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Abstract. Navigating safely and independently presents considerable
challenges for people who are blind or have low vision (BLV), as it re-
quires a comprehensive understanding of their neighborhood environ-
ments. Our user study reveals that understanding sidewalk materials
and objects on the sidewalks plays a crucial role in navigation tasks.
This paper presents a pioneering study in the field of navigational aids
for BLV individuals. We investigate the feasibility of using auditory data,
specifically the sounds produced by cane tips against various sidewalk
materials, to achieve material identification. Our approach utilizes ma-
chine learning and deep learning techniques to classify sidewalk materials
solely based on audio cues, marking a significant step towards empow-
ering BLV individuals with greater autonomy in their navigation. This
study contributes in two major ways: Firstly, a lightweight and practical
method is developed for volunteers or BLV individuals to autonomously
collect auditory data of sidewalk materials using a microphone-equipped
white cane. This innovative approach transforms routine cane usage into
an effective data-collection tool. Secondly, a deep learning-based classi-
fier algorithm is designed that leverages a dual architecture to enhance
audio feature extraction. This includes a pre-trained Convolutional Neu-
ral Network (CNN) for regional feature extraction from two-dimensional
Mel-spectrograms and a booster module for global feature enrichment.
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Experimental results indicate that the optimal model achieves an accu-
racy of 80.96% using audio data only, which can effectively recognize
sidewalk materials.

Keywords: Auditory - Assistive technology - Blindness and low vision
- Deep learning - Material recognition - Navigation.

1 Introduction

The World Health Organization (WHO) estimates that there are 285 million
people with visual impairment worldwide, among whom 39 million are totally
blind [1]. People who are blind or have low vision (BLV) face many challenges in
their daily lives, including the difficulty of navigating safely and independently
[2]. To navigate effectively, individuals with BLV need to acquire as much spa-
tial information as possible from their surroundings, including information about
sidewalk materials and defects [3]. Regrettably, most existing advanced appli-
cations [4-6] do not provide sufficient functionality to help BLV people collect
landmark information and understand sidewalk conditions. Mobile navigation
applications with GPS and mapping services (such as Google Maps and Ap-
ple Maps), mainly focus on providing efficient, short navigation routes, which is
insufficient for BLV individuals [7, 8]. Therefore, their preferences have to tilt to-
wards paths rich in tactile landmarks and minimal sidewalk defects, prioritizing
safety and reliability over shorter distances.

As for the BLV individuals, they often rely on white canes to explore their
surroundings, via auditory feedback that enhances their spatial awareness and
assists in self-localization [3]. For example, they can follow the tactile shoreline
in their travel by identifying surface material changes, such as grass edges or
raised curbs. Many street intersections are equipped with tactile pavements of
varying materials and patterns, designed to aid BLV people in identifying impor-
tant locations, such as street crossings, bus stops, and the direction of streets.
These surface materials serve as effective landmarks and hence their inclusion
in accessible maps is crucial. Maps including sidewalk materials would be very
useful to BLV people, facilitating real-time navigation and trip planning. To
gain a deeper understanding of the challenges faced by BLV individuals in their
lives, we have conducted an informal user study with BLV individuals [13]. This
study has revealed that materials and objects on sidewalks play a crucial role in
navigation tasks. Moreover, BLV individuals highlight the critical role of audio
signals in identifying sidewalk landmarks and ensuring safe travel in urban areas.

This study conducts a preliminary investigation into the use of non-visual,
audio-based data, specifically the sounds produced by the cane tips of visually
impaired individuals rubbing against different sidewalk materials, for the iden-
tification of materials that are challenging to differentiate by sight. Leveraging
machine learning (ML) and deep learning techniques, this research centers on the
classification of sidewalk materials using exclusively auditory cues. This inquiry
lays the groundwork for a future in which BLV individuals can independently



Surveying Sidewalk Materials by Hearing 3

gather data on sidewalk materials during their routine travels, transforming the
mundane act of cane usage into an opportunistic data collection method. Such
a paradigm not only fosters autonomy among BLV individuals but also aug-
ments the navigational data repository with their unique, experientially-rich
insights. As BLV individuals navigate diverse urban terrains, their canes evolve
into dual-purpose instruments, serving both personal navigational needs and the
communal objective of enhancing a dynamic, adaptive mapping infrastructure
responsive to the intricacies of urban settings.

In pursuit of this innovative future, our study undertakes the development of
a novel data collection methodology, enabling individuals with blindness or low
vision (BLV) to autonomously gather auditory data. Additionally, this research
introduces a deep learning-based classification system focused on categorizing
these auditory signals. The key contributions of this paper are:

1. The design of a lightweight data collection method for BLV individuals to
acquire non-visual information on sidewalk materials. We equipped the white
cane with a microphone that captures auditory feedback through audio data
as the cane contacts the sidewalk surface. Additionally, we have generated
an auditory dataset regarding sidewalk material using the proposed method.

2. The development of a deep learning-based classifier algorithm to identify
different sidewalk materials using only audio data. We proposed a dual ar-
chitecture for feature extraction: (a) a pre-trained Convolutional Neural Net-
work (CNN) model was used to extract the regional characteristics from the
two-dimensional Mel-spectrogram; and (b) a booster module aimed at global
feature extraction from the Mel-spectrogram representations to enhance the
audio feature extraction. The encouraging outcomes of our experimental
evaluations underscore the robustness and practicality of this algorithm.

The organization of the paper is as follows: Section 2 delves into the related
work, providing context and background. Section 3 outlines the data acquisition
approach in detail. Section 4 expounds on the classification methodology. Section
5 discusses the results derived from our experiments. Finally, Section 6 offers
concluding observations and remarks.

2 Related Work

2.1 Material Recognition

Most existing research on material recognition relies heavily on visual cues. One
notable study [14] achieved significant results by focusing on three key elements:
material image datasets, contextual influences, and unique descriptors of mate-
rial appearance. In addition, numerous studies have explored the utility of light
field (LF) images for material identification [15]. An alternative view of material
recognition has been proposed using a combination of acceleration and images,
and a fully convolutional network has been deployed for joint surface material
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recognition [16]. In contrast, our project mainly utilizes non-visual data, specif-
ically audio data. Our deep learning classifier aims to use non-visual forms of
data to discriminate sidewalk materials, thus providing a new perspective in the
field of material recognition.

2.2 Feature Engineering

A prevalent trend in the acoustic community involves the preprocessing of raw
audio data to convert it into spectrograms, including Mel-Spectrogram and Mel-
frequency cepstral coefficients (MFCC). These characteristic visual representa-
tions then serve as inputs to intricate network models for training. Several stud-
ies have affirmed the effectiveness of CNN based models when applied to spec-
trograms [11, 12]. Remarkably, most state-of-the-art results have been achieved
through transfer learning, employing pre-trained CNN models like ResNet50
[10]. Interestingly, one notable study indicated that CNNs pre-trained with reg-
ular images, such as ImageNet, remain proficient at extracting critical features
from audio spectrograms [17]. Additionally, through a series of tests we have
found that features derived from the mean, minimum, and maximum values of
Mel-Spectrogram frequency bands have discernible decision boundaries. Our ap-
proach aims to synergize both forms of audio data: taking advantage of deep
learning to extract rich and effective features from spectrograms of audio data,
while using global features derived from statistical techniques to ”boost” training
on the audio data.

3 Data Acquisition

This section presents the overview of the data collection process. A modified
white cane was used to capture the unique acoustic feedback of different sidewalk
materials. The following subsections detail the equipment used and the meth-
ods of data collection, including both static and continuous modes, to ensure
a diverse dataset. The sidewalk material audio data acquisition was performed
by 23 volunteer students who embarked on an expansive data collection mission
across 4 of the 5 boroughs of New York City. This audio data inventory provided
us with a basis for a training dataset for our proposed classifier, which is further
detailed in Section 4. We will introduce the audio data collection equipment and
inventory in the following subsections 3.1 and 3.2.

3.1 Audio Data Collection Equipment

A lightweight data collection system is designed to acquire acoustic feedback
when the cane contacts with sidewalk surfaces using a modified white cane
(Fig. 1).

As a white cane interacts with different materials, distinct acoustic signals
are produced by the cane tip (a metal tip is used in the system). To capture those
differences, a wired microphone was positioned near the cane tip clipped to a
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Fig. 1. The modified white cane for sidewalk material audio data collection.

foam ring to maximize the clarity of recorded sounds while minimizing ambient
noise and cane vibration noise. Additionally, a mount for a phone was installed
to aid in recording video data utilized as a reference for annotations.

3.2 Audio Data Collection

To assemble the sidewalk material audio data inventory, a large-scale data col-
lection effort was initiated involving student volunteers. The data collection was
acquired in two different modes: static and continuous.

— Static data. Twenty-three (23) sighted volunteers collected a substantial
amount of sidewalk material data. Each data record contains a duration of
30+ seconds of a singular surface material category. This was done in order
to approximate BLV individuals stopping at certain sidewalk landmarks and
repeatedly surveying the material with a white cane in order to ensure they
have arrived at a location (e.g. tactile pavement strips on sidewalk intersec-
tions).

— Continuous data. Four (4) sighted volunteers collected sidewalk material
data walking along longer strips of sidewalk to better emulate the standard
walking conditions of BLV users. In this mode of data collection, each data
record would often contain multiple sidewalk landmarks such as manhole
covers and subway grates, providing us with data for multiple categories.
With the annotation tool Label Studio [24], each data record was manually
annotated by labeling delimiting points of sidewalk materials in the accom-
panying video.

To ensure accuracy and relevance, the collected sidewalk material audio data
was classified according to the criteria specified in the New York City Street
Design Manual [9] and the Guidebook for Accessible Sidewalk and Street Inter-
section Information [18].
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The audio data inventory contains several hours of static data and continuous
data. This dataset represents a diverse and comprehensive encapsulation of 11
categories including concrete, asphalt, dirt, grass, metal, manhole, granite, tactile
pavement, brick, subway grate, and cellar door.

4 Material Classification Approach

4.1 Data Preprocessing

Data preprocessing is a crucial step in any machine learning project for trans-
forming raw data into a form that machine learning models can learn effectively.
In this project, the goal of data preprocessing is to slice the audio data into
manageable, trainable pieces, and to convert these pieces into a format suitable
for deep learning classifiers to learn. Fig. 2 provides a schematic diagram of the
data preprocessing pipeline used in this study. The pipeline consists of three
main components: data preparation (Fig. 2, Part I), data slicing (Fig. 2, Part
IT), and data transformation (Fig. 2, Part III). These components are briefly de-
scribed in the following subsections for completion even though we mostly follow
existing approaches.

Data Data
B Extract Slicing Transformation
N audio
e |
TVIDEO [ 000 o
Video Audio e || S
data data 1 -;'s:: 1%
segment segment
Part | Part Il Part il

Fig. 2. Schematic diagram of data preprocessing pipeline. Part I illustrates the module
for audio data extraction from video data; Part IT depicts the module for slicing data
into 1-second time slices; Part ITI shows the module for data transformation of audio
bitstreams to Mel-spectrograms.

Data preparation. In the initial stage of data preparation, as depicted in
Fig. 2, Part I, our methodology involves extracting audio data from the corre-
sponding video recordings. This crucial step is followed by a meticulous process
of resampling the audio data to a frequency of 44 kHz. We employ the Sinc
interpolation method for this purpose, a technique renowned for its efficacy in
handling nonuniform sample rates [19]. Additionally, the audio data undergoes a
rechanneling process to convert it into a stereo format. This rechanneling serves
a dual purpose: firstly, it aligns the data with the common standards of auditory
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processing, and secondly, it facilitates a more nuanced analysis by preserving spa-
tial characteristics of the sound, which could be crucial in distinguishing between
different types of sidewalk materials. Stereo audio, with its dimensional quality,
offers a richer dataset for the subsequent stages of processing and analysis [23].

Data slicing. The next step is data slicing (Fig. 2, Part IT), which is the process
where we decompose the original audio data into manageable segments that are
suitable for training our deep learning classifier. A sliding window technique
establishes a fixed-length window that moves across the data sequence with a
determined step size. Each shift of this window generates a new data segment,
enabling the extraction of localized features from the time series data.

It is worth noting that each data segment slice has a corresponding annota-
tion label. With static collection data, data segment labels are consistent across
all slices from the original audio data. However, with continuous collection data,
data segment labels first reference the manual annotations for the audio data
and then select the category with the greatest duration within a particular data
segment (1 second is used in our experiments).

Data transformation. The final step is data transformation (Fig. 2, Part
IIT) where we performed a Mel-spectrogram transformation on the segmented
audio and acceleration data. This transformation maps raw data onto a two-
dimensional grid, with the horizontal axis representing time and the vertical
axis denoting frequency. The Mel-spectrogram efficiently captures both the spec-
tral and temporal properties of the raw audio signal, which are crucial for our
sidewalk material classification task.
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Fig. 3. The booster model for audio sidewalk material classification.
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4.2 Classifier Architecture

The core of our material classification algorithm lies in the sophisticated archi-
tecture of our deep learning-based classifier (Fig. 3). The proposed architecture
has been carefully designed to proficiently process and analyze audio data to
accurately identify different sidewalk materials. At the core of its efficacy is a
dual-mechanism approach that includes two key modules: the feature extraction
module and the booster module. These two modules work in tandem to metic-
ulously extract and analyze features from the Mel-spectrogram representation
of audio data. Together, these modules form the backbone of our classifier’s
architecture, playing an instrumental role in converting the auditory nuances,
captured through our innovative data collection methods, into meaningful and
practical insights. Subsequent subsections will delve into the specifics of each
module, illustrating their respective functions and their synergistic operation in
our classification algorithm.

Feature extraction module. Given the richness of the audio data acquired,
the raw data has been transformed into Mel-spectrograms, which are essentially
visual representations of the spectrum of frequencies in a sound signal as they
vary with time. The utilization of Mel-spectrograms for feature extraction has
been consistently corroborated by numerous studies in the field, highlighting its
efficacy in capturing pertinent audio information [17]. These Mel-spectrograms
are excellent candidates for the application of deep learning-based feature ex-
traction methods, as also expressed by [10] in their pioneering work on audio
classification.

With the Mel-spectrogram representations in hand, we harness the power of
pre-trained deep neural network architectures to extract robust features. This
approach, while novel in our specific application, stands on the shoulders of
previous studies which have emphasized the robustness of pre-trained models in
extracting meaningful features from complex data [17]. Specifically, we employ
a transfer learning approach using the ResNet model [21,22]. Leveraging the
representational power of ResNet, we discern and isolate the most important
localized audio features from the Mel-spectrogram, preparing the audio data for
subsequent stages of the classification pipeline.

Booster module. The booster module in our classifier architecture plays a piv-
otal role in augmenting the feature set extracted from the Mel-spectrogram rep-
resentations. This module is intricately designed to process the Mel-spectrogram
across the time axis, capturing the {minimum, maximum, and mean} values of
each intensity band. This operation is executed for each of the 64 Mel frequency
bands. As a result of this process, the engineered data assumes a structured
shape of (64, 3), where the three channels correspond to the minimum, max-
imum, and mean values for each of the 64 Mel frequency bands, which serve
as global features. Global features, in contrast to the local or regional features
extracted by the pre-trained ResNet50 model, encapsulate overarching patterns
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and trends present in the entire audio sample. They provide a macroscopic per-
spective of the data, capturing broad, holistic properties that are not bound to
specific time frames or localized spectral regions. The global features, in synergy
with the regional characteristics extracted by the ResNet50 model, create a more
robust and nuanced feature set. This enriched feature set helps to improve the
accuracy and reliability of the classifier, ensuring a more efficient and detailed
interpretation of the audio data for material classification.

Feature fusion. The most straightforward method of fusion is concatenation.
After the feature extraction module and the booster module (as in Fig. 3, block
A), two discrete feature vectors, denoted Vigeq: of 2048 dimensions and Vyjopas
of 192 (64 x 3) dimensions, are obtained. To attain consistency in dimensions,
a dimensionality alignment layer was designed where regional characteristic fea-
tures Vipeq; will be fed into the localized feature alignment module, where it
will conduct down-sampling to vjocq; 0f 128 dimensions. While the global feature
Vgiobar Will be fed into the global feature alignment module where it will resam-
ple to vgiopar Of 128 dimensions as well (as in Fig. 3, block B). They are then
synthesized into a single, unified, lengthened feature vector v within the local
and global feature fusion layer (as in Fig. 3, block C).

V = Uregion D Vglobal (1)

5 Experimental Results

Fig. 4. Typical image of primary categories utilized in training dataset.

5.1 Dataset

Training a deep learning model requires a large amount of data. In this study, we
selected seven (out of eleven) categories from the audio data inventory that were
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most commonly found on New York City sidewalks. These categories (Fig. 4)
include: concrete, tactile pavement, subway grate, manholes, bricks, dirt, and
cellar doors.

For training data selection, data with portions of the missing audio due to
lost microphone connection or other audio signal errors were removed from the
dataset. Additionally, static audio data from the most prevalent categories was
removed to prevent a heavy class imbalance. Fig. 5 illustrates the data distri-
bution between static and continuous training data of each category and among
the seven categories. Each of these categories encompasses data with almost 60
minutes of duration, creating a robust foundation for our model training.

Categories by Time Slice Minutes

s Continuous
BN Static

60

50

40

Minutes

20

concrete subway grate brick dirt manhole tactile cellar door
Category

Fig. 5. Data duration for each utilized primary category.

5.2 Implementation Details

Mel-spectrogram transformation and parameter selection. The conver-
sion of audio data to Mel-Spectrograms is a critical step in our preprocessing
pipeline, enabling the effective extraction of features relevant to our classification
task. In this study, the selection of key parameters was guided by empirical test-
ing, with the chosen settings optimizing for both accuracy and model efficiency.
Key parameters in this transformation include:

— Number of Mel bands. 64, chosen to capture a wide range of frequencies
while maintaining computational efficiency.

— Frame length and hop length. 1024 and 256 respectively, balancing tem-
poral resolution and frequency resolution.
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Model architecture adaptations. As mentioned above, we utilized ResNet50
to conduct localized feature extraction from Mel-Spectrograms in conjunction
with a booster module for global feature extraction from Mel-Spectrograms as
well. Later, the localized and global features will be aligned by their alignment
modules respectively.

Within the network’s architectural scaffolding, the Rectified Linear Unit
(ReLU) was employed as the activation function. Further, we also integrated
Batch Normalization layers to stabilize and accelerate training by normalizing
intermediate feature maps, and applied the dropout with the probability of 0.2
where it randomly zeros some of the input tensors to improve the model’s gen-
eralizability and robustness.

In this study, the proposed model is implemented in Pytorch and the overall
model size is 24.7M parameters. The detailed implementation of each module is
listed as follows.

— Audio feature extractor. To adapt the ResNet50 model, we initially ex-
perimented with several variants, toggling the number of frozen blocks in
the architecture. As the crux of deep learning is finding the right amount
of transfer versus fine-tuning, our experimentation revealed that freezing
just the initial block led to an optimal balance, outperforming other con-
figurations in terms of classification efficacy. Post this freeze, the terminal
classification layer was excised, thus enabling the network to produce a fea-
ture vector of length 2048, encapsulating the richer semantics of our data
without an unwarranted imposition of specificity.

— Dimensionality alignment. In the dimensionality alignment module, there
are two main components, namely localized feature alignment and global fea-
ture alignment. For the localized feature alignment component, it includes
two feedforward layers; the first layer is used to down-sample the features
from 2048 to 512 dimensions while the second layer is used to down-sample
the intermediate features from 512 to 128 dimensions. Likewise, the global
feature alignment component is also a feedforward layer that resamples the
global features from 192 to 128 dimensions aligned with localized features.
Notably, all these layers are followed by the pre-defined Relu, batch normal-
ization and dropout to avoid the overfitting problem.

— Training procedures. Our training procedures include an initial learning
rate of 1 x 10~°, reduced by a factor of 10 upon plateauing of validation loss
using the Pytorch learning rate scheduler [25]. The proposed model is trained
in 50 epochs with a batch size of 128. Adam optimizer with weight decay
of 1 x 107° was employed for its efficiency in handling sparse gradients and
adaptive learning rate capabilities. In terms of the loss function, we employ
a cross-entropy given its effectiveness in handling multi-class classification
problems.

— Inference time. In order to test inference times for the model, we ran model
inference over 3000 samples 3 times with an ”off-the-shelf” CPU (Intel i9-
13900KF, 3.00 GHz, 32 GB RAM) and an ”off-the-shelf” GPU (Nvidia GTX
4090, 24 GB RAM), the average inference time per 1-second audio segment
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were 13.3 + 0.005ms and 8.1 £ 0.002ms, respectively, making it suitable for
near-real-time applications.

Evaluation metrics. Given the inherent imbalance in our dataset, traditional
accuracy metrics would provide a skewed representation of the model’s prowess.
To counter this, macro accuracy, which computes accuracy for each class and
then averages it, was utilized. Complementing this, the macro F1 score was also
used, which provides a harmonized mean of precision and recall, thus giving a
balanced view of the model’s performance across diverse classes.

Validation strategy. To ensure our model wasn’t merely memorizing the id-
iosyncrasies of our dataset, we implemented a K-fold cross-validation approach
[20]. The entire dataset was meticulously partitioned into eight distinct folds.
However, given the computational overheads and our endeavor to remain time-
efficient, we eschewed exhaustive validation across all folds. Instead, a represen-
tative subset of three randomly selected folds was earmarked for cross-validation.
This approach ensured a rigorous assessment while balancing computational fea-
sibility.

5.3 Ablation Study and Model Comparison

To discern the efficacy and contribution of each modality in our task, we first
tested the feasibility of utilizing the minima, maxima, and average of Mel fre-
quency bands by training a Multilayer Perceptron with the data. We then under-
took an ablation study comparing a ResNet50 model, and a ResNet50 plus audio
booster model. Additionally, a selection of standard machine learning models (K-
Nearest Neighbor, Naive Bayes, RandomForest, and Support Vector Machine)
trained on flattened one-dimensional arrays of the Mel-spectrogram images de-
rived from the audio data was utilized as a basis for comparison.

Table 1. Ablation study results in terms of macro accuracy and macro Fl-score.

Model Macro Accuracy|Macro F1-Score
K-Nearest Neighbor 41.11% 32.24%

Naive Bayes 42.30% 38.41%

Multilayer Perceptron 46.54% 45.20%
RandomForest 50.79% 49.98%

Support Vector Machine 65.77% 65.14%

ResNet50 78.31% 78.64%
ResNet50 + Audio Booster|80.96% 80.85%

Our findings indicate substantially greater classification accuracy and F1-
score with the {ResNet50} and {ResNet50 + Audio Booster} models compared
to the standard machine learning models. Whereas the Multilayer Perceptron



Surveying Sidewalk Materials by Hearing 13

trained on the average, minima, and maxima of Mel frequency bands places in
the middle of the standard machine learning models.

The {ResNet50 + Audio Booster} model appears to have a 2 percentage-
point increase for accuracy and F1l-score compared to the base ResNet50 model
and greater than 20% increase for accuracy and F1l-score compared to the Mul-
tilayer Perceptron (Table 1).

The empirical results supported our hypothesis: leveraging features engi-
neered from the audio data with statistical techniques in order to boost the
training of a CNN deep learning model enhances the model’s robustness and
accuracy.

6 Conclusion and Future Work

Drawing on observations of the independent travel experiences of visually im-
paired individuals, our study has explored the use of auditory data from cane
tips against different sidewalk materials for surface identification. We have gen-
erated a novel audio dataset and developed a model with dual-mechanism for
material classification, achieving a promising 80% accuracy.

While the model was developed with a focus on accuracy and robustness
rather than real-time classification capabilities, an average inference time of
13.3+0.005ms (CPU mode) per 1-second audio segment, the possibility of classi-
fication in real-time in order to help BLV individuals be alerted to materials and
obstacles ahead might be worth exploring in the future. An attempt to balance
inference time and accuracy might be another pathway worth exploring.

In addition, we plan to explore a crowdsourcing framework, further enabling
BLV users to contribute to sidewalk material data collection during their inde-
pendent travels. This expansion not only aims to refine our existing model but
also seeks to actively involve the BLV community in our research process, which
could improve the assistive navigation technology.
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