
Exact Distributed Stochastic Block Partitioning
Frank Wanye

Dept. of Computer Science
Virginia Tech

Blacksburg, VA, USA
wanyef@vt.edu

Vitaliy Gleyzer
MIT Lincoln Laboratory

Lexington, MA, USA
vgleyzer@ll.mit.edu

Edward Kao
MIT Lincoln Laboratory

Lexington, MA, USA
edward.kao@ll.mit.edu

Wu-chun Feng
Dept. of Computer Science

Virginia Tech
Blacksburg, VA, USA

wfeng@vt.edu

Abstract—Stochastic block partitioning (SBP) is a community
detection algorithm that is highly accurate even on graphs
with a complex community structure, but its inherently serial
nature hinders its widespread adoption by the wider scientific
community. To make it practical to analyze large real-world
graphs with SBP, there is a growing need to parallelize and
distribute the algorithm. The current state-of-the-art distributed
SBP algorithm is a divide-and-conquer approach that limits
communication between compute nodes until the end of inference.
This leads to the breaking of computational dependencies, which
causes convergence issues as the number of compute nodes
increases and when the graph is sufficiently sparse. To address
this shortcoming, we introduce EDiSt — an exact distributed
stochastic block partitioning algorithm. Under EDiSt, compute
nodes periodically share community assignments during infer-
ence. Due to this additional communication, EDiSt improves
upon the divide-and-conquer algorithm by allowing it to scale
out to a larger number of compute nodes without suffering from
convergence issues, even on sparse graphs. We show that EDiSt
provides speedups of up to 26.9⇥ over the divide-and-conquer
approach and speedups up to 44.0⇥ over shared memory parallel
SBP when scaled out to 64 compute nodes.

Index Terms—community detection, graph clustering, stochas-
tic blockmodels, bayesian inference, asynchronous Gibbs, MPI

I. INTRODUCTION

Much of the data that is collected today contains entities
that are connected to each other. For example, in Internet
traffic data, network nodes communicate with each other via
packets, while in social media data, people interact with each
other’s posts and add each other to contact lists. Such data
can be represented in the form of a graph, where the entities
are represented by a graph’s vertices, and the relationships
between the entities are represented by the edges between

DISTRIBUTION STATEMENT A. Approved for public release. Distribu-
tion is unlimited.

This material is based upon work supported by the Under Secretary of De-
fense for Research and Engineering under Air Force Contract No. FA8702-15-
D-0001. Any opinions, findings, conclusions or recommendations expressed
in this material are those of the author(s) and do not necessarily reflect the
views of the Under Secretary of Defense for Research and Engineering.

©2023 Massachusetts Institute of Technology.
Delivered to the U.S. Government with Unlimited Rights, as defined

in DFARS Part 252.227-7013 or 7014 (Feb 2014). Notwithstanding any
copyright notice, U.S. Government rights in this work are defined by DFARS
252.227-7013 or DFARS 252.227-7014 as detailed above. Use of this work
other than as specifically authorized by the U.S. Government may violate any
copyrights that exist in this work.

This project was supported in part by NSF I/UCRC CNS-1822080 via the
NSF Center for Space, High-performance, and Resilient Computing (SHREC).

vertices. Often, these vertices form structural groups called
communities, such that the vertices within each group are
more closely connected to each other than they are to vertices
in other groups. The process of identifying these groups is
referred to as community detection [1].

Due to the expressive nature of the graph representation,
and the ubiquity of community structure in real-world graph
data, community detection has a lot of applications across a
wide variety of fields. These fields include bioinformatics,
where community detection has been used to aid in iden-
tifying carcinogenic gene combinations [2], communication
networks, where community detection can be used to aid in
the placement of servers [3], and artificial intelligence, where
community detection can be used as a pre-processing step
that leads to improved classification accuracy [4], [5]. The
proliferation of these use cases has led to a lot of interest in
research involving community detection.

Optimal community detection is an NP-hard problem.
Hence, various heuristics are used to approximate the commu-
nity structure of a graph [1]. One such heuristic is stochastic
blockmodel inference [6]. This heuristic involves building a
blockmodel, a latent model of the inter-community connectiv-
ity in a graph [7], and then iteratively perturbing this model
to find the combination of the number of communities and
vertex-to-community assignments that minimize the descrip-
tion length of the blockmodel.

Stochastic block partitioning (SBP) [6], [8] is a community
detection algorithm based on stochastic blockmodel inference.
It is of interest to the research community because, unlike
community detection methods that are not based on inference,
SBP does not struggle to identify statistically significant com-
munities [9]. For example, modularity-based methods often
exhibit a form of overfitting, leading to the identification
of spurious communities in random graphs without planted
communities [10]. Inference-based methods, on the other hand,
would conclude that such random graphs have no community
structure.

SBP is also highly accurate even when the graph community
structure is complicated by highly varied community sizes,
varied degree distributions within communities, and a high
degree of inter-community connectivity, as can be seen by
comparing the results obtained in the IEEE/Amazon/MIT
Graph Challenge [11]. However, SBP is slower than competing
community detection algorithms based on other heuristics and

IEEE Cluster 2023 Santa Fe, NM



difficult to parallelize owing to the fact that it is based on an in-
herently sequential Markov chain Monte Carlo algorithm [11].

There have been several attempts to accelerate SBP through
sampling [12], shared memory parallelism [13], and various
optimizations [14]. However, for the runtime of SBP to be
practical on large-scale, real-world graphs, which often consist
of upwards of millions of vertices and edges, the computation
needs to be distributed across multiple compute nodes.

To the best of our knowledge, only one distributed imple-
mentation of stochastic block partitioning exists: the divide-
and-conquer approach described in [15], henceforth abbre-
viated as DC-SBP. DC-SBP works similarly to the Map-
Reduce paradigm, with no communication between compute
nodes until the ”Reduce” phase, where partial results are
combined. Our testing of DC-SBP reveals that is suffers from
convergence issues that lead to severe degradation in the
quality of community structure that it infers and limit the
number of compute nodes that DC-SBP can scale to while
maintaining accuracy (see Section V-B).

Here we introduce a novel exact distributed stochastic block
partitioning (EDiSt1) algorithm that does not suffer from these
convergence issues owing to the introduction of periodic inter-
node MPI communication during the course of inference.
Thus, EDiSt enables distributed SBP on larger computational
clusters and on a larger variety of graphs without sacrificing
result quality. Note that the usage of “exact” in EDiSt refers
to the algorithm’s ability to maintain accuracy at scale and is
not a reference to exact community detection, which remains
an NP-hard problem. The differences between DC-SBP and
EDiSt are summarized in Table I.

TABLE I
DIFFERENCES BETWEEN EDIST AND DC-SBP

Parameter DC-SBP EDiSt
Data handling Round-robin data

distribution
Data duplication

Inter-node
communication

Limited to partial result
re-combination

Periodic
throughout
inference

Retains accuracy
beyond 16 MPI ranks

No Yes

Retains accuracy on
sparse graphs

No Yes

We summarize our main contributions as follows:
• An empirical analysis demonstrating convergence is-

sues in the state-of-the-art divide-and-conquer distributed
stochastic block partitioning as the number of MPI tasks
increases and when the graph is sufficiently sparse.

• A novel distributed stochastic partitioning algorithm —
EDiSt. We empirically show that EDiSt does not suffer
from convergence issues under the same conditions as the
divide-and-conquer approach, which allows it to make use
of more computational nodes and run on a larger variety
of graphs without sacrificing result quality.

1EDiSt code is available at https://github.com/vtsynergy/EDiSt

• An evaluation of EDiSt’s scalability, showing that by
scaling out to 64 compute nodes, EDiSt achieves up to
44.0⇥ speedup over shared memory parallel SBP and a
23.8⇥ speedup over divide-and-conquer distributed SBP.

II. BACKGROUND AND RELATED WORK

In this section, we provide some background on stochastic
blockmodels, the stochastic block partitioning algorithm, and
the state-of-the-art in distributed stochastic block partitioning.

A. Stochastic Blockmodels
Stochastic blockmodels (SBMs) [7] are a class of generative

models that describe the structure of a graph based on its
community structure. They can be used to either generate
graphs with a specified community structure or to infer the
community structure of a specified graph.

Typically, a stochastic blockmodel is represented by a
matrix M of size C ⇥ C, where C refers to the number
of communities present in the model. Every entry Ma,b of
the blockmodel matrix corresponds to the number of edges
between (or if the blockmodel is not microcanonical, the
probability of edges forming between) two communities a and
b.

A quality function is used to fit blockmodels to a given
graph when using them to perform community detection. One
such function is the log-likelihood of the graph G given the
blockmodel B, L(G|B). The log-likelihood function varies
between the different variants of SBMs. In this paper, we focus
on the degree-corrected SBM (DCSBM), which accounts for
differences in degree distribution between communities in a
graph. The log-likelihood for the DCSBM is given by the
following equation [6], [11]:

L(G|B) =
X

i,j

Bi,j log

 
Bi,j

douti dinj

!
, (1)

where Bi,j is the number of edges between communities i
and j, and douti and dinj are the out-degree of community i
and the in-degree of community j, respectively, for a directed
graph.

However, the log-likelihood function is unsuitable for com-
munity detection where the number of communities is not
known apriori. This is because L(G|B) will be maximized
when the number of communities C is equal to the number
of vertices V . To overcome this limitation, when the optimal
number of communities needs to be inferred alongside the op-
timal vertex-to-community assignment, the description length
metric, DL, is used instead of L(G|B). For a directed graph,
DL is given by the following equation [11], [16]:

DL = Eh

✓
C2

E

◆
+ V logC � L(G|B), (2)

where E is the number of edges in the graph, C is the number
of communities in the graph, h(x) = (1 + x) log 1 + x �
x log x, V is the number of vertices in the graph and L(G|B)
is given by Equation (1). Unlike L(G|B), DL is minimized
when used to infer the community structure of a graph.

IEEE Cluster 2023 Santa Fe, NM



B. Stochastic Block Partitioning
Stochastic block partitioning (SBP) [6], [8], [11] is a com-

munity detection algorithm based on inference over the degree-
corrected stochastic blockmodel (DCSBM). It minimizes the
description length of the DCSBM, as shown in Equation (2),
using Markov chain Monte Carlo (MCMC) techniques.

This optimization is iterative, agglomerative, and executed
in two alternating phases: the block merge phase and the
MCMC phase. In the MCMC phase, described in Algorithm 2,
the inherently sequential Metropolis-Hastings algorithm [17]
is used to move individual vertices from one community to
another, based on the change in the description length of the
DCSBM. In the block merge phase, described in Algorithm 1,
entire communities (or blocks) are merged together, reducing
the likelihood of the MCMC process getting stuck in a local
minimum. The algorithm’s execution is summarized in Fig. 1.

To allow the algorithm to automatically find the optimal
number of communities, a golden ratio search is used. In
this search algorithm, up to three versions of the blockmodel
are stored in decreasing order of number of communities. So
long as all three blockmodels are also in decreasing order of
description length, the next phase of the algorithm will start
with the blockmodel with the smallest number of communities
and proceed with the block merge phase. If, however, the
subsequent blockmodel results in an increased description
length, then the golden ratio criterion is met, and the optimal
number of communities is within the range specified by the
three stored blockmodels.

A parallel formulation of SBP was proposed in [13]. This
formulation replaced the Metropolis-Hastings portion of the
algorithm with a hybrid algorithm that processes informative,
high-degree vertices sequentially and the less informative low-
degree vertices in parallel via an adaptation of asynchronous
Gibbs sampling [18].

Algorithm 1: Block Merge Phase
Data: Graph G, Blockmodel B, int x
Result: Updated Blockmodel B

1 initialize best merges container;
2 for community c 2 B do in parallel
3 // x set to 10 as per reference implementation

repeat x times
4 Propose a new community c0 to merge with c;
5 Calculate �DL when c is merged with c0;
6 if �DL is best obtained so far for c then
7 Store (c, c0, �DL) in best merges;
8 end
9 end

10 end
11 sort best merges on �DL;
12 repeat
13 c, c0, �DL = best merges.pop();
14 Merge c into c0;
15 until number of communities is halved;

Algorithm 2: MCMC Phase
Data: Graph G, Blockmodel B, double t, int x
Result: Updated Blockmodel B

1 compute DL of B;
2 repeat
3 foreach vertex v 2 G do
4 propose new community c for v;
5 compute �DL for proposed move;
6 compute Metropolis-Hastings ratio from �DL;
7 if move is accepted then
8 move v to c and update B;
9 end

10 end
11 compute DL of B;
12 until �DL < t⇥DL or x times;

C. Divide-and-Conquer SBP

The data access patterns of SBP make distributing the
algorithm a non-trivial task. For every proposed change in
community membership, the algorithm needs access to at
least two rows and two columns of the SBM matrix. Thus,
a row- or column-wise distribution of the blockmodel would
lead to all-to-one communication for every proposed change
in community membership. Moreover, any accepted changes
in community membership (and the corresponding changes
to the blockmodel rows and columns) would need to be
broadcast to every other worker. A “traditional” distribution of
the algorithm would therefore be ineffective due to excessive
amounts of communication.

To the best of our knowledge, the only published distributed
SBP algorithm is the MPI-based divide-and-conquer (DC-
SBP) algorithm of Uppal, Swope, and Huang [15], developed
as part of the MIT/Amazon/IEEE Graph Challenge [11]. DC-
SBP divides the graph into n subgraphs, where n is the number
of MPI ranks/tasks. Each rank then runs the SBP algorithm on
its subgraph independently until the golden ratio criterion is
reached. The resulting community memberships are then sent
to the root rank, where they are combined. This combination
happens in two steps.

In the first step, community memberships from succes-
sive subgraph pairs are iteratively combined, such that each
community from one subgraph is merged into a community
from the other subgraph. The merges are selected based on
the best potential change in DL. This is repeated until the
number of subgraphs is reduced to a threshold t, which was
chosen as four by the authors. This allows the algorithm to
potentially recover if some subgraphs do not contain the same
communities.

In the second step, the remaining community memberships
are merged to form the community memberships for the entire
graph. SBP then continues on the whole graph using the root
rank, thus fine-tuning the merged results and allowing the
algorithm to find the optimal number of communities.

The pseudocode for DC-SBP is given in Alg. 3 while

IEEE Cluster 2023 Santa Fe, NM



Fig. 1. Snapshots of a graph at various stages of the stochastic block partitioning algorithm.

the actual code is available at https://github.com/iHeartGraph/
GraphChallenge. Their implementation is written in Python
using NumPy [19] for array operations and the mpi4py li-
brary [20] for distributed computation. Since Python is an
interpreted language, this Python implementation can be sig-
nificantly sped up by translating it to C++, which we do in
Section III-A.

Algorithm 3: Divide-and-Conquer SBP
Data: Graph G, MPI rank r
Result: Blockmodel B

1 subgraph Gr = round robin sample from G based on r;
2 partial blockmodel Br = create initial blockmodel

from Gr;
3 Br = SBP(Gr, Br);
4 partial results R = list(Br);
5 if r == 0 then
6 foreach rank r0, r0 6= 0 do
7 partial result Br0 = MPI Recv(r0);
8 append Br0 to R
9 end

10 else
11 MPI Send Br to rank 0;
12 return;
13 end
14 repeat
15 R0 = list();
16 foreach successive Br1, Br2 2 R do
17 B0 = merge Br2 communities into Br1

communities;
18 append B0 to R0

19 end
20 R = R0;
21 until R.length  4;
22 intermediate blockmodel B0 = merge partial results in

R;
23 return SBP(B0);

The disconnectedness between the subgraphs in DC-SBP

results in minimal communication between MPI ranks/tasks,
which theoretically allows the algorithm to efficiently scale
to a large number of nodes and neatly solves the problem
of how to distribute the blockmodel matrix. However, it also
creates convergence issues by breaking several computational
dependencies in the graph. Therefore, in practice, scaling the
algorithm to a large number of MPI tasks leads to severe
accuracy degradation (see SectionV-B).

Additionally, the fine-tuning phase happens on a single
computational node. These fine-tuning SBP iterations are
faster than the initial ones due to a greatly decreased number
of communities (assuming that the number of communities is
a small fraction of the number of vertices, which is generally
true in practice) and a decrease in the number of vertices that
change community membership, which leads to fewer block-
model updates being performed. However, on large graphs,
they can still present a significant performance bottleneck.

III. METHOD

Here we describe our baseline DC-SBP implementation and
our exact distributed stochastic block partitioning algorithm.

A. C++ Divide-and-Conquer SBP Implementation

To speed up the divide-and-conquer SBP implementation,
we first translate the Python implementation to C++ and use
MPI for communication between nodes. We then optimize
the translated implementation for faster execution on sparse
graphs. Some of the optimizations implemented include

• storing the blockmodel matrix as a vector of hashmap
objects for fast indexing and modification of the matrix;

• storing the transpose of the blockmodel matrix for fast
access along both rows and columns at the expense of
additional memory usage;

• using a sparse vector of changes to the blockmodel to
compute changes in description length and to update the
blockmodel matrix when an MCMC move is accepted;

• using a disjoint-set data structure to keep track of commu-
nity merges during the block merge phase of SBP, which
speeds up the block merge phase of the algorithm.

IEEE Cluster 2023 Santa Fe, NM

https://github.com/iHeartGraph/GraphChallenge
https://github.com/iHeartGraph/GraphChallenge


While we can speed up the gathering of partial results to the
root MPI rank using collective operations, this is not necessary
since the gather operation only executes once and does not
consume a significant amount of time.

To parallelize the computation within an MPI rank, we use
our hybrid SBP [13] algorithm implemented using OpenMP.

B. Exact Distributed SBP

The main difference between the DC-SBP algorithm and
our exact distributed approach lies in the inter-subgraph con-
nectivity. In DC-SBP, the subgraphs are disconnected, and an
MPI rank working on subgraph A has no knowledge of the
vertices or the communities in subgraph B. As such, the more
ranks (and subgraphs) there are, the less information a rank has
access to and the higher the chances that the SBP algorithm
fails to converge. The upside of this lack of connectivity is that
processing each subgraph requires much less memory and is
much faster, both due to the super-linear runtime of SBP and
the minimal inter-node communication.

In our exact distributed approach, we allow each rank to
have knowledge of the vertices and communities present in
the other ranks. Each rank stores the blockmodel for the
entire graph but is responsible for the computation of only
a portion of the communities or vertices, depending on the
phase of the algorithm. Since communicating every change
to the blockmodel is impractical due to the communication
burden this would impose, we allow the ranks to synchronize
their blockmodels at the end of every block merge phase and
after each MCMC iteration.

In the block merge phase, each rank is responsible for
computing the merge proposals and corresponding changes
in description length for a disjoint set of communities. Once
these computations are done, the ranks communicate the merge
proposal with the best (most negative) change in description
length for each of the communities they are responsible for,
to all the other ranks using MPI all-to-all communication
primitives. Each rank then selects the best merges according
to their computed change in description length and updates
its blockmodel accordingly. The pseudocode for this phase is
shown in Algorithm 4.

In the MCMC phase, each rank is responsible for com-
puting proposals to change community memberships and the
corresponding changes in description length for a disjoint
set of vertices. Each rank makes a pass over the vertices
assigned to it, updating its local copy of the blockmodel,
as needed, and storing the move in a vector. At the end
of the pass, the ranks exchange the accepted moves using
MPI all-to-all communication primitives. Then, each rank
updates its local copy of the blockmodel by performing the
moves received from all other ranks. The pseudocode for this
phase is shown in Algorithm 5. Note that for consistency, the
pseudocode shown is for the sequential, Metropolis-Hastings-
based MCMC phase. However, the differences between the
distributed hybrid MCMC phase used in this work and the
distributed Metropolis-Hastings MCMC phase are minimal.

Algorithm 4: Block Merge Phase in EDIST
Data: Graph G, Blockmodel B, int x, MPI rank r
Result: Updated Blockmodel B

1 N = MPI Comm size(MPI COMM WORLD);
2 initialize best merges container;
3 for community c 2 B do in parallel
4 if c mod N 6= r then
5 continue;
6 end
7 repeat x times
8 Propose a new community c0 to merge with c;
9 Calculate �DL when c is merged with c0;

10 if �DL is best obtained so far for c then
11 Store c0 and �DL for c in best merges;
12 end
13 end
14 end
15 MPI Allgather(best merges);
16 sort best merges on �DL;
17 repeat
18 c, c0 = best merges.pop();
19 Merge c into c0;
20 until number of communities is halved;

Algorithm 5: MCMC Phase in EDIST
Data: Graph G, Blockmodel B, double t, int x, list

V 0 of vertices this rank is responsible for
Result: Updated Blockmodel B

1 compute DL of B;
2 repeat
3 initialize accepted merges container;
4 foreach vertex v 2 G do
5 if v /2 V 0 then
6 continue;
7 end
8 propose new community c for v;
9 compute �DL for proposed move;

10 compute Metropolis-Hastings ratio from �DL;
11 if move is accepted then
12 move v to c and update B;
13 store v and c in accepted merges;
14 end
15 end
16 MPI Allgather(accepted merges);
17 foreach v and c pair in accepted merges do
18 if vertex v is not in community c then
19 move v to c and update B;
20 end
21 end
22 compute DL of B;
23 until �DL < t⇥DL or x times;

IEEE Cluster 2023 Santa Fe, NM



To maintain load balance in the MCMC phase, we adopt
a method similar to the sorting-based blocking algorithm
described in [21]. We first sort the vertices according to vertex
degree. Then, assuming there are n ranks, rank r gets assigned
the set of vertices (r, 2n�r, 2n+r, 4n�r, 4n+r, 6n�r, ...).
This has the effect of breaking the sorted set of vertices in
chunks of 2n and then assigning to each rank the vertices
with the rth highest and rth lowest degrees. On the 200k-hard
graph described in Table II, we found that with 32 MPI ranks
the imbalance time [22] for the MCMC phase of EDiSt is
about 1.75 seconds or 2.2% of the total MCMC runtime. In
other words, optimal load balancing for that run would only
provide a maximum additional speedup of 1.02⇥.

The synchronization of the blockmodels between ranks and
the fact that each rank keeps track of the entire blockmodel
means that the exact distributed SBP approach is likely to
be slower and require more memory per rank than DC-SBP.
At the same time, these weaknesses allow it to scale to a
much higher number of ranks before accuracy degradation can
be expected to set in (as n approaches V , EDiSt becomes
equivalent to asynchronous Gibbs, which has previously been
shown to degrade performance on some synthetic graphs [13]).
On graphs with a particularly sparse dependency distribution,
it is theoretically possible to scale the approach to V MPI
ranks without any accuracy degradation.

IV. EXPERIMENTAL SETUP

In this section, we describe the datasets and hardware used
to evaluate DC-SBP and EDiSt.

A. Synthetic Datasets

We use the datasets published in the MIT/Amazon/IEEE
Graph Challenge [11] to compare the results of our approach
with those presented in [15]. These graphs were generated
using the ‘graph-tool’ [23] Python library by generating a
blockmodel with the desired characteristics and then perturb-
ing a random graph until it matches these characteristics as
closely as possible. The selected graphs are summarized in
Table II. The graphs labeled as ‘easy’ correspond to those
with a low block overlap and low block size variation, and
those labeled as ‘hard’ correspond to those with a high block
overlap and high block size variation.

When testing the divide-and-conquer approach, we noticed
significant differences in how well the algorithm retains ac-
curacy as the number of nodes increases based on the graph
structure. On the Graph Challenge [11] graphs, the divide-
and-conquer approach maintained accuracy until between 8
and 16 MPI ranks; but on the web-graph-like graphs used
in [13], the divide-and-conquer approach sometimes failed to
maintain accuracy even with two MPI ranks. This is despite
the fact that both sets of graphs were generated using a
similar approach, using the blockmodel-based generator from
the ‘graph-tool’ [23] Python library. To determine the cause of
this disparity, we identified the following differences between
the two sets of graphs:

• Number of communities: the Graph Challenge graphs had
a significantly smaller ratio of communities to vertices.

• Degree sequence duplication: the ‘graph-tool’ graph gen-
erator requires a sequence of vertex degrees, describ-
ing the graph’s degree distribution, to be passed to its
generating function. In the graph-tool, a single sequence
was used for both the in-degrees and out-degrees of the
graph’s vertices, essentially ensuring that the minimum
total degree of a vertex is equal to twice the smallest
in-degree. In the web-graph-like graphs, a total degree
sequence is generated, and its values are then randomly
split between the in-degree and out-degree sequences,
thus allowing the generator to output vertices with a total
degree of one.

• Truncation of degree distribution: the Graph Challenge
graphs truncate the degree distribution to between 10
and 100 (which effectively becomes 20 and 200 when
coupled with the degree sequence duplication described
above). The web-graph-like graphs have a much wider
degree distribution, with the minimum degree set to one
and the maximum degree set to a fraction of the number
of vertices in the graph.

We then generate a set of 16 synthetic graphs that form an
exhaustive parameter search study of these differences. These
graphs are described in Table III. For reference, the Graph
Challenge datasets are closest in structure to the TTT33 graph,
while the web-graph-like graphs are closest in structure to the
FFF150 graph.

We also generate large, synthetic graph datasets for test-
ing the scalability of distributed community detection. These
datasets, which range from 11 to 300 million edges, are
summarized in Table IV.

TABLE IV
SYNTHETIC GRAPHS USED IN SCALING STUDY

ID Number of
Communities

Number of
Vertices

Number of
Edges

1M 1075 1051218 11056834
2M 1521 2103554 23987218
4M 2151 4221264 53175026

To ensure the rigor of our experimental evaluation of DC-
SBP and EDiSt, we generate all synthetic graphs to have a
complex community structure in accordance with the high
overlap, high block size variation graphs used in the Graph
Challenge [11]. That is, the ratio of intra-community to inter-
community edges is roughly 2, and the approximate sizes of
the communities are drawn from a random Dirichlet distribu-
tion with ↵ = 2.

B. Real-world datasets

We also test our approach on real-world data from a variety
of domains. The five graphs outlined in Table V are graphs
from the Stanford Large Network Dataset Collection [24] and
the Laboratory for Web Algorithmics dataset collection [25]–
[27], obtained in Matrix Market format via the SuiteSparse

IEEE Cluster 2023 Santa Fe, NM



TABLE II
GRAPH CHALLENGE DATASETS

ID Number of Number of Community Community Size Number of
Vertices Edges Overlap Variation Communities

20K-easy 20, 000 473914 low low 32
20k-hard 20, 000 473329 high high 32
50K-easy 50, 000 1183975 low low 44
50k-hard 50, 000 1187682 high high 44

200k-easy 200, 000 4750333 low low 71
200k-hard 200, 000 4754406 high high 71

TABLE III
SYNTHETIC GRAPHS USED IN EXHAUSTIVE PARAMETER SEARCH STUDY

ID Truncated Min
Degree

Truncated Max
Degree

Duplicated Degree
Sequence

Number of
Communities

Number of
Vertices

Number of
Edges

Average
Degree

TTT33 True True True 33 22599 899283 39.8
TTT150 True True True 150 22599 826861 36.6
TTF33 True True False 33 22599 452232 20.0
TTF150 True True False 150 22599 421317 18.6
TFT33 True False True 33 22599 1059970 46.9
TFT150 True False True 150 22599 912644 40.4
TFF33 True False False 33 22599 540410 23.9
TFF150 True False False 150 22598 471071 20.8
FTT33 False True True 33 21896 79683 3.6
FTT150 False True True 150 22036 78226 3.5
FTF33 False True False 33 19220 39719 2.1
FTF150 False True False 150 19221 38408 2.0
FFT33 False False True 33 22157 83939 3.8
FFT150 False False True 150 21958 81298 3.7
FFF33 False False False 33 19516 41378 2.1

FFF150 False False False 150 19358 40835 2.1

Matrix Collection [28]. These graphs range from 3.4 to 194
million edges in size and do not have robust, non-overlapping
ground-truth communities.

TABLE V
REAL-WORLD GRAPHS USED IN SCALING STUDY

Graph
ID

Description Number of
Vertices

Number of
Edges

Amazon Amazon co-purchasing
graph

403394 3387388

Berk-
Stan

Web graph containing
hyperlinks

685230 7600595

Twitter Twitter social network
graph

456626 14855842

Patents Citation graph in US
patents

3774768 16418948

Live-
Journal

LiveJournal social
network graph

4847571 68993773

In-
dochina

Web crawl of country
domains

7414866 194109311

C. Hardware
All our strong-scaling experiments are run on the base

compute nodes of the Virginia Tech TinkerCliffs cluster.
TinkerCliffs contains 308 base compute nodes, each equipped
with 128-core AMD EPYC 7702 chips and having 256 GB of
memory. The 128 cores are arranged in eight NUMA nodes
with 16 cores each, and the interconnect used is HDR-100 IB.
Though the total number of base compute nodes is 308, the

maximum number of nodes allowed in any slurm job is 64.
Hence, our experiments are limited to 64 compute nodes.

Our smaller experiments were run on the Dell nodes of
the Virginia Tech Infer cluster. Infer contains 40 Dell nodes
with 28 cores per node, 512Gb of memory each and uses an
Ethernet interconnect.

V. RESULTS

Here we present the results of our evaluation of DC-SBP
and SBP. We show that our C++ DC-SBP implementation is
just as accurate as the original Python implementation while
being faster. We illustrate the two failure modes of DC-SBP
and show that EDiSt does not exhibit these failure modes.
Finally, we show that by leveraging its improved scalability,
EDiSt provides faster runtimes and higher accuracy than DC-
SBP on both synthetic and real-world graphs.

A. Accuracy of our C++ DC-SBP Implementation
To ascertain that our C++ DC-SBP implementation is just as

accurate as the original Python implementation, we compare
the normalized mutual information (NMI) results obtained at
eight MPI ranks with the original Python DC-SBP implemen-
tation and our C++ DC-SBP implementation on the Graph
Challenge graphs (similar to the ones for which results were
reported in [15]) on the Infer cluster. The results, summarized
in Table V-A show that the NMI obtained with our C++
implementation matches or exceeds the NMI obtained with
the Python implementation on all three graphs.

IEEE Cluster 2023 Santa Fe, NM



TABLE VI
COMPARISON BETWEEN PYTHON AND C++ DC-SBP

IMPLEMENTATIONS

Graph Python C++
ID NMI1 Runtime (s) NMI1 Runtime (s)

20k-easy 0.98 171 1.00 26
20k-hard 0.82 163 0.86 30
50k-easy 0.96 441 1.00 100
50k-hard 0.72 379 0.84 178

200k-easy 0.93 7641 1.00 604
200k-hard 0.81 7244 0.81 479
1 NMI = normalized mutual information.

The improved runtime performance is due to our optimiza-
tions and the use of a compiled language. The slight improve-
ment in NMI is most likely due to our use of the Hybrid
SBP algorithm for parallelizing MCMC movements within a
node, compared to the batch-based parallelism employed in
the original Python implementation.

B. Exhaustive Parameter Search Study

We run DC-SBP with varying numbers of compute nodes on
the exhaustive parameter search study graphs described in III
and record the resulting NMI. The results are summarized in
Table VII (left).

These results illustrate the two conditions where DC-SBP
suffers from convergence issues. The first condition occurs
when the number of compute nodes (or MPI tasks) is greater
than or equal to 16. The second condition occurs when the
degree distribution is not truncated on the minimum degree
side (i.e., the minimum vertex degree is one or two). This is
because this parameter has the biggest effect on the density
of the graph, and the resulting graphs are significantly more
sparse than the graphs with a truncated degree distribution.
This suggests that DC-SBP works much better on denser
graphs, and could explain why DC-SBP maintains NMI on
TFT33, the densest of these graphs, at 16 compute nodes.

Fig. 2. Relationship between the number of island vertices induced by the
data distribution and the resulting NMI.

We attribute this to the number of island vertices induced by
the data distribution method in DC-SBP. This is corroborated

by Figure 2, which shows the relationship between the number
of island vertices and the NMI obtained on the results in
Table VII above. As the number of island vertices increases,
the NMI decreases. DC-SBP appears to be robust up to a
relatively high number of island vertices of around 10%,
but NMI drops off after that and rests at zero beyond 20%.
Tellingly, on the sparser graphs, and with a high number of
compute nodes, the data distribution scheme results in upwards
of 50% island vertices.

We repeat the exhaustive parameter search study using
EDiSt on the same set of graphs and record the results in Ta-
ble VII (right). Our results demonstrate that EDiSt converges
well even when the number of compute nodes is high, and the
graphs are sparse due to a power law degree distribution with
the minimum degree being one.

C. Scalability Analysis on Synthetic Graphs

In this subsection, we discuss the scalability of EDiSt on
synthetic graphs and compare the results to those obtained
with DC-SBP.

1) Scalability on a Single Node: The hybrid MCMC
method described in [13] alternates between sequential and
parallel MCMC execution. This leads to extended periods of
low CPU utilization where only one thread is running. In
such cases, running EDiSt on multiple MPI tasks on the same
node can improve SBP runtime, provided the node has enough
memory and the total number of tasks is significantly smaller
than the number of high-degree vertices in the graph (in this
case, the hybrid parallel MCMC algorithm would devolve into
asynchronous Gibbs, which could reduce accuracy on certain
graphs).

Fig. 3. EDiSt runtime with multiple MPI tasks per compute node.

In Figure 3, we showcase this increase in speedup by
running EDiSt on the 1M graph described in Table IV on
a single node, and increasing the number of MPI tasks until
we run out of memory.

Our results indicate that there is a runtime benefit to running
multiple EDiSt MPI tasks per node, with a speedup of 9⇥ with
16 MPI tasks per node. In all proceeding sections, we run

IEEE Cluster 2023 Santa Fe, NM



TABLE VII
NMI RESULTS ON EXHAUSTIVE PARAMETER SEARCH GRAPHS

Graph NMI with DC-SBP at Number of Nodes
ID Baseline (1) 2 4 8 16 32 64

TTT33 0.92 0.96 0.89 0.90 0.87 0.00 0.00
TTT150 0.97 0.97 0.97 0.96 0.88 0.00 0.00
TTF33 0.96 0.89 0.95 0.95 0.00 0.00 0.00

TTF150 0.95 0.96 0.96 0.93 0.67 0.00 0.00
TFT33 0.97 0.97 0.97 0.91 0.96 0.73 0.00

TFT150 0.97 0.97 0.97 0.96 0.80 0.00 0.00
TFF33 0.97 0.92 0.89 0.97 0.65 0.00 0.00

TFF150 0.96 0.96 0.96 0.93 0.00 0.00 0.00
FTT33 0.66 0.53 0.00 0.00 0.00 0.00 0.00

FTT150 0.72 0.59 0.00 0.00 0.00 0.00 0.00
FTF33 0.38 0.00 0.00 0.00 0.00 0.00 0.00

FTF150 0.48 0.00 0.00 0.00 0.00 0.00 0.00
FFT33 0.74 0.66 0.00 0.00 0.00 0.00 0.00

FFT150 0.72 0.69 0.00 0.00 0.00 0.00 0.00
FFF33 0.34 0.00 0.00 0.00 0.00 0.00 0.00

FFF150 0.48 0.00 0.00 0.00 0.00 0.00 0.00

Graph NMI with EDiSt at Number of Nodes
ID Baseline (1) 2 4 8 16 32 64

TTT33 0.92 0.88 0.94 0.93 0.95 0.95 0.94
TTT150 0.97 0.97 0.97 0.97 0.97 0.97 0.97
TTF33 0.96 0.89 0.96 0.96 0.95 0.96 0.96

TTF150 0.95 0.95 0.95 0.96 0.97 0.97 0.95
TFT33 0.97 0.96 0.98 0.98 0.97 0.96 0.96

TFT150 0.97 0.97 0.97 0.97 0.97 0.97 0.97
TFF33 0.97 0.96 0.96 0.97 0.97 0.96 0.96

TFF150 0.96 0.95 0.97 0.96 0.95 0.95 0.95
FTT33 0.66 0.66 0.66 0.67 0.67 0.65 0.66

FTT150 0.72 0.72 0.72 0.73 0.72 0.70 0.72
FTF33 0.38 0.38 0.38 0.35 0.36 0.34 0.38

FTF150 0.48 0.42 0.48 0.44 0.49 0.39 0.48
FFT33 0.74 0.75 0.74 0.74 0.75 0.75 0.73

FFT150 0.72 0.71 0.72 0.72 0.72 0.75 0.72
FFF33 0.34 0.35 0.38 0.36 0.38 0.38 0.40
FFF150 0.48 0.51 0.53 0.51 0.51 0.52 0.53

EDiSt with four MPI tasks per node (we run out of memory
when attempting more tasks per node with larger graph sizes).
We do not do the same for DC-SBP, because the convergence
issues observed when the number of MPI ranks is increased
make such a solution impractical for that algorithm.

2) Strong Scaling: We run EDiSt on the synthetic scaling
graphs we describe in Table IV and measure the resulting NMI
and Runtime. Figure 4 shows the runtime and NMI results of
EDiSt as the number of nodes increases from 1 to 64.

Fig. 4. EDiSt strong scaling (top) and NMI (bottom) results on synthetic
graphs.

These results confirm that EDiSt maintains result quality
both at high numbers of MPI tasks and on sparse graphs.

Given that we run EDiSt with 4 MPI tasks per node, EDiSt
is therefore usable on at least 16⇥ more MPI tasks than DC-
SBP. Though the runtimes do start to plateau, the level-off
point increases as the graph size increases, suggesting that up
to 64 nodes, the runtime benefits of EDiSt will scale with the
graph size.

3) Comparison with DC-SBP: We then compare the
speedups obtained with EDiSt to those obtained with DC-
SBP. In the case of DC-SBP, for each graph, we select the
runtime at the highest number of MPI tasks at which DC-SBP
maintains NMI with the single-node shared-memory baseline.
The results are shown in Figure 5.

Fig. 5. Comparison of the best speedup achieved with DC-SBP and EDiSt
on the three synthetic scaling graphs.

These results show that EDiSt on 64 compute nodes is up
to 44.0⇥ faster than single node shared memory SBP, and up
to 23.8⇥ faster than the best-performing DC-SBP run that did
not suffer from convergence issues.

D. Real-World Graphs Results
Finally, we run both DC-SBP and EDiSt on the real-world

datasets described in Table V. Due to memory restrictions,
when running EDiSt on the Indochina graph, we use two
MPI tasks per node instead of four. Because real-world graphs
do not have known ground truth communities, we measure

IEEE Cluster 2023 Santa Fe, NM



Fig. 6. EDiSt vs DC-SBP strong scaling (top) and accuracy as measured by Normalized DL (bottom, lower is better) results on real-world graphs. The
single-node EDiSt run on LiveJournal was not completed due to excessive runtime.

accuracy using the normalized description length (DLnorm)
metric [13], which is given by the equation: DLnorm =

DL
DLnull , where DL refers to the description length of the
blockmodel returned by either algorithm and DLnull refers to
the description length of a null blockmodel where all vertices
are assigned to the same singular community.

The DLnorm and strong scaling results obtained are sum-
marized in Figure 6. EDiSt is up to 26.8⇥ faster than DC-SBP
on these graphs because DC-SBP usually produces meaningful
results on only 2-8 subgraphs. On the Twitter and Indochina
graphs, which have the highest average degrees, DC-SBP
maintains accuracy reasonably well up to 16 subgraphs. As
such, EDiSt’s speedup over DC-SBP on the Twitter and In-
dochina graphs is only 3.4⇥ and 7.3⇥, respectively. Therefore,
these results corroborate our findings on synthetic graphs.

In addition to measuring runtime, we profile the execution
of EDiSt on the LiveJournal graph on 64 compute nodes (256
MPI ranks) using the mpiP software. The profiling results

showed that MPI calls took up 6.7% of EDiSt’s total runtime,
with a total of 100.2GB of packets being communicated
between the MPI ranks. Thus, at this scale, further algorithmic
refinements of SBP are more likely to significantly speed up
the algorithm than optimizing communication patterns.

E. Discussion

Our results show that DC-SBP has convergence issues on
sufficiently sparse graphs, and when the number of compute
nodes (and therefore, distinct subgraphs) is 16 or higher. Thus,
its applicability is limited to dense graphs on small clusters.
On the other hand, the exact distributed stochastic block parti-
tioning (EDiSt) algorithm converges in both of these scenarios,
making it applicable in a much wider variety of situations.
In addition to this, the single-node partial result combination
in DC-SBP leads to severe bottlenecks on larger graphs with
more communities, to the point where the theoretically slower
EDiSt outperforms it on the same number of nodes.

IEEE Cluster 2023 Santa Fe, NM



However, DC-SBP does have one major advantage over
EDiSt - it incorporates data distribution. With the advent of
web-scale graphs, which contain on the order of billions of
edges, data distribution is becoming more and more important
for large graph processing. However, given the current state
of the SBP algorithm, we argue that runtime is a bigger
bottleneck than memory usage. For example, the 69 million
edge LiveJournal graph takes over an hour to process on
64 nodes. More importantly, we were able to load in a
300M edge synthetic graph on the tinkercliffs cluster, but
could not complete its processing within eight hours on 64
nodes. Additionally, data reduction techniques like sampling,
which have been shown to preserve community structure in
graphs [12], [29], [30], are a promising means of reducing the
memory footprint of graphs that do not fit in memory.

It should be noted that even on 64 nodes, EDiSt is
slower than various shared memory implementations of non-
inferential community detection algorithms. As discussed
in [9], inference-based methods such as SBP are preferred over
other heuristics when performing data analysis tasks, where it
is important to explain the nature of the communities, as these
methods are less prone to overfitting and can distinguish be-
tween random graphs and graphs with an inherent community
structure. In tasks such as load balancing, where the number of
between-community edges needs to be minimized but there is
no need to explain why or how these communities came about,
the faster heuristics are likely to be preferred over SBP.

VI. CONCLUSION

Community detection is an important graph analytics task
with applications in a wide variety of fields, from bioin-
formatics to social media analytics. Due to the growth in
the size of modern graph datasets, sequential community
detection algorithms are no longer practical for many real-
world scenarios. This presents a problem for relatively slow
and hard-to-parallelize algorithms like stochastic block par-
titioning (SBP), which has largely limited its applicability
in prior work to smaller datasets. In this work, we take a
significant step towards making SBP practical on web-scale
graphs by distributing its computation on multiple nodes of a
computational cluster.

We first empirically show that the state-of-the-art distributed
SBP algorithm, the divide-and-conquer SBP (DC-SBP) algo-
rithm, has two conditions under which it suffers from poor
convergence. The first occurs when the number of compute
nodes is high, and the second occurs when the graph is
sufficiently sparse. In both cases, the quality of community
detection results is negatively affected, often to the point
where the algorithm fails to converge entirely. This effect
on convergence is largely a result of the combination of
the round-robin distribution strategy and lack of inter-node
communication within DC-SBP, which lead to subgraphs being
independently processed with many island vertices.

We then introduce our exact distributed SBP (EDiSt) algo-
rithm, which tackles both conditions by (a) allowing data to be
duplicated across MPI tasks, and (b) allowing communication

between the subgraphs being processed. We empirically show
that EDiSt maintains result quality both at large numbers of
MPI tasks and on sparse graphs.

Because the recombination phase of DC-SBP runs on a
single node, and because EDiSt can scale to a larger number
of MPI tasks without sacrificing accuracy, EDiSt is faster than
DC-SBP when run on computational clusters. In our results,
using 64 compute nodes and 256 MPI tasks, we achieve
speedups as high as 26.9⇥ over the best-performing DC-SBP
run on the same real-world graph, and as high as 23.8⇥ on
the same synthetic graph. Additionally, EDiSt is up to 44.0⇥
faster than shared memory parallel SBP on a single node.

The two approaches are not antithetical. Unlike DC-SBP,
EDiSt lacks a proper data distribution method. Implementing a
distributed data structure for EDiSt is untrivial due to the need
for both column-wise and row-wise traversal of the underlying
blockmodel matrix, as well as the random memory access
pattern that is a result of the randomness inherent to SBP.

In future work, we aim to improve the accuracy of DC-SBP
via an improved data distribution strategy such as METIS [31]
or a localized approach that approximates Voronoi decom-
position on a graph. Then, each partition/subgraph can be
processed at scale using EDiSt. Such a hybrid method could
benefit from both the data distribution of DC-SBP and the
scalability of EDiSt. We would also like to scale EDiSt to
larger clusters. With a large number of nodes, the all-to-
all communication patterns in EDIST are likely to present a
significant bottleneck. To mitigate this, we plan to explore
alternative communication approaches, including MPI one-
sided communication primitives and prioritizing communica-
tion based on the Fisher information content of the edges in
the graph [32].

ACKNOWLEDGMENT

The authors acknowledge Advanced Research Computing
at Virginia Tech for providing computational resources and
technical support that have contributed to the results reported
within this paper. URL: https://arc.vt.edu/

REFERENCES

[1] S. Fortunato, “Community detection in graphs,” Physics Reports,
vol. 486, no. 3-5, pp. 75–174, 2 2010. [Online]. Available:
doi.org/10.1016/j.physrep.2009.11.002

[2] V. Oles, S. Dash, and R. Anandakrishnan, “BiGPICC: a graph-based
approach to identifying carcinogenic gene combinations from mutation
data,” bioRxiv, p. 2023.02.06.527327, 2 2023. [Online]. Available:
doi.org/10.1101/2023.02.06.527327

[3] B. Krishnamurthy, J. Wang, B. Krishnamurthy, and J. Wang, “On
network-aware clustering of Web clients,” in ACM SIGCOMM Computer
Communication Review, vol. 30, no. 4. Stockholm, Sweden: ACM,
2000, pp. 97–110. [Online]. Available: doi.org/10.1145/347057.347412

[4] G. Rizos, S. Papadopoulos, and Y. Kompatsiaris, “Multilabel user
classification using the community structure of online networks,”
PLOS ONE, vol. 12, no. 3, p. e0173347, 2017. [Online]. Available:
doi.org/10.1371/journal.pone.0173347

[5] G. Li, D. Zhang, and Y. Li, “Packet Classification Using
Community Detection,” in 2017 IEEE International Symposium
on Parallel and Distributed Processing with Applications and
2017 IEEE International Conference on Ubiquitous Computing and
Communications (ISPA/IUCC). Guangzhou, China: IEEE, 2017, pp.
94–100. [Online]. Available: doi.org/10.1109/ISPA/IUCC.2017.00023

IEEE Cluster 2023 Santa Fe, NM

doi.org/10.1016/j.physrep.2009.11.002
doi.org/10.1101/2023.02.06.527327
doi.org/10.1145/347057.347412
doi.org/10.1371/journal.pone.0173347
doi.org/10.1109/ISPA/IUCC.2017.00023


[6] T. P. Peixoto, “Parsimonious Module Inference in Large Networks,”
Physical Review Letters, vol. 110, no. 14, p. 148701, 4 2013. [Online].
Available: doi.org/10.1103/PhysRevLett.110.148701

[7] B. Karrer and M. E. J. Newman, “Stochastic blockmodels and
community structure in networks,” Physical Review E, vol. 83, no. 1,
p. 016107, 1 2011. [Online]. Available: doi.org/10.1103/PhysRevE.83.
016107

[8] T. P. Peixoto, “Efficient Monte Carlo and greedy heuristic for the
inference of stochastic block models,” Physical Review E, vol. 89, no. 1,
p. 012804, 1 2014. [Online]. Available: doi.org/10.1103/PhysRevE.89.
012804

[9] ——, Descriptive vs. inferential community detection in networks:
pitfalls, myths, and half-truths. Cambridge: Cambridge University
Press, 11 2023. [Online]. Available: doi.org/10.1017/9781009118897

[10] R. Guimerà, M. Sales-Pardo, and L. A. Amaral, “Modularity from
fluctuations in random graphs and complex networks,” Physical
Review E - Statistical Physics, Plasmas, Fluids, and Related
Interdisciplinary Topics, vol. 70, no. 2, p. 4, 8 2004. [Online].
Available: doi.org/10.1103/PhysRevE.70.025101

[11] E. Kao, V. Gadepally, M. Hurley, M. Jones, J. Kepner, S. Mohindra,
P. Monticciolo, A. Reuther, S. Samsi, W. Song, D. Staheli, and
S. Smith, “Streaming graph challenge: Stochastic block partition,”
in 2017 IEEE High Performance Extreme Computing Conference
(HPEC). Waltham, MA: IEEE, 9 2017, pp. 1–12. [Online]. Available:
doi.org/10.1109/HPEC.2017.8091040

[12] F. Wanye, V. Gleyzer, and W.-c. Feng, “Fast Stochastic Block
Partitioning via Sampling,” in 2019 IEEE High Performance Extreme
Computing Conference (HPEC). Waltham, MA, USA: IEEE, 9 2019,
pp. 1–7. [Online]. Available: doi.org/10.1109/HPEC.2019.8916542

[13] F. Wanye, V. Gleyzer, E. Kao, and W.-c. Feng, “On the Parallelization
of MCMC for Community Detection,” in Proceedings of the 51st
International Conference on Parallel Processing. New York, NY,
USA: ACM, 2022, pp. 1–13. [Online]. Available: doi.org/10.1145/
3545008.3545058

[14] A. J. Uppal, J. Choi, T. B. Rolinger, and H. Howie Huang,
“Faster Stochastic Block Partition Using Aggressive Initial Merging,
Compressed Representation, and Parallelism Control,” 2021 IEEE
High Performance Extreme Computing Conference, HPEC 2021, 2021.
[Online]. Available: doi.org/10.1109/HPEC49654.2021.9622836

[15] A. J. Uppal, G. Swope, and H. H. Huang, “Scalable stochastic
block partition,” in 2017 IEEE High Performance Extreme Computing
Conference (HPEC). IEEE, 9 2017, pp. 1–5. [Online]. Available:
doi.org/10.1109/HPEC.2017.8091050

[16] T. P. Peixoto, “Entropy of stochastic blockmodel ensembles,” Physical
Review E, vol. 85, no. 5, p. 056122, 5 2012. [Online]. Available:
doi.org/10.1103/PhysRevE.85.056122

[17] W. K. Hastings, “Monte Carlo sampling methods using Markov chains
and their applications,” Biometrika, vol. 57, no. 1, pp. 97–109, 4 1970.
[Online]. Available: doi.org/10.1093/biomet/57.1.97

[18] A. Terenin, D. Simpson, and D. Draper, “Asynchronous Gibbs
Sampling,” in International Conference on Artificial Intelligence and
Statistics. Palermo: PMLR, 6 2020, pp. 144–154. [Online]. Available:
doi.org/10.48550/arXiv.1509.08999

[19] S. van der Walt, S. C. Colbert, and G. Varoquaux, “The NumPy
Array: A Structure for Efficient Numerical Computation,” Computing
in Science & Engineering, vol. 13, no. 2, pp. 22–30, 3 2011. [Online].
Available: doi.org/10.1109/MCSE.2011.37

[20] L. Dalcı́n, R. Paz, M. Storti, and J. D’Elı́a, “MPI for Python: Perfor-
mance improvements and MPI-2 extensions,” Journal of Parallel and
Distributed Computing, vol. 68, no. 5, pp. 655–662, 5 2008.

[21] X. Yu, H. Wang, W. c. Feng, H. Gong, and G. Cao, “GPU-Based
Iterative Medical CT Image Reconstructions,” Journal of Signal
Processing Systems, vol. 91, no. 3-4, pp. 321–338, 3 2019. [Online].
Available: doi.org/10.1007/S11265-018-1352-0

[22] L. DeRose, B. Homer, and D. Johnson, “Detecting application
load imbalance on high end massively parallel systems,” Lecture
Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), vol.
4641 LNCS, pp. 150–159, 2007. [Online]. Available: doi.org/10.1007/
978-3-540-74466-5 17

[23] T. P. Peixoto, “The graph-tool python library,” figshare, 2014. [Online].
Available: doi.org/10.6084/m9.figshare.1164194

[24] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford Large Network
Dataset Collection,” 2014. [Online]. Available: snap.stanford.edu/data/

[25] P. Boldi, B. Codenotti, M. Santini, and S. Vigna, “UbiCrawler:
a scalable fully distributed Web crawler,” Software: Practice and
Experience, vol. 34, no. 8, pp. 711–726, 7 2004. [Online]. Available:
doi.org/10.1002/spe.587

[26] P. Boldi and S. Vigna, “The webgraph framework I: compression
techniques,” in 13th international conference on World Wide Web.
Association for Computing Machinery (ACM), 5 2004, pp. 595–602.
[Online]. Available: doi.org/10.1145/988672.988752

[27] P. Boldi, M. Rosa, M. Santini, and S. Vigna, “Layered label
propagation: A multiresolution coordinate-free ordering for compressing
social networks,” Proceedings of the 20th International Conference on
World Wide Web, WWW 2011, pp. 587–596, 2011. [Online]. Available:
doi.org/10.1145/1963405.1963488

[28] “SuiteSparse Matrix Collection.” [Online]. Available: https://sparse.
tamu.edu/

[29] N. Stanley, R. Kwitt, M. Niethammer, and P. J. Mucha, “Compressing
Networks with Super Nodes,” Scientific Reports, vol. 8, no. 1, p. 10892,
12 2018. [Online]. Available: doi.org/10.1038/s41598-018-29174-3

[30] A. S. Maiya and T. Y. Berger-Wolf, “Sampling community structure,”
in Proceedings of the 19th international conference on World wide web
- WWW ’10. New York, New York, USA: ACM Press, 2010, p. 701.
[Online]. Available: doi.org/10.1145/1772690.1772762

[31] G. Karypis and V. Kumar, “A Fast and High Quality Multilevel
Scheme for Partitioning Irregular Graphs,” SIAM Journal on Scientific
Computing, vol. 20, no. 1, pp. 359–392, 1 1998. [Online]. Available:
doi.org/10.1137/S1064827595287997

[32] E. K. Kao, S. T. Smith, and E. M. Airoldi, “Hybrid Mixed-Membership
Blockmodel for Inference on Realistic Network Interactions,” IEEE
Transactions on Network Science and Engineering, vol. 6, no. 3,
pp. 336–350, 7 2019. [Online]. Available: doi.org/10.1109/TNSE.2018.
2823324

IEEE Cluster 2023 Santa Fe, NM

doi.org/10.1103/PhysRevLett.110.148701
doi.org/10.1103/PhysRevE.83.016107
doi.org/10.1103/PhysRevE.83.016107
doi.org/10.1103/PhysRevE.89.012804
doi.org/10.1103/PhysRevE.89.012804
doi.org/10.1017/9781009118897
doi.org/10.1103/PhysRevE.70.025101
doi.org/10.1109/HPEC.2017.8091040
doi.org/10.1109/HPEC.2019.8916542
doi.org/10.1145/3545008.3545058
doi.org/10.1145/3545008.3545058
doi.org/10.1109/HPEC49654.2021.9622836
doi.org/10.1109/HPEC.2017.8091050
doi.org/10.1103/PhysRevE.85.056122
doi.org/10.1093/biomet/57.1.97
doi.org/10.48550/arXiv.1509.08999
doi.org/10.1109/MCSE.2011.37
doi.org/10.1007/S11265-018-1352-0
doi.org/10.1007/978-3-540-74466-5_17
doi.org/10.1007/978-3-540-74466-5_17
doi.org/10.6084/m9.figshare.1164194
snap.stanford.edu/data/
doi.org/10.1002/spe.587
doi.org/10.1145/988672.988752
doi.org/10.1145/1963405.1963488
https://sparse.tamu.edu/
https://sparse.tamu.edu/
doi.org/10.1038/s41598-018-29174-3
doi.org/10.1145/1772690.1772762
doi.org/10.1137/S1064827595287997
doi.org/10.1109/TNSE.2018.2823324
doi.org/10.1109/TNSE.2018.2823324

	Introduction
	Background and Related Work
	Stochastic Blockmodels
	Stochastic Block Partitioning
	Divide-and-Conquer SBP

	Method
	C++ Divide-and-Conquer SBP Implementation
	Exact Distributed SBP

	Experimental Setup
	Synthetic Datasets
	Real-world datasets
	Hardware

	Results
	Accuracy of our C++ DC-SBP Implementation
	Exhaustive Parameter Search Study
	Scalability Analysis on Synthetic Graphs
	Scalability on a Single Node
	Strong Scaling
	Comparison with DC-SBP

	Real-World Graphs Results
	Discussion

	Conclusion
	References

