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Abstract—For serious games on education, understanding the
effectiveness of different learning methods in influencing cognitive
processes remains a significant challenge. In particular, limited
research addresses the comparative effectiveness of serious games
and videos in analyzing brain behavior for graph structure
learning, which is an important part of the Science, Technology,
Engineering, Math, and Computing (STEM+C) disciplinary ed-
ucation. This study investigates the impact of serious games on
graph structure learning. For this, we compared our in-house
game-based learning (GBL) and video-based learning (VBL)
methodologies by evaluating their effectiveness on cognitive
processes by oxygenated hemoglobin levels using functional near-
infrared spectroscopy (fNIRS). We conducted a 2 × 1 between-
subjects preliminary study with twelve participants, involving
two conditions: game and video. Both groups received equivalent
content related to the basic structure of a graph, with comparable
session lengths. The game group interacted with a quiz-based
game, while the video group watched a pre-recorded video.
The fNIRS was employed to capture cerebral signals from the
prefrontal cortex, and participants completed pre- and post-
questionnaires capturing user experience and knowledge gain.
In our study, we noted that the mean levels of oxygenated
hemoglobin (ΔHbO) were higher in the GBL group, suggesting
the potential enhanced cognitive involvement. Our results show
that the lateral prefrontal cortex (LPFC) has greater hemody-
namic activity during the learning period. Moreover, knowledge
gain analysis showed an increase in mean score in the GBL
group compared to the VBL group. Although we did not observe
statistically significant changes due to participant variability and
sample size, this preliminary work contributes to understand-
ing how GBL and VBL impact cognitive processes, providing
insights for enhanced instructional design and educational game
development. Additionally, it emphasizes the necessity for further
investigation into the impact of GBL on cognitive engagement and
learning outcomes.
Index Terms—serious game, game-based learning, video-based

learning, brain activity, fNIRS, hemodynamic response, oxy-
genated (ΔHbO), and deoxygenated hemoglobin (ΔHbR).

I. INTRODUCTION

In educational research, a persistent challenge revolves

around understanding the efficacy of different learning ap-

proaches in influencing cognitive processes and improving

learning outcomes [1], [2]. Today’s students spend a significant

amount of time engaging with technologies such as mobile

devices, laptops, and tablets to watch videos and play games

for recreation and education purposes [3], [4]. As a result,

researchers and educators are actively seeking ways to enhance

the interactivity and engagement of video and game content.

It has been found that motivation and engagement in learning

are key factors influencing academic achievement [5] and

that results in higher learning outcomes and performance [6].

The use of video as learning material is very promising in

education. Serious games are also considered an effective

tool for educational and training purposes [7]–[9]. Thus, the

effectiveness of game-based learning (GBL) and video-based

learning (VBL) in enhancing cognitive processes has received

significant attention. However, investigating this efficacy has

often relied on self-reported outcomes from observational

studies, leaving a gap in understanding the underlying neural

processing.

Analyzing neural activity can help identify the key insights

into how the brain responds to various learning techniques

that keep students cognitively engaged [10]. Despite advance-

ments in methodologies for investigating the interconnected

interaction between the brain and behavior, there is a lack

of studies dedicated to the development of integrated models

or explanatory frameworks that encompass both neuroscience,

which focuses on the study of the brain, and cognition,

which pertains to the processes underlying human thinking

and behavior [11]. Measuring brain activity allows researchers

and educators to gain insights into how the brain processes

information, what parts of the brain are active during different

learning tasks, and how different learning strategies affect

brain function. However, it is important to note that brain

signal analysis is still a growing research field because cog-

nitive processes cannot be observed directly. Instead, they are

inferred indirectly from factors such as task performance and

hemodynamic responses [12]. Furthermore, cognitive abilities

vary from individual to individual due to different neural

processing speeds [13]. So, more research is needed to fully

understand how best to use these techniques for educational

purposes.

Research in the prefrontal cortex has made invaluable

progress in brain signal analysis, as it involves many higher

cognitive functions, such as decision-making, working mem-
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ory, and attention [14], [15]. Functional Near-Infrared Spec-

troscopy (fNIRS) can be used to determine neural activity

in the brain from the prefrontal cortex [16], [17]. It is a

non-invasive optical neuroimaging technique used to measure

changes in optical density that are correlated with hemo-

dynamic response and neural activity [7]. fNIRS calculate

hemodynamic responses by measuring ΔHbO which refers

to changes in oxygenated hemoglobin (HbO) concentration

and ΔHbR deoxygenated hemoglobin (HbR) in the prefrontal

cortex [15], [18]. Cortical activity results in an inflow of

oxygenated blood [19]. The active neuron consumes oxygen

when the level of neural activity in a brain area initially

increases ΔHbR [19]–[21]. When the demand for oxygen

increases, oxygen flows to this area of the brain, increasing

levels of ΔHbO [19], [21]. Higher ΔHbO and ΔHbR in-

dicate more blood flow to the cortex and, therefore, stronger

brain activities in neurons while performing a task [19], [21],

[22]. However, most studies investigate brain activity for a

specific game [9], [14], [21]–[23] or video [8], [24] interface.

To our knowledge, no study has compared the effectiveness of

both learning techniques. The comparative analysis becomes

more valid if we can study brain activity for video and game-

based interfaces for a similar topic. The application of fNIRS

to investigate the differences in cortical activity associated

with forms of learning can be used to elucidate the underlying

neural mechanisms and neural bio-markers of learning asso-

ciated with each method. Therefore, analyzing and comparing

the brain signals of learners playing an educational game and

watching videos will be important in cognitive neuroscience. It

can also help educators to design study materials and make the

learning process more interactive. This study aims to bridge

this gap by conducting a comparative analysis of GBL and

VBL using brain behavior analysis, specifically measuring

oxygenated hemoglobin using fNIRS. The goal of this study is

to explore the interplay between learning methodologies and

cognitive processes, providing valuable insights for designing

and implementing more effective educational strategies. We

seek to illuminate the extent to which GBL and VBL impact

cognitive engagement and knowledge acquisition. The results

of this study have the potential to enhance the field of educa-

tion and human-computer interaction by providing evidence-

based guidance for designing immersive and impactful learn-

ing experiences. Our investigation focuses on brain activity,

changes in engagement, and knowledge acquisition while

learning computer science topics, such as the basic structure

of graphs, in a between-subject pilot study. Engagement is

assessed by changes in fNIRS measurements of ΔHbO and

ΔHbR, while knowledge gain is evaluated by comparing pre-
and post-test scores.

• RQ1: What are the differences in neural activities be-
tween game-based and video-based learning?

• RQ2: What are the differences regarding the subjective
results on usability, task load, and knowledge gain be-

tween game-based and video-based learning modules?

In this study, our contribution is to compare GBL vs

VBL within the context of graph theory by measuring the

hemodynamic response. While previous research has primarily

focused on assessing user engagement and knowledge scores

to evaluate these two learning approaches, our work uses

fNIRS data as a way to provide a more comprehensive

understanding. Our aim was to investigate whether traditional

measures of learning effectiveness, such as user engagement

and knowledge acquisition, are supported by physiological

evidence, particularly regarding brain activity as indicated by

the fNIRS data. Given that earlier studies have often found

GBL to be more effective, as seen through better performance

scores, our study sought to determine whether these scores are

associated with the fNIRS data. Our approach combines sub-

jective learning effectiveness indicators with objective brain

physiological data to provide a more holistic perspective of

how different educational modalities affect learning.

The remainder of this paper is organized as follows. Section

II presents related works on game- and video-based learning

and analysis of brain signals. Section III describes the pro-

posed methodology and study design. Section IV discusses

the results of our experiments. Finally, Section ?? concludes
the paper by discussing study findings, the proposed system’s

limitations, and the scope for future work.

II. RELATED WORK

Analyzing brain signals is of importance, as it enables

researchers to examine the neural underpinnings of cognitive

processes and the mental workload of the human cortex [20],

[25]. Functional Near Infrared Spectroscopy (fNIRS) [26],

electroencephalogram (EEG) [9], and functional Magnetic

Resonance Imaging (fMRI) [23] are scientific methodologies

that offer significant contributions to the understanding of

brain activities. These techniques are particularly useful in

evaluating attention, engagement, and cognitive load. Func-

tional near-infrared spectroscopy, as a brain imaging technique

that is comparatively more cost-effective, lightweight, and

portable, plays a significant role in facilitating the analysis

of brain signals flexibly [15], [19], [27], [28].

By studying brain signals, educators can design learning

materials that align with cognitive processes, optimize learning

experiences, and improve retention and understanding [29].

Brain signal analysis techniques fNIRS and EEG have been

used in STEM including math [21], [30], [31], geometry [32],

engineering [20], [33], and science [34] to investigate neural

activity and cognitive processes.

A. Learning and Performance: Cognitive and Neural Factors

Proactive control, hands-on learning, thinking aloud, and

mathematical performance are reviewed in this section. Be-

sides, cognitive processes, brain activation, and mathematical

proficiency are discussed. In a study, Suko et al. [30] examined

mathematical cognition, general cognition, and the brain bases

in 8- to 9-year-olds. The study showed that proactive control

correlates more strongly with mathematical performance than

with other cognitive abilities using additive mathematics tests,
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cognitive assessments, and fNIRS brain imaging. Shi et al.

[32] observed that hands-on experience led to an increase

in the concentration of oxygenated hemoglobin, as measured

by fNIRS. This increase indicated higher neuron activation

compared to video teaching with 40 Chinese middle school

students. Tripp et al. [20] found that the act of expressing

thoughts, commonly referred to as thinking aloud, significantly

impacts both the cognitive processes involved in design and the

neurological processes underlying cognition. They used fNIRS

to measure the changes in oxygenated hemoglobin. Artemenko

et al. [35] observed a correlation between lower mathematical

proficiency and shorter calculation duration, particularly for

complex arithmetic problems. Individuals with lower mathe-

matical skills also displayed reduced neural activity in the left

supra marginal, superior temporal, and inferior frontal gyri.

The study employed both EEG and fNIRS to observe these

neural activities.

B. Brain Signal Analysis in Serious Game and Video: Enhanc-
ing Neural Activity and Engagement

Several studies, including that by Desoto et al. [8], have

explored brain signal analysis during activities like playing

games and watching videos. They observed that different in-

puts can trigger unique neural responses, suggesting that brains

may process similar information in varied ways. Techniques

like EEG and fNIRS have been used to monitor cerebral activ-

ity during the viewing of STEM educational movies, aiming

to understand how the brain interprets identical information.

Tang et al. [24] identified mind wandering during VBL

using EEG and machine learning techniques. The average area

under the receiver operating characteristic curve for classifying

mind wandering within individuals was 0.876. Across educa-

tional lectures, it was 0.703. This indicates that their system

is more effective than random guessing at detecting mind

wandering but less precise than individual-level detection. A

study by Cakir et al. [21] aimed to assess the efficacy of

GBL in enhancing math fluency. Twenty-seven college stu-

dents participated in this study, where the game group played

“MathDash,” and the control group faced a drill and practice

approach to evaluate the behavioral and neural effects. The

fNIRS device was used to collect brain signals by measuring

the oxygenated hemoglobin ΔHbO. The ΔHbO was equal in

both control groups. Still, during the post-test, the game group

had a higher ΔHbR concentration, which was interpreted by

the authors to mean that their game training optimizes their

brain metabolism.

Samah et al. [9] examined brain functional connectivity

during game-based problem-solving tasks. The primary focus

was to draw gender differences based on brain signals while

playing a game. For this purpose, they chose a computer-

based Tower of Hanoi game. EEG signals were collected

in this study to record participant performance, and partial

directed coherence (PDC) analysis was performed to analyze

the data. PDC is a statistical method used to analyze the

directional interactions between different time series data,

such as EEG signals. PDC analysis illustrates the interactions

between time direction and spectral properties of a signal in

the brain. According to the study, male and female respondents

exhibited no appreciable differences in brain activity patterns.

In another study, using near-infrared spectroscopy, Kober et

al. [14] investigated behavioral performance while learning by

playing games on a neurofunctional level. They used a NIRS

device to calculate the frontal brain’s oxygenated hemoglobin

and deoxygenated hemoglobin concentration from 59 healthy

adults. They found that the game version was more engaging

than the non-game version by observing more robust activation

in the prefrontal cortex. They also used the Flow Short

Scale, the User Experience Questionnaire, and the Positive

and Negative Affect Schedule. The participants’ subjective

ratings also indicate the game version was more rewarding

and engaging. In another work, Greipl et al. [23] used fMRI

and MRI to compare the effects of game-based and non-GBL

on the brain. 42 participants played a number line estimation

task while their brain activity was measured. The results

showed that GBL led to more robust activation in ventral

tegmental & the substantia nigra region areas associated with

reward and in the amygdala & anterior insula, indicating

emotional processing, which suggests that GBL may enhance

learning through rewards. The subjective analysis showed

that the game-based version was rated more attractive, novel,

and stimulating than the non-game-based version. However,

there were no significant differences in the number of correct

answers or time taken between the game-based and non-game-

based versions of the task.

These results suggest that utilizing Game-Based Learning

has the potential to enhance neural activity and elevate en-

gagement levels. These studies have demonstrated enhanced

activation in distinct cerebral areas linked to rewards, emo-

tional processing, and cognitive involvement. In general, the

aforementioned findings emphasize the favorable influence of

GBL on cerebral activity and involvement, however, some

studies struggled to highlight a statistically significant effect

for fNIRS.

C. Effectiveness of Serious Game in STEM+C Educational
Contexts

Hsu and Lin [36] compared a Web Digital GBL System

in the experimental group with an online VBL system in the

control group on computer game programming education. The

experimental group exhibited superior learning performance

and motivation compared to the control group. A separate

investigation conducted by Mohsen [37] explored the effects

of virtual surgical simulation on educational achievements.

The findings revealed that individuals in the experimental

group exhibited better results in language comprehension and

vocabulary recognition assessments than those in the control

group. Chen et al. [38] conducted a comparative analysis of

various degrees of technological engagement in the context of

learning. Their findings indicated that using a simulation video

game resulted in more substantial advancements in learning

outcomes compared to both video-based instruction and tra-

ditional instructional methods. Gordillo et al. [39] studied
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the efficacy of GBL in software engineering. The researchers

discovered that the video games developed by teachers exhib-

ited greater knowledge acquisition and motivation compared

to VBL approaches. Tanimoto and Inie [40] used an online

game called “The Creativity Game” as a pedagogical tool

to facilitate instruction and enhance understanding of the

theoretical dimensions of creativity. The experiment shows that

the game facilitated the acquisition of knowledge related to

exploration, value, novelty, limitations, and transformation by

the players in a fun and interactive way by participating in

many sessions, allowing for the evaluation of uniqueness in

relation to the individual. Additionally, the game incorporated

simulated critics who provide commentary on the actions taken

by the player.

These studies support the efficacy of game-based and

simulation-based learning approaches. These approaches have

demonstrated enhanced learning performance, increased mo-

tivation, enhanced language comprehension, and improved

knowledge acquisition compared to conventional instructional

methods and VBL approaches.

There is a growing body of literature compa ring GBL

and VBL methods, yet a lack of research focuses on neural

correlates associated with these differences.

III. MATERIALS AND METHODS

This study aims to explore the efficacy of using serious

games for educational purposes with a specific focus on en-

hancing learning in STEM (Science, Technology, Engineering,

and Mathematics) and computer science subjects, particularly

within the context of graph structure learning. The primary

objective is to assess and compare engagement levels of learn-

ers when exposed to serious game-based learning and video-

based learning. The evaluation is based on the hemodynamic

response and knowledge gain derived from pre- and post-test

scores. To achieve this goal, we used functional near-infrared

spectroscopy (fNIRS) to measure changes in oxygenation and

deoxygenation in participants’ prefrontal cortex (PFC). Pre-

and post-tests were administered to assess the participants’

knowledge and comprehension before and after implementing

the learning methods. Furthermore, a survey was conducted

to evaluate the usability and task load of the study. To

demonstrate the comparison, we divided our participants into

two groups: the game group, who played a quiz-based serious

game, and the video group, who viewed a recorded video on

the same topic.

A. Participants

The study was approved by the University of Delaware’s In-

stitutional Review Board (Protocol #1982569−1). Participants
were adults over the age of 18, proficient in the English lan-

guage, not sensitive to an alcohol rub, and with limited or no

familiarity with fundamental graph terminologies. Individuals

who did not meet these criteria were excluded during the pre-

screening phase. Subsequently, participants received a clear

explanation of the terms and conditions of the experiment,

as well as the experimental procedures. They were provided

Fig. 1: Experimental setup for fNIRS data collection: Laptop

1 (L1) is used for learning. Laptop 2 (L2) is connected to

the fNIRS device and runs COBI software for data collection.

Laptop 3 (L3) sends triggers to mark separate task blocks.

informed consent by signing a formal document. Demographic

information, including age, courses, year of study, gender, and

prior knowledge of graph theory, was collected.

Twelve graduate students (4 female, age = 27.83± 2.99)
took part in this experiment. None of the participants were

excluded. There were six students (1 female) in the game

group, and in the video group, there were six students (3

females).

B. Apparatus

We used a combination of hardware and software to carry

out the experiment. The hardware and setups are shown in

Figure 1. Three computers were used in the experiment:

• L1 An Alienware laptop was used to run the learning

materials for both the game and video content.

• L2 A desktop computer was equipped with an Intel (R)

Core (TM) i7-10700T CPU operating at a frequency of

2.00 GHz. L2 was connected to an fNIRS device for data

acquisition. L2 also ran two key software programs: Cog-

nitive Optical Brain Imaging Studio Software (COBI),

responsible for collecting fNIRS signals, and fNIRSoft

Software (Version 4.9), which analyzed the brain signal

data by representing the average activation across all

blocks for each condition.

• L3 Another laptop with an Intel (R) Core (TM) i5 CPU M
460 @ 2.53 GHz and a serial port. L3 was connected to

L2 via serial port. L3 played a key role in the experiment

by running a custom PsychoPy [41] code for stimulus

presentation and triggering the fNIRS device. PsychoPy

sent markers to each block, so brain signal data can be

segmented properly as separate blocks. There markers

included concept definition, rest, quiz, and feedback, to

L2.

The game has been developed using Unity, and the video is

prepared using a PowerPoint slide with animation and audio.

Python was the selected tool for data analysis and processing.

In addition, we used Qualtrics to gather demographic data,

conduct pre-and post-tests, and administer user feedback ques-

tionnaires.

C. Procedure

The experiment was divided into multiple phases, as il-

lustrated in Figure 2. Initially, the participant did not wear

198

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on August 16,2024 at 21:48:28 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 2: Experimental phases: (phase 1) pre-screening and de-
mographic questionnaires; (phase 2) pre-test(phase 3)learning
material: either game or video wearing fNIRS headband;

(phase 4) post-test containing multiple-choice; (phase 5)
appear in survey questionnaires

an fNIRS headband. After consent, participants completed

pre-screening questionnaires based on the inclusion and ex-

clusion criteria (section III-A) (phase 1). Subsequently, par-
ticipants attended a ten-question pre-test (sectionIII-D1) and

did not get answers or feedback (phase 2). The next stage
involved implementing the instructional approach (section

III-D2) (phase 3). Two distinct groups were involved: the

game-based group played an educational game, and the video-

based group watched the video to learn the basic terminologies

of graphs recorded on a similar topic. An fNIRS headband was

placed on the forehead at the beginning of the learning period

and was removed upon session completion. Following the

designated learning period, participants completed the post-

test (section III-D5) (phase 4). Participants were not informed
about the content of the post-test questions in advance to

ensure unbiased responses. Finally, participants were presented

with survey questions about their learning experiences (phase
5).

D. Design

This study had a between-subjects design with two condi-

tions: participants were randomly selected to engage in game

play (N=6) or video content (N=6).

1) Pre-test:
During the initial assessment phase, a Qualtrics form was

generated, consisting of ten multiple-choice questions (one

point each) with five options for each question. participants did

not get any feedback about their performance.The test assessed

the participants’ understanding of the subject matter.

2) Learning Methods:
This study used two instructional conditions, a game and a

video, to teach basic graph terminologies. The selected topics

included the definition of a graph, the complete graph, the

determination of the number of edges in a complete graph,

the concept of a loop, the distinction between directed and

undirected graphs, the degree of a graph, and the final concept

of in-degree and out-degree in a graph. Figure 3 shows some

components of the definition, quiz, and feedback interface.

Both conditions presented questions and contents using the

same figures and options, set against a similar environment

for consistency of the game and video conditions.

3) Game-based Learning Interface: Players followed the
instructions to engage with the game, employing actions such

as playing with their graph through drag-and-drop functional-

ity or clicking the answer. After each definition, participants

were asked a quiz based on the corresponding term. The

game comprises a total of seven trials, with each trial having

a duration of 90 seconds. Each trial has different parts: a

definition period lasting 30 seconds and a rest period of 10

seconds. Subsequently, there is a quiz/drag-and-drop period

of 10 seconds, followed by a feedback period of 10 seconds.

Finally, another rest period concludes each trial. The game

lasts approximately 10.5 minutes. The quiz also has game

elements such as a timer, sound effects, confetti, clicking, and

dragging and dropping options.

4) Video-based Learning Interface: The instructional

video, lasting 10.5 minutes, covers similar topics and features

the exact same pictures, time frames for definitions, quizzes,

and rest periods as the game content. The video group verbally

responded to each question without engaging with the screen.

In contrast to the game group, the video screen did not display

a timer. The participants could view the correct answers to quiz

questions presented within the recorded video. In contrast to

the game group, individuals in this particular group do not

receive a numerical score or any form of evaluative feedback,

did not have any interactions with the contents, and verbally

responded.

5) Post-test and Survey Questions:
After completing the learning methods, a post-test was carried

out using a Qualtrics form. The post-test consisted of ten

multiple-choice questions (1 point each) The order of the ques-

tions was randomized for each participant and no feedback was

provided to the participants.

After completing the post-test, we gave questionnaires to

our participants to assess the learning technique comprehen-

sively described in the section III-E3.

E. Measures

1) Brain Signal Measure (Quantitative): As noted before,
our study used fNIRS to measure the hemodynamic response

(ΔHbO and ΔHbR). The prefrontal cortex comprises four
distinct regions, as depicted in Figure 4 (a). The regions of

interest in this study include the Left Dorsolateral Prefrontal

Cortex (LDL), Left AnteroMedial Prefrontal Cortex (LMP),

Right AnteroMedial Prefrontal Cortex (RMP), and Right

Dorsolateral Prefrontal Cortex (RDL) [19], [42], [43]. The

four regions mentioned in the study are categorized into two

groups: Ventromedial PFC (VMPFC), which comprises the

LMP and RMP, and Lateral PFC (LPFC), which encompasses

the LDL and RDL. [19], [42], [43]. The four regions of the

prefrontal cortex were categorized as Region 1 (LDL, optodes

1-4), Region 2 (LMP, optodes 5-8), Region 3 (RMP, optodes

9-12), and Region 4 (RDL, optodes 13-16), based on the

optode position of the fNIRS headband (see Fig. 4(b)). The

fNIRS technique is utilized to quantify the changes in the

concentrations of ΔHbO and ΔHbR in the prefrontal cortex

of study participants.

Initially, calculating and comparing the changes in ΔHbO
and ΔHbR were conducted across four distinct regions (LDL,
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Fig. 3: Snapshots of Learning Task Phases and Feedback: Snapshots showing different phases of a learning task: (a) a definition,

(b) a quiz question, (c) positive feedback with a score of 50, and (d) negative feedback with a score of zero.

Fig. 4: (a) Prefrontal Cortex (PFC): LDL, LMP, RMP, and

RDL (b) PFC with corresponding fNIRS region [42]

LMP, RMP, and RDL) under both game and video conditions.

Next, we examined the activation level of ΔHbO and ΔHbR
in the LPFC and VMPFC during the learning process. Finally,

we determined the pre-frontal cortex’s overall blood flow of

ΔHbO and ΔHbR.

ΔHbO and ΔHbR Four Regions of PFC: The prefrontal
cortex comprises four distinct regions [19], [42]. The calcu-

lations of ΔHbO and ΔHbR are performed for each region,

and the mean and standard deviation are determined for each

region’s game and video conditions.

ΔHbO and ΔHbR in the LPFC and VMPFC: The ratio
of LPFC and VMPFC was calculated following equation (1)

to compare the activity of neurons in the game and video

conditions. The region of interest (ROI) refers to either LPFC

or VMPFC.

ΔHbO or ΔHbR ratio =
Game Group ROI

Video Group ROI
(1)

ΔHbO and ΔHbR in Overall PFC: Finally, the total

value of ΔHbO and ΔHbR within the prefrontal cortex was

measured to determine the brain activities in the neuron under

different study conditions.Equation 2 to get the mean value of

ΔHbO and ΔHbR for overall PFC.

ΔHbO or ΔHbR in PFC =
Sum (ΔHbO or ΔHbR)

4
(2)

2) Knowledge Gain (Quantitative): To find the knowledge
gain, we calculated the difference between the pre-and post-

test by following the equation (3). [44].

Knowledge gain = pre-test score− pre-test score (3)

We also calculated the percentage difference of the pre-

and post-test for both game and video conditions using the

following equation (4):

Percentage difference =
diff(between two scores)

max(between two scores)
∗ 100 (4)

3) User Experience : We used the System Usability Scale

(SUS) with a range between 0 and 100% (0–50%: not accept-

able, 51–67%: poor, 68%: okay, 69–80%: good, 81–100%:

excellent), a reliable tool for measuring the usability of our

learning methods. [45]. We used the NASA task load index

(NASA TLX), a survey instrument to measure and perform a

subjective mental workload assessment to determine the load

of a participant while performing the learning methods with

six questions to determine an overall workload rating [46].

Participants were also asked to rate their experience using

a five-point Likert scale ranging from 1 (low) to 5 (high)

based on five questions concerning motivation, interaction,

fun, engagement, and brainstorming.

• Motivating: The learning methodology was motivating

• Fun: The learning methodology was fun

• Interactive: I found this learning method interactive

• Engaging: I found this learning method was engaging me

with the topic effectively

• Brainstorming: The learning method allows me to brain-

storm while learning the terminologies

IV. RESULTS AND DISCUSSION

This section discusses the findings derived from analyzing

brain signals, questionnaires, and knowledge gain ratings.

A. Brain Signal Analysis

The study showed different patterns of cerebral activity in

the group that engaged with the game and the group that

watched the video. Using fNIRSoft software, we obtained

an Excel file containing time series data for oxygenated

hemoglobin (ΔHbO) and deoxygenated hemoglobin (ΔHbR)
values from each optode. We analyzed the results based on

four regions of PFC. We calculated ΔHbO and ΔHbR for

each of the four regions (LDL, LMP, RMP, and RDL) under

both game and video conditions.
1) ΔHbO and ΔHbR Values in Four Regions of the Brain:

The findings show that the game condition has higher ΔHbO
values across four regions, indicating higher brain activities, as

shown in Table I. Conversely, the video condition demonstrates

higher ΔHbR values in LMP, RMP, and RDL.
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TABLE I: Summary of descriptive results of ΔHbO and

ΔHbR for four regions 1: LDL, 2: LMP, 3: RMP, 4: RDL

ΔHbO ΔHbR
Region Game Video Game Video
LDL 0.33 (0.61) 0.21 (0.67) 0.25 (0.57) 0.1 (0.2)
LMP 0.16 (0.3) -1.21 (2.59) 0.16 (0.32) 0.42 (1.07)
RMP 0.14 (0.3) -1.21 (2.87) 0.09 (0.27) 0.18 (0.56)
RDL 0.23 (0.58) 0.03 (0.25) 0.17 (0.29) 0.36 (0.71)

All entities are in the format: mean value (standard deviation).

2) ΔHbO and ΔHbR Values in the LPFC and VMPFC:
The LPFC shows increased oxygen consumption with higher

ΔHbO, which means higher brain activities during the learn-
ing period in both game and video conditions, as shown

in Table II. Interestingly, in the game condition, ΔHbO
(M=0.28) in the LPFC is 2.33 times higher compared to the

video condition (M=0.12). However, the ΔHbR value in the

video condition (M=0.23) is slightly higher than in the game

condition (M=0.21).

TABLE II: Summary of descriptive results of ΔHbO and

ΔHbR value for LPFC and VMPFC

ΔHbO ΔHbR
Condition LPFC VMPFC LPFC VMPFC
Game 0.28 (0.56) 0.15 (0.3) 0.21 (0.38) 0.12 (0.25)
Video 0.12 (0.4) -1.21 (2.72) 0.23 (0.43) 0.3 (0.81)

All entities are in the format: mean value (standard deviation).

3) ΔHbO and ΔHbR Values in the PFC: The game

condition has higher ΔHbO (M=0.21) values than the video

condition (M=-0.54), indicating more neural activities. Partic-

ipants who played the game exhibited a 357.14% greater in-

crease in oxygen utilization than those who watched the video.

However,ΔHbR is almost the same in the video (M=0.26) and

game (M=0.16) conditions, as shown in Figure 5. There is no

significant difference between the game and video conditions

in ΔHbO and ΔHbR values. Overall, our data from six

participants in each game group were shown to have a wide

standard deviation which is a known challenge in the research

community.

Fig. 5: Comparison of mean ΔHbO and ΔHbR for Game and

Video condition. Higher values represent more neural activities

in the brain

(a) Knowledge gain score
difference

(b) The difference of the
pre-and post-test Score

Fig. 6: (a) Score Differences in Game vs Video Conditions (b)

Pre-Post Test Score Differences

B. Knowledge Gain

Figure 6 (a) shows that the game condition (M=3.5 ±
1.52) exhibits higher knowledge gain compared to the video

condition (M=1.83 ± 1.33). The game group’s knowledge gain

is 47.74% higher than that of the video group, as calculated in

Equation 4. Statistical analysis showed no statistical difference

between the game and video conditions (t=2.02, p=0.07) where

p-value is close to the critical threshold of alpha =0.05.

Figure 6 (b) illustrates the percentage difference between the

pre-and post-tests. The game group shows a higher percentage

difference (50%) compared to the video group (33.33%), with

a 16.67% difference between the two.

C. User Experience

1) Usability: The SUS result shows that the average score
of the game condition (M = 68.33 ± 13.29) is relatively higher

than the video condition (M = 61.67± 12.32), as shown in

Figure 7 (a). ANOVA analysis on SUS score did not show

statistically significant differences.

Fig. 7: (a) System usability scale (SUS) (b)Task load score

(NASA-TLX)

2) Task Load: The overall workload scores show an average
of M = 25 for the game condition and M = 51.67 for the video

condition (lower scores indicate lower workload). Descriptive

results show that the video condition exhibits higher average

scores for mental demand, physical demand, performance,

and frustration, while temporal demand and effort are slightly

lower than in the game condition, as showed in Figure 7

(right). Due to participant variability and a small sample size,
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no statistically significant difference was observed between the

game and video conditions for NASA-TLX.

3) Engagement and Motivation: Figure 8 shows the aver-
age results for user experience ratings for game and video

conditions. Interestingly we did not find any significant ef-

fects of motivation, engagement, etc. between the game and

video conditions in terms of motivation, fun, engagement,

interaction, and brainstorming. Participants reported similar

levels of engagement in both the game and video conditions.

This can be due to video condition using the majority of the

game elements, thus being as engaging and interactive as game

conditions.

Fig. 8: User Experience in Engagement and Motivation

V. DISCUSSION

In this section, we discuss our findings based on the research

questions:

For RQ1 the goal was to identify the differences in neural
activities between game and video learning. The prefrontal

cortex oxygenation pattern analysis showed no significant

effect of the change of ΔHbO and ΔHbR between the

game and video groups. However, the game group exhib-

ited a higher ΔHbO mean value compared to video group.

The observations also found substantial dispersion variability

among participants. This was a between-subjects study, and

it remained a challenge to gain statistically significant results

in our preliminary study, but we are aiming to resolve some

of the challenges in the following experiments. The ΔHbR
concentration change during the learning period shows a small

difference between the game groupand the video group. This

suggests that participants exhibit slightly higher neural activity

during game play compared to video watching. Overall, the

findings suggest that there may be increased oxygenation

and neural activity during game play compared to video

watching. Comparing the ΔHbO levels between the LPFC

and the VMPFC, LPFC consistently exhibited higher values,

indicating higher neural activity.

For RQ2 the aim was to capture the differences regarding

the subjective results on usability, task load, and knowledge

gain between game and video learning. The utilization of

gaming interfaces, which include timer mechanisms, drag-and-

drop functionality, and click-based interactions, along with

immediate feedback in the form of sounds, visual elements

such as emojis, scoring systems, and celebratory animations

like confetti, within the game, may have contributed to an

increased oxygenation flow. This is also evidenced by the

knowledge gained from the results, with the game-based

approach showing a 47.74% higher increase in knowledge

compared to the video group. Additionally, user experience

questionnaires indicate that the game-based approach is per-

ceived as more user-friendly and enjoyable compared to the

video-based method. Interestingly, when participants were

asked to evaluate the interactivity of both interfaces, the results

revealed an equal score for both the game and video interfaces.

This could be explained by the fact that some participants in in

the video group have found responding with their voices as an

interactive element, despite differences in how they engaged

compared to the game interface.

VI. CONCLUSION

In this work, we introduce and compare two graph struc-

ture education modules of game and video by examining

participants’ prefrontal cortex oxygenation patterns. In a pi-

lot user study with twelve participants, we used the fNIRS

device to measure the changes in the prefrontal cortex’s oxy-

genated hemoglobin (ΔHbO) and deoxygenated hemoglobin
(ΔHbR) levels. This was a preliminary study that presented
In our study, we noted that the mean levels of oxygenated

hemoglobin (ΔHbO) were higher in the GBL group, sug-

gesting the potential enhanced cognitive involvement. Ad-

ditionally, the lateral prefrontal cortex (LPFC) had greater

hemodynamic activity during the learning period. Moreover,

knowledge gain analysis showed an increase in mean score in

the game group compared to the video group. Although we did

not observe statistically significant changes due to participant

variability and sample size, this preliminary work contributes

to understanding how game- and video-based learning impact

cognitive processes, providing insights for enhanced instruc-

tional design and educational game development.

Future research should explore the potential benefits of

specific game design elements and their impact on educational

outcomes. Expanding the sample size and enhancing the gam-

ing interface can help mitigate constraints present in existing

research. In subsequent studies, we intend to improve the

educational modules as explained before and eventually test

them with a group of high school students. Furthermore, we

plan to integrate this game into Augmented Reality (AR) and

Virtual Reality (VR) platforms, allowing participants to fully

immerse themselves in a realistic environment and enhancing

their engagement. Additionally, we aim to qualitatively eval-

uate the system by monitoring users’ facial expressions and

tracking their gaze as a supplement to self-reported surveys

and assessments.
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H. Sogo, E. Kastman, and J. K. Lindeløv, “Psychopy2: Experiments in
behavior made easy,” Behavior research methods, vol. 51, pp. 195–203,
2019.

[42] N. Getchell and P. Shewokis, “Understanding the role of cognitive effort
within contextual interference paradigms: Theory, measurement, and
tutorial,” Brazilian Journal of Motor Behavior, vol. 17, no. 1, pp. 59–69,
2023.

[43] K. Milla, E. Bakhshipour, B. Bodt, and N. Getchell, “Does movement

matter? prefrontal cortex activity during 2d vs. 3d performance of the
tower of hanoi puzzle,” Frontiers in Human Neuroscience, vol. 13, p.
156, 2019.

[44] L. A. Becker, “Analysis of pretest and posttest scores with gain
scores and repeated measures,” Retrieve from http://www. uccs.
edu/lbecker/gainscore, 2000.

[45] J. Brooke et al., “Sus-a quick and dirty usability scale,” Usability
evaluation in industry, vol. 189, no. 194, pp. 4–7, 1996.

[46] S. G. Hart and L. E. Staveland, “Development of nasa-tlx (task load
index): Results of empirical and theoretical research,” in Advances in
psychology. Elsevier, 1988, vol. 52, pp. 139–183.

204

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on August 16,2024 at 21:48:28 UTC from IEEE Xplore.  Restrictions apply. 


