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Zero-point fluctuations in the background of a cosmic string provide an opportunity to study the effects

of topology in quantum field theory. We use a scattering theory approach to compute quantum corrections

to the energy density of a cosmic string, using the “ballpoint pen” and “flowerpot” models to allow for a

nonzero string radius. For computational efficiency, we consider a massless field in 2þ 1 dimensions. We

show how to implement precise and unambiguous renormalization conditions in the presence of a deficit

angle, and make use of Kontorovich-Lebedev techniques to rewrite the sum over angular momentum

channels as an integral on the imaginary axis.
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I. INTRODUCTION

The effects of quantum fluctuations can be of particular

importance in systems with nontrivial topology. In one space

dimension, one can carry out calculations analytically in

scalar models [1], and their supersymmetric extensions. In

the latter case, such corrections appear to violate the

Bogomol'nyi-Prasad-Sommerfield bound [2], but a corre-

sponding correction to the central charge ensures that the

bound remains saturated [3–5]. In higher dimensions, such

corrections must vanish identically in supersymmetric mod-

els to preserve multiplet shortening [6], while detailed calcu-

lations are difficult in nonsupersymmetric models. String

backgrounds in Higgs-gauge theory offer the opportunity to

study quantum effects of topology in higher dimensions

while remaining computationally tractable, making it pos-

sible to study quantum effects on string stability [7,8].

In this paper we consider quantum fluctuations of a

massless scalar field ϕ in the gravitational background of a

cosmic string, which introduces topological effects through

a deficit angle in the otherwise flat spacetime outside the

string core. When the string is taken to have zero radius, the

problem becomes scale invariant and the quantum correc-

tions can be computed exactly [9–11]. For a string of

nonzero radius r0, we must specify a profile function for the

background curvature, which was previously concentrated

at r ¼ 0. We will consider two such models for the string

core [12–14], the “ballpoint pen,” in which the curvature is

constant for r < r0, and the “flowerpot,” in which the

curvature is localized to a δ-function ring at r ¼ r0. In the

former case, the curvature for a specified deficit angle is

chosen so that the metric is continuous at r0. For both

models, we can construct the scattering wave functions

[14], matching the solutions inside and outside using

boundary conditions at r ¼ r0. From these scattering data,

we can then construct the Green’s function, from which we

determine the quantum energy density. This calculation is

formally divergent and requires renormalization. In all

cases, we must subtract the contribution of the free

Green’s function, which corresponds to renormalization

of the cosmological constant. Because of the nontrivial

topology, this subtraction is most efficiently implemented

by adding and subtracting the result for the zero radius

“point string,” and then using analytic continuation to

imaginary angular momentum to compute the difference

between the point string and the free background. In

addition, for the interior of the ballpoint pen, we have a

nontrivial background potential and must subtract the

tadpole contribution, which corresponds to a renormaliza-

tion of the gravitational constant.

In this calculation, we find it advantageous to break

the calculation of the quantum energy density into two

parts: a “bulk” term hð∂tϕÞ2i and a “derivative” term

ð1
4
− ξÞh 1

r2
D2

rðϕ2Þi, where ξ is the curvature coupling, for

which we can identify the counterterm contributions

individually. Putting these results together, we obtain the

full quantum energy density as a function of r for a given

deficit angle, string radius, and curvature coupling, which

we can efficiently compute as a numerical sum and integral

over the fluctuation spectrum.

II. MODEL AND GREEN’S FUNCTION

We begin from the general case of scalar field in d
spacetime dimensions, for which the action functional is
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S ¼ −
1

2

Z

ddx
ffiffiffiffiffiffi

−g
p ð∇αϕ∇

αϕþ Uϕ2 þ ξRϕ2Þ; ð1Þ

with coupling ξ to the Ricci curvature scalar R. Of

particular interest is the case of conformal coupling,

ξ ¼ 1

8
in two space dimensions and ξ ¼ 1

6
in three space

dimensions. This expression includes an external back-

ground potential U; we will set U ¼ 0, but it is straightfor-

ward to introduce a nontrivial UðϕÞ, such as a mass term

U ¼ μ2. The equation of motion is

−∇α∇
αϕþUϕþ ξRϕ ¼ 0 ð2Þ

with metric signature ð−þþþÞ. The stress-energy tensor

is given by [15–17]

Tα³ ¼ ∇αϕ∇³ϕ − gα³
1

2
ð∇´ϕ∇

´ϕþUϕ2Þ

þ ξϕ2

�

Rα³ −
1

2
gα³R

�

þ ξðgα³∇´∇
´ −∇α∇³Þðϕ2Þ;

ð3Þ

as obtained by varying the action with respect to the metric.

Note that the curvature coupling contributes to the stress-

energy tensor even in regions where R ¼ 0, although it

does so by a total derivative.

We consider the spacetime metric

ds2 ¼ −dt2 þ pðrÞ2dr2 þ r2dθ2 ð4Þ

with a deficit angle 2θ0, meaning that the range of angular

coordinate is 0…2ðπ − θ0Þα, and we define σ ¼ π
π−θ0

. To

implement the deficit angle without a singularity at the

origin, we introduce a profile function pðrÞ that ranges

from 1

σ
at the origin to 1 at the string radius r0. The nonzero

Christoffel symbols in this geometry are

Γ
r
rr ¼

p0ðrÞ
pðrÞ Γ

r
θθ ¼ −

r

pðrÞ2 Γ
θ
θr ¼ Γ

θ
rθ ¼

1

r
; ð5Þ

and because the geometry only has curvature in two

dimensions, all the nonzero components of the Riemann

and Ricci tensors

Rr
θrθ ¼ −Rr

θθr ¼ Rθθ ¼ gθθ
R

2

Rθ
rθr ¼ −Rθ

rrθ ¼ Rrr ¼ grr
R

2
ð6Þ

can be expressed in terms of the curvature scalar

R ¼ 2

r

p0ðrÞ
pðrÞ3. Acting on any scalar χ, the covariant derivatives

simply become ordinary derivatives, while for second

derivatives we have nontrivial contributions from the

Christoffel symbols given above,

∇θ∇θχ ¼ ∂
2

θχ − Γ
r
θθ∂rχ ∇r∇rχ ¼ ∂

2
rχ − Γ

r
rr∂rχ

∇r∇θχ ¼ ∇θ∇rχ ¼ ∂θ∂rχ − Γ
θ
rθ∂θχ; ð7Þ

and, as a result, covariant derivatives with respect to θ can

be nonzero even if χ is rotationally invariant. In particular,

we have

ðgθθ∇θ∇θ þ grr∇r∇rÞχ ¼ 1

r2

�

∂
2χ

∂θ2
þD2

r

�

χ; ð8Þ

where Dr ¼ r
pðrÞ

∂

∂r
is the radial derivative.

By the symmetry of the string configuration and vacuum

state, the vacuum expectation value of ϕ2 will depend only

on r, and we can write the energy density as

hTtti ¼
�

1

2
ð∂tϕÞ2 þ

1

2r2
ðDrϕÞ2 þ

1

2r2
ð∂θϕÞ2

þ ξ

2
Rϕ2 −

ξ

r2
D2

rðϕ2Þ
�

; ð9Þ

where ϕ obeys the equation of motion

�

∂
2

∂t2
−

1

r2
D2

r −
1

r2
∂
2

∂θ2
þ ξR

�

ϕ ¼ 0: ð10Þ

Again by symmetry, we have 1

2
∂
2
t hϕ2i ¼ ∂thϕð∂tϕÞi ¼ 0,

and so hϕð∂2tϕÞi ¼ −hð∂tϕÞ2i, and similarly for θ. Using

these results and D2
rðϕ2Þ ¼ 2ðDrϕÞ2 þ 2ϕD2

rϕ, together

with the equation of motion, we obtain

�

1

4r2
D2

rðϕ2Þ
�

¼
�

1

2r2
ðDrϕÞ2 −

1

2
ð∂tϕÞ2 þ

1

2r2
ð∂θϕÞ2 þ

ξ

2
Rϕ2

�

; ð11Þ

yielding a simplified expression in terms of a consolidated

derivative term,

hTtti ¼
�

ð∂tϕÞ2 þ
�

1

4
− ξ

�

1

r2
D2

rðϕ2Þ
�

: ð12Þ

This form will be more convenient for organizing the

calculation, particularly with regard to renormalization

using the techniques of Ref. [18], but for numerical

calculation we will find it preferable to reexpand the

second derivative in terms of squared first derivatives.

Our primary tool will be the Green’s function Gσðr; r0; κÞ
for imaginary wave number k ¼ iκ, which obeys
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−

�

1

r2
D2

r þ
1

r2
∂
2

∂θ2
− ξR − κ2

�

Gσðr; r0; κÞ

¼ 1

rpðrÞ δðr − r0Þδðθ − θ0Þ: ð13Þ

We consider two profile functions [12–14]: the flowerpot,

pflowerðrÞ ¼
�

1

σ
r < r0

1 r > r0
; ð14Þ

and the ballpoint pen,

ppenðrÞ ¼
� ½σ2 − r2

r2
0

ðσ2 − 1Þ�−1=2 r < r0

1 r > r0

; ð15Þ

where r0 is the string radius, as shown in Fig. 1. The

flowerpot has zero curvature everywhere except for a δ-

function contribution at the string radius, while the ball-

point pen has constant curvature R ¼ 2ðσ2−1Þ
r2
0

inside and

zero curvature outside. We write the Green’s function in the

scattering form

Gσðr; r0; κÞ ¼
σ

π

X

∞

l¼0

0ψ reg
κ;lðr<Þψout

κ;lðr>Þ cos ½σlðθ − θ0Þ�

;ð16Þ

where the prime on the sum indicates that the l ¼ 0 term is

counted with a weight of one-half, arising because we have

written the sum over nonnegative l only. The radial wave

functions obey the equation

�

−
1

r2
D2

r þ
l2σ2

r2
þ ξRþ κ2

	

ψ κ;lðrÞ ¼ 0; ð17Þ

where the regular solution is defined to be well behaved at

r ¼ 0, while the outgoing solution obeys outgoing wave

boundary conditions for r →∞, normalized to unit ampli-

tude, and r< (r>) is the smaller (larger) axial radius of r and

r
0. The functions are normalized so that they obey the

Wronskian relation

d

dr
ðψ reg

κ;lðrÞÞψout
κ;lðrÞ − ψ

reg
κ;lðrÞ

d

dr
ðψout

κ;lðrÞÞ ¼
pðrÞ
r

; ð18Þ

which provides the appropriate jump condition for the

Green’s function.

As shown in Ref. [18], the renormalized energy density

of a scalar field in flat spacetime with a background

potential that is spherically symmetric in m dimensions

and independent of n dimensions after a single “tadpole”

subtraction can be written as

hHiren ¼ −
1

2ð4πÞnþ1

2 Γðnþ3

2
Þ
X

∞

l¼0

Dm
l

Z

∞

0

dκ2κnþ2

×

�

Gl;mðr; r; κÞ − Gfree
l;mðr; r; κÞ

×

�

1 − ð2 −mÞVlðrÞ
2κ2

�

−
nþ 1

κ2

�

1

4
− ξ

�

×
1

r2m−2
D2

r;mGl;mðr; r; κÞ
	

; ð19Þ

where we have included the contribution from the curvature

coupling ξ, which contributes to Eq. (3) even whenR ¼ 0.

Here 1

r2m−2 D
2
r;m with Dr;m ¼ rm−1

pðrÞ
∂

∂r
is the radial Laplacian in

m dimensions, VlðrÞ is the scattering potential in channel l
with degeneracy factor Dm

l
, and we have decomposed the

m-dimensional Green’s function for equal angles into its

component Gl;mðr; r0; κÞ in each channel, which obeys the

equation

�

−D2
r;m þ VlðrÞ þ

lðlþm − 2Þ
r2

þ κ2
�

Gl;mðr; r0; κÞ

¼ δðmÞðr − r0Þ ð20Þ

in terms of the m-dimensional δ-function. We will focus on

the case ofm ¼ 2 and n ¼ 0, so a single subtraction will be

sufficient. The case of a three-dimensional string with m ¼
2 and n ¼ 1 works similarly, but requires additional

renormalization counterterms due to the higher degree of

divergence.

III. POINT STRING AND KONTOROVICH-

LEBEDEV APPROACH

We begin by reviewing the case of the “point string,”

[9–11] where the radius r0 of the string core is taken to

zero. The scattering solutions can be obtained using the

same techniques as for a conducting wedge [19,20],

but with periodic rather than perfectly reflecting

boundary conditions. The normalized scattering functions

are ψ
reg;point
κ;l ðrÞ ¼ IσlðκrÞ and ψ

out;point
κ;l ðrÞ ¼ KσlðκrÞ, and

the Green’s function becomes

FIG. 1. Illustration of the ballpoint pen (left) and flowerpot

(right) string geometries.
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G
point
σ ðr; r0; κÞ ¼ σ

π

X

∞

l¼0

0Iσlðκr<ÞKσlðκr>Þ cos ½lσðθ − θ0Þ�;

ð21Þ

Setting σ ¼ 1, we obtain the free Green’s function

Gfreeðr; r0; κÞ ¼ 1

π

X

∞

l¼0

0Ilððκr<ÞKlðκr>Þ cos ½lðθ − θ0Þ�

¼ 1

2π
K0ðκjreiθ − r0eiθ

0 jÞ: ð22Þ

A useful computational tool is to replace the sum over

the angular quantum number l by a contour integral, based

on the Kontorovich-Lebedev transformation. In this

approach [21–23], one multiplies the summand by
πð−1Þl
sin πl

,

which has poles of unit residue at all integers l. Because

the summand has no other poles in the right half of the

complex plane, the original sum over nonnegative l then

equals the integral of this product over a contour that goes

down the imaginary axis and returns by a large semicircle at

infinity, taking into account the factor of 2πi from Cauchy’s

theorem. The infinitesimal semicircle needed to go around

the pole at l ¼ 0 accounts for the factor of one-half

associated with that term in the sum. For the functions

we consider, the integral over the large semicircle vanishes,

while the contributions from the negative and positive

imaginary axis can be folded into a single integral, which

often can be simplified through identities such as

KνðxÞ ¼
π

2

I−νðxÞ − IνðxÞ
sin νπ

; ð23Þ

which is valid for any ν that is not a real integer.

We illustrate this approach using the point string. To

compute finite quantum corrections, we will want to take

the difference between the full Green’s function in Eq. (21)

and the free Green’s function in Eq. (22), in the limit where

the points become coincident, meaning that the individual

Green’s functions diverge. However, the necessary cancel-

lation does not emerge term-by-term in the sum, and as a

result the standard calculations for this case [9,14,20] first

carry out the integral over κ, taking advantage of the

availability of analytic results in three space dimensions,

which do not exist in our case.

In contrast, using the Kontorovich-Lebedev approach as

described above, we obtain

Gfreeðr; r0; κÞ

¼ 1

π2

Z

∞

0

dλKiλðκrÞKiλðκr0Þ cosh½λðπ − jθ − θ0jÞ�; ð24Þ

where we have used l ¼ iλ and the π term in the hyperbolic

cosine reflects the ð−1Þl factor above. Note that the jump

condition now emerges from the angular rather than the

radial component. Similarly, by letting σl ¼ iλ, we obtain
for the point string

G
point
σ ðr; r0; κÞ ¼ 1

π2

Z

∞

0

dλKiλðκrÞKiλðκr0Þ

× cosh

�

λ

�

π

σ
− jθ − θ0j

�	

sinh λπ

sinh λ
σ
π
; ð25Þ

and the difference between Green’s functions can be

computed by subtraction under the integral sign, yielding

after simplification

ΔG
point
σ ðr;r;κÞ¼G

point
σ ðr;r;κÞ−Gfreeðr;r;κÞ

¼ 1

π2

Z

∞

0

dλKiλðκrÞKiλðκrÞ
sinh ½λ

σ
πðσ−1Þ�

sinh λ
σ
π

;

ð26Þ

where we have now taken the limit of coincident points

since the difference of Green’s functions is nonsingular.

IV. SCATTERING WAVE FUNCTIONS

Following Ref. [14], we next compute the regular and

outgoing scattering wave functions for both the flowerpot

and ballpoint pen, each of which will be computed piece-

wise, with separate expressions inside and outside of the

string. In regions where pðrÞ is constant, namely for r > r0
in both models and r < r0 for the flowerpot, we have

R ¼ 0 and the solutions to Eq. (17) are modified Bessel

functions Iσ̃lðκr�Þ and Kσ̃lðκr�Þ, where l is an integer,

σ̃ ¼ σpðrÞ, and r� ¼ pðrÞr is the physical radial distance.
For r < r0 in the ballpoint pen model, the solutions are

Legendre functions Pl

νðκÞð 1

σpðrÞÞ and Ql

νðκÞð 1

σpðrÞÞ with

νðκÞðνðκÞ þ 1Þ ¼ −




r2
0
κ2

σ2−1
þ 2ξ

�

, so that

νðκÞ ¼ −
1

2
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1 − 8ξÞ − 4κ2r2
0

σ2 − 1

s

: ð27Þ

We can thus write the full solutions as
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ψ
pen
κ;l ðrÞ ¼

r < r0 r > r0

regular A
pen
κ;lP

l

νðκÞð 1

σpðrÞÞ IσlðκrÞ þ B
pen
κ;lKσlðκrÞ

outgoing C
pen
κ;lP

l

νðκÞð 1

σpðrÞÞ þD
pen
κ;lQ

l

νðκÞð 1

σpðrÞÞ KσlðκrÞ
ð28Þ

for the ballpoint pen and

ψ flower
κ;l ðrÞ ¼

r < r0 r > r0

regular Aflower
κ;l Ilðκ r

σ
Þ IσlðκrÞ þ Bflower

κ;l KσlðκrÞ
outgoing Cflower

κ;l Ilðκ r
σ
Þ þDflower

κ;l Klðκ r
σ
Þ KσlðκrÞ

ð29Þ

for the flowerpot. In these expressions, for r > r0 the coefficient of the outgoing wave is normalized to one, and then we can

also set the coefficient of the first-kind solution in the regular wave to one by the Wronskian relation, Eq. (18). For r < r0,
the regular solution must be proportional to the first-kind function, since it is the only solution regular at the origin. In the

ballpoint pen model, both the wave function and its first derivative are continuous at r ¼ r0, while in the flowerpot model

the wave function and the quantity

r

pðrÞ
d

dr
ψ flower
κ;l ðrÞ þ 2ξ

ψ flower
κ;l ðrÞ
pðrÞ ð30Þ

are continuous at r ¼ r0 (note that pðrÞ is discontinuous). The boundary conditions for the function and its first derivative at
r ¼ r0 thus yield four equations for the four unknown coefficients. In addition, from the Wronskian relation for r < r0 we
know that

A
pen
κ;lD

pen
κ;l ¼ 1

σ

ΓðνðκÞ − lþ 1Þ
ΓðνðκÞ þ lþ 1Þ and Aflower

κ;l Dflower
κ;l ¼ 1

σ
: ð31Þ

Given this result, for brevity we quote only the remaining combinations we will need to form the Green’s function,

C
pen
κ;l

D
pen
κ;l

¼ −
ðσ2 − 1ÞQl

νðκÞ
0ð1
σ
ÞKσlðκr0Þ þ σκr0Q

l

νðκÞð1σÞKσl
0ðκr0Þ

ðσ2 − 1ÞPl

νðκÞ
0ð1
σ
ÞKσlðκr0Þ þ σκr0P

l

νðκÞð1σÞKσl
0ðκr0Þ

B
pen
κ;l ¼ −

ðσ2 − 1ÞPl

νðκÞ
0ð1
σ
ÞIσlðκr0Þ þ σκr0P

l

νðκÞð1σÞIσl0ðκr0Þ
ðσ2 − 1ÞPl

νðκÞ
0ð1
σ
ÞKσlðκr0Þ þ σκr0P

l

νðκÞð1σÞKσl
0ðκr0Þ

ð32Þ

and

Cflower
κ;l

Dflower
κ;l

¼ −
K0
l
ðκ r0

σ
ÞKσlðκr0Þ − Klðκ r0

σ
ÞK0

σlðκr0Þ þ
2ξðσ−1Þ

κr0
Klðκ r0

σ
ÞKσlðκr0Þ

I0
l
ðκ r0

σ
ÞKσlðκr0Þ − Ilðκ r0

σ
ÞK0

σlðκr0Þ þ
2ξðσ−1Þ

κr0
Ilðκ r0

σ
ÞKσlðκr0Þ

Bflower
κ;l ¼ −

I0
l
ðκ r0

σ
ÞIσlðκr0Þ − Ilðκ r0

σ
ÞI0σlðκr0Þ þ

2ξðσ−1Þ
κr0

Ilðκ r0
σ
ÞIσlðκr0Þ

I0
l
ðκ r0

σ
ÞKσlðκr0Þ − Ilðκ r0

σ
ÞK0

σlðκr0Þ þ
2ξðσ−1Þ

κr0
Ilðκ r0

σ
ÞKσlðκr0Þ

; ð33Þ

where prime denotes a derivative with respect to the

function’s argument.

Finally, we note that when l is not a real integer, as will

arise in situations we consider below, for r < r0 it is

computationally preferable to take as independent solutions

Pl

νðκÞ and P−l
νðκÞ rather than Pl

νðκÞ and Ql

νðκÞ for the ballpoint

pen, and Il and I−l rather than Il and Kl for the flowerpot.

With these replacements made throughout, the same

formulas hold as above, except that the right-hand side

of Eq. (31) becomes π
2σ sin πl

in both cases.

V. RENORMALIZATION: FREE GREEN’S

FUNCTION SUBTRACTION

In regions where pðrÞ is constant, we have a flat

spacetime (although possibly with a deficit angle), and
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so to obtain renormalized quantities we must only subtract

the contribution of the free Green’s function. As in the case

of the point string, however, the necessary cancellation may

not appear term by term in the sum over l, making

numerical calculations difficult.

For r > r0, we again use the approach of Ref. [14] and

consider the difference between the full string and a point

string with the same σ. We can then add the difference

between the point string and empty space using Eq. (26).

We obtain, in both models,

Gσðr; r0; κÞ −G
point
σ ðr; r0; κÞ

¼ σ

π

X

∞

l¼0

0Bκ;lKσlðκrÞKσlðκr0Þ cos ½lðθ − θ0Þ� ð34Þ

for r; r0 > r0, written in terms of the scattering coefficient

described above for each model. For the flowerpot model

with r < r0, we also have flat space, although now cor-

responding to zero interior deficit angle σ̃ ¼ pðrÞσ ¼ 1,

and with the physical distance to the origin given by r� ¼ r
σ
.

We can therefore subtract the free Green’s function directly,

evaluating it the same physical distances,

Gflower
σ ðr; r0; κÞ − Gfreeðr�; r0�; κÞ

¼ 1

π

X0
∞

l¼0

Cflower
κ;l

Dflower
κ;l

IσlðκrÞIσlðκr0Þ cos ½lðθ − θ0Þ�: ð35Þ

We can evaluate these expressions at coincident points,

since the singularity cancels through the subtraction.

For r < r0 in the ballpoint pen model, we will use a

hybrid of these subtractions. First, we define

r� ¼
r0
ffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2 − 1

p arccos
1

σpðrÞ ⇔ r ¼ r0σ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2 − 1

p sin
r�

ffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2 − 1

p

r0

ð36Þ

so that dr�
dr

¼ pðrÞ and r� represents the physical distance to
the origin. We then subtract the contribution from a point

string with deficit angle σ̃ ¼ σpðrÞ, corresponding to the

angle deficit at that point, evaluated at r�. As above, we add
back in the contribution of this point string using the results

of the previous section.

There is one further subtlety in this calculation. The free

Green’s function, what we ultimately subtract, depends

only on the separation between points, and thus is

unchanged by translation or rescaling. However, to carry

out the subtraction, we must separate the points by a

distance ϵ in both Green’s functions, and then take the limit

of the difference as ϵ goes to zero. The limit should

correspond to splitting the points by the same physical

distance. Since

lim
ϵ→0

½K0ðaϵÞ − K0ðϵÞ� ¼ − loga; ð37Þ

we therefore must subtract 1

2π
log

r�
rpðrÞ to correct for this

discrepancy.

Thus we obtain, for r < r0,

G
pen
σ ðr; r; κÞ −G

point
σ̃ ðr�; r�; κÞ

→

1

π

X

∞

l¼0

0
�

ΓðνðκÞ − lþ 1Þ
ΓðνðκÞ þ lþ 1ÞP

l

νðκÞ

�

1

σpðrÞ

�

×

�

C
pen
κ;l

D
pen
κ;l

Pl

νðκÞ

�

1

σpðrÞ

�

þQl

νðκÞ

�

1

σpðrÞ

��

− σ̃Iσ̃lðκr�ÞKσ̃lðκr�Þ
	

−
1

2π
log

r�
rpðrÞ ð38Þ

in the limit of coincident points.

VI. RENORMALIZATION: TADPOLE

SUBTRACTION

In the case of the ballpoint pen for r < r0, the string

background effectively creates a background potential,

leading to additional counterterms. Following Ref. [18],

we use dimensional regularization and consider configu-

rations that are trivial in n dimensions and spherically

symmetric in m dimensions, meaning that a string in three

space dimensions corresponds to the case of n ¼ 1, m ¼ 2.

After integrating over the n trivial directions, the contri-

bution Glðr; r0; κÞ to the Green’s function from angular

momentum channel l in m dimensions is replaced by the

subtracted quantity

Gl;mðr; r; κÞ − Gfree
l;mðr; r; κÞ þ ð2 −mÞVlðrÞ

2κ2
Gfree
l;mðr; r; κÞ

ð39Þ

where VlðrÞ is the background potential for that channel.

Here the first subtraction represents the free background

and the second represents the tadpole graph. Since we are

interested in m ¼ 2, the latter contribution appears to

vanish. However, it multiplies the free Green’s function

at coincident points, which diverges, so we must take the

limit carefully. To do so, we consider the free radial Green’s

function in m dimensions for channel l,

Gfree
l;mðr; r0; κÞ ¼

Γðm
2
Þ

2π
m
2

1

ðrr0Þm2−1 I
m
2
−1þlðκr<ÞKm

2
−1þlðκr>Þ:

ð40Þ

Its contribution is weighted by the degeneracy factor

Dm
l
¼ Γðmþ l − 2Þ

Γðm − 1ÞΓðlþ 1Þ ðmþ 2l − 2Þ; ð41Þ
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which has the following limits as special cases

Dm¼2

l
¼ 2 − δl0 Dm¼1

l
¼ δl0 þ δl1 Dm¼0

l
¼ δl0; ð42Þ

expressed in terms of the Kronecker δ symbol. For equal angles, the free Green’s function is then given by the sum

Gfree
m ðr; r0; κÞ ¼ 1

ð2πÞm2

�

κ

jr − r0j

�m
2
−1

Km
2
−1ðκjr − r0jÞ ¼

X

∞

l¼0

Dm
l
Gfree
l;mðr; r0; κÞ: ð43Þ

To bring the points together, we expand around r ¼ r0 ¼ 0 (since the free Green’s function only depends on their difference,

we may choose to have them both approach any point we choose), in which case we have

ð2 −mÞDm
l
Gfree
l;mðr; r; κÞ ¼ −ð2 −mÞ

��

κr

2

�

2l κm−2ðmþ 2lÞΓðm
2
ÞΓð2 − m

2
− lÞΓðmþ l − 2Þ

ð4πÞm2Γðm − 1ÞΓðlþ 1ÞΓð1þ m
2
þ lÞ þOðr2−mÞ

	

; ð44Þ

where, crucially, we have dropped terms of order r2−m because we approach m ¼ 2 from below, where the integrals

converge, and so these terms vanish for r → 0. When l ≠ 0, the term we have kept also vanishes for r → 0. However, for

l ¼ 0, it goes to 1

2π
in the limit m → 2, and so we have found

lim
m→2

½ð2 −mÞDm
l
Gfree
l;mðr ¼ 0; r ¼ 0; κÞ� ¼ 1

2π
δl0⇒ lim

m→2

�

ð2 −mÞ
X

∞

l¼0

Dm
l
Gfree
l;mðr; r; κÞVlðrÞ

	

¼ 1

2π
Vl¼0ðrÞ; ð45Þ

with the result for the summed Green’s function depending

only on the contribution of the potential in the l ¼ 0

channel.

To find the potential VlðrÞ, we rewrite the wave equation
for r < r0 using the physical radius r� given in Eq. (36).

The rescaled wave function ϕκ;lðr�Þ ¼
ffiffiffi

r
p

ψ κ;lðrÞ then

obeys [24,25]

�

−
d2

dr2�
þ σ2

�

l
2 − 1

4

r2

�

−
1

4

�

σ2 − 1

r2
0

�

þ ξRþ κ2
	

ϕκ;lðr�Þ

¼ 0; ð46Þ

where the denominator of the second term represents r as a
function of r�. A free particle would instead obey the

equation

�

−
d2

dr2�
þ
�

l
2 − 1

4

r2�

�

þ κ2
	

ϕfree
κ;l ðr�Þ ¼ 0; ð47Þ

and so we can consider the difference between the two

expressions in brackets as a scattering potential,

Vfull
l
ðrÞ ¼ ðl2 − 1

4
Þσ2

r2
−

ðl2 − 1

4
Þðσ2 − 1Þ

r2
0




arccos 1

σpðrÞ

�

2

þ ð8ξ − 1Þðσ2 − 1Þ
4r2

0

: ð48Þ

For the counterterm, we need only the l ¼ 0 case, and the

tadpole subtraction is given by the leading order in

perturbation theory. We take σ2 − 1 as the coupling con-

stant. Expanding to leading order in this quantity, we obtain

the tadpole contribution for r < r0,

Vl¼0ðrÞ ¼ 2
σ2 − 1

r2
0

�

ξ −
1

6

�

¼ R

�

ξ −
1

6

�

; ð49Þ

which is independent of r and vanishes for conformal

coupling in three dimensions. Note that this term exactly

coincides with the first-order heat kernel coefficient [26].

Putting these results together, we obtain the subtracted

Green’s function summed over angular momentum channels

Gσðr; r; κÞ − Gfreeðr; r; κÞ þ Vl¼0ðrÞ
4πκ2

¼ Gσðr; r; κÞ −Gfreeðr; r; κÞ þ R

4πκ2

�

ξ −
1

6

�

ð50Þ

in the limit where m → 2 and the points are coincident.

Furthermore, we can pull the last term of Eq. (50) inside the

sum used to define the Green’s function by using a special

case of the addition theorem for Legendre functions,

1 ¼ 2

X

∞

l¼0

0 ΓðνðκÞ − lþ 1Þ
ΓðνðκÞ þ lþ 1ÞP

l

νðκÞ

�

1

σpðrÞ

�

2

: ð51Þ

VII. DERIVATIVE TERM

Next we compute the derivative term 1

r2
D2

rGσðr; r; κÞ by
differentiating the expressions above. We note that for any
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two functions of ψAðrÞ and ψBðrÞ,

D2
rðψAðrÞψBðrÞÞ ¼ 2ðDrψAðrÞÞðDrϕBðrÞÞ

þψAðrÞðD2
rψBðrÞÞþ ðD2

rψAðrÞÞψBðrÞ;
ð52Þ

and so by using the equations of motion, we can express

the terms involving squares of first derivatives in terms

of the second derivative of the product, and vice versa.

Accordingly, for any pair of solutions ψAðrÞ and ψBðrÞ
obeying Eq. (17), we have

1

2r2
D2

rðψA
κ;lðrÞψB

κ;lðrÞÞ

¼
�ðσlÞ2

r2
þ ξRþ κ2

�

ψA
κ;lðrÞψB

κ;lðrÞ

þ 1

r2
ðDrψ

A
κ;lðrÞÞðDrψ

B
κ;lðrÞÞ; ð53Þ

and we note that

1

pðrÞ
d

dr
Pl

νðκÞ

�

1

σpðrÞ

�

¼−
rðσ2− 1Þ

r2
0
σ

Pl

νðκÞ
0
�

1

σpðrÞ

�

; ð54Þ

and similarly forQl

νðκÞ, and so by using recurrence relations

we can simplify

1

2r2
D2

r

�

Pl

νðκÞ

�

1

σpðrÞ

�

Zl

νðκÞ

�

1

σpðrÞ

�	

¼
�ðσlÞ2

r2
þ ξRþ κ2

�

Pl

νðκÞ

�

1

σpðrÞ

�

Zl

νðκÞ

�

1

σpðrÞ

�

þ 1

r2

�

r
ffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2 − 1

p

r0
Plþ1

νðκÞ

�

1

σpðrÞ

�

þ l

pðrÞP
l

νðκÞ

�

1

σpðrÞ

�	

×

�

r
ffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2 − 1

p

r0
Zlþ1

νðκÞ

�

1

σpðrÞ

�

þ l

pðrÞZ
l

νðκÞ

�

1

σpðrÞ

�	

;

ð55Þ

where Z is either P or Q; similar simplifications based on

recurrence relations apply for Bessel functions.

Renormalization of the derivative term in the curved

space background requires an additional counterterm com-

pared to the flat space expression in Eq. (19). This

subtraction is also proportional to the curvature scalar R.

The renormalized derivative term becomes

1

r2
D2

rGσðr; r; κÞ −
1

4π
R; ð56Þ

where again the counterterm is proportional to the Ricci

scalar and we have taken the points to be coincident. With

this choice, the full tadpole counterterm contribution to the

modified integrand of Eq. (19) with m ¼ 2 and n ¼ 0 is

κ2
R

4πκ2

�

ξ −
1

6

�

þ
�

1

4
− ξ

�

R

4π
¼ R

48π
; ð57Þ

consistent with the general result originating from the two-

dimensional conformal anomaly [27–29], since our geom-

etry is only curved in two dimensions.
1
As above, we can

pull this term inside the sum using Eq. (51).

Finally, as before we find it more computationally

tractable to compute the derivative term for the difference

of the full Green’s function and the corresponding point

string. We must then add back the derivative of the point

string contribution as well. In both what we subtract and

add back in, we define the radial derivative for the point

string contribution taking pðrÞ constant, corresponding to

the derivative we would use in the point string case.

VIII. KONTOROVICH-LEBEDEV APPROACH

FOR NONZERO WIDTH STRING

As with the point string above, we can express the

Green’s function as an integral over imaginary angular

momentum λ using the Kontorovich-Lebedev approach. As

described above, we take the pairs Pl

νðκÞ and P−l
νðκÞ and Il

and I−l as the independent solutions for r < r0 in the

ballpoint pen and flowerpot models respectively.

The Green’s function becomes

Gσðr; r0; κÞ ¼
1

2π

Z

∞

0

idλ

sinh λπ
σ

½ψ reg

κ;iλ
σ

ðr<Þ − ψ
reg

κ;−iλ
σ

ðr<Þ�ψout
κ;iλ

σ

ðr>Þ cosh
�

λ

�

π

σ
− jθ − θ0j

�	

; ð58Þ

where we have used that the outgoing wave is always even in λ. For r > r0, we can use Wronskian relationships to simplify

i

sinh λπ
σ

½ψ reg;pen

κ;iλ
σ

ðrÞ − ψ
reg;pen

κ;−iλ
σ

ðrÞ� ¼
2

π
σ3KiλðκrÞ

jðσ2 − 1ÞPiλ
σ

νðκÞ
0ð1
σ
ÞKiλðκr0Þ þ σκr0P

iλ
σ

νðκÞð1σÞK0
iλðκr0Þj2

ð59Þ

1
For a general entry in the stress energy tensor Tα³, this counterterm would become ξ

2π
Rα³ −

R
48π

gα³.
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for the ballpoint pen and

i

sinh λπ
σ

½ψ reg;flower

κ;iλ
σ

ðrÞ − ψ
reg;flower

κ;−iλ
σ

ðrÞ� ¼
2

π
σ

κ2r2
0

KiλðκrÞ

jI0
iλ
σ

ðκ r0
σ
ÞKiλðκr0Þ − Iiλ

σ
ðκ r0

σ
ÞK0

iλðκr0Þ þ
2ξðσ−1Þ

κr0
Iiλ

σ
ðκ r0

σ
ÞKiλðκr0Þj2

ð60Þ

for the flowerpot. For r < r0, we have

i

sinh λπ
σ

½ψ reg

κ;iλ
σ

ðrÞ − ψ
reg

κ;−iλ
σ

ðrÞ� ¼ i

sinh λπ
σ

Aκ;iλ
σ

Cκ;iλ
σ

ψout
κ;iλ

σ

ðrÞ; ð61Þ

and so in both cases the Green’s function is written entirely in terms of outgoing waves. We can then subtract the free Green’s

function in the form of Eq. (24). For numerical calculation, however, we find that this approach is only effective for r > r0.

IX. RESULTS

Collecting all of these terms, we have the full expression for the renormalized energy density, written with the point string

subtracted and then added back in,

hHiren ¼ −
1

π

Z

∞

0

dκ

�

κ2
�

Gσðr; r; κÞ − G
point
σ̃ ðr�; r�; κÞ þ ΔG

point
σ̃ ðr�; r�; κÞ −

1

2π
log

r�
rpðrÞ

�

−

�

1

4
− ξ

�

1

r2
ðD2

rGσðr; r; κÞ − D̄2
rG

point
σ̃ ðr�; r�; κÞ þ D̄2

rΔG
point
σ̃ ðr�; r�; κÞÞ þ

R

48π

	

; ð62Þ

where r� is the physical distance in each model as defined

above (with r� ¼ r for r > r0) and σ̃ ¼ pðrÞσ in each

region (with σ̃ ¼ σ for r > r0). Here we have defined D̄r ¼
r d
dr

so that we add and subtract derivatives of the point

string in the background of a flat spacetime with a deficit

angle, as described above. The combined counterterm R
48π

(with R ¼ 0 for r > r0, and for r < r0 in the flowerpot

model) is obtained by combining the two individual terms

obtained in Sec. VI using Eq. (57).

In both the first and second lines of Eq. (62), the

contribution from the difference between the full and point

string Green’s functions can be taken inside the sum over l,

using the results inSec.VandEq. (21),while the contribution

from the difference between the point string and empty space

Green’s functions can be computed as an integral over

imaginary angular momentum using Eq. (26). For the case

of r > r0, we can check our calculation using the results of

Sec. VIII, in which case Eq. (62) can be expressed entirely in

terms of an integral on the imaginary angular momentum

axis. For that calculation, there is no need to add and subtract

the point cone contribution, so we can simply subtract the

free Green’s function directly, using Eq. (24).

FIG. 2. Energy density hHiren, in units of ℏc
r3
0

, as a function of r, in units of r0, for θ0 ¼ π
3
in the ballpoint pen model. The left panel

shows minimal coupling ξ ¼ 0, while the right panel shows conformal coupling ξ ¼ 1

8
.
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FIG. 3. Energy density hHiren, in units of ℏc
r3
0

, as a function of r, in units of r0, for θ0 ¼ 2π
3
in the ballpoint pen model. The left panel

shows minimal coupling ξ ¼ 0, while the right panel shows conformal coupling ξ ¼ 1

8
. The energy shows a similar shape, but larger

magnitude for a greater deficit angle.

FIG. 4. Energy density hHiren, in units of ℏc
r3
0

, as a function of r, in units of r0, for θ0 ¼ π
3
in the flowerpot model. The left panel shows

minimal coupling ξ ¼ 0, while the right panel shows conformal coupling ξ ¼ 1

8
. The energy density for minimal coupling is small for

r < r0 because this case is close to the deficit angle where the inside energy density changes sign.

FIG. 5. Energy density hHiren, in units of ℏc
r3
0

, as a function of r, in units of r0, for θ0 ¼ π
6
(left panel) and θ0 ¼ 2π

3
(right panel) in the

flowerpot model with ξ ¼ 0. The sign of the energy density for r < r0 reverses at approximately θ0 ≈ 1.
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Sample results are shown in Figs. 2–5, for both minimal

and conformal coupling. We note that for the interior of the

flowerpot, the sign of the energy density for r < r0 is

opposite at large and small deficit angles for minimal

coupling, with the sign change occurring at θ0 ≈ 1. For the

ballpoint pen, we see a singularity at r ¼ r0, corresponding
to the step function discontinuity in the curvature.

However, the total energy remains finite, because this

contribution cancels, as a principle value, on either side

of the boundary [18]. In an actual string, the sharp edge

would be smoothed by both the classical string dynamics

and the backreaction from the quantum field. For the

flowerpot, the energy density diverges at r ¼ r0 and the

total energy is divergent as well, because the curvature

profile is itself a divergent δ-function, which gives rise to an

infinite quantum total energy [30]. As a result, in this case

the energy density need not have opposite signs for r < r0
and r > r0. It is interesting to note that the effects of the

string’s curvature are qualitatively similar to those of the

analogous square well or δ-function scalar background

potential, as studied in Refs. [18,30].

X. CONCLUSIONS

We have shown how to use scattering data to compute

the quantum energy density of a massless scalar field in the

background on a nonzero width cosmic string background,

using both the flowerpot and ballpoint pen string profiles in

two space dimensions. Of particular interest is the interior

of the ballpoint pen, where the background space time has

nontrivial (but constant) curvature. We precisely specify

counterterms corresponding to renormalization of both the

cosmological constant and the gravitational coupling to the

scalar curvature R. In addition, to make the calculation

tractable numerically, we subtract and then add back in the

contribution of a point string with the same deficit angle

and physical radius. We can then subtract the free space

contribution, corresponding to the cosmological constant

renormalization, by combining it with the point string result

and using analytic continuation of the angular momentum

sum to an integral over the imaginary axis. These results

extend straightforwardly to three dimensions, but that case

requires an additional subtraction of order R2.
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