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Abstract—For serious games on education, understanding the
effectiveness of different learning methods in influencing cognitive
processes remains a significant challenge. In particular, limited
research addresses the comparative effectiveness of serious games
and videos in analyzing brain behavior for graph structure
learning, which is an important part of the Science, Technology,
Engineering, Math, and Computing (STEM+C) disciplinary ed-
ucation. This study investigates the impact of serious games on
graph structure learning. For this, we compared our in-house
game-based learning (GBL) and video-based learning (VBL)
methodologies by evaluating their effectiveness on cognitive
processes by oxygenated hemoglobin levels using functional near-
infrared spectroscopy (fNIRS). We conducted a 2 x 1 between-
subjects preliminary study with twelve participants, involving
two conditions: game and video. Both groups received equivalent
content related to the basic structure of a graph, with comparable
session lengths. The game group interacted with a quiz-based
game, while the video group watched a pre-recorded video.
The fNIRS was employed to capture cerebral signals from the
prefrontal cortex, and participants completed pre- and post-
questionnaires capturing user experience and knowledge gain.
In our study, we noted that the mean levels of oxygenated
hemoglobin (A HbO) were higher in the GBL group, suggesting
the potential enhanced cognitive involvement. Our results show
that the lateral prefrontal cortex (LPFC) has greater hemody-
namic activity during the learning period. Moreover, knowledge
gain analysis showed an increase in mean score in the GBL
group compared to the VBL group. Although we did not observe
statistically significant changes due to participant variability and
sample size, this preliminary work contributes to understand-
ing how GBL and VBL impact cognitive processes, providing
insights for enhanced instructional design and educational game
development. Additionally, it emphasizes the necessity for further
investigation into the impact of GBL on cognitive engagement and
learning outcomes.

Index Terms—serious game, game-based learning, video-based
learning, brain activity, fNIRS, hemodynamic response, oxy-
genated (AHbO), and deoxygenated hemoglobin (AHbR).

[. INTRODUCTION

In educational research, a persistent challenge revolves
around understanding the efficacy of different learning ap-
proaches in influencing cognitive processes and improving
learning outcomes [1], [2]. Today’s students spend a significant
amount of time engaging with technologies such as mobile
devices, laptops, and tablets to watch videos and play games

for recreation and education purposes [3], [4]. As a result,
researchers and educators are actively seeking ways to enhance
the interactivity and engagement of video and game content.
It has been found that motivation and engagement in learning
are key factors influencing academic achievement [5] and
that results in higher learning outcomes and performance [6].
The use of video as learning material is very promising in
education. Serious games are also considered an effective
tool for educational and training purposes [7]-[9]. Thus, the
effectiveness of game-based learning (GBL) and video-based
learning (VBL) in enhancing cognitive processes has received
significant attention. However, investigating this efficacy has
often relied on self-reported outcomes from observational
studies, leaving a gap in understanding the underlying neural
processing.

Analyzing neural activity can help identify the key insights
into how the brain responds to various learning techniques
that keep students cognitively engaged [10]. Despite advance-
ments in methodologies for investigating the interconnected
interaction between the brain and behavior, there is a lack
of studies dedicated to the development of integrated models
or explanatory frameworks that encompass both neuroscience,
which focuses on the study of the brain, and cognition,
which pertains to the processes underlying human thinking
and behavior [11]. Measuring brain activity allows researchers
and educators to gain insights into how the brain processes
information, what parts of the brain are active during different
learning tasks, and how different learning strategies affect
brain function. However, it is important to note that brain
signal analysis is still a growing research field because cog-
nitive processes cannot be observed directly. Instead, they are
inferred indirectly from factors such as task performance and
hemodynamic responses [12]. Furthermore, cognitive abilities
vary from individual to individual due to different neural
processing speeds [13]. So, more research is needed to fully
understand how best to use these techniques for educational
purposes.

Research in the prefrontal cortex has made invaluable
progress in brain signal analysis, as it involves many higher
cognitive functions, such as decision-making, working mem-
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ory, and attention [14], [15]. Functional Near-Infrared Spec-
troscopy (fNIRS) can be used to determine neural activity
in the brain from the prefrontal cortex [16], [17]. It is a
non-invasive optical neuroimaging technique used to measure
changes in optical density that are correlated with hemo-
dynamic response and neural activity [7]. NIRS calculate
hemodynamic responses by measuring AHbO which refers
to changes in oxygenated hemoglobin (HbO) concentration
and AHbR deoxygenated hemoglobin (HbR) in the prefrontal
cortex [15], [18]. Cortical activity results in an inflow of
oxygenated blood [19]. The active neuron consumes oxygen
when the level of neural activity in a brain area initially
increases AHbR [19]-[21]. When the demand for oxygen
increases, oxygen flows to this area of the brain, increasing
levels of AHDO [19], [21]. Higher AHbO and AHbR in-
dicate more blood flow to the cortex and, therefore, stronger
brain activities in neurons while performing a task [19], [21],
[22]. However, most studies investigate brain activity for a
specific game [9], [14], [21]-[23] or video [8], [24] interface.
To our knowledge, no study has compared the effectiveness of
both learning techniques. The comparative analysis becomes
more valid if we can study brain activity for video and game-
based interfaces for a similar topic. The application of f{NIRS
to investigate the differences in cortical activity associated
with forms of learning can be used to elucidate the underlying
neural mechanisms and neural bio-markers of learning asso-
ciated with each method. Therefore, analyzing and comparing
the brain signals of learners playing an educational game and
watching videos will be important in cognitive neuroscience. It
can also help educators to design study materials and make the
learning process more interactive. This study aims to bridge
this gap by conducting a comparative analysis of GBL and
VBL using brain behavior analysis, specifically measuring
oxygenated hemoglobin using fNIRS. The goal of this study is
to explore the interplay between learning methodologies and
cognitive processes, providing valuable insights for designing
and implementing more effective educational strategies. We
seek to illuminate the extent to which GBL and VBL impact
cognitive engagement and knowledge acquisition. The results
of this study have the potential to enhance the field of educa-
tion and human-computer interaction by providing evidence-
based guidance for designing immersive and impactful learn-
ing experiences. Our investigation focuses on brain activity,
changes in engagement, and knowledge acquisition while
learning computer science topics, such as the basic structure
of graphs, in a between-subject pilot study. Engagement is
assessed by changes in fNIRS measurements of AHbO and
AHDOR, while knowledge gain is evaluated by comparing pre-
and post-test scores.

o RQI1: What are the differences in neural activities be-
tween game-based and video-based learning?

o RQ2: What are the differences regarding the subjective
results on usability, task load, and knowledge gain be-
tween game-based and video-based learning modules?
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In this study, our contribution is to compare GBL vs
VBL within the context of graph theory by measuring the
hemodynamic response. While previous research has primarily
focused on assessing user engagement and knowledge scores
to evaluate these two learning approaches, our work uses
fNIRS data as a way to provide a more comprehensive
understanding. Our aim was to investigate whether traditional
measures of learning effectiveness, such as user engagement
and knowledge acquisition, are supported by physiological
evidence, particularly regarding brain activity as indicated by
the fNIRS data. Given that earlier studies have often found
GBL to be more effective, as seen through better performance
scores, our study sought to determine whether these scores are
associated with the fNIRS data. Our approach combines sub-
jective learning effectiveness indicators with objective brain
physiological data to provide a more holistic perspective of
how different educational modalities affect learning.

The remainder of this paper is organized as follows. Section
II presents related works on game- and video-based learning
and analysis of brain signals. Section III describes the pro-
posed methodology and study design. Section IV discusses
the results of our experiments. Finally, Section ?? concludes
the paper by discussing study findings, the proposed system’s
limitations, and the scope for future work.

II. RELATED WORK

Analyzing brain signals is of importance, as it enables
researchers to examine the neural underpinnings of cognitive
processes and the mental workload of the human cortex [20],
[25]. Functional Near Infrared Spectroscopy (fNIRS) [26],
electroencephalogram (EEG) [9], and functional Magnetic
Resonance Imaging (fMRI) [23] are scientific methodologies
that offer significant contributions to the understanding of
brain activities. These techniques are particularly useful in
evaluating attention, engagement, and cognitive load. Func-
tional near-infrared spectroscopy, as a brain imaging technique
that is comparatively more cost-effective, lightweight, and
portable, plays a significant role in facilitating the analysis
of brain signals flexibly [15], [19], [27], [28].

By studying brain signals, educators can design learning
materials that align with cognitive processes, optimize learning
experiences, and improve retention and understanding [29].
Brain signal analysis techniques fNIRS and EEG have been
used in STEM including math [21], [30], [31], geometry [32],
engineering [20], [33], and science [34] to investigate neural
activity and cognitive processes.

A. Learning and Performance: Cognitive and Neural Factors

Proactive control, hands-on learning, thinking aloud, and
mathematical performance are reviewed in this section. Be-
sides, cognitive processes, brain activation, and mathematical
proficiency are discussed. In a study, Suko et al. [30] examined
mathematical cognition, general cognition, and the brain bases
in 8- to 9-year-olds. The study showed that proactive control
correlates more strongly with mathematical performance than
with other cognitive abilities using additive mathematics tests,
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cognitive assessments, and fNIRS brain imaging. Shi et al.
[32] observed that hands-on experience led to an increase
in the concentration of oxygenated hemoglobin, as measured
by fNIRS. This increase indicated higher neuron activation
compared to video teaching with 40 Chinese middle school
students. Tripp et al. [20] found that the act of expressing
thoughts, commonly referred to as thinking aloud, significantly
impacts both the cognitive processes involved in design and the
neurological processes underlying cognition. They used fNIRS
to measure the changes in oxygenated hemoglobin. Artemenko
et al. [35] observed a correlation between lower mathematical
proficiency and shorter calculation duration, particularly for
complex arithmetic problems. Individuals with lower mathe-
matical skills also displayed reduced neural activity in the left
supra marginal, superior temporal, and inferior frontal gyri.
The study employed both EEG and fNIRS to observe these
neural activities.

B. Brain Signal Analysis in Serious Game and Video: Enhanc-
ing Neural Activity and Engagement

Several studies, including that by Desoto et al. [8], have
explored brain signal analysis during activities like playing
games and watching videos. They observed that different in-
puts can trigger unique neural responses, suggesting that brains
may process similar information in varied ways. Techniques
like EEG and fNIRS have been used to monitor cerebral activ-
ity during the viewing of STEM educational movies, aiming
to understand how the brain interprets identical information.

Tang et al. [24] identified mind wandering during VBL
using EEG and machine learning techniques. The average area
under the receiver operating characteristic curve for classifying
mind wandering within individuals was 0.876. Across educa-
tional lectures, it was 0.703. This indicates that their system
is more effective than random guessing at detecting mind
wandering but less precise than individual-level detection. A
study by Cakir et al. [21] aimed to assess the efficacy of
GBL in enhancing math fluency. Twenty-seven college stu-
dents participated in this study, where the game group played
“MathDash,” and the control group faced a drill and practice
approach to evaluate the behavioral and neural effects. The
fNIRS device was used to collect brain signals by measuring
the oxygenated hemoglobin AHbO. The AHbO was equal in
both control groups. Still, during the post-test, the game group
had a higher AHbR concentration, which was interpreted by
the authors to mean that their game training optimizes their
brain metabolism.

Samah et al. [9] examined brain functional connectivity
during game-based problem-solving tasks. The primary focus
was to draw gender differences based on brain signals while
playing a game. For this purpose, they chose a computer-
based Tower of Hanoi game. EEG signals were collected
in this study to record participant performance, and partial
directed coherence (PDC) analysis was performed to analyze
the data. PDC is a statistical method used to analyze the
directional interactions between different time series data,
such as EEG signals. PDC analysis illustrates the interactions

197

between time direction and spectral properties of a signal in
the brain. According to the study, male and female respondents
exhibited no appreciable differences in brain activity patterns.
In another study, using near-infrared spectroscopy, Kober et
al. [14] investigated behavioral performance while learning by
playing games on a neurofunctional level. They used a NIRS
device to calculate the frontal brain’s oxygenated hemoglobin
and deoxygenated hemoglobin concentration from 59 healthy
adults. They found that the game version was more engaging
than the non-game version by observing more robust activation
in the prefrontal cortex. They also used the Flow Short
Scale, the User Experience Questionnaire, and the Positive
and Negative Affect Schedule. The participants’ subjective
ratings also indicate the game version was more rewarding
and engaging. In another work, Greipl et al. [23] used fMRI
and MRI to compare the effects of game-based and non-GBL
on the brain. 42 participants played a number line estimation
task while their brain activity was measured. The results
showed that GBL led to more robust activation in ventral
tegmental & the substantia nigra region areas associated with
reward and in the amygdala & anterior insula, indicating
emotional processing, which suggests that GBL may enhance
learning through rewards. The subjective analysis showed
that the game-based version was rated more attractive, novel,
and stimulating than the non-game-based version. However,
there were no significant differences in the number of correct
answers or time taken between the game-based and non-game-
based versions of the task.

These results suggest that utilizing Game-Based Learning
has the potential to enhance neural activity and elevate en-
gagement levels. These studies have demonstrated enhanced
activation in distinct cerebral areas linked to rewards, emo-
tional processing, and cognitive involvement. In general, the
aforementioned findings emphasize the favorable influence of
GBL on cerebral activity and involvement, however, some
studies struggled to highlight a statistically significant effect
for fNIRS.

C. Effectiveness of Serious Game in STEM+C Educational
Contexts

Hsu and Lin [36] compared a Web Digital GBL System
in the experimental group with an online VBL system in the
control group on computer game programming education. The
experimental group exhibited superior learning performance
and motivation compared to the control group. A separate
investigation conducted by Mohsen [37] explored the effects
of virtual surgical simulation on educational achievements.
The findings revealed that individuals in the experimental
group exhibited better results in language comprehension and
vocabulary recognition assessments than those in the control
group. Chen et al. [38] conducted a comparative analysis of
various degrees of technological engagement in the context of
learning. Their findings indicated that using a simulation video
game resulted in more substantial advancements in learning
outcomes compared to both video-based instruction and tra-
ditional instructional methods. Gordillo et al. [39] studied
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the efficacy of GBL in software engineering. The researchers
discovered that the video games developed by teachers exhib-
ited greater knowledge acquisition and motivation compared
to VBL approaches. Tanimoto and Inie [40] used an online
game called “The Creativity Game” as a pedagogical tool
to facilitate instruction and enhance understanding of the
theoretical dimensions of creativity. The experiment shows that
the game facilitated the acquisition of knowledge related to
exploration, value, novelty, limitations, and transformation by
the players in a fun and interactive way by participating in
many sessions, allowing for the evaluation of uniqueness in
relation to the individual. Additionally, the game incorporated
simulated critics who provide commentary on the actions taken
by the player.

These studies support the efficacy of game-based and
simulation-based learning approaches. These approaches have
demonstrated enhanced learning performance, increased mo-
tivation, enhanced language comprehension, and improved
knowledge acquisition compared to conventional instructional
methods and VBL approaches.

There is a growing body of literature compa ring GBL
and VBL methods, yet a lack of research focuses on neural
correlates associated with these differences.

III. MATERIALS AND METHODS

This study aims to explore the efficacy of using serious
games for educational purposes with a specific focus on en-
hancing learning in STEM (Science, Technology, Engineering,
and Mathematics) and computer science subjects, particularly
within the context of graph structure learning. The primary
objective is to assess and compare engagement levels of learn-
ers when exposed to serious game-based learning and video-
based learning. The evaluation is based on the hemodynamic
response and knowledge gain derived from pre- and post-test
scores. To achieve this goal, we used functional near-infrared
spectroscopy (fNIRS) to measure changes in oxygenation and
deoxygenation in participants’ prefrontal cortex (PFC). Pre-
and post-tests were administered to assess the participants’
knowledge and comprehension before and after implementing
the learning methods. Furthermore, a survey was conducted
to evaluate the usability and task load of the study. To
demonstrate the comparison, we divided our participants into
two groups: the game group, who played a quiz-based serious
game, and the video group, who viewed a recorded video on
the same topic.

A. Participants

The study was approved by the University of Delaware’s In-
stitutional Review Board (Protocol #1982569 — 1). Participants
were adults over the age of 18, proficient in the English lan-
guage, not sensitive to an alcohol rub, and with limited or no
familiarity with fundamental graph terminologies. Individuals
who did not meet these criteria were excluded during the pre-
screening phase. Subsequently, participants received a clear
explanation of the terms and conditions of the experiment,
as well as the experimental procedures. They were provided
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Fig. 1: Experimental setup for fNIRS data collection: Laptop
1 (L1) is used for learning. Laptop 2 (L2) is connected to
the fNIRS device and runs COBI software for data collection.
Laptop 3 (L3) sends triggers to mark separate task blocks.

informed consent by signing a formal document. Demographic
information, including age, courses, year of study, gender, and
prior knowledge of graph theory, was collected.

Twelve graduate students (4 female, age = 27.83 +2.99)
took part in this experiment. None of the participants were
excluded. There were six students (1 female) in the game
group, and in the video group, there were six students (3
females).

B. Apparatus

We used a combination of hardware and software to carry
out the experiment. The hardware and setups are shown in
Figure 1. Three computers were used in the experiment:

« L1 An Alienware laptop was used to run the learning
materials for both the game and video content.

L2 A desktop computer was equipped with an Intel (R)
Core (TM) i7-10700T CPU operating at a frequency of
2.00 GHz. L2 was connected to an fNIRS device for data
acquisition. L2 also ran two key software programs: Cog-
nitive Optical Brain Imaging Studio Software (COBI),
responsible for collecting fNIRS signals, and fNIRSoft
Software (Version 4.9), which analyzed the brain signal
data by representing the average activation across all
blocks for each condition.

L3 Another laptop with an Intel (R) Core (TM) i5 CPU M
460 @ 2.53 GHz and a serial port. L3 was connected to
L2 via serial port. L3 played a key role in the experiment
by running a custom PsychoPy [41] code for stimulus
presentation and triggering the fNIRS device. PsychoPy
sent markers to each block, so brain signal data can be
segmented properly as separate blocks. There markers
included concept definition, rest, quiz, and feedback, to
L2.

The game has been developed using Unity, and the video is
prepared using a PowerPoint slide with animation and audio.
Python was the selected tool for data analysis and processing.
In addition, we used Qualtrics to gather demographic data,
conduct pre-and post-tests, and administer user feedback ques-
tionnaires.

C. Procedure

The experiment was divided into multiple phases, as il-
lustrated in Figure 2. Initially, the participant did not wear
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an fNIRS headband. After consent, participants completed
pre-screening questionnaires based on the inclusion and ex-
clusion criteria (section III-A) (phase 1). Subsequently, par-
ticipants attended a ten-question pre-test (sectionlll-D1) and
did not get answers or feedback (phase 2). The next stage
involved implementing the instructional approach (section
III-D2) (phase 3). Two distinct groups were involved: the
game-based group played an educational game, and the video-
based group watched the video to learn the basic terminologies
of graphs recorded on a similar topic. An fNIRS headband was
placed on the forehead at the beginning of the learning period
and was removed upon session completion. Following the
designated learning period, participants completed the post-
test (section III-DS5) (phase 4). Participants were not informed
about the content of the post-test questions in advance to
ensure unbiased responses. Finally, participants were presented
with survey questions about their learning experiences (phase
5).

D. Design

This study had a between-subjects design with two condi-
tions: participants were randomly selected to engage in game
play (N=6) or video content (N=6).

1) Pre-test:

During the initial assessment phase, a Qualtrics form was
generated, consisting of ten multiple-choice questions (one
point each) with five options for each question. participants did
not get any feedback about their performance.The test assessed
the participants’ understanding of the subject matter.

2) Learning Methods:

This study used two instructional conditions, a game and a
video, to teach basic graph terminologies. The selected topics
included the definition of a graph, the complete graph, the
determination of the number of edges in a complete graph,
the concept of a loop, the distinction between directed and
undirected graphs, the degree of a graph, and the final concept
of in-degree and out-degree in a graph. Figure 3 shows some
components of the definition, quiz, and feedback interface.
Both conditions presented questions and contents using the
same figures and options, set against a similar environment
for consistency of the game and video conditions.

3) Game-based Learning Interface: Players followed the
instructions to engage with the game, employing actions such
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as playing with their graph through drag-and-drop functional-
ity or clicking the answer. After each definition, participants
were asked a quiz based on the corresponding term. The
game comprises a total of seven trials, with each trial having
a duration of 90 seconds. Each trial has different parts: a
definition period lasting 30 seconds and a rest period of 10
seconds. Subsequently, there is a quiz/drag-and-drop period
of 10 seconds, followed by a feedback period of 10 seconds.
Finally, another rest period concludes each trial. The game
lasts approximately 10.5 minutes. The quiz also has game
elements such as a timer, sound effects, confetti, clicking, and
dragging and dropping options.

4) Video-based Learning Interface: The instructional
video, lasting 10.5 minutes, covers similar topics and features
the exact same pictures, time frames for definitions, quizzes,
and rest periods as the game content. The video group verbally
responded to each question without engaging with the screen.
In contrast to the game group, the video screen did not display
a timer. The participants could view the correct answers to quiz
questions presented within the recorded video. In contrast to
the game group, individuals in this particular group do not
receive a numerical score or any form of evaluative feedback,
did not have any interactions with the contents, and verbally
responded.

5) Post-test and Survey Questions:

After completing the learning methods, a post-test was carried
out using a Qualtrics form. The post-test consisted of ten
multiple-choice questions (1 point each) The order of the ques-
tions was randomized for each participant and no feedback was
provided to the participants.

After completing the post-test, we gave questionnaires to
our participants to assess the learning technique comprehen-
sively described in the section III-E3.

E. Measures

1) Brain Signal Measure (Quantitative): As noted before,
our study used fNIRS to measure the hemodynamic response
(AHbBO and AHDR). The prefrontal cortex comprises four
distinct regions, as depicted in Figure 4 (a). The regions of
interest in this study include the Left Dorsolateral Prefrontal
Cortex (LDL), Left AnteroMedial Prefrontal Cortex (LMP),
Right AnteroMedial Prefrontal Cortex (RMP), and Right
Dorsolateral Prefrontal Cortex (RDL) [19], [42], [43]. The
four regions mentioned in the study are categorized into two
groups: Ventromedial PFC (VMPFC), which comprises the
LMP and RMP, and Lateral PFC (LPFC), which encompasses
the LDL and RDL. [19], [42], [43]. The four regions of the
prefrontal cortex were categorized as Region 1 (LDL, optodes
1-4), Region 2 (LMP, optodes 5-8), Region 3 (RMP, optodes
9-12), and Region 4 (RDL, optodes 13-16), based on the
optode position of the fNIRS headband (see Fig. 4(b)). The
fNIRS technique is utilized to quantify the changes in the
concentrations of AHbO and AHDLR in the prefrontal cortex
of study participants.

Initially, calculating and comparing the changes in AHbO
and AHbR were conducted across four distinct regions (LDL,
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Fig. 4: (a) Prefrontal Cortex (PFC): LDL, LMP, RMP, and
RDL (b) PFC with corresponding fNIRS region [42]

LMP, RMP, and RDL) under both game and video conditions.
Next, we examined the activation level of AHbO and AHbR
in the LPFC and VMPFC during the learning process. Finally,
we determined the pre-frontal cortex’s overall blood flow of
AHbO and AHDR.

AHLO and AHbR Four Regions of PFC: The prefrontal
cortex comprises four distinct regions [19], [42]. The calcu-
lations of AHbO and AHbR are performed for each region,
and the mean and standard deviation are determined for each
region’s game and video conditions.

AHOO and AHDR in the LPFC and VMPFC: The ratio
of LPFC and VMPFC was calculated following equation (1)
to compare the activity of neurons in the game and video
conditions. The region of interest (ROI) refers to either LPFC
or VMPEC.

Game Group ROI

AHbO or AHBR ratio = —on® STOUp 89
O or AHbR ratio = G Group RO

(D)

AHbLO and AHbLR in Overall PFC: Finally, the total
value of AHbO and AHbR within the prefrontal cortex was
measured to determine the brain activities in the neuron under

different study conditions.Equation 2 to get the mean value of
AHbO and AHbR for overall PFC.

Sum (AHbO or AHDR)

AHbO or AHbR in PFC = 1

2

2) Knowledge Gain (Quantitative): To find the knowledge
gain, we calculated the difference between the pre-and post-
test by following the equation (3). [44].

Knowledge gain = pre-test score — pre-test score

3)
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We also calculated the percentage difference of the pre-
and post-test for both game and video conditions using the
following equation (4):
diff(between two scores)

100
max(between two scores)

Percentage difference =

(C))

3) User Experience : We used the System Usability Scale
(SUS) with a range between 0 and 100% (0-50%: not accept-
able, 51-67%: poor, 68%: okay, 69—80%: good, 81-100%:
excellent), a reliable tool for measuring the usability of our
learning methods. [45]. We used the NASA task load index
(NASA TLX), a survey instrument to measure and perform a
subjective mental workload assessment to determine the load
of a participant while performing the learning methods with
six questions to determine an overall workload rating [46].
Participants were also asked to rate their experience using
a five-point Likert scale ranging from 1 (low) to 5 (high)
based on five questions concerning motivation, interaction,
fun, engagement, and brainstorming.

¢ Motivating: The learning methodology was motivating
Fun: The learning methodology was fun
Interactive: I found this learning method interactive
Engaging: I found this learning method was engaging me
with the topic effectively
Brainstorming: The learning method allows me to brain-
storm while learning the terminologies

IV. RESULTS AND DISCUSSION

This section discusses the findings derived from analyzing
brain signals, questionnaires, and knowledge gain ratings.

A. Brain Signal Analysis

The study showed different patterns of cerebral activity in
the group that engaged with the game and the group that
watched the video. Using fNIRSoft software, we obtained
an Excel file containing time series data for oxygenated
hemoglobin (A HbO) and deoxygenated hemoglobin (AHDR)
values from each optode. We analyzed the results based on
four regions of PFC. We calculated AHbO and AHbOR for
each of the four regions (LDL, LMP, RMP, and RDL) under
both game and video conditions.

1) AHbO and AHbR Values in Four Regions of the Brain:
The findings show that the game condition has higher A HbO
values across four regions, indicating higher brain activities, as
shown in Table I. Conversely, the video condition demonstrates
higher AHbR values in LMP, RMP, and RDL.
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TABLE I. Summary of descriptive results of AHbO and
AHDR for four regions 1: LDL, 2: LMP, 3: RMP, 4: RDL

AHbO AHbR
Region Game Video Game Video
LDL 0.33 (0.61) 0.21 (0.67) | 0.25(0.57) 0.1 (0.2)
LMP 0.16 (0.3)  -1.21 (2.59) | 0.16 (0.32)  0.42 (1.07)
RMP 0.14 (0.3) -1.21 (2.87) | 0.09 (0.27)  0.18 (0.56)
RDL 0.23 (0.58)  0.03 (0.25) | 0.17 (0.29)  0.36 (0.71)

All entities are in the format: mean value (standard deviation).

2) AHbO and AHbR Values in the LPFC and VMPFC:
The LPFC shows increased oxygen consumption with higher
AHbO, which means higher brain activities during the learn-
ing period in both game and video conditions, as shown
in Table II. Interestingly, in the game condition, AHbO
(M=0.28) in the LPFC is 2.33 times higher compared to the
video condition (M=0.12). However, the AHbR value in the
video condition (M=0.23) is slightly higher than in the game
condition (M=0.21).

TABLE II: Summary of descriptive results of AHbO and
AHDOR value for LPFC and VMPFC

AHHO AR
Condition LPFC VMPFC LPFC VMPFC
Game 0.28 (0.56) _ 0.15 (0.3) | 0.21 (0.38) 0.12 (0.25)
Video 0.12 (0.4)  -1.21 (2.72) | 0.23 (043) 0.3 (0.81)

All entities are in the format: mean value (standard deviation).

3) AHbO and AHDR Values in the PFC: The game
condition has higher AHbO (M=0.21) values than the video
condition (M=-0.54), indicating more neural activities. Partic-
ipants who played the game exhibited a 357.14% greater in-
crease in oxygen utilization than those who watched the video.
However, AHbR is almost the same in the video (M=0.26) and
game (M=0.16) conditions, as shown in Figure 5. There is no
significant difference between the game and video conditions
in AHbO and AHbLR values. Overall, our data from six
participants in each game group were shown to have a wide
standard deviation which is a known challenge in the research
community.

Box Plot of AHbO and AHbR Data

0.3
0.2
0.1

0.0

=

Game
Video

AHBO AHDO AHbR AHbR

Fig. 5: Comparison of mean AHbO and AHbR for Game and
Video condition. Higher values represent more neural activities
in the brain
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Fig. 6: (a) Score Differences in Game vs Video Conditions (b)
Pre-Post Test Score Differences

B. Knowledge Gain

Figure 6 (a) shows that the game condition (M=3.5 +
1.52) exhibits higher knowledge gain compared to the video
condition (M=1.83 =+ 1.33). The game group’s knowledge gain
is 47.74% higher than that of the video group, as calculated in
Equation 4. Statistical analysis showed no statistical difference
between the game and video conditions (t=2.02, p=0.07) where
p-value is close to the critical threshold of alpha =0.05.

Figure 6 (b) illustrates the percentage difference between the
pre-and post-tests. The game group shows a higher percentage
difference (50%) compared to the video group (33.33%), with
a 16.67% difference between the two.

C. User Experience

1) Usability: The SUS result shows that the average score
of the game condition (M = 68.33 £ 13.29) is relatively higher
than the video condition (M = 61.674+ 12.32), as shown in
Figure 7 (a). ANOVA analysis on SUS score did not show
statistically significant differences.

NASA TLX Score: Game vs Video

Sus score
NASATLX Score

Fig. 7: (a) System usability scale (SUS) (b)Task load score
(NASA-TLX)

2) Task Load: The overall workload scores show an average
of M =25 for the game condition and M = 51.67 for the video
condition (lower scores indicate lower workload). Descriptive
results show that the video condition exhibits higher average
scores for mental demand, physical demand, performance,
and frustration, while temporal demand and effort are slightly
lower than in the game condition, as showed in Figure 7
(right). Due to participant variability and a small sample size,
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no statistically significant difference was observed between the
game and video conditions for NASA-TLX.

3) Engagement and Motivation: Figure 8§ shows the aver-
age results for user experience ratings for game and video
conditions. Interestingly we did not find any significant ef-
fects of motivation, engagement, etc. between the game and
video conditions in terms of motivation, fun, engagement,
interaction, and brainstorming. Participants reported similar
levels of engagement in both the game and video conditions.
This can be due to video condition using the majority of the
game elements, thus being as engaging and interactive as game
conditions.

83

Motivating Fun Interactive Engaging Brainstorming

Fig. 8: User Experience in Engagement and Motivation

V. DISCUSSION

In this section, we discuss our findings based on the research
questions:

For RQ1 the goal was to identify the differences in neural
activities between game and video learning. The prefrontal
cortex oxygenation pattern analysis showed no significant
effect of the change of AHbO and AHbDR between the
game and video groups. However, the game group exhib-
ited a higher AHbO mean value compared to video group.
The observations also found substantial dispersion variability
among participants. This was a between-subjects study, and
it remained a challenge to gain statistically significant results
in our preliminary study, but we are aiming to resolve some
of the challenges in the following experiments. The AHbR
concentration change during the learning period shows a small
difference between the game groupand the video group. This
suggests that participants exhibit slightly higher neural activity
during game play compared to video watching. Overall, the
findings suggest that there may be increased oxygenation
and neural activity during game play compared to video
watching. Comparing the AHbO levels between the LPFC
and the VMPFC, LPFC consistently exhibited higher values,
indicating higher neural activity.

For RQ2 the aim was to capture the differences regarding
the subjective results on usability, task load, and knowledge
gain between game and video learning. The utilization of
gaming interfaces, which include timer mechanisms, drag-and-
drop functionality, and click-based interactions, along with
immediate feedback in the form of sounds, visual elements
such as emojis, scoring systems, and celebratory animations
like confetti, within the game, may have contributed to an
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increased oxygenation flow. This is also evidenced by the
knowledge gained from the results, with the game-based
approach showing a 47.74% higher increase in knowledge
compared to the video group. Additionally, user experience
questionnaires indicate that the game-based approach is per-
ceived as more user-friendly and enjoyable compared to the
video-based method. Interestingly, when participants were
asked to evaluate the interactivity of both interfaces, the results
revealed an equal score for both the game and video interfaces.
This could be explained by the fact that some participants in in
the video group have found responding with their voices as an
interactive element, despite differences in how they engaged
compared to the game interface.

VI. CONCLUSION

In this work, we introduce and compare two graph struc-
ture education modules of game and video by examining
participants’ prefrontal cortex oxygenation patterns. In a pi-
lot user study with twelve participants, we used the fNIRS
device to measure the changes in the prefrontal cortex’s oxy-
genated hemoglobin (AHbO) and deoxygenated hemoglobin
(AHDR) levels. This was a preliminary study that presented
In our study, we noted that the mean levels of oxygenated
hemoglobin (AHbO) were higher in the GBL group, sug-
gesting the potential enhanced cognitive involvement. Ad-
ditionally, the lateral prefrontal cortex (LPFC) had greater
hemodynamic activity during the learning period. Moreover,
knowledge gain analysis showed an increase in mean score in
the game group compared to the video group. Although we did
not observe statistically significant changes due to participant
variability and sample size, this preliminary work contributes
to understanding how game- and video-based learning impact
cognitive processes, providing insights for enhanced instruc-
tional design and educational game development.

Future research should explore the potential benefits of
specific game design elements and their impact on educational
outcomes. Expanding the sample size and enhancing the gam-
ing interface can help mitigate constraints present in existing
research. In subsequent studies, we intend to improve the
educational modules as explained before and eventually test
them with a group of high school students. Furthermore, we
plan to integrate this game into Augmented Reality (AR) and
Virtual Reality (VR) platforms, allowing participants to fully
immerse themselves in a realistic environment and enhancing
their engagement. Additionally, we aim to qualitatively eval-
uate the system by monitoring users’ facial expressions and
tracking their gaze as a supplement to self-reported surveys
and assessments.
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