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Quantum energy density of cosmic strings with nonzero radius
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Zero-point fluctuations in the background of a cosmic string provide an opportunity to study the effects
of topology in quantum field theory. We use a scattering theory approach to compute quantum corrections
to the energy density of a cosmic string, using the “ballpoint pen” and “flowerpot” models to allow for a
nonzero string radius. For computational efficiency, we consider a massless field in 2 + 1 dimensions. We
show how to implement precise and unambiguous renormalization conditions in the presence of a deficit
angle, and make use of Kontorovich-Lebedev techniques to rewrite the sum over angular momentum

channels as an integral on the imaginary axis.
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I. INTRODUCTION

The effects of quantum fluctuations can be of particular
importance in systems with nontrivial topology. In one space
dimension, one can carry out calculations analytically in
scalar models [1], and their supersymmetric extensions. In
the latter case, such corrections appear to violate the
Bogomol'nyi-Prasad-Sommerfield bound [2], but a corre-
sponding correction to the central charge ensures that the
bound remains saturated [3—5]. In higher dimensions, such
corrections must vanish identically in supersymmetric mod-
els to preserve multiplet shortening [6], while detailed calcu-
lations are difficult in nonsupersymmetric models. String
backgrounds in Higgs-gauge theory offer the opportunity to
study quantum effects of topology in higher dimensions
while remaining computationally tractable, making it pos-
sible to study quantum effects on string stability [7,8].

In this paper we consider quantum fluctuations of a
massless scalar field ¢ in the gravitational background of a
cosmic string, which introduces topological effects through
a deficit angle in the otherwise flat spacetime outside the
string core. When the string is taken to have zero radius, the
problem becomes scale invariant and the quantum correc-
tions can be computed exactly [9-11]. For a string of
nonzero radius ry, we must specify a profile function for the
background curvature, which was previously concentrated
at r = 0. We will consider two such models for the string
core [12—-14], the “ballpoint pen,” in which the curvature is
constant for r < ry, and the “flowerpot,” in which the
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curvature is localized to a d-function ring at r = r. In the
former case, the curvature for a specified deficit angle is
chosen so that the metric is continuous at ry. For both
models, we can construct the scattering wave functions
[14], matching the solutions inside and outside using
boundary conditions at r = ry. From these scattering data,
we can then construct the Green’s function, from which we
determine the quantum energy density. This calculation is
formally divergent and requires renormalization. In all
cases, we must subtract the contribution of the free
Green’s function, which corresponds to renormalization
of the cosmological constant. Because of the nontrivial
topology, this subtraction is most efficiently implemented
by adding and subtracting the result for the zero radius
“point string,” and then using analytic continuation to
imaginary angular momentum to compute the difference
between the point string and the free background. In
addition, for the interior of the ballpoint pen, we have a
nontrivial background potential and must subtract the
tadpole contribution, which corresponds to a renormaliza-
tion of the gravitational constant.

In this calculation, we find it advantageous to break
the calculation of the quantum energy density into two
parts: a “bulk” term ((d,p)?) and a “derivative” term
(3— &) (5D} (¢?)), where & is the curvature coupling, for
which we can identify the counterterm contributions
individually. Putting these results together, we obtain the
full quantum energy density as a function of r for a given
deficit angle, string radius, and curvature coupling, which
we can efficiently compute as a numerical sum and integral
over the fluctuation spectrum.

II. MODEL AND GREEN’S FUNCTION

We begin from the general case of scalar field in d
spacetime dimensions, for which the action functional is
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s=-1 / d'xJ=G(V Vo + U + ERF), (1)

with coupling £ to the Ricci curvature scalar R. Of
panicular interest is the case of conformal coupling,
& =+ in two space dimensions and £ = 2 in three space
dlmensmns This expression includes an external back-
ground potential U; we will set U = 0, but it is straightfor-
ward to introduce a nontrivial U(¢), such as a mass term
U = pu?. The equation of motion is

-V, V% +Up +ERPp =0 (2)

with metric signature (— + ++). The stress-energy tensor
is given by [15-17]

1
Top = VedpVyp — Gap 5 (V, ¢V + Ug?)

=+ §¢2( af — ;gaﬂR> + g(gaﬂv A vﬂ)(¢2)
(3)

as obtained by varying the action with respect to the metric.
Note that the curvature coupling contributes to the stress-
energy tensor even in regions where R = 0, although it
does so by a total derivative.

We consider the spacetime metric

ds? = —dt* + p(r)*dr* + r*d6? (4)

with a deficit angle 26,,, meaning that the range of angular
coordinate is 0...2(z — 6y)a, and we define 0 = —~-. To
implement the deficit angle without a smgulanty at the
origin, we introduce a profile function p(r) that ranges
from % at the origin to 1 at the string radius r(y. The nonzero
Christoffel symbols in this geometry are

1
o =—+ Lo = — T‘ZrZFfﬁ? (5)

and because the geometry only has curvature in two
dimensions, all the nonzero components of the Riemann
and Ricci tensors

R
Ry,g = —Rpg, = Rop = 900~
R

R(:ar Rfr() = Rrr =95 (6)

2

can be expressed in terms of the curvature scalar

R = % 5 ;5;2 Acting on any scalar y, the covariant derivatives

simply become ordinary derivatives, while for second
derivatives we have nontrivial contributions from the
Christoffel symbols given above,

Vava)( = 55)( - Fz}ear)( vrvr)( = a%)( - Fﬁrarx
V. Vax = VoV, x = 090, — Ty, (7)

and, as a result, covariant derivatives with respect to 8 can
be nonzero even if y is rotationally invariant. In particular,
we have

0
(Voo + 7V, ) = (69’§+DZ) 8)

where D, = ﬁo% is the radial derivative.

By the symmetry of the string configuration and vacuum
state, the vacuum expectation value of ¢? will depend only
on r, and we can write the energy density as

1
(1) = (5087 + 512 (D47 + 512 0
¢
+irg —;D%<¢2>>, )
where ¢ obeys the equation of motion
> 1 1 &
(E—ﬁDf 2092+§R>¢ . (10)

Again by symmetry, we have 507 (¢?) = 9,(¢(9,¢0)) = 0
and so {¢(0?¢)) = —{((0,¢)?), and similarly for 6. Using
these results and D?(¢?) = 2(D,p)* + 2¢pD?¢, together
with the equation of motion, we obtain

(D)

~ (5 (P>

— (0)? +

-5 08P + oz 0P +5RE). (1)

yielding a simplified expression in terms of a consolidated
derivative term,

1) = (@2 + (3-€) D). (2

This form will be more convenient for organizing the
calculation, particularly with regard to renormalization
using the techniques of Ref. [18], but for numerical
calculation we will find it preferable to reexpand the
second derivative in terms of squared first derivatives.

Our primary tool will be the Green’s function G, (r, ¥, k)
for imaginary wave number k = ik, which obeys
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FIG. 1. Illustration of the ballpoint pen (left) and flowerpot
(right) string geometries.

1D2+1 ik ER — k* |G, (r, 7 k)

- = ——— R —« K

" r?o6? A
1

= S(r—r)s(60-9"). 13
0= r)3(0-0) (13)

We consider two profile functions [12—14]: the flowerpot,

1 r<ry
pﬂower(r) — { c , (14)
I r>r
and the ballpoint pen,
-t =D r<r
() = { A o)
1 r>r

where rq is the string radius, as shown in Fig. 1. The
flowerpot has zero curvature everywhere except for a o-
function contribution at the string radius, while the ball-

2(c?

point pen has constant curvature R = riz_l) inside and
0

zero curvature outside. We write the Green’s function in the
scattering form

»(r, 7 k) Z/l[/f% ro)wi(r.) cos [6€(0 - 0')]

(16)

where the prime on the sum indicates that the £ = 0 term is
counted with a weight of one-half, arising because we have
written the sum over nonnegative £ only. The radial wave
functions obey the equation

1 Lﬂ22
D2+—+§R+K Wer(r) =0, (17)

where the regular solution is defined to be well behaved at
r = 0, while the outgoing solution obeys outgoing wave
boundary conditions for r — oo, normalized to unit ampli-
tude, and r_ (r.) is the smaller (larger) axial radius of r and
r’. The functions are normalized so that they obey the
Wronskian relation

L e~z L) =22 )

which provides the appropriate jump condition for the
Green’s function.

As shown in Ref. [18], the renormalized energy density
of a scalar field in flat spacetime with a background
potential that is spherically symmetric in m dimensions
and independent of n dimensions after a single “tadpole”
subtraction can be written as
<H>ren TS SRS

D" n+2
2(47; T i Z: / dx2x

X {gf’m(r, rK)— ;’enel(r, r,K)

< (1-@-m ) 22 (1-¢)

1
x 2m—2 D%,mgf,m(r’ r, K):| s (19)
r

where we have included the contribution from the curvature
coupling £, which contributes to Eq (3) even when R = 0.

=

Here z,n 3 D% m WithD, = Gl ) 9 s the radial Laplacian in

m dimensions, V,(r) is the scattering potential in channel #
with degeneracy factor D}, and we have decomposed the
m-dimensional Green’s function for equal angles into its
component Gy ,,(r, 7, k) in each channel, which obeys the
equation

£ +m—-2
(=22 Velr) + D 0 )Gl

=56 (r—7) (20)

in terms of the m-dimensional §-function. We will focus on
the case of m = 2 and n = 0, so a single subtraction will be
sufficient. The case of a three-dimensional string with m =
2 and n=1 works similarly, but requires additional
renormalization counterterms due to the higher degree of
divergence.

III. POINT STRING AND KONTOROVICH-
LEBEDEV APPROACH

We begin by reviewing the case of the “point string,”
[9-11] where the radius r, of the string core is taken to
zero. The scattering solutions can be obtained using the
same techniques as for a conducting wedge [19,20],
but with periodic rather than perfectly reflecting
boundary conditions. The normalized scattering functions

are ys5P™ (r) = L, (kr) and wO5™"™ (r) = K, (kr), and
the Green’s function becomes
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[Se]

t
Gpom (r,r,x) g o(kr.)

Ko (krs)cos[o(0 —6')],

(21)
Setting 6 = 1, we obtain the free Green’s function
1 o0
G (r.r k) = =Y ' ((kr2)Ko(krs) cos [£(6 — 0)]
=
1 i0'
= —Ko(x|re®? —r'e'?)). (22)
2n

A useful computational tool is to replace the sum over
the angular quantum number £ by a contour integral, based
on the Kontorovich-Lebedev transformation. In this
approach [21-23], one multiplies the summand by Sinm);,
which has poles of unit residue at all integers £. Because
the summand has no other poles in the right half of the
complex plane, the original sum over nonnegative ¢ then
equals the integral of this product over a contour that goes
down the imaginary axis and returns by a large semicircle at
infinity, taking into account the factor of 2zi from Cauchy’s
theorem. The infinitesimal semicircle needed to go around
the pole at # =0 accounts for the factor of one-half
associated with that term in the sum. For the functions
we consider, the integral over the large semicircle vanishes,
while the contributions from the negative and positive
imaginary axis can be folded into a single integral, which
often can be simplified through identities such as

fl—u(x) - Iv(x)
2 sinvrw ’

K,(x) = (23)
which is valid for any v that is not a real integer.

We illustrate this approach using the point string. To
compute finite quantum corrections, we will want to take
the difference between the full Green’s function in Eq. (21)
and the free Green’s function in Eq. (22), in the limit where
the points become coincident, meaning that the individual
Green’s functions diverge. However, the necessary cancel-
lation does not emerge term-by-term in the sum, and as a
result the standard calculations for this case [9,14,20] first
carry out the integral over k, taking advantage of the
availability of analytic results in three space dimensions,
which do not exist in our case.

In contrast, using the Kontorovich-Lebedev approach as
described above, we obtain

Gfree (r’ r/’ K)

1 ©
= F[) dAK ;(kr)K;;(kr') cosh[A(z — |0 — 0’

) (24)

where we have used ¢ = i4 and the 7 term in the hyperbolic
cosine reflects the (—1) factor above. Note that the jump
condition now emerges from the angular rather than the
radial component. Similarly, by letting 6 = i1, we obtain
for the point string

. 1 [
Ggomt(r’r/’K.) — FA d/lKi}L(K'r)KM(Kr’)

inh A
x cosh {A(’T—w—m)rln T (25
[}

sinh4 7z
o

and the difference between Green’s functions can be
computed by subtraction under the integral sign, yielding
after simplification

G‘;"i“‘(r, r,k) —G™(r, r,x)
1 sinh |

(o9 i i _1
:—2/ d/lK,-,l(Kr)Km(K")#’
2 Jo smh;ﬂ

AGEOim(r, rK) =

(26)

where we have now taken the limit of coincident points
since the difference of Green’s functions is nonsingular.

IV. SCATTERING WAVE FUNCTIONS

Following Ref. [14], we next compute the regular and
outgoing scattering wave functions for both the flowerpot
and ballpoint pen, each of which will be computed piece-
wise, with separate expressions inside and outside of the
string. In regions where p(r) is constant, namely for r > rg
in both models and r < ry for the flowerpot, we have
R = 0 and the solutions to Eq. (17) are modified Bessel
functions I;,(xr,) and K;.(xr,), where £ is an integer,
6 =op(r), and r, = p(r)r is the physical radial distance.
For r < ry in the ballpoint pen model, the solutions are
Legendre functions Pf(K) (#)) and Q7 o L) with

! op(r ap(r)
v(k)(v(k) +1) = —(:Sfl >, so that

D(K)z—;+;\/(1—8§) j"_l. (27)

We can thus write the full solutions as
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r<ry r>ry
yP(r) = | regular AP‘?P% o) 1,(kr) + B*)K (k) (28)
outgoing | CYYP; () + Dy Q’“ﬂ ) Gt W) Ko (kr)
for the ballpoint pen and
r<ry r>ry
wiover(r) = | regular ARl (k) Loy (k) + BIOK 5 (k7) (29)
outgoing CS_‘;)””I f(Kg) + DE}W”K o(x Gf) K,z (kr)

for the flowerpot. In these expressions, for r > r the coefficient of the outgoing wave is normalized to one, and then we can
also set the coefficient of the first-kind solution in the regular wave to one by the Wronskian relation, Eq. (18). For r < r,
the regular solution must be proportional to the first-kind function, since it is the only solution regular at the origin. In the
ballpoint pen model, both the wave function and its first derivative are continuous at r = r,, while in the flowerpot model
the wave function and the quantity

r flower w’ff]ofwer( )
( )drl//mf’ )+2§ p(r) (30)

are continuous at r = r (note that p(r) is discontinuous). The boundary conditions for the function and its first derivative at
r = ry thus yield four equations for the four unknown coefficients. In addition, from the Wronskian relation for r < ry we
know that
I1T(v(k) —¢+1) 1
ApenDpen _ - and AﬂowerDﬂower =_. 31
KKkl GF(Z/(K) L+ 1) I K.l K.l o ( )

Given this result, for brevity we quote only the remaining combinations we will need to form the Green’s function,

ey B (0* - I)Qf(K)l(%)Kmf’(KrO) + UKron(K)(%)Ka/(K%)
Dg,e; (- )Pf(x)l(i)Km,’(KrO) + GK”OPf(K) ((l,)Kaf/(Kr(J)
g — (‘f - 1>Z,f<x//<lj—,>zgf<xro> + GKVOP,Z(K> <%>16/§:<ro> )
(0° = )P} () Ko (kro) + okroPy () Ko/ (k70)
and
Clover KL (KK (k7o) — Ko (KK (kr0) + 25 K o (k) K o (1)
DI LK o (krg) = 1o () KLy (ko) + 201 (k™)K o )
tover LR o (kro) = L (<) I (ko) + 55 )If( )Lz (k7o) 33)
o I (k) K 5y (k1) = 14 (K rO)K/af(K”o)+2£<” U7, (k" )KGK(KFO)’

formulas hold as above, except that the right-hand side
of Eq. (31) becomes 52— in both cases.

where prime denotes a derivative with respect to the
function’s argument.

Finally, we note that when ¢ is not a real integer, as will
arise in situations we consider below, for r < ry it is
computationally preferable to take as independent solutions

P{ ., and P, rather than P, and Q7 for the ballpoint

V. RENORMALIZATION: FREE GREEN’S
FUNCTION SUBTRACTION

pen, and /, and /_;, rather than I ¢ and K P for the flowerpot.
With these replacements made throughout, the same

In regions where p(r) is constant, we have a flat
spacetime (although possibly with a deficit angle), and
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so to obtain renormalized quantities we must only subtract
the contribution of the free Green’s function. As in the case
of the point string, however, the necessary cancellation may
not appear term by term in the sum over £, making
numerical calculations difficult.

For r > ry, we again use the approach of Ref. [14] and
consider the difference between the full string and a point
string with the same 0. We can then add the difference
between the point string and empty space using Eq. (26).
We obtain, in both models,

G,(r.r, k) — GPRoint (r,r,x)

= %i B oK oo (k1)K o (k') 08 [£(0 - 0)]  (34)
=0

for r, ¥’ > ry, written in terms of the scattering coefficient
described above for each model. For the flowerpot model
with r < ry, we also have flat space, although now cor-
responding to zero interior deficit angle 6 = p(r)o =1,
and with the physical distance to the origin given by r, = £
We can therefore subtract the free Green’s function directly,
evaluating it the same physical distances,

Gt;ower(r rr K‘) _ Gfree (r*, I‘i, K)
Cflower
- Z Dﬂower Lo (k1) Loy (k1) cOS [£(6 = 0)]. (35)

We can evaluate these expressions at coincident points,
since the singularity cancels through the subtraction.

For r < ry in the ballpoint pen model, we will use a
hybrid of these subtractions. First, we define

o 1 roo . roVer—1
r, = arccos Sr= sin
-1 op(r) o’ -1 ro
(36)
so that ﬁ = p(r) and r, represents the physical distance to

the 0r1g1n We then subtract the contribution from a point
string with deficit angle 6 = op(r), corresponding to the
angle deficit at that point, evaluated at .. As above, we add
back in the contribution of this point string using the results
of the previous section.

There is one further subtlety in this calculation. The free
Green’s function, what we ultimately subtract, depends
only on the separation between points, and thus is
unchanged by translation or rescaling. However, to carry
out the subtraction, we must separate the points by a
distance ¢ in both Green’s functions, and then take the limit
of the difference as ¢ goes to zero. The limit should
correspond to splitting the points by the same physical
distance. Since

lim(Ko(ae) ~ Ko(e)] = ~loga. (37)

we therefore must subtract log () to correct for this

discrepancy.
Thus we obtain, for r < ry,

Gy"(r,r,x) — GEOim(r*, rys K)

’Z { I (o;(r))

K)+£+1)

cPe; i 1
(B )
<D§f Y9 \ep(r) " \op(r)

- 1 rs
= dlagkr)Kogler)| =5 1og

(38)
in the limit of coincident points.

VI. RENORMALIZATION: TADPOLE
SUBTRACTION

In the case of the ballpoint pen for r < ry, the string
background effectively creates a background potential,
leading to additional counterterms. Following Ref. [18],
we use dimensional regularization and consider configu-
rations that are trivial in n dimensions and spherically
symmetric in m dimensions, meaning that a string in three
space dimensions corresponds to the case of n = 1, m = 2.
After integrating over the n trivial directions, the contri-
bution G,(r,7’,k) to the Green’s function from angular
momentum channel # in m dimensions is replaced by the
subtracted quantity

Vv
G (r. k) = G, ) (2= m) YD i1

(39)

where V,(r) is the background potential for that channel.
Here the first subtraction represents the free background
and the second represents the tadpole graph. Since we are
interested in m = 2, the latter contribution appears to
vanish. However, it multiplies the free Green’s function
at coincident points, which diverges, so we must take the
limit carefully. To do so, we consider the free radial Green’s
function in m dimensions for channel Z,

rE 1
o W’g—l#(Kk)K%—Hf(KB)

() =
(40)
Its contribution is weighted by the degeneracy factor

I(m+¢-2)

bt = e+

(m+26-2),  (41)
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which has the following limits as special cases

D=2 =2 -6y D=l = 6,0+ 64 D=0 = 840, (42)

expressed in terms of the Kronecker § symbol. For equal angles, the free Green’s function is then given by the sum

1 Kk \2! 2
Gi(r ') = iy (11 ) Kaalelr = 71) = 3 UG 7). @)
£=0

To bring the points together, we expand around r = ¥ = 0 (since the free Green’s function only depends on their difference,
we may choose to have them both approach any point we choose), in which case we have

Kr) 2 2+ 20T (T2 =2 = £)T(m + £ = 2)

(2 =m)Dy G5 (r o) = ~(2 = m) K? (@) 0 (m — DI + DI + 2+ 2)

+ (’)(rz"”)} . (44)

where, crucially, we have dropped terms of order >~ because we approach m = 2 from below, where the integrals
converge, and so these terms vanish for r — 0. When ¢ # 0, the term we have kept also vanishes for » — 0. However, for

¢ =0, it goes to 2—1” in the limit m — 2, and so we have found

2

1
2w

1 - )
limz[(Z —m)D}GFe (r=0,r=0,k)] = =6, = lim2 [(2 —m) z DG (1, 7, K)Vf(r):| =—V,o(r), (45)
" ’ & " =0 '

with the result for the summed Green’s function depending
only on the contribution of the potential in the £ =0
channel.

To find the potential V,(r), we rewrite the wave equation
for r < r( using the physical radius r, given in Eq. (36).
The rescaled wave function ¢, ,(r.) = /ry..(r) then
obeys [24,25]

& (=7 1(c*-1
— __4) _Z R+ 12 »
{ dr§+6( 2 ) 4< 2 >+§ +K:|¢K,f(r)
=0, (46)

where the denominator of the second term represents r as a
function of r,. A free particle would instead obey the
equation

*

&? P2 -1 .
|:_d_rz+ ( ) 4) +K‘2:| ir;c(r*) =0, (47)

and so we can consider the difference between the two
expressions in brackets as a scattering potential,

vill(r) = (£ -3 _(Z-3=1)
r rs (arccos ﬁ(r)) 2
(8= 1)(c> 1)
T (48)

For the counterterm, we need only the # = 0 case, and the
tadpole subtraction is given by the leading order in

[
perturbation theory. We take 6> — 1 as the coupling con-
stant. Expanding to leading order in this quantity, we obtain
the tadpole contribution for r < ry,

Vio(r) = 2% <§—é> = R(é—é), (49)

0

which is independent of r and vanishes for conformal
coupling in three dimensions. Note that this term exactly
coincides with the first-order heat kernel coefficient [26].

Putting these results together, we obtain the subtracted
Green’s function summed over angular momentum channels

Veo(r)
472

G,(r,r, k) — G™(r, r,x) +
R 1

= Gy(r,r.k) =G™(r.r0) + 5 (&==]  (50)
drx 6

in the limit where m — 2 and the points are coincident.
Furthermore, we can pull the last term of Eq. (50) inside the
sum used to define the Green’s function by using a special
case of the addition theorem for Legendre functions,

VII. DERIVATIVE TERM

Next we compute the derivative term rlz DG, (r,r,k) by
differentiating the expressions above. We note that for any
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two functions of w4 (r) and wg(r),

(r)) =2(Dywa(r))(D,gp(r))
+ya(r)(Drwp(r) + (Dwa (r)wp(r),
(52)

D (walr)ws

and so by using the equations of motion, we can express
the terms involving squares of first derivatives in terms
of the second derivative of the product, and vice versa.
Accordingly, for any pair of solutions y,(r) and wp(r)
obeying Eq. (17), we have

S DAY W)

_ (“’f Rk )W;{f(rwgf(r)

b (D (D)D), (53)

and we note that

P(lr)%Pf(” <6p1(r)> - _r<0':%; 1)P5<'<)/ (6;(,))’ (54)

and similarly for Qf(K),

and so by using recurrence relations
we can simplify

%D { vk >(o-p1(r)>zf<'<> (o-pl(r)ﬂ
(4 som ) )
Vet =1 .
i [ o IPL?) <6p1(r)> +P(”) < p(r) ﬂ

<[ () % et )]

where Z is either P or Q; similar simplifications based on
recurrence relations apply for Bessel functions.

%

G,(r,r,K)

Renormalization of the derivative term in the curved
space background requires an additional counterterm com-
pared to the flat space expression in Eq. (19). This
subtraction is also proportional to the curvature scalar R.
The renormalized derivative term becomes

1 1
= D;G,(r.r.xk) ——TR, (56)
r 4

where again the counterterm is proportional to the Ricci
scalar and we have taken the points to be coincident. With
this choice, the full tadpole counterterm contribution to the
modified integrand of Eq. (19) with m =2 and n =0 is

2 R (N (L \R_R
- (‘f 6>+<4 5) bR L)

consistent with the general result originating from the two-
dimensional conformal anomaly [27-29], since our geom-
etry is only curved in two dimensions.' As above, we can
pull this term inside the sum using Eq. (51).

Finally, as before we find it more computationally
tractable to compute the derivative term for the difference
of the full Green’s function and the corresponding point
string. We must then add back the derivative of the point
string contribution as well. In both what we subtract and
add back in, we define the radial derivative for the point
string contribution taking p(r) constant, corresponding to
the derivative we would use in the point string case.

VIII. KONTOROVICH-LEBEDEV APPROACH
FOR NONZERO WIDTH STRING

As with the point string above, we can express the
Green’s function as an integral over imaginary angular
momentum A using the Kontorovich-Lebedev approach. As
described above, we take the pairs Pf ®) and P;(i ) and I,
and /_, as the independent solutions for r < ry in the

ballpoint pen and flowerpot models respectively.
The Green’s function becomes

. 1 © id] reg out T /
= A o 2 VL) VI eosh |4~ 1001 )| (58)

where we have used that the outgoing wave is always even in 1. For r > r,, we can use Wronskian relationships to simplify

l [ reg’pen(}’) _ reg,gen(r)] —

263[(,/1(10’)

. 73 A
sinh %” K.l K—id

'For a general entry in the stress energy tensor T4, this counterterm would become £ = Rap

(59)

it

(62 = VP (DK (ko) + oxroP, (DK (cro)

487r Yap-
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for the ballpoint pen and

2o K (kr)

i flower reg,flower KTy
— () -y (r)] = (60)
sinh 22 ™ s s 11}, (k2K 3 (kro) = Lg(k 2Ky (ko) + 5 s () Ky (ko)
for the flowerpot. For r < r,, we have
i reg reg i A’Ci out
W) — W )] = w0, (61)
o

sinhZ Cu " ©ia
o e

and so in both cases the Green’s function is written entirely in terms of outgoing waves. We can then subtract the free Green’s
function in the form of Eq. (24). For numerical calculation, however, we find that this approach is only effective for r > r,,.

IX. RESULTS

Collecting all of these terms, we have the full expression for the renormalized energy density, written with the point string

subtracted and then added back in,

1

<H>ren = _/oo dK|:K2 (Gﬁ(ra r? K) - Ggomt(r*v r*’ K) + AGgOim(r*9 r*v K) -
0

T

1 1 _ - _ .
- <Z N é) 2 (D%Go'(rv r, K) - D%Ggomt(r*7 Vs K) + D%AGgomt(r*’ T K)) +
r

where r, is the physical distance in each model as defined
above (with r, = r for r > ry) and 6 = p(r)o in each

region (with = o for r > r,). Here we have defined D, =

r% so that we add and subtract derivatives of the point

string in the background of a flat spacetime with a deficit
angle, as described above. The combined counterterm 47827[
(with R =0 for r > ry, and for r < r, in the flowerpot
model) is obtained by combining the two individual terms
obtained in Sec. VI using Eq. (57).

In both the first and second lines of Eq. (62), the

contribution from the difference between the full and point

L jog 0
27 8 rp(r)

= ()

|

string Green’s functions can be taken inside the sum over 2,
using theresults in Sec. Vand Eq. (21), while the contribution
from the difference between the point string and empty space
Green’s functions can be computed as an integral over
imaginary angular momentum using Eq. (26). For the case
of r > ry, we can check our calculation using the results of
Sec. VIIL, in which case Eq. (62) can be expressed entirely in
terms of an integral on the imaginary angular momentum
axis. For that calculation, there is no need to add and subtract
the point cone contribution, so we can simply subtract the
free Green’s function directly, using Eq. (24).

o
—(H)
fic

0015}
0010}

0005F o

1 s s L " " n L —

1.0 ,.-"15 20 1

-0.005 .

—0.010 F .

FIG. 2. Energy density (H),.,, in units of "f, as a function of 7, in units of r,, for 8, = 5 in the ballpoint pen model. The left panel

shows minimal coupling & = 0, while the nght panel shows conformal coupling & =

1
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o
—(H) —(H)
he fic

005 .

DR I N A
®ee,, ,

-0.010 . O L
. ' 0.5 1.0 ..-"'15 20 r
-0.015 i L
-0.05F
-0.020 I .
FIG. 3. Energy density (H),ep, in units of ”3‘, as a function of 7, in units of r, for 90 % in the ballpoint pen model. The left panel
shows minimal coupling & = 0, while the ngoht panel shows conformal coupling & = The energy shows a similar shape, but larger

magnitude for a greater deficit angle.

o

—(H)

FIG. 4. Energy density (H),,, in units of h;, as a function of r, in units of ry, for 6, = % in the flowerpot model. The left panel shows
minimal coupling £ = 0, while the right pa.nel shows conformal coupling & = 1 . The energy density for minimal coupling is small for
r < ry because this case is close to the deficit angle where the inside energy density changes sign.

7y 3
—(# )
fic fic
0.012 F .
[ 0.1
0.010F r
: ceceeee s, . ) 20 7
0.008 [ . .
; -0.1
0.006
; . -02
0.004 .
; -03
0.002 | . .
[ o’ . -0.4
[ ceo®’ e, r
2ececec® | N T ALK XX X W Y I Py —
0.5 1.0 1.5 20 r ~0.5

FIG. 5. Energy density (H),.,, in units of "f, as a function of r, in units of ry, for §, = £ (left panel) and 0, = 2” (right panel) in the
flowerpot model with & = 0. The sign of thé energy density for r < r( reverses at approx1mately 6y~ 1.
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Sample results are shown in Figs. 2-5, for both minimal
and conformal coupling. We note that for the interior of the
flowerpot, the sign of the energy density for r < ry is
opposite at large and small deficit angles for minimal
coupling, with the sign change occurring at 6, =~ 1. For the
ballpoint pen, we see a singularity at » = r,, corresponding
to the step function discontinuity in the curvature.
However, the total energy remains finite, because this
contribution cancels, as a principle value, on either side
of the boundary [18]. In an actual string, the sharp edge
would be smoothed by both the classical string dynamics
and the backreaction from the quantum field. For the
flowerpot, the energy density diverges at r = ry and the
total energy is divergent as well, because the curvature
profile is itself a divergent 5-function, which gives rise to an
infinite quantum total energy [30]. As a result, in this case
the energy density need not have opposite signs for r < r
and r > ry. It is interesting to note that the effects of the
string’s curvature are qualitatively similar to those of the
analogous square well or d-function scalar background
potential, as studied in Refs. [18,30].

X. CONCLUSIONS

We have shown how to use scattering data to compute
the quantum energy density of a massless scalar field in the
background on a nonzero width cosmic string background,
using both the flowerpot and ballpoint pen string profiles in

two space dimensions. Of particular interest is the interior
of the ballpoint pen, where the background space time has
nontrivial (but constant) curvature. We precisely specify
counterterms corresponding to renormalization of both the
cosmological constant and the gravitational coupling to the
scalar curvature R. In addition, to make the calculation
tractable numerically, we subtract and then add back in the
contribution of a point string with the same deficit angle
and physical radius. We can then subtract the free space
contribution, corresponding to the cosmological constant
renormalization, by combining it with the point string result
and using analytic continuation of the angular momentum
sum to an integral over the imaginary axis. These results
extend straightforwardly to three dimensions, but that case
requires an additional subtraction of order R>.
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