1) ] iRk

With ¢(1) appearing in no other terms, (103) implies that (104) must vanish almost surely.

Some observations are in order. First, both ¢(1) and ¢(—1+4 my) appear exactly once in each
summand in (132). Second, the following pairings of the other phases

{o(1+k),o(-1 -k +my)},  {o(1—-k),¢(=1+k+ my)}

also appear exactly twice in (132). As long as k # 0 and 21 # my, these two pairs are not
identical and hence

(105) 0 = [ei(—¢(1)+¢(l+k)—¢(—l+mt)+¢ —1-k+my)) 1] o~ iRk fe (D)
eI Tktme) —o(—Trme) +6 (k)6 (1) — 1] indufe(~1-ktme)
0 = [6( p(1-K)+ () —¢(~I+k+me)+¢(—1+my)) 1} o iR fe (1K)
)

+[€i(¢(—l+mt) B(—l+k+mye)+o(1)—p(1-k)) _ 1] KAKkSe(~1+me)

both of which are almost surely false because the two factors
[ei(*¢>(l)+¢>(1+k)*¢>(*1+mc)+¢(*1*k+mt)) _ 1] 7 [ei(*¢(1*k)+¢(1)*¢>(*1+k+mt)+¢>(*1+mt)) _ 1]
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differ with their complex conjugates in a random manner independently from f;.
Therefore, the second alternative in (97) almost surely does not hold true.
In summary, the first alternative in (97) holds with mg = 0, namely
kgg(n) = 0y + kfi(n) mod 27
almost surely.

The actual support of the projections (19)-(21) for 0 < «,5 < 1 and odd integer n, for
example, is contained in

(106) U @ = loi)) x (2. - 15i))

where |-| denotes the floor function. In turn, the set in (106) is a subset of

(107) { U@ - Lm’J)} X { U@ - L/%J)} = 2y, x L,

1€2n 1€2n

where

(108)  fo=2- L%(l +la)(n—1)]+1, =2 L%(l + 1) —1)] +1.

The same support constraint Z,, x Z,, with (108) applies to the case with |a|,|3| < 1 and
odd integer n.

Now that g¢(n) = fe(n) = 0 for n € 72\ Z,, x Z, for t = (1,, 3) due to the support
constraint (107)-(108), so #; must be an integer multiple of 27, i.e. €% = e/t almost
surely. The proof is complete.

APPENDIX B. PROOF OF THEOREM 3.2
Let

fom) = fen+1ly),  fi(n) = filn+1)

go(m) = gv(n+1v),  gi(n) = ge(n+1)
for some 1y, 1;.

Suppose that the first alternative in (97) holds true for t', i.e.

(109) kgp(n) —ilnpu(n) = Oy +rfo(n+my) —ilnpu(n+my)
modulo 27, or equivalently
(110) kgy(n) + o(n) = Oy +kfy(n+ my) + ¢(n+ my) + khy(n),

where hy/(n) is an integer multiple of 27 /k for every n, implying

(111) kg (k) + dk) = 2 (s [ (k) + O(K) + 0y Dy (k) + wh (k).

First we show that the second alternative in (97) can not hold for t # t’. Suppose otherwise,
ie.

(112) kg (n) + ¢(n) = b+ kfe(—n+my) — d(—n+ my) mod 27.
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implying

(13)  kGi() +o(k) = e 2 (sfe(k) — G(—K) + pO,DA(K) + e (K)

where h¢(n) is an integer multiple of 27 for every n.

Since
ge(K) =ge(k), fe(K)=fi(k), (kK)€Cry,
we have
(114) /g\:/ (k/)e—i27rk’.1t//p — /g\:(k)e_i%k'lt/p
(115) }\:(k/>e—12wk/.lt//p _ ﬁk(k)efigﬂk.lt/p'

Eq. (114), together with (111) and (113), imply that for (k,k’) € Cy ¢

W 0 [ 2 K0 s (1) 4 (1)) + 5200 D) + () — ()

-~

o—i2nk 1 /p [e—iznmt.k/p(/@ﬁ*(k) — ¢(=k)) + pQGtDi(k) + /@ﬁt(k) — g(k)} ,
and hence
(116) |:€i27r(mt/—1t/)'k//p _ e—i27rk’-1t//p a(k/) + €—i27r(mt+lt)~k/p$(_k) + e—i27rlt~k/p$(k)
_ _KeiQN(mt/—lt/)-k’/pjc;*/(k/) + Ke—i?n(mt—i-lt)k/pﬁk(k) +/{:€_i27rk.lt/p/i;t(k)
_K67i27rk/-1t//p/ﬂt/ (kl> o pZefiQﬂ'k’-lt//pet/D}Q?(k/) + p267127rk-1t/p6tD§ (k)

The left hand side of (116) is a sum of independent, continuous random variables while the
right hand side is a discrete random variable for a fixed f. Therefore, (116) is false almost
surely.

This leaves the first alternative of (97) the only viable alternative for t, i.e.
(117) kgy(n) +o(n) = G +rfi(n+m)+ ¢(n+mg) mod 27,
for some my, and hence

ei2ﬁ(mt_1t)'k/p(liﬁ(k) 4 a(k)) . e—i27rlt-k/p$(k) +p29t6—i2rrk-lt/pD12)(k> 4 I<L€_127Tk'lt/p/f;t(k)

_ ei2w(mt/—lt/)~k’/p(ﬁf§ (k/) + d)(k/)) _ e—i27rlt/'k’/p¢(k/)

+p29t/efiQﬂk’-lt//ng(k/) + HefiQWk’-lt//pTlt/ (k/)
for (k,k’) € Ctv. Reorganizing the above equation, we have
(118) (6127rmt~k/p o 1)6—127F1t'k/p$(k) + (1 . 6i27rmt/-k’/p)6—i27rlt/-k’/pé;(k/)

_ eiQﬂ(mt/—lt/)-k’/p/iE (X) — €i27r(mt—1t)-k/p/€ﬁk(k) + p29tl6—127rk’~lt//ng(kl)
_p29te—12wk.lt/pD§(k) + He—i27rk/.lt//p/],;t/ (k') — K6—12nk.lt/p/ﬁt (k)

for (k, k') € Cyp. If, for some (k, k') € Cyy,

(119) (ei%m:-k/p _ 1)6_i27|'1t‘k/17 £0 or e—ilet,~k/p(1 _ ei27rmt/~k’/p> £0,
35



then the left hand side of (118) is a continuous random variable while the right hand side
takes value in a discrete set for a given f. This is a contradiction with probability one,
implying for all (k,k’) € Cy ¢

(ei271'mt-k/p _ 1)6*12ﬂ'1t'k/p _ 67i27r1t/-k’/p(eiZWmt/-k’/p _ 1) -0
and consequently,
(120) m-k=my-k'=0 mod p.

By assumption, some (k, k') € Cy have components whose ratio is not a fraction over Z,,
(120) can not hold true for m¢, my € Z2.

By (117) and (110),
kgi(m) = O+ kff(m) mod 2r,
kgp(mn) = Oy +kfio(n) mod 27,
which imply, by the set-up of zero-padding, 6y = 6y = 0 and hence
kg (0) = K[ (), g (n) = £f (n),
for all n € 72,

Let us rule out the remaining undesirable alternative: For all n € ZZQ,,

(121) kgg(m) + o(m) = O+ Kff(—n+m) — ¢(—m+m¢) mod 27
(122) kgy(m) +o(n) = Oy +kfi(—n+my) — ¢(—n+my) mod 27.
For (k,k’) € Ci v, we have

~

e N0 |2 e 1 o () — G(—K)) + 200 DAK) = G(K') + o (K)|

o~

el [k (1 7 (k) — (—K)) + 0 D3(0) — G(K) + (k)]
and hence
efi27r(mt+lt)-k/p;z§(_k> + 67127r1t-k/p$(k) B e*iQﬂ(mt/Jrlt/)-k’/p(g(_k/) . €7i27r1t/-k’/p(/b\(k/)
. e-i2w(mt,+1t,).k'/pm Tk e—i2w(mt+lt)-k/pm e (k)
ke 2Ky /P, (k') — p2e_12”k/'lt’/p9t/Dg(k') + p2e_127rk'lt/p9tD§(k).

The left hand side is a continuous random variable while the right hand side is a discrete
random variable for a fixed f. This is impossible and hence the undesirable alternative is
ruled out. The proof is complete.

AprPENDIX C. PROOF OF THEOREM 3.4

The proof of Theorem 3.4 is analogous to that of Theorem 3.1, except with the addi-
tional complication of possible vanishing of the object function under the Born approxi-
mation.

Similar to Lemma A.1, for the diffraction pattern given by (48) we have the following char-
acterization.
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Lemma C.1. [25] Let u = €™ with independent, continuous random variables ¢(n) € R.
Suppose that supp(fi) is not a subset of a line and another masked object projection v ® g4
produces the same diffraction pattern as u ® fy. Then for some p and 6y,

(123) ge(m)v(n) = either e fi(n+mg)u(n + my)
or €% fy(—n+my)u(—n+m,)

for all n.

If i is completely known, then v = p and (123) becomes

(124) ge(n)pu(n) = either €% fi(n 4 mg)p(n + my)
or % fy(—n + my)u(—n -+ my).

First suppose that the first alternative in (124) and we want to show that my = 0, which
then implies that g¢(-) = €% fi ().

Equality of the uncoded diffraction (43) implies that the autocorrelation of gy equals that of
ft and hence by (124)

Z fe(n+ k) fe(m) Z Jem+k+my) fe(n +me)p(n + k + me)pu(n)u(n + k)pu(n + my)

nez2 nc7z2

which, after change of index n — n + m¢ on the left hand side, becomes

(125) 0 = Z fem 4+ k+my) fo(n + my) [¢Oticime) —ontm) o) -onik) _ 1]

neZz?

for allk € Z2p 1~ It is convenient to consider the autocorrelation function as (2p—1)-periodic
function and endow ng_l with the periodic boundary condition.

Let us consider those summands on the right side of (125), for any fixed k, that share a
common ¢(1), for any fixed 1. Clearly, there are at most four such terms:

126) 160004yt set-k-m) _1] ()T
n [el(¢ (I+k)—p(1) —¢(I+k—me)+¢(1—-my) 1} fe(l+ k) ft
n [el(d) (14+m¢)—¢(1-k+my)—d(1)+p(1-k)) 1] fe(l+my) fe(1 —k + my)
n [el(¢ (+k+mg)—p(1+me) —¢(1+k)+¢(1) 1] fed+k+ mt)m

Since the continuous random variable ¢(1) does not appear in other summands and hence
is independent of them, (125) implies that (126) (and the rest of (125)) vanishes almost
surely.

Suppose my # 0 and consider any k that is linearly independent of my. The four independent
random variables

(127) ¢(l-k-my), é(l+k-m), ¢(1-k+m), ¢1+k+my)
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appear separately in exactly one summand in (126). Consequently, (126) can not vanish,
unless

(128) fe() fe(1—k) =0, t(D)fe(1+k)=0
n (126).
On the other hand, if k is parallel to m¢ # 0, then for any
1
(130) k ¢ {+m,, :l:§mt0> +2my, }

the four terms in (127) appear separately in exactly one summand in (126). Consequently,
(126) (and hence (125)) almost surely does not vanishes unless (128) and (129) hold.

Consider k = 0 which satisfies (130) if my # 0. Clearly (128)-(129) with k = 0 implies that
ft = 0, which violate the assumption that supp(f;) is not a subset of a line. Thus my = 0
in the first alternative in (124).

Next we prove that the second alternative in (124) is false for all m¢. Otherwise, by (43) we
have

> fen+X)fo(n)

nc7z2

Z fe(=n —k 4+ my) fe(—n + me)pu(—n — Kk + me)p(n + k)p(n)p(—n + my)

2
nEZp

which, after change of index n — —n — k + my on the left hand side, becomes

(131) 0 = Y fi(-n—k+m)fi(—n+my)

2
nezg

- [el(-élnlebme)o(—ntme)—o(nlo+olm) 1]

for all k € Z2p 1-

Consider those summands in (131), for any fixed k, that share a common ¢(1), for any fixed
1. Clearly, there are at most four such terms:

(132> [ei(f¢>(l)+¢>(l+k)*¢(*1+mt)+¢(*1*k+mt _ } t(l) ( )
—1] fe(1—-k)
+ [ei(f¢(71+mt)+¢(71+k+mt) )+¢(1-k)) 1] ft 1+mt ft( l—i—k—l—mt)
+ [ei(—¢(—l—k+mt)+¢( Lme)—¢(1+k)+¢(1)) 1} fe(—1 — k 4+ my) fo(—1 + my)

+ [ei(—¢(l—k)+¢() d(—1+ktmy)+é(—l+ms))

which must vanish under (131).

Some observations are in order. First, both ¢(1) and ¢(—1+my) appear exactly once in each
summand in (132). Second, the following pairings of the other phases

(133) {¢(1+k)>¢(—1—k+mt)§é {o(1=k), (=14 k +my)}



also appear exactly twice in (132). As long as
(134) k # 0
& 1 7£ mt/2,

the two sets in (133) are not identical and, since each contains at least one element that is
independent of the other, we have

(135) 0 = [ei(—¢(1)+¢(1+k)—¢(—l+mt)+¢ —1-k+my)) 1} ft

_|_[ei(¢(71*k+mt) o(—=14+my)+p(1+k)— 1]ft( l—k+mt)ft( 1_|_mt)
(136) 0 = [ei(f¢>(lfk)+¢>(1) d(—l+ktmye)+¢(—1+m)) 1] ft

+ [l (@(=THme) —d(—l+k+me)+4(1) —1]fe(— 1+mt)ft( 14+ k 4 my).

Because the two factors
[eH(-AWHHI—0(—Lrmo+o(-lleme) _ 1] [(-e(-l+o0)—s(btkerme)+o(-btme) _ ]

differ with their complex conjugates in a random manner independently from f, both (135)
and (136) are almost surely false unless

(137) ft( )fe(d+k) =0, fe()fe(1=k) =0,
(138) fe(=1+mg)fi(-1—k+mg) =0,  fo(=1+mg)fe(—1+k+mg) =0.

On the other hand, if 1 = m/2 but k # 0, then
(139) l+k=-1+k+mi#-1—-k+mg=1-k,
and hence (132) = 0 becomes
0 = [e20WHeHT00-K) _ 1] FA) f(1 4 K) 4 [ 20000 H60H) — 1] £ (1— K) fe (1)
implying (137). In other words, (137) holds true for k # 0.

Now we show that (137) for k # 0 implies that f; has at most one nonzero pixel.

Suppose that fi(1) # 0 for some 1. Then by (137), fi(n) = 0 for all other n # 1, i.e. f;isa
singleton which contradicts the assumption that supp(f;) is not a subset of a line.

Consequently the second alternative in (124) is false almost surely. The proof is com-
plete.

APPENDIX D. PROOF OF THEOREM 3.5

The argument is a more detailed, corrected exposition of that for Theorem 5.1 in [26] where
the condition f(0) # 0 is missing.

Recall that for (k,k') € Cyp := Loy (f) N Ly (9)
gt/ (k/> —i2rk’-ly/p /g\z (k)e—iQWk-lt/p
ft/ (k/)€—127rk’~lt//p _ j/‘ik (k)e—i27rk-lt /p‘

Suppose that the first alternative in (124) holds true for t', i.e

(140) go(n) = eiet’f:, (n+ my) Ay (n + my)
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with
Mo(n) = p(n)/p(n - my),
implying
g (k') = e e KD d) (K)
where * denotes the discrete convolution over ZIQ,.

We now prove that the second alternative in (124) can not hold for t. Otherwise, for some

my
(141) gi(m) = €% fi(—n+my)r(—n+ my)
with

vg(n) = p(n)/p(—n + my).
implying

Gi (k) = (Ji * D) (Kk)e ek,
For (k, k/) S Ot,t’;

. . IS PN R o L
elet, 6127r(mt/ I/)k /pft*/ * )\t/(k’)e i2nk" 1y /p elﬁte 27 (me+1g) k/pft?( % Vt(k)

implying
(142) 0 = 6i0t/ 6i27r(mt/—1t/)-k’/p Z eicf)(n)e—iqﬁ(n—mt/)‘f; (n)6—127rn-k’/p
nez?2
ei9t€7i27r(mt+lt)-k/p Z efiqb(n)efi¢(fn+mt)m6127rn~k/p.

nez?

We now show that eq. (142) can not hold for any my, my.

For fixed 1, only one term in (142) contains e*¢(:

eiat/ 6i27r(mt/7lt/)-k’/peiqb(l)efizi)(lfmt/)f:/ <1)67127r1~k’/p

which must vanish by itself following (142) unless the random factors cancel out, i.e. my =

0.

If my # 0 then f;(1) = 0 for all 1, contrary to the assumption of a non-line f;;. On
the other hand, if my = 0, the summands of the first sum in (142) are non-random (as
el¢me=iem—my) — 1) while those of the second sum are random (as e (M e=i¢(-n+me) —
e 1¢M)=i6(=m)) for some n. Consequently, both sums must vanish separately, in particu-
lar,

Z f:’ (n)e_i%mlk//p = };*,(k’) =0, (k’ k/) S C’t,t’v

nez?

implying f(0) = 0 which violates our assumption.
Consequently, the only viable alternative for t under (140) is
(143) gim) = % fi(n+me)\(n+m), VteT,

for some my.
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For (k, k/) S Ct,t’;

(144) eietem(mt—lt)‘kﬁ % Xt(k) — el €i271'(mt/—lt/)~k’ft*/ " Xt/ (X)),
implying
(145) 0 = eiet ei?ﬂ'(mtflt)-k/p Z eiqﬁ(n)efi(j)(nfmt)f:(n)efiZTrn-k/p
nezz
eiGt/ 6i27r(mt/—1t/)~k’/p Z eiqb(n)e—iqb(n—mt/)f:/ (n)e—iQﬂ'l‘l-k,/p‘
nezz

Given 1, only the following two terms contain ¢¢(®
eiGt 6i27r(mt—1t)~k/p€id>(l)e—iqﬁ(l—mt)f:(l)e—i%rl-k/p

eiGt/ 6i27r(mt’_lt’)'k//p6i¢(l)€_i¢(l_mt’)f:] (l)e—iZﬂ'l-k’/p
which must vanish by (145) unless my = 0 or my = 0.

If my = my = 0, then g;(n) = €% f(n) and g{,(n) = €% f;(n) for all n.

By Proposition 2.1 ﬁ(O) = ﬁ/(O) = ]?(O) # 0, it follows from g¢(0) = g (0) that 6, =
Oy .

If only one of them vanishes, say my = 0, my # 0, then the first sum in (145) is non-random
while the second sum is random and hence both must vanish separately. In particular

S Jeme B = 00 =0, (K € Cue
nez?

-~

implying f(0) = 0 which violates our assumption.

The remaining case, my # 0 & my # 0 is further split into two sub-cases: my # my and
me — My.
Suppose my # my and both are nonzero. Then the random factors in (145)

eiqb(n)e—i(i)(n—mt)7 eiqb(m)e—iqﬁ(m—mt/)
can not balance out to satisfy (145).

Consider the remaining undesirable possibility under (144): my = my # 0. Let mg := my =
my . Then (145) becomes

0 = elftei2m(mo—le)k/p Z ei¢(n)e—i¢(n—m0)ft*(n)e—i%n'k/p
nezz
— el pi2m(mo—1y/) k' /p Z ei¢(n)€*i¢(n*mo)f;§ (n)efi%n-k’/p
nez?
_ Z e1®(n) ,—i¢(n—mo) [€i9t6127r(m0—1t)~k/pft*(n)e—i%n-k/p
nez?
el €i27r(m071t/)-k’/pf§ (n)efi27rn-k’/p :
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implying

(146) ei9t€i27r(m0—lt)-k/pft*(n)e—i27rn~k/p _ eiet, €i2w(m0—lt,)~k’/pf‘? (n)e—iQﬂ'n-k//p’ Vn,

for (k, k/) S Ct,t’-

Rewriting (146) for fi(n) # 0 (then f(n) # 0), we have
€i27r(1t/~k’—1t~k)/p6i27r(m0—n)-(k—k’)/p _ ei(et/_et)f:, (n)/f: (n)

whose left hand side is a linear phase factor and whose right hand side is independent of
(k, k') € Cyy. Hence

ly kK —1-k+(mg—n) - (k—k')=a  modp
for some constant a € R for all n such that f{(n)f;;(n) # 0, and consequently, by (146)
(147) ¢ fi(n) = 9™ fi(n), Vo
By the common line property, ¢y = 0y + a and f; = f{.
Let us turn to the last undesirable alternative:
(145) Gimu(m) = e F{—n T my)u(—n + my),
(149) go(m)pmn) = % fi(—n+my)u(—n + my).

For (k, k/) € Ot,t’a

elfv e 2mme KD fo o o (K) = ¥ 2rmetlo R/ £ 5 (),
implying
(150) 0 = eiet’eiizﬂ(mt“rlt/)'k//p Z eii‘b(n)eii¢(*n+mt’)mei2ﬂ—n'k//p

nez?
elft p—12m(me+le) k/p Z e—iqﬁ(n)e—iqﬁ(—n—&-mt)meﬁwnk/p‘

nezz

For fixed 1, only the following four terms contain e~
(151)619t/ —i2m(my +1) K /p6—1¢(l) [e—w(l—mt/)f:/ (l) i2rlk’/p +e ip(my,—1) m (my/—1)- k//p:|
_ ol p—i2m(me 1) k/p , —i(1) |:efi¢(1*mt)mel2ﬂ'l k/p 4 o—i¢(me— l)m l(mrl)-k/p}

which must sum to zero by (150).

But the expression in (151) can not be zero unless my = my (:= mg) and the following
equations hold for (k,k’) € Cyy,

(152) 6iQt/€—i27r(m0—|—lt/)~k'/pmei27rl-k’/p — eiGt€—i27r(m0+lt)~k/pm612ﬂ”l~k/p

(1@%/ 6—127r(m0+1t/)Akl/pmei%r(mo—l).k’/p _ 6i0t6—i27r(mo+lt)~k/pmei2ﬂ'(mo—l)-k/p.

For fi(1)ff(1) # 0, (152) implies that for (k,k’) € Cyt and some constant a € R,

(154) a+(mg+1ly—1)-k'=(my+1 —1)-k mod p,
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and consequently,

(155) e e fa(l) = e £ (D).

The same analysis for (153) leads to the equivalent equation (155). By the common line
property, 0y = 0y + a and f; = f§.

The two undesirable ambiguities (147) and (155) is summarized by the second alternative in
(53). The proof is complete.
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