An Integrated Approach for Accelerating
Stochastic Block Partitioning

Frank Wanye
Dept. of Computer Science
Virginia Tech
Blacksburg, VA, USA
wanyef@vt.edu

Vitaliy Gleyzer
MIT Lincoln Laboratory
Lexington, MA, USA
vgleyzer @1l.mit.edu

Abstract—Community detection, or graph partitioning, is a
fundamental problem in graph analytics with applications in a
wide range of domains including bioinformatics, social media
analysis, and anomaly detection. Stochastic block partition-
ing (SBP) is a community detection algorithm based on sequential
Bayesian inference. SBP is highly accurate even on graphs with
a complex community structure. However, it does not scale well
to large real-world graphs that can contain upwards of a million
vertices due to its sequential nature. Approximate methods that
break computational dependencies improve the scalability of SBP
via parallelization and data reduction. However, these relaxations
can lead to low accuracy on graphs with complex community
structure. In this paper, we introduce additional synchronization
steps through vertex-level data batching to improve the accuracy
of such methods. We then leverage batching to develop a high-
performance parallel approach that improves the scalability of
SBP while maintaining accuracy. Our approach is the first to
integrate data reduction, shared-memory parallelization, and
distributed computation, thus efficiently utilizing distributed
computing resources to accelerate SBP. On a one-million vertex
graph processed on 64 compute nodes with 128 cores each, our
approach delivers a speedup of 322 x over the sequential baseline
and 6.8 x over the distributed-only implementation. To the best of
our knowledge, this Graph Challenge submission is the highest-
performing SBP implementation to date and the first to process
the one-million vertex graph using SBP.

Index Terms—community detection, GraphChallenge, sam-
pling, stochastic block partitioning, parallel computing, dis-
tributed computing

I. INTRODUCTION

Community detection [[1], also known as graph partitioning,
is a fundamental problem in the field of graph analytics. It aims

DISTRIBUTION STATEMENT A. Approved for public release. Distribu-
tion is unlimited.

This material is based upon work supported by the Under Secretary of De-
fense for Research and Engineering under Air Force Contract No. FA8702-15-
D-0001. Any opinions, findings, conclusions or recommendations expressed
in this material are those of the author(s) and do not necessarily reflect the
views of the Under Secretary of Defense for Research and Engineering.

©2023 Massachusetts Institute of Technology.

Delivered to the U.S. Government with Unlimited Rights, as defined
in DFARS Part 252.227-7013 or 7014 (Feb 2014). Notwithstanding any
copyright notice, U.S. Government rights in this work are defined by DFARS
252.227-7013 or DFARS 252.227-7014 as detailed above. Use of this work
other than as specifically authorized by the U.S. Government may violate any
copyrights that exist in this work.

This work was supported in part by NSF [/UCRC CNS-1822080 via the
NSF Center for Space, High-performance, and Resilient Computing (SHREC).

Edward Kao
MIT Lincoln Laboratory
Lexington, MA, USA
edward.kao @1l.mit.edu

Wu-chun Feng
Dept. of Computer Science
Virginia Tech
Blacksburg, VA, USA
wfeng@vt.edu

to find blocks of strongly connected vertices, such that vertices
within a block are more strongly interconnected than vertices
in different blocks. These communities tend to correspond
to functional groups within a graph. Community detection
has gained significant attention in a wide variety of domains
including bioinformatics [2], [3], workload balancing [4]], and
recommendation systems [5].

Optimal community detection is an NP-hard problem, hence
it is generally solved via heuristics. Of these heuristics, modu-
larity maximization is the most common, with the Louvain [6]]
and Leiden [7]] algorithms in particular gaining a lot of traction
for their speed and relative accuracy. Much of the work on par-
allel and distributed community detection has centered around
these methods, allowing them to scale to web-scale graphs
with billions of edges [8]]. However, the modularity maximiza-
tion heuristic has some well-documented shortcomings. The
most well-known of these is the resolution limit [9]], which
affects the algorithm’s performance when the community sizes
are highly variable. Other descriptive community detection
algorithms demonstrate similar shortcomings, while others still
require prior knowledge of the number of communities [[10],
which is often unavailable in real-world scenarios.

Stochastic block partitioning (SBP) [11]], [12]] is a commu-
nity detection method belonging to the inferential class of
community detection algorithms [13]]. These algorithms are
based on inference methods and are not prone to overfitting. As
such, they provide higher quality community detection results
than the descriptive class of community detection methods [[14]]
However, these methods are considerably slower than their
descriptive counterparts. This limits their applicability to large,
real-world graphs, which often have upwards of a million
vertices and edges. This work aims to improve the practical
usability of SBP, thus enabling accurate community detection
at scale.

Various approximate methods have previously been used
to accelerate SBP, including data reduction [[15]—[17]], paral-
lelizing the Markov chain Monte Carlo (MCMC) phase of
SBP [18], [19], and distributed computation using incomplete
data [19]], [20]. However, these methods on their own do
not provide enough speedup to scale SBP to very large
graphs. Moreover, they run the risk of poor convergence,
especially when the graph structure is complex, which could

be exacerbated when the methods are used together. To solve
this problem, we first introduce a vertex-level batching scheme
to improve the accuracy of parallel and distributed SBP ap-
proximations via additional synchronization. We then leverage
batching to develop an approximate SBP implementation that
integrates data reduction, parallel MCMC, and distributed
computation. This integrated SBP approach scales to large
graphs while maintaining the high accuracy of sequential SBP
- it processes the 1 million vertex graph in under 12 minutes
without sacrificing accuracy. To the best of our knowledge, this
Graph Challenge submission is the highest-performing SBP
implementation to date and the first to successfully process a
graph of that size using SBP.
Our main research contributions are as follows:

o A vertex-level data batching scheme that improves the
accuracy of existing parallel and distributed SBP ap-
proximations on complex graphs from normalized mutual
information (NMI) scores of < 0.63 (and as low as 0.0)
to > 0.87 (see Table [III).

o An integrated high-performance implementation of SBP
that combines and optimizes several state-of-the-art meth-
ods into one unified approach.

e A rigorous evaluation of our approach on 64 compute
nodes that demonstrates speedups as high as 322X over
single-node SBP running sequential MCMC and up to
6.8 over distributed computing alone while maintaining
accuracy.

II. BACKGROUND

In this section, we provide background information about
SBP and various acceleration techniques that are enabled via
algorithmic relaxations of sequential SBP.

A. Stochastic Block Partitioning (SBP)

SBP [11], [12]] is an inferential community detection al-
gorithm [[13]] based on the degree-corrected stochastic block-
model (DCSBM) [21]. The DCSBM is a representation of
graph structure based on community (block) connectivity. It
is stored as a matrix M, where, in a directed graph, M, ,
contains the number of edges that originate from vertices
in community a and have vertices in community b as their
destination.

SBP infers the best vertex-to-community assignment, as
well as the optimal number of communities, by minimizing the
description length H of the DCSBM, given by the following
equation:

B2 M,
H=Eh (E) +VlogB—Zlogd7

d)
e r,outWec,in

where F/, V, and B are the number of edges, vertices, and
blocks in the graph, dq oyt and dg iy, are the out- and in-degree
of block a, and h(z) = (1+z)log(l+x) — xlog z [12], [22].
The inference itself is performed iteratively, in two alternat-
ing phases - the block merge phase, where entire blocks are
merged based on the resulting change in H, and the Markov

chain Monte Carlo (MCMC) phase, where individual vertices
move between blocks via the Metropolis-Hastings algorithm.
The MCMC phase is the main driver of the inference, while the
block-merge phase prevents the algorithm from getting stuck
in a local minimum and allows for the use of a Fibonacci
search to find the optimal number of communities.

B. Sampling from Graphs

There has been a significant amount of work into using
sampling to reduce the storage and computational demands
of processing large graphs [15], [23]-[26]. As such, several
sampling algorithms have been developed over the years. How-
ever, as demonstrated in [24]], the optimal choice of sampling
algorithm strongly depends on the specific processing task.
This is because graphs have many directly and indirectly
measurable parameters, and devising a sampling algorithm that
preserves all, or even most of them is not trivial.

Community structure is an indirectly measurable graph
parameter. The expansion snowball [17], [26] and maximum
degree [17] sampling algorithms have been shown to preserve
community structure on sparse graphs. A previous Graph
Challenge entry [15] leveraged uniform random sampling to
accelerate SBP while maintaining accuracy. These works also
show that the community structure inferred from the sampled
subgraph can be extended to the entire graph. Additionally,
degree-preserving graph summarization using supernodes has
been shown to preserve community structure [[16].

C. Farallelizing the MCMC Phase

The block merge phase of the SBP algorithm is embar-
rassingly parallel and thus trivial to parallelize with a multi-
threaded framework such as OpenMP. However, the MCMC
phase of SBP is inherently sequential [27] and thus difficult to
parallelize without the potential for losing inference accuracy.
In [19], a batch-based shared memory approach with a single
master thread determining update frequency was employed to
parallelize SBP within one node.

Another shared memory parallel SBP approach is the Hy-
brid SBP algorithm [18]]. In [27], it was shown that asyn-
chronous Gibbs sampling, an embarrassingly parallel method,
can be used to parallelize MCMC so long as the conditional
dependency distribution of the underlying model is sparse
enough. However, when this condition is false, asynchronous
Gibbs does not converge well, and finding out whether or not
this condition is true is not trivial. Hence, Hybrid SBP takes
advantage of this by processing a small number of highly
influential, high-degree vertices sequentially using Metropolis-
Hastings and the remaining majority of low-degree vertices via
an adapted asynchronous Gibbs algorithm.

D. Distributed Computing

Distributing the SBP algorithm is a difficult task. In addition
to the inherently sequential nature of the MCMC phase, the
underlying blockmodel needs to be accessed both row- and
column-wise, further complicating the problem of data distri-
bution. A divide-and-conquer approach [[19] was proposed that

partitions the graph into separate subgraphs and runs shared-
memory parallel SBP independently on each subgraph, before
combining and then fine-tuning the partial results. However,
processing the subgraphs independently breaks many compu-
tational dependencies in the MCMC stage. Thus, on more than
8 nodes, accuracy degrades significantly.

An alternative distributed SBP algorithm, EDiSt [20], tack-
les this problem by duplicating the graph and blockmodel
data across all compute nodes. By introducing internode
communication across compute nodes, which are each tasked
with processing a distinct set of vertices, the degree to which
computational dependencies are broken is greatly reduced.
This allows EDiSt to scale up to a much larger number of
nodes without accuracy degradation, at the cost of increased
memory requirements.

The three methods described above have for the most part
been used independently, with no single approach combining
all three, as seen in Table

TABLE I
SUMMARY OF PRIOR WORK
Reference Data Shared-Memory Distributed
Reduction Parallelization Computation
[15] YES -
[17] YES
[16] YES - -
[19] - YES YES
(L8]] YES -
[20] - YES YES
This manuscript YES YES YES

III. METHODOLOGY

In this section, we describe our integrated SBP framework
and the refinements made to the SBP approximations that
make up the framework.

A. The Integrated SBP Framework

The integrated SBP framework consists of three approx-
imate SBP algorithms that perform data reduction, parallel
MCMC computations, and distributed computation using in-
complete data.

Sampling: We select the SamBaS [17] framework as our
data reduction approach. It has been shown to work well on
both real-world and synthetic graph datasets. SamBaS consists
of four steps:

1) Sampling to produce a sampled subgraph with a fraction
of the full graph’s vertices.
2) Community detection (via SBP) on the sampled sub-
graph.
3) Extension of the community memberships obtained from
the sampled subgraph to the full graph.
4) Finetuning the results using the Metropolis-Hastings
algorithm.
This four-step approach allows for relatively easy substi-
tution of the single-threaded SBP algorithm with any other
accelerated variant.

For the sampling step, we implement three different sam-
pling algorithms: uniform random sampling, expansion snow-
ball sampling, and maximum degree sampling. In prior
work [15]], [17]], these algorithms have been shown to perform
well on a variety of graphs.

Shared-Memory Parallelization of MCMC: We imple-
ment the hybrid SBP [18]] algorithm to parallelize the MCMC
phase of SBP. This method has been shown to maintain accu-
racy on a wide array of graphs while significantly speeding
up the MCMC phase. Moreover, it processes most of the
vertices within each iteration asynchronously, which poten-
tially reduces the amount of inter-node communication needed
when this method is distributed. When integrating hybrid SBP
with SamBaS, we replace the Metropolis-Hastings algorithm
in Steps 2 and 4 with the hybrid parallel MCMC algorithm.

Distributed Computation: Finally, we implement
EDiSt [20] as our distributed computation algorithm, because
of its ability to scale to a large number of compute nodes
without losing accuracy. This increase in scalability enables
larger speedups than those observed with the divide-and-
conquer approach [[19]. Due to the low frequency of inter-node
communication, each MPI rank in EDiSt operates on an
incomplete blockmodel with stale updates.

When integrating hybrid SBP with EDiSt, we run a single it-
eration of the hybrid SBP MCMC phase independently within
each MPI rank. Then, we use MPI all-to-all communication
to synchronize vertex moves across all MPI ranks.

When integrating EDiSt with SamBaS, much like in the case
of hybrid SBP, we replace the SBP algorithm in the community
detection step with EDiSt. Furthermore, we take advantage
of the distributed MCMC phase from EDiSt to perform the
finetuning step of SamBaS in a distributed fashion.

To ensure consistency across MPI ranks, the SamBaS sam-
pling and extension steps are run single-threaded and on a
single MPI rank. The results are then communicated to the
other MPI ranks using MPI broadcast operations. While
it is possible to parallelize at least some of the code in these
steps, we find that the single-threaded execution of these 2
phases does not take a significant amount of time for all graphs
considered in our evaluation.

The complete integrated approach is illustrated in Figure

B. Additional Refinements

The Python baseline for SBP is prohibitively slow, requiring
over 2 hours of computation to process the official 50,000
vertex graphs. On the other hand, the C++ baseline from
the graph—-tool software is much faster, but difficult to
modify due to being part of a large and complex library. To
speed up the computation, as well as make it easier to apply
optimizations to our code, we translate the Python baseline
code into C++. This translation allows us to take advantage
of compile-time optimizations, efficient multithreading with
OpenMP, and highly performant data structure libraries like
tessil. We then implement several optimizations to improve
the runtime of our C++ baseline code. Additionally, we imple-
ment a vertex-level batching scheme to improve the accuracy

Parallel & Distributed

Community Detection
(Hybrid SBP + EDiSt)

MM

Finetuning
(Hybrid SBP + EDiSt)

Single-Node & Sequentlal

Initial Graph

M»MM

Sampling (SamBas)

Membership Extension (SamBa$S)

Fig. 1.

of parallel and distributed SBP approximations on complex
Graph Challenge graphs.

Optimizations: We outline the most effective optimizations
we implement in our C++ SBP code below:

o storing both the blockmodel matrix and its transpose,
allowing efficient row-wise and column-wise iteration at
the cost of having to update two matrices whenever the
blockmodel changes. Because the number of accesses is
much higher than the number of accepted moves, this
results in significant time savings.

o storing each blockmodel matrix as a vector of tessil
robin_map objects, which allow fast iteration and
modification of the blockmodel matrix, while also saving
memory through representing the blockmodel in sparse
matrix format. When put together with transpose matrix
storage, this becomes similar to the compressed represen-
tation optimization described in [28].

o implementing a disjoint-set data structure to store block
merges. Previously, to merge block a into block b, an
O(V) lookup would have to be performed to find all
vertices belonging to block a, before updating their block
membership. This means that performing = merges takes
O(2V) time. The disjoint-set data structure allows all
block memberships to be updated in a single iteration, in
approximately O(V) time.

» computing the change in description length JH using
a vector of changes to the blockmodel matrix A. This
removes the need for storing entire rows and columns
of the blockmodel to calculate 0 H and allows for more
efficient updates to the blockmodel matrix since only
matrix cells that are changed are accessed.

e precomputing a cache of 1og values to reduce time spent
computing logarithms for H and 0H.

o parallelizing several trivial but computationally expensive
portions of the code using OpenMP, including the § H
computations in the block merge phase, building the
blockmodel matrix, and sorting vertices.

Improving Accuracy: Both the parallel and distributed
SBP implementations described in [[lI-A] are approximations of
Metropolis-Hastings that rely on the assumption that the input
graph has a power-law degree distribution, with many low-

An illustration of the integrated approach to accelerating SBP.

degree vertices and few high-degree vertices. The Graph Chal-
lenge graphs, however, have a truncated degree distribution,
with almost no 1 and 2-degree vertices and no vertices with
degrees higher than 100. Coupled with the low frequency of
synchronization in hybrid SBP and EDiSt, this means that both
methods occasionally lead to inaccurate community detection
on complex graphs. We introduce vertex-level batching to
enhance the accuracy of these methods.

The batching approach splits vertices into equal-sized dis-
joint sets. The batches are then processed one at a time, with
communication occurring at the end of each batch to ensure
consistency of the blockmodel across all computing elements.
With the parallel implementation (hybrid SBP), the few highly
influential vertices are already processed sequentially, so no
additional synchronization is needed for those vertices. Thus,
we only process the low-influence vertices using the batched
approach. At the end of each batch, a single thread updates
the blockmodel matrix using the accepted vertex moves.

In the parallel + distributed implementation, an MPI all-
to-all communication call is used to synchronize accepted
vertex moves across all MPI ranks. Additionally, we add a
synchronization step after the highly influential vertices are
processed. Finally, we also include batching in the distributed
implementation with sequential MCMC, except in this case all
vertices are split into batches.

In addition to this, we find that the parallel MCMC im-
plementation leads to better quality partitions with a more
accurate approximation of vertex influence based on the
information content of edges, as described in [29]. Instead
of selecting highly influential vertices based solely on their
degree, we sort all edges in the graph according to the degree
product of their associated vertices. Then, we select vertices
from the edges with the highest degree products.

With these refinements, we find that both the parallel
and distributed implementations converge and match baseline
accuracy using just 2 batches (that is, just one additional
synchronization step). While this does typically negatively im-
pact runtime, in some cases the improvement in convergence
negates the extra communication overhead.

IV. EXPERIMENTS

Here we describe our experimental approach and the metrics
used to evaluate it, followed by a description of the datasets
and infrastructure on which we perform our experiments.

A. Experimental Approach

We evaluate the integrated approach by conducting an
integration study over its three components (sampling, parallel
MCMC, and distributed computing) to better understand the
impact of each individual part, as well as their permutations.
For sampling-based approaches, we run each of the three
implemented sampling algorithms at the 50% sample size.
For distributed computing-based approaches, we run 4 MPI
ranks per node, as described in [20]]. Finally, because SBP is
nondeterministic, we perform each run on each graph 2 times
and present the result with the lowest H.

B. Evaluation Metrics

We employ information theoretic metrics based on Shannon
entropy to evaluate accuracy. As outlined in [[12], precision
and recall in the information theoretic domain are given
by Ig{é?) and I(If%?) respectively, where I(T;0) is the
mutual information between the true community assignments
T and the algorithm’s output O, I(T) is the entropy of the
true community assignments and 7(O) is the entropy of the
algorithm’s assignments. Due to space constraints, instead of
reporting both metrics, we instead report the normalized mu-

tual information (NMI), which is given by % [30]

To evaluate the runtime benefits of our integrated approach,
we measure the speedup obtained, calculated via the equa-
tion; —Xuntine of baseline __ Ty ensure a fair comparison,
we use our optimized C++ code without sampling, parallel
MCMC, or distributed computation as the baseline.

Finally, our integrated approach sacrifices memory usage for
increased runtime in several areas, including storing two sparse
blockmodel matrices and duplicating data to enable distributed
computing. To study our memory usage and better understand
the practical limitations of this approach, we measure the
maximum resident set size (RSS) of each run via the slurm
sacct command. The maximum RSS value records the
maximum amount of physical memory allocated to a process.

C. Datasets

To stress our approach, we restrict our experiments to the
most complex Graph Challenge graphs with high block overlap
and high block size. Table |lI| summarizes the selected datasets.

TABLE II
DATASETS USED FOR EVALUATION

Number of vertices | Number of edges | Number of communities
5,000 51,157 19

50,000 1,187,682 44

200, 000 4,754,406 71

1,000, 000 23,772,977 125

D. Hardware

All our experiments were performed on the Virginia Tech
Tinkercliffs cluster. The cluster is made up of 308 compute
nodes equipped with 128-core AMD EPYC 7702 CPUs with
256GB of memory. The interconnect employed by the cluster
is HDR-100 IB. Due to slurm job configuration limitations on
Tinkercliffs, we are restricted to just 64 of the 308 available
compute nodes for any given run. Thus, all our runs involving
distributed computation are run on 64 compute nodes.

V. RESULTS

In this section, we discuss our integration study results. Due
to space limitations, where appropriate we only display results
with the uniform random sampling algorithm, which we found
to be an effective compromise between runtime and accuracy.

First, in Table we show 7 instances that highlight our
work to improve convergence in parallel and distributed SBP
via batching. In 4 of these instances, the approach completely
failed to converge without batching, leading to uninformative
partitions and an NMI score of 0.0. With batching, we achieve
NMI scores of at least 0.87 in all 7 instances. Thus, all
proceeding parallel and distributed results shown are run with
additional synchronization using 2 batches.

TABLE III
SELECTED RESULTS WITH AND WITHOUT ADDITIONAL
SYNCHRONIZATION

Implementation Graph size | NMI without | NMI with

batching batching
Parallel 1000000 0.00 0.90
Distributed (Sequential) | 1000000 0.00 0.88
Parallel + Sampling 200000 0.63 0.87
Parallel + Distributed 1000000 0.00 0.90
Sampling + Distributed | 200000 0.47 0.87
(Sequential)
Integrated 200000 0.00 0.88

As seen in Figure [V (top), all approaches generally achieve
similar NMI to the baseline, showing that there is little-to-no
difference in the quality of results obtained with the integrated
framework. The only exception is the 5000 vertex graph,
whose NMI is comparatively low in all methods that rely on
sampling. This may be due to the lower ratio of vertices-to-
communities in this graph, making it easier to undersample
communities. Sampling can also increase the variation in result
quality. Thus, performing more runs could eventually lead to
higher NMIs for the 5000 vertex graph.

The speedup results, summarized in Figure [V (middle),
show that combining different acceleration methods leads
to much higher speedups. On the 1 million vertex graph,
the integrated approach was 322x faster than the sequential
baseline, reducing the runtime from over 63 hours to under 12
minutes. This is 6.8 faster than the 48x speedup obtained
with distributed computation on its own. On smaller graphs,
however, the overhead of the combined acceleration methods
may occasionally lead to a lower speedup. Note that regardless
of implementation, the speedups obtained increase with the

NMI
o =3 o
IS @ ®

o
~

o

Baseline
(Sequential)

Parallel Distributed

(Sequential)

Sampling

Implementation

Parallel Distributed

(Sequential)

Baseline
(Sequential)

Sampling

Implementation

Parallel + Sampling

MaxRSS (MB)
= = =
2 2 <

-
)

-
<

Baseline
(Sequential)

Parallel Distributed

(Sequential)

Sampling

Implementation

Parallel + Sampling

100
" .I .
. Bl o=

Parallel + Sampling

Num. Vertices
== 5000
s 50000
=== 200000
=== 1000000

Integrated

Parallel + Distributed ampling

li
Dlstnbuted (Sequentlal)

Num. Vertices
= 5000
== 50000
== 200000
=== 1000000

Parallel + Distributed Integrated

mpling
Dlstnbuted (Sequentlal)

Parallel + Distributed Integrated
Dlstnbuted (Sequentlal)

Num. Vertices
= 5000
s 50000
mmm 200000
== 1000000

Fig. 2. NMI (top, higher is better), speedup over sequential baseline SBP (middle, higher is better), and memory utilization (bottom, lower is better) results

from the integration study, run on 64 compute nodes with 128 cores each.

size of the graph as the SBP computation time increases faster
than the overhead of accelerating it.

Finally, the memory utilization results are summarized in
Figure [V (bottom). Our chosen distributed SBP implementa-
tion duplicates the data across all compute nodes. This leads
to significantly higher total memory utilization, up to 100GB
on the 1 million vertex graph. The increased memory demand
means that the size of the graphs that can be processed with
this distributed approach is strongly limited by the amount of
available memory. The inclusion of sampling in the integrated
approach decreases the memory requirements by a quarter, to
about 25GB, allowing larger graphs to be processed on the
same hardware.

VI. CONCLUSION

In this manuscript, we present a scalable and integrated
approach to accelerating stochastic block partitioning (SBP).
To the best of our knowledge, this approach is the first to
combine sampling, parallel MCMC computation, and dis-
tributed computing. The sequential SBP approximations on
which these three methods are based sometimes suffer from
reduced accuracy when applied to complex graphs. To improve
the accuracy of these methods on such graphs, we enhance
them with additional synchronization via vertex-level batching.
This enhancement enables the parallel and distributed SBP
approximations to achieve NMI scores of 0.87 or higher on

graphs where they would otherwise achieve NMI scores of
0.63 or lower.

We evaluate our approach through an extensive integration
study, demonstrating that on 64 nodes with 128 cores each,
the integrated SBP approximation accelerates SBP by up
to 322x over the sequential baseline without significantly
affecting its accuracy. This reduces the processing time on
the 1 million vertex graph from over 63 hours to under 12
minutes. Furthermore, the integrated approach uses about 75%
less memory and achieves a speedup of up to 6.8x over
distributed computation alone. In this manner, the integrated
approach enables the processing of larger graphs with SBP
than would otherwise be possible.

In future work, we aim to conduct comparative analyses of
the runtime and accuracy of our integrated approach against
widely used community detection algorithms like Louvain and
Leiden. We also plan to scale SBP to real-world web-scale
graphs with billions of edges by exploring data partitioning
schemes for distributed SBP and further algorithmic refine-
ments tailored specifically to SBP.

ACKNOWLEDGMENT

The authors acknowledge Advanced Research Computing
at Virginia Tech for providing computational resources that
have contributed to the results reported within this paper. URL:
https://arc.vt.edu/

[1]

[3]

[5]

[6]

[8]

[9]

[10]

(11]

(12]

[13]

[14]

[15]

REFERENCES

S. Fortunato, “Community detection in graphs,” Physics Reports,
vol. 486, no. 3-5, pp. 75-174, 2 2010. [Online]. Available:
doi.org/10.1016/j.physrep.2009.11.002

V. Oles, S. Dash, and R. Anandakrishnan, “BiGPICC: a graph-based
approach to identifying carcinogenic gene combinations from mutation
data,” bioRxiv, p. 2023.02.06.527327, 2 2023. [Online]. Available:
doi.org/10.1101/2023.02.06.527327

J. B. Pereira-Leal, A. J. Enright, and C. A. Ouzounis, “Detection
of functional modules from protein interaction networks,” Proteins:
Structure, Function, and Bioinformatics, vol. 54, no. 1, pp. 49-57, 9
2003. [Online]. Available: doi.wiley.com/10.1002/prot.10505

G. M. Levchuk and J. Colonna-Romano, “Optimizing collaborative
computations for scalable distributed inference in large graphs,” in
Signal Processing, Sensor/Information Fusion, and Target Recognition
XXVIl, 1. Kadar, Ed., vol. 10646. SPIE, 2018, p. 23. [Online].
Available: doi.org/10.1117/12.2305872

P. Krishna Reddy, M. Kitsuregawa, P. Sreekanth, and S. Srinivasa Rao,
“A Graph Based Approach to Extract a Neighborhood Customer
Community for Collaborative Filtering,” in Databases in Networked
Information Systems. Springer, Berlin, Heidelberg, 2002, pp. 188-200.
[Online]. Available: doi.org/10.1007/3-540-36233-9_15

V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast
unfolding of communities in large networks,” Journal of Statistical
Mechanics: Theory and Experiment, vol. 2008, no. 10, p. P10008, 10
2008. [Online]. Available: |doi.org/10.1088/1742-5468/2008/10/P10008
V. A. Traag, L. Waltman, and N. J. van Eck, “From Louvain to
Leiden: guaranteeing well-connected communities,” Scientific Reports
2019 9:1, vol. 9, no. 1, pp. 1-12, 3 2019. [Online]. Available:
doi.org/10.1038/S41598-019-41695-Z

X. Que, FE Checconi, F. Petrini, and J. A. Gunnels, “Scalable
Community Detection with the Louvain Algorithm,” in 2015 IEEE
International Parallel and Distributed Processing Symposium. 1EEE,
52015, pp. 28-37. [Online]. Available: doi.org/10.1109/IPDPS.2015.59
S. Fortunato and M. Barthelemy, “Resolution limit in community
detection,” Proceedings of the National Academy of Sciences, vol. 104,
no. 1, pp. 3641, 1 2007. [Online]. Available: doi.org/10.1073/pnas.
0605965104

A. Lancichinetti and S. Fortunato, “Community detection algorithms:
A comparative analysis,” Physical Review E - Statistical, Nonlinear,
and Soft Matter Physics, vol. 80, no. 5, p. 056117, 11 2009. [Online].
Auvailable: |doi.org/10.1103/PHYSREVE.80.056117

T. P. Peixoto, “Parsimonious Module Inference in Large Networks,”
Physical Review Letters, vol. 110, no. 14, p. 148701, 4 2013. [Online].
Available: |doi.org/10.1103/PhysRevLett.110.148701

E. Kao, V. Gadepally, M. Hurley, M. Jones, J. Kepner, S. Mohindra,
P. Monticciolo, A. Reuther, S. Samsi, W. Song, D. Staheli, and
S. Smith, “Streaming graph challenge: Stochastic block partition,”
in 2017 IEEE High Performance Extreme Computing Conference
(HPEC). Waltham, MA: IEEE, 9 2017, pp. 1-12. [Online]. Available:
doi.org/10.1109/HPEC.2017.8091040

T. P. Peixoto, Descriptive vs. inferential community detection in
networks: pitfalls, myths, and half-truths. ~Cambridge: Cambridge
University Press, 11 2023. [Online]. Available: doi.org/10.1017/
9781009118897

T. P. Peixoto and A. Kirkley, “Implicit models, latent compression,
intrinsic biases, and cheap lunches in community detection,” Physical
Review E, vol. 108, no. 2, p. 024309, 8 2023. [Online]. Available:
doi.org/10.1103/PhysRevE.108.024309

F. Wanye, V. Gleyzer, and W.-c. Feng, “Fast Stochastic Block
Partitioning via Sampling,” in 2019 IEEE High Performance Extreme
Computing Conference (HPEC). Waltham, MA, USA: IEEE, 9 2019,
pp. 1-7. [Online]. Available: doi.org/10.1109/HPEC.2019.8916542

[16]

(17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

(27]

[28]

[29]

[30]

L. Durbeck and P. Athanas, “DPGS Graph Summarization Preserves
Community Structure,” 2021 IEEE High Performance Extreme
Computing Conference, HPEC 2021, 2021. [Online]. Available:
doi.org/10.1109/HPEC49654.2021.9622846

F. Wanye, V. Gleyzer, E. Kao, and W.-c. Feng, “SamBaS: Sampling-
Based Stochastic Block Partitioning,” arXiv, 8 2021. [Online]. Available:
doi.org/10.48550/arXiv.2108.06651

——, “On the Parallelization of MCMC for Community Detection,”

in Proceedings of the 51st International Conference on Parallel
Processing. New York, NY, USA: ACM, 2022, pp. 1-13. [Online].

Available: |doi.org/10.1145/3545008.3545058

A. J. Uppal, G. Swope, and H. H. Huang, “Scalable stochastic
block partition,” in 2017 IEEE High Performance Extreme Computing
Conference (HPEC). 1EEE, 9 2017, pp. 1-5. [Online]. Available:
doi.org/10.1109/HPEC.2017.8091050

F. Wanye, V. Gleyzer, E. Kao, and W.-c. Feng, “Exact Distributed
Stochastic Block Partitioning,” arXiv, 5 2023. [Online]. Available:
doi.org/10.48550/arXiv.2305.18663

B. Karrer and M. E. J. Newman, “Stochastic blockmodels and
community structure in networks,” Physical Review E, vol. 83, no. 1,
p- 016107, 1 2011. [Online]. Available: doi.org/10.1103/PhysRevE.83.
016107

T. P. Peixoto, “Entropy of stochastic blockmodel ensembles,” Physical
Review E, vol. 85, no. 5, p. 056122, 5 2012. [Online]. Available:
doi.org/10.1103/PhysRevE.85.056122

M. Besta, S. Weber, L. Gianinazzi, R. Gerstenberger, A. Ivanov,
Y. Oltchik, and T. Hoefler, “Slim graph,” in Proceedings of
the International Conference for High Performance Computing,
Networking, Storage and Analysis. New York, NY, USA: ACM, 11
2019, pp. 1-25. [Online]. Available: |doi.org/10.1145/3295500.3356182
J. Leskovec and C. Faloutsos, “Sampling from large graphs,” in
Proceedings of the 12th ACM SIGKDD international conference on
Knowledge discovery and data mining - KDD ’06. New York,
New York, USA: ACM Press, 2006, p. 631. [Online]. Available:
doi.org/10.1145/1150402.1150479

T. Wang, Y. Chen, Z. Zhang, T. Xu, L. Jin, P. Hui, B. Deng, and
X. Li, “Understanding Graph Sampling Algorithms for Social Network
Analysis,” in 2011 31st International Conference on Distributed
Computing Systems Workshops. 1EEE, 2011, pp. 123-128. [Online].
Available: doi.org/10.1109/ICDCSW.2011.34

A. S. Maiya and T. Y. Berger-Wolf, “Sampling community structure,”
in Proceedings of the 19th international conference on World wide web
- WWW ’10. New York, New York, USA: ACM Press, 2010, p. 701.
[Online]. Available: doi.org/10.1145/1772690.1772762

A. Terenin, D. Simpson, and D. Draper, “Asynchronous Gibbs
Sampling,” in International Conference on Artificial Intelligence and
Statistics. Palermo: PMLR, 6 2020, pp. 144-154. [Online]. Available:
doi.org/10.48550/arXiv.1509.08999

A. J. Uppal, J. Choi, T. B. Rolinger, and H. Howie Huang,
“Faster Stochastic Block Partition Using Aggressive Initial Merging,
Compressed Representation, and Parallelism Control,” 202/ [EEE
High Performance Extreme Computing Conference, HPEC 2021, 2021.
[Online]. Available: doi.org/10.1109/HPEC49654.2021.9622836

E. K. Kao, S. T. Smith, and E. M. Airoldi, “Hybrid Mixed-Membership
Blockmodel for Inference on Realistic Network Interactions,” IEEE
Transactions on Network Science and Engineering, vol. 6, no. 3,
pp- 336-350, 7 2019. [Online]. Available: doi.org/10.1109/TNSE.2018.
2823324

A. Strehl and J. Ghosh, “Cluster ensembles — a knowledge reuse
framework for combining multiple partitions,” The Journal of Machine
Learning Research, vol. 3, no. 3, pp. 583-617, 3 2003. [Online].
Available: [dl.acm.org/doi/10.1162/153244303321897735

doi.org/10.1016/j.physrep.2009.11.002
doi.org/10.1101/2023.02.06.527327
doi.wiley.com/10.1002/prot.10505
doi.org/10.1117/12.2305872
doi.org/10.1007/3-540-36233-9_15
doi.org/10.1088/1742-5468/2008/10/P10008
doi.org/10.1038/S41598-019-41695-Z
doi.org/10.1109/IPDPS.2015.59
doi.org/10.1073/pnas.0605965104
doi.org/10.1073/pnas.0605965104
doi.org/10.1103/PHYSREVE.80.056117
doi.org/10.1103/PhysRevLett.110.148701
doi.org/10.1109/HPEC.2017.8091040
doi.org/10.1017/9781009118897
doi.org/10.1017/9781009118897
doi.org/10.1103/PhysRevE.108.024309
doi.org/10.1109/HPEC.2019.8916542
doi.org/10.1109/HPEC49654.2021.9622846
doi.org/10.48550/arXiv.2108.06651
doi.org/10.1145/3545008.3545058
doi.org/10.1109/HPEC.2017.8091050
doi.org/10.48550/arXiv.2305.18663
doi.org/10.1103/PhysRevE.83.016107
doi.org/10.1103/PhysRevE.83.016107
doi.org/10.1103/PhysRevE.85.056122
doi.org/10.1145/3295500.3356182
doi.org/10.1145/1150402.1150479
doi.org/10.1109/ICDCSW.2011.34
doi.org/10.1145/1772690.1772762
doi.org/10.48550/arXiv.1509.08999
doi.org/10.1109/HPEC49654.2021.9622836
doi.org/10.1109/TNSE.2018.2823324
doi.org/10.1109/TNSE.2018.2823324
dl.acm.org/doi/10.1162/153244303321897735

	Introduction
	Background
	Stochastic Block Partitioning (SBP)
	Sampling from Graphs
	Parallelizing the MCMC Phase
	Distributed Computing

	Methodology
	The Integrated SBP Framework
	Additional Refinements

	Experiments
	Experimental Approach
	Evaluation Metrics
	Datasets
	Hardware

	Results
	Conclusion
	References

