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Hanny E. Rivera2, Carlos A. Tramonte1,2,4, Sarah W. Davies2

and Xingchen Tony Wang1*

1Department of Earth and Environmental Sciences, Boston College, Chestnut Hill, MA, United States,
2Department of Biology, Boston University, Boston, MA, United States, 3Department of Earth and
Planetary Sciences, McGill University, Montreal, QC, Canada, 4School of Ocean and Earth Science and
Technology, University of Hawai’i at Mānoa, Mānoa, HI, United States
The resilience of coral reefs in oligotrophic, (sub)tropical oceans is largely due to

the symbiotic relationship between scleractinian corals and Symbiodiniaceae

algae, which enables efficient internal nutrient recycling. Investigating the history

of this coral symbiosis can provide insights into its role in sustaining the health of

both present and future coral reefs. The isotopic composition of organic nitrogen

(15N/14N or d15N) bound within coral skeletons has been utilized to trace the

existence of symbiosis in fossil corals, suggesting that coral symbiosis dates back

to at least 210million years ago. The basis of this proxy is that symbiotic corals are

expected to exhibit lower d15N compared to their non-symbiotic (aposymbiotic)

counterparts within the same environments, owing to internal nitrogen recycling

between the coral host and algal symbiont, and reduced leakage of low-d15N
ammonium into seawater. However, this hypothesis has not been adequately

tested in contemporary settings. In a laboratory experiment, we examined the

d15N differences between the symbiotic and aposymbiotic branches within the

same genetic backgrounds of the facultatively symbiotic coralOculina arbuscula

under well-fed conditions. Across five different genotypes in two separate

experiments, symbiotic branches consistently showed lower d15N than their

aposymbiotic counterparts. These findings corroborate the use of d15N as a

proxy for identifying coral symbiosis in the past, particularly when multiple

species of corals coexisted in the same environments.
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1 Introduction

Coral reef habitats predominantly exist in oligotrophic (low

nutrient) environments in tropical and subtropical oceans (Capone

et al., 2008; Dubinsky and Stambler, 2011). These habitats comprise

a diverse array of organisms, with scleractinian (stony) corals

serving as the primary reef builders. These ecosystems formed by

corals are biodiversity hotspots, offering a range of ecosystem

services including serving as nursery habitats for juvenile fish,

facilitating carbon sequestration, and providing coastal protection

against storms (Rosenberg et al., 2007; Woodhead et al., 2019).

Remarkably, coral reef tourism alone generates up to $35.8 billion

globally per year (Woodhead et al., 2019). However, these vital

organisms and the ecosystems they support are under severe threats

from rising sea surface temperatures and ocean acidification due to

anthropogenic CO2 emissions (Goldberg and Wilkinson, 2004;

Dubinsky and Stambler, 2011; Hughes et al., 2018). In addition,

local anthropogenic stressors, such as nitrogen (N) pollution,

further imperil coral reefs and their ecosystem services by

adversely affecting coral health, including increased disease

susceptibility and bleaching, loss of coral diversity, and high

mortality rates (Rosenberg et al. , 2007; D ’Angelo and

Wiedenmann, 2014; Burkepile et al., 2020). Over the past few

decades, coral coverage in tropical and subtropical waters has

decreased by approximately 50% (Eddy et al., 2021).

The success of tropical and subtropical coral reefs in

ol igotrophic waters hinges on the ir symbios i s wi th

Symbiodiniaceae algae within their gastrodermal cells. The recent

decline of coral reefs is largely attributed to the loss of

Symbiodiniaceae under conditions of rising water temperatures

and other adverse factors, leading to “coral bleaching” (Li et al.,

2023). In healthy symbiotic conditions, this symbiosis facilitates the

transfer of photosynthetic products from the algae to the coral

(Rädecker et al., 2015; Gustafsson et al., 2013; Houlbrèque and

Ferrier-Pagès, 2009). In return, the algae assimilates metabolic

waste (e.g., N) excreted by the coral, preventing its loss to the

ambient ocean (Cui et al., 2019). This symbiosis fosters an “internal

nutrient recycling” mechanism, enabling corals to conserve

nutrients and thrive in oligotrophic waters. In the absence of

these algal symbionts, corals would struggle to thrive due to

nutrient scarcity (Grover et al., 2008; Yellowlees et al., 2008;

Falkowski et al., 1984; D’Elia et al., 1983). As a result, the once-

healthy symbiotic relationship deteriorates, resulting in reduced

coral growth rates, increased mortality rates, and ultimately, coral

reef degradation.

Numerous studies have investigated the interactions between

the host coral and their algal symbionts (Davy et al., 2012; Kopp

et al., 2013; Weis et al., 2008; Yellowlees et al., 2008), though most

have focused on present-day coral symbioses. The response of coral

symbiosis to a warmer climate in the past, however, might also

provide important insights into the future of coral symbiosis under

global warming (Frankowiak et al., 2016; Weis et al., 2008; Pochon

et al., 2006). While corals leave behind skeletal fossils composed of

calcium carbonate, Symbiodiniaceae do not, complicating the study

of historical coral symbiosis. The molecular clock technique has
Frontiers in Marine Science 02
been used to study the origin of symbiosis in contemporary

scleractinian corals, placing it between approximately 140 Ma to

200 Ma (LaJeunesse et al., 2018). However, this method is based on

assumptions regarding genetic mutation rates and can lack

precision without corroboration from fossil evidence. Moreover,

this late origin of symbiosis in stony corals is at odds with the rapid

expansion of ancient coral reefs around 200–251 Ma during the

Triassic period (Stanley, 2003).

In addition to the molecular clock approach, indirect “proxies”

derived from coral skeleton records have also been employed to

infer the origin and evolution of the coral-algal symbiosis. These

proxies include skeletal microstructures and the isotopic

composition of carbon (C), oxygen (O), and nitrogen (N)

(Stanley and Swart, 1995; Frankowiak et al., 2016). Notably, the N

isotopic composition (15N/14N or d15N) of skeleton-bound organic

matter has been recently utilized to suggest the presence of

symbiosis in fossil corals dating back to approximately 210

million years (Frankowiak et al., 2016; Tornabene et al., 2017).

These studies have also suggested that these corals lived in

oligotrophic water and that symbiosis with photosynthetic algae

was crucial for the evolution and expansion of scleractinian corals

(Frankowiak et al., 2016).

The coral d15N symbiosis proxy is predicated on the differences

in skeletal d15N values between symbiotic and aposymbiotic corals

within identical environmental settings (Frankowiak et al., 2016).

Nitrogen has two stable isotopes, 14N and 15N. 14N constitutes

~99.63% of naturally occurring N, while 15N accounts for the

remaining ~0.37% (Reddy and DeLaune, 2008). The ratio of 15N

to 14N in a sample is expressed with the d15N notation, defined as

d15N = [(15N/14Nsample)/(
15N/14Nair)-1] × 1,000‰. In a typical

ecosystem, a trophic enrichment of approximately ~3‰ in d15N
is observed at each successive trophic level, which is due to the

preferential breakdown of 14N-rich proteins during catabolism and

the excretion of 14N-rich ammonium or urea (Deniro and Epstein,

1981; Minagawa andWada, 1984). In symbiotic corals, however, the
14N-rich ammonium is recycled within the symbiotic system,

reducing its excretion to the surrounding seawater and

consequently limiting isotopic fractionation. As a result, when

residing in identical environments, symbiotic corals are expected

to exhibit lower d15N values compared to their non-symbiotic

counterparts. However, this hypothesis has not been sufficiently

tested in contemporary settings using extant coral species as most

coral d15N studies have focused on its use as a trophic level indicator

in modern corals (Conti-Jerpe et al., 2020; Wiedenmann

et al., 2023).

In this study, we investigate the impact of symbiosis on coral

d15N using a facultatively symbiotic coral species, Oculina

arbuscula. Unlike most extant symbiotic corals that harbor

obligate symbionts, facultatively symbiotic corals exhibit a range

of symbiotic states—from hosting high to low densities of algal

symbionts—and can even be manipulated to achieve aposymbiosis

(functionally devoid of symbionts) in laboratory settings similar to

other closely related cnidarian clades (Madin et al., 2016; Matthews

et al., 2016). This flexibility allows for a detailed examination of the

differences between symbiotic states. We explored the d15N
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differences between aposymbiotic and symbiotic branches of

Oculina arbuscula under consistent laboratory conditions. Our

experimental design focuses on a single species while also

considering the influence of genetic background on d15N, thereby
isolating the presence or absence of symbionts as the sole variable.

The results could enhance our understanding of d15N as a proxy for

symbiosis in fossil corals and provide valuable information on how

contemporary corals may respond to global warming.
2 Materials and methods

2.1 Sample collection

All facultatively symbiotic coral colonies, Oculina arbuscula

Agassiz, 1864, were collected on May 25, 2018 from Radio Island,

North Carolina (34° 42.520′ N, 76° 40.796′ W; Supplementary

Figure 1) from depths of 4.5–6 m using a hammer and chisel

(NC Division of Marine Fisheries Permit #1627488; Rivera and

Davies, 2021). Five genetically distinct parent colonies (genets) ofO.

arbuscula were collected and transported overnight to the Davies

Marine Population Genomics Lab at Boston University. Parent

colonies were used to generate two nubbins per colony for each

experiment, creating genotypic replicates, and resulting in a total of

8 nubbins used in Experiment 1 and 10 nubbins used in Experiment

2. These coral fragments were then attached to ceramic tiles and

acclimated in a common tank until used for the experiments.

Although O. arbuscula used in our experiment does not inhabit

the same environmental conditions as tropical reef-building corals,

they are able to calcify (Rivera and Davies, 2021), making an

effective model species for groundtruthing the use of d15N as a

proxy for symbiosis in extant corals.
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2.2 Laboratory experiments

Corals were maintained under common garden conditions,

with a temperature of 25 ± 0.17°C, salinity of 34.6 ± 0.76, and pH

of 8.0 ± 0.08 for 3–4 years leading up to and throughout the

sampling period. Three months prior to each sampling date, one

nubbin from each genet was menthol-bleached for 7 days in a 20%

weight/volume menthol solution (Matthews et al., 2016).

Following menthol bleaching, aposymbiotic fragments were

housed in a separate tank from symbiotic fragments (Figure 1;

Matthews et al., 2016; Wang et al., 2012). Each experimental tank

was equipped with a powerhead (1321 gallons hr-1) to ensure

water circulation within the tank. Additionally, a large pump was

used to recirculate water (4000 gallons hr-1) among all

experimental tanks. Water changes were conducted every other

week, during which turf algal growth on the tank walls was

scrubbed, and about 1/3 of the total tank volume was replaced.

Two experiments, each lasting approximately 3 months, were

conducted. Aposymbiotic and symbiotic fragments from the

same genet were paired for multiple coral colonies (Experiment

1: 4 genets; Experiment 2: 5 genets). In both experiments, corals

were fed the same diet (combined Artemia nauplii and

commercial coral food) three times a week for the duration of

each experiment.
2.3 Host/symbiont separation

Three months following menthol bleaching of aposymbiotic

fragments, tissue samples were taken from a symbiotic and

aposymbiotic nubbin from each genet using the same process

outlined below (n=8 coral fragments for Experiment 1 and n=10
FIGURE 1

Illustration of experimental flow in the study.
frontiersin.org

https://doi.org/10.3389/fmars.2024.1433382
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Donnelly et al. 10.3389/fmars.2024.1433382
coral fragments for Experiment 2). Briefly, a section of coral was

detached and the surface of the coral tissue was removed via

airbrushing using 0.2 micron filter sterilized artificial seawater

(FSW, Instant Ocean) (Figure 1; Rivera et al., 2023; Aichelman

et al., 2021). The tissue slurry was homogenized using a handheld

tissue homogenizer for 3 minutes (Tissue-Tearor Model 985370,

BioSpec Products, Inc.). A subsample of the slurry was preserved at

-20°C as the ‘Host + Symbiont’ sample, which included the animal

and algal symbiont cells for further analyses (detailed below). The

remaining slurry underwent centrifugation at 3300 rpm for 10

minutes to separate the animal cells ‘Host’ (supernatant) from the

Symbiodiniaceae ‘Symbiont’ (pellet) components. The ‘Host’

fraction was decanted, further purified via centrifugation at

12,000 rpm at 4°C for 10 minutes, transferred to a new tube, and

stored at -80°C. The ‘Symbiont’ fraction was treated with 2 mL of

2N HCl to dissolve calcium carbonate particles. This pellet was then

rinsed three times with FSW, each time followed by centrifugation

at 3000 rpm for 3 minutes. After the final rinse, the supernatant was

discarded, and the pellet was resuspended in 1.5 mL FSW and

sieved through a 40-micron mesh. The filtrate was subjected to a

final centrifugation at 12,000 rpm at 4 °C for 10 minutes. After this,

the supernatant was discarded, and the remaining pellet was stored

at -80°C.
2.4 Symbiont density analyses

The ‘Host + Symbiont’ aliquots were used to determine

symbiont cell densities (cells mm-2). Three replicates per coral

genet and symbiosis type were measured using 10 mL of tissue

slurry aliquots with a hemocytometer under a light microscope

(Rodrigues and Grottoli, 2007). Counts were averaged,

extrapolated to the total slurry volume, and normalized to coral

tissue surface area (as measured by an Einscan-SE scanner and

MeshLab software) to quantify symbiont densities for each

coral fragment.
2.5 d15N analysis

All coral tissue samples were freeze-dried overnight (Figure 1).

Samples were then homogenized and crushed to form a powder.

These powdered samples were weighed into tin capsules (Kolasinski

et al., 2008). Their nitrogen isotopic composition was analyzed on

an isotope ratio mass spectrometer interfaced with a FlashSmart™

Elemental Analyzer (EA-IRMS; ThermoFisher Scientific; Figure 1).

Although coral samples were separated into ‘Host’, ‘Host +

Symbiont’, and ‘Symbiont’ fractions, only the ‘Host’ and ‘Host +

Symbiont’ samples yielded sufficient mass for precise isotopic data.

The ‘Symbiont’ fraction produced a peak intensity on the EA-IRMS

that was only marginally higher than the blanks, rendering the data

unusable. Consequently, we report only the d15N values of the

‘Host’ and ‘Host + Symbiont’ fractions in this paper. The precision

of the method, based on replicates and standards, was

approximately 0.2‰. The d15N of the food mixture was also

measured alongside the coral samples.
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2.6 Nitrate concentration and d15N analysis

To analyze the nitrate (NO3
-) concentrations and d15N values of

the water, samples were collected from the tank at the onset and

conclusion of Experiment 2. Both NO3
- concentration and d15N

were determined using the denitrifier method (Sigman et al., 2001).

Briefly, NO3
- in the water sample was converted into N2O using

Pseudomonas aureofaciens in pre-purged 20 mL gas-tight vials. The

concentration and d15N of the resulting N2O were then analyzed on

a customized Gas Bench coupled to an IRMS (GB-IRMS). NO3
-

isotope standards with known concentrations (IAEA-NO3 and

USGS 34) were used to calibrate the NO3
- d15N and

concentrations of the samples. The precision of this method for

NO3
- d15N and concentration are better than 0.2‰ and

2%, respectively.
2.7 Statistical analysis

d15N for the ‘Host’ and ‘Host + Symbiont’ were assessed using a

series of linear mixed effects models (lmer) for each (including fixed

effects of experiment and symbiosis type) using a forward model

selection method as described in Aichelman et al. (2021) using R

Version 1.3.959 (R Core Team, 2017). A random effect of genet was

included in all models to account for variation across genets.

Assumptions of normality were assessed using a Shapiro–Wilk

Test. Assumptions for d15N for the ‘Host’ and ‘Host + Symbiont’

were both met. The best fit model was derived by starting with the

intercept-only model and then using forward-selection to

incorporate additional parameters, starting with the most

significant parameter, until further addition of parameters did not

significantly improve the model fit. Additional parameters were

retained in the model if they were significant (p<0.05) and produced

smaller AIC values (Akaike, 1974). Comparisons between the d15N
averages of the aposymbiotic ‘Host’ and the symbiotic ‘Host’ and

‘Host + Symbiont’ were performed using a Tukey’s HSD post-hoc

pairwise comparison for each experiment (lsmeans). A one-way

ANOVA with a Tukey’s HSD posthoc pairwise comparison were

performed for significant effects from the linear mixed model for

each genet in Prism GraphPad Version 10.2.3.
3 Results

3.1 Cell density

Symbiont densities were highest in symbiotic coral and lowest for

aposymbiotic coral for both experiments, which was expected. Three

abnormal symbiont densities were observed in aposymbiotic corals

across all experiments, where the density was not the expected 0 cells

mm-2. In Experiment 1, the aposymbiotic coral for genet A showed a

density of 65 cells mm-2. In Experiment 2, the aposymbiotic corals for

genet A and F had a cell density of 48 cells mm-2 and 124 cells mm-2,

respectively (Table 1). The cell densities for genet D and E in

symbiotic corals in Experiment 2 were also lower, registering

at 3,125 cells mm-2 and 5,626 cells mm-2, respectively, compared to
frontiersin.org
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other symbiotic coral for all experiments that had an average cell

density of 13,286 cells mm-2 (Table 1).
3.2 Nitrogen isotopes

Overall, both the d15N of the ‘Host’ and ‘Host + Symbiont’ for

the corals exhibited distinct differences between the two types

(i.e., symbiotic coral and aposymbiotic coral) in the first

experiment (p1, Apo ‘Host’ – Sym ‘Host’ = 0.014, p1, Apo ‘Host’ – Sym

‘Host+Sym’ = 0.0001; Supplementary Table 1). Experiment 2 revealed

a significant difference only between the aposymbiotic ‘Host’ and

symbiotic ‘Host + Symbiont’ (p2, Apo ‘Host’ – Sym ‘Host+Sym’ = 0.0014;

Supplementary Table 1) and no differences between the

aposymbiotic ‘Host’ and symbiotic ‘Host’ (p2, Apo ‘Host’ – Sym ‘Host’

= 0.36; Supplementary Table 1). In each experiment, the d15N
values of the symbiotic branches were consistently lower than those

of the corresponding aposymbiotic branches (Figure 2). Between

the two experiments (1 and 2), significant differences were observed

for the ‘Host’ and ‘Host + Symbiont’ d15N (p Apo ‘Host’ – Sym ‘Host’ =

0.0023, p Apo ‘Host’ – Sym ‘Host+Sym’ < 0.0001; Table 2).

In Experiment 1, the d15N of the aposymbiotic ‘Host’ ranged

from 10.3–11.4‰, while that of the symbiotic ‘Host’ ranged from

9.4–10.1‰ and the symbiotic ‘Host + Symbiont’ ranged from 6.4–

8.5‰ (Figure 2A). Across all genets in the first experiment, there

was a significant difference between the aposymbiotic ‘Host’,

symbiotic ‘Host ’, and the symbiotic ‘Host + Symbiont ’

(Figure 2A; Supplementary Table 2). In Experiment 2, the d15N
of all coral samples were lower than in Experiment 1, with the

aposymbiotic ‘Host’ ranging from 8.1–10.4‰, the symbiotic ‘Host’

from 7.7–9.4‰, and the symbiotic ‘Host + Symbiont’ from 6.8–

8.0‰ (Figure 2B). For all genets in Experiment 2, there was no

significant difference between the aposymbiotic ‘Host’ and the

symbiotic ‘Host’ except for genet F (pF, Apo ‘Host’ – Sym ‘Host’ =

0.029; Supplementary Table 2). However, there was a significant

difference between the aposymbiotic ‘Host’ and the symbiotic ‘Host

+ Symbiont’ as well as the symbiotic ‘Host’ and the symbiotic ‘Host

+ Symbiont’ (Figure 2B; Supplementary Table 2).

In both experiments, the d15N of the symbiotic ‘Host +

Symbiont’ was >2‰ lower than the aposymbiotic ‘Host’. When

averaging the d15N of all genets for each experiment, the offset

between the aposymbiotic ‘Host’ and the symbiotic ‘Host +

Symbiont’ was 2.9‰ for Experiment 1 and 2.0‰ for Experiment

2. The difference for both experiments was significantly different

(Experiment 1: p = 0.0001, t-ratio = 7.6, df = 10.0; Experiment 2: p =

0.0014, t-ratio = 5.4, df = 10.0; Supplementary Table 1; Figure 3).

For Experiment 1, there was also a significant difference between the
Frontiers in Marine Science frontiersin.o05
averages of the aposymbiotic ‘Host’ and symbiotic ‘Host’ (p = 0.013,

t-ratio = 3.9, df = 10.0; Supplementary Table 1), and between the

symbiotic ‘Host’ and symbiotic ‘Host + Symbiont’ (p < 0.0001, t-

ratio = 7.9, df = 11.0; Supplementary Table 1). For Experiment 2,

there was only an additional significant difference between the

symbiotic ‘Host’ and symbiotic ‘Host + Symbiont’ (p < 0.0001, t-

ratio = 7.9, df = 11.0; Supplementary Table 1). The d15N of the food

mixture used during the duration of the study averaged to be 8.0 ±

2.0‰. In Experiment 2, water samples were collected at both the

start and end for nitrate concentration and d15N measurements.

The nitrate concentration increased from 2.3 ± 0.02 mM in the

beginning to 14.2 ± 0.24 mM at the end. Nitrate d15N decreased

from 14.5 ± 0.1‰ to 10.3 ± 0.1‰.
TABLE 1 Aposymbiotic and symbiotic coral tissue symbiont count (cells mm-2) for all genets in Experiments 1 and 2.

Genet Experiment 1 Experiment 2

A C E F A C D E F

Aposymbiotic Coral 65 0 0 0 48 0 0 0 124

Symbiotic Coral 17,202 16,943 13,611 22,915 12,212 15,763 3,125 5,626 12,178
FIGURE 2

Genet d15N (± SD) for the aposymbiotic ‘Host’ (blue), symbiotic
‘Host’ (dark yellow), and symbiotic ‘Host + Symbiont’ (light yellow)
for the Oculina arbuscula corals from (A) Experiment 1 and (B)
Experiment 2. Different Greek letters (a, b, g) indicate a significant
difference (p < 0.05). For all variables with the same Greek letter, the
difference between the means is not statistically significant.
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4 Discussion

4.1 Influence of symbiosis on coral d15N

While coral d15N has been used as a proxy to determine the

presence of coral symbiosis in fossil corals (Frankowiak et al., 2016;

Tornabene et al., 2017), its efficacy has not been sufficiently

groundtruthed in contemporary settings with extant corals. Using

a facultatively symbiotic coral species under well-fed conditions in a
Frontiers in Marine Science 06
controlled laboratory experiment, we observed that the d15N of the

symbiotic fragments were lower than that of the aposymbiotic

fragments while controlling for genetic background (Figure 2).

This difference can be attributed to the internal N cycling

between the coral host and its symbionts (Rädecker et al., 2015;

Gustafsson et al., 2013; Houlbrèque and Ferrier-Pagès, 2009;

Bednarz et al., 2017), which results in reduced or minimal low-

d15N ammonium excretion and less 15N enrichment in corals.

Although the overall average d15N values were higher in the

aposymbiotic ‘Host’ compared to both the symbiotic ‘Host’ and

‘Host + Symbiont’ (Figure 3), the differences between the

aposymbiotic ‘Host’ and symbiotic ‘Host’ were not statistically

significant in Experiment 2 (Figure 3). This may be attributed to

the high frequency of feeding during the experiment, which will be

discussed further in Section 4.3.

In the experiments, the average d15N of coral food was 8.0 ±

2.0‰. Given aposymbiotic corals lack symbionts, their excretion of

low-d15N ammonium would lead to an increase of 3–4‰ in d15N
relative to that of the food source under steady-state conditions

(Deniro and Epstein, 1981; Minagawa and Wada, 1984; Glibert

et al., 2019). The d15N differences between the aposymbiotic corals

and their food averaged 2.7‰ in Experiment 1 and 1.2‰ in

Experiment 2. The smaller offset in Experiment 2 may be

attributed to the experimental duration. Specifically, the

aposymbiotic corals had been stripped of their algal symbionts

about 3 months prior and might require more time to acclimate and

exhibit the 3‰ increase.
4.2 N heterotrophy vs. autotrophy in
symbiotic corals

Aposymbiotic corals obtain N through heterotrophic means,

despite recent research indicating that aposymbiotic coral have the

potential to assimilate ammonium at a much lower rate than
FIGURE 3

Average d15N (± SE) for the aposymbiotic ‘Host’ (blue), symbiotic ‘Host’ (dark yellow), and symbiotic ‘Host + Symbiont’ (light yellow) for the Oculina
arbuscula corals from Experiment 1 (left) and 2 (right). Different Greek letters (a, b, g) indicate a significant difference (p < 0.05). For all variables with
the same Greek letter, the difference between the means is not statistically significant.
TABLE 2 Model results for d15N for the aposymbiotic and symbiotic
‘Host’ as well as aposymbiotic ‘Host’ and symbiotic ‘Host + Symbiont’
(experiment and type).

Factor Estimate SE DF T-
value

P-
Value

d15N Aposymbiotic ‘Host’ and Symbiotic ‘Host’

Model = lmer(Host ~ experiment * type + 1|genet)

Experiment
(1 or 2) -1.56 0.29 10.44 -5.35 0.00028

Type
(Apo or Sym) -1.88 0.66 10.21 -2.84 0.017

Type:
Experiment 0.70 0.41 10.21 1.74 0.11

d15N Aposymbiotic ‘Host’ and Symbiotic ‘Host + Sym’

Model = lmer(Host + Sym ~ experiment * type + 1|genet)

Experiment
(1 or 2) -1.60 0.39 10.74 -4.11 0.0018

Type
(Apo or Sym) -4.15 0.88 10.38 -4.70 0.00077

Type:
Experiment 1.10 0.54 10.38 2.03 0.069
Models were determined from forward model selection and are written under to the metric
being considered. SE, standard error; DF, degrees of freedom.
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symbiotic coral in high ambient DIN conditions (Cui et al., 2019).

In contrast, symbiotic corals have been reported to obtain N

through both heterotrophic feeding on particulate organic N

(PON) and plankton (N heterotrophy; Gustafsson et al., 2013;

Houlbrèque and Ferrier-Pagès, 2009) and autotrophic

assimilation of dissolved inorganic N (DIN) from seawater via

their intracellular algae (N autotrophy; Gustafsson et al., 2013; Cui

et al., 2019). However, most experiments that explore DIN

assimilation are conducted under little to no feeding and/or high

DIN concentrations (Bythell, 1990; Hoegh-Guldberg and

Williamson, 1999; Grover et al., 2002; 2003; Tanaka et al., 2006;

Pernice et al., 2012; Kopp et al., 2013; Tanaka et al., 2015; Bednarz

et al., 2017). Discrepancies exist in the literature regarding food

availability and its influence on DIN assimilation (DiRoberts et al.,

2021), although starvation (i.e., no feeding) could potentially

increase DIN assimilation (Szmant-Froelich and Pilson, 1984;

Grover et al., 2002). It is still unclear whether symbiotic corals

rely on N heterotrophy vs. autotrophy in natural environments.

To minimize potential assimilation of DIN by corals, corals

were purposely fed three times per week in our experiments,

mimicking highly productive ocean environments where corals

have access to plenty of food such as those of the central and

eastern equatorial Pacific (Wang et al., 2016). This approach also

reflected the natural habitat of O. arbuscula, which thrives in

subtropical to temperate regions-environments that are nutrient-

richer than that of oligotrophic waters (Gleason et al., 2018). This

frequent feeding led to a build-up of nitrate in the tank and turf

algae growth due to the degradation of coral food, which increased

from 2.3 ± 0.02 mM to 14.0 ± 0.28 mM over the course of

Experiment 2, despite periodic water replacement and turf algae

removal. Nitrate d15N decreased from 14.5 ± 0.1‰ to 10.3 ± 0.1‰

in Experiment 2, inconsistent with assimilation of seawater nitrate

by coral. In such nutrient-rich environments, it is energetically

more favorable for symbionts to utilize ammonium excreted by the

coral host rather than assimilating seawater nitrate, which must

cross multiple membrane layers before being reduced to

ammonium and taken up by the symbionts. Thus, in high-

productivity ocean environments, coral N heterotrophy likely

dominates over N autotrophy.
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4.3 Ammonium leakage in well-fed
symbiotic coral and its impact on
coral d15N

Most natural conditions in which corals live are oligotrophic in

nature, leading to highly efficient N recycling within symbiotic corals

with little to no ammonium leakage (O’Neil and Capone, 2008). As a

result, symbiotic corals are expected to exhibit a ~3‰ lower d15N
than co-existing aposymbiotic corals. However, in our experiments,

the observed d15N offset between aposymbiotic coral and symbiotic

coral generally falls below this 3‰ (Figures 4A, B), suggesting an

underlying mechanism that warrants further investigation.

Previous studies have suggested that well-fed corals may exhibit

increased ammonium leakage because the symbionts are unable to fully

assimilate the ammonium excreted by the coral host (Szmant-Froelich

and Pilson, 1984; Piniak et al., 2003; Piniak and Lipschultz, 2004; Erler

et al., 2015; Wang et al., 2015), with the rate of ammonium leakage

increasing with the frequency of feeding. This implies that an abundant

food supply could lead to a rise in coral d15N even in symbiotic corals

(Erler et al., 2015; Wang et al., 2015), which may explain the

observations from our experiments. While aposymbiotic coral will

remain consistent in their d15N regardless of food supply (Figure 5A),

symbiotic corals may display a range in their d15N (Figures 5B, C).

Specifically, in Experiment 2, in which both the aposymbiotic ‘Host’

and symbiotic ‘Host’ displayed more similar d15N values (Figure 4B),

suggests ammonium leakage occurred in both coral types. Depending

on the extent of this leakage, symbiotic corals could show a range of

d15N elevations relative to their food source (Figure 5B). In scenarios

with no leakage (i.e., in oligotrophic waters), coral d15N might not

display any trophic enrichment relative to their food. In high leakage

scenario (i.e., in highly productive environments), coral d15N could be

up to ~3‰ higher than the d15N of their food.
4.4 Implications for coral d15N as a
symbiosis proxy

To assess the utility of d15N as a proxy for coral symbiosis, we

calculated the d15N offset (Dd15N) between symbiotic and
FIGURE 4

d15N differences (Dd15N) between the aposymbiotic ‘Host’ and symbiotic ‘Host’ (dark yellow circles) and the aposymbiotic ‘Host’ and symbiotic ‘Host
+ Symbiont’ (light yellow squares) for (A) Experiment 1 and (B) Experiment 2.
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aposymbiotic corals. This offset can be used to determine the

symbiotic state of the coral, with the Dd15N values ranged from

-4 to 1‰ (Figure 6A). This range can be attributed to the degree of

ammonium leakage, with a Dd15N close to 0‰ indicating full

aposymbiosis and -4‰ suggesting full symbiosis.

Applying this framework to fossil corals requires analyzing multiple

coral samples from a specific region. The highest d15N value within a

fossil group can be designated as representing the ‘fully aposymbiotic’

state. The Dd15N from this baseline then helps determine the symbiotic

state of the corals. To validate this framework, d15N data from a

previous study using multiple species of Triassic corals from Antalya,

Turkey was used (Frankowiak et al., 2016), which showed a similar

Dd15N range as our experiments (Figure 6B), supporting the conclusion

that that some of these fossil corals were indeed symbiotic.
Frontiers in Marine Science 08
5 Conclusion

As climate change impacts marine ecosystems, corals are

increasingly expelling their symbiotic algae, leading to mass

bleaching events and elevated mortality rates. Understanding the

historical evolution between corals and their intracellular algal

symbionts is crucial for the health of both present and future

coral reefs. A primary challenge in tracing the evolution of coral

symbiosis is that symbiotic algae are not preserved in the fossil

record. Recent studies have used the d15N of fossil-bound organic

matter as a proxy for symbiosis in Scleractinian corals as old as 210-

million-years-old, uncovering evidence of early symbioses

(Tornabene et al., 2017; Frankowiak et al., 2016). In our study, we

employed the modern facultatively symbiotic coral, Oculina
FIGURE 5

Cartoons showing the causes of d15N differences between (A) aposymbiotic coral, (B) symbiotic coral with reduced ammonium leakage, and (C)
symbiotic coral with minimal ammonium leakage. The d15N value of a symbiotic coral with ammonium leakage will fall between the d15N of
symbiotic coral with minimal ammonium leakage and the d15N of aposymbiotic coral. Note: coral growth is not included in this illustration. As most
corals inhabit oligotrophic environments, the assimilation of inorganic nitrogen [i.e., nitrate (NO3

-) or ammonium (NH4+)] from seawater by the algal
symbiont, Symbiodiniaceae, inside the symbiotic coral is considered negligible in this illustration. In all 3 scenarios the input arrow is thicker than the
output arrow as a portion of the N is used for coral growth.
FIGURE 6

Frequency distribution of the observed coral d15N offset (Dd15N) from the (A) ‘Host + Symbiont’ (white) and ‘Host’ (diagonal slash) of the facultatively
symbiotic coral Oculina arbuscula under laboratory conditions from this study and (B) Triassic coral (grey) from Antalya, Turkey from a previous
study (Frankowiak et al., 2016). Fully aposymbiotic corals release low-d15N ammonium and exhibit a higher d15N. In contrast, fully symbiotic corals
demonstrate high internal N recycling efficiency, minimal ammonium leakage, and lower d15N.
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arbuscula, to validate the d15N differences between aposymbiotic

and symbiotic corals. We found that the d15N of the aposymbiotic

corals was overall higher than that of the symbiotic corals, most

likely due to internal N cycling facilitated by the symbiont. These

experimental results support the use of d15N as an indirect proxy for

coral symbiosis, applicable to both historical and contemporary

settings. However, one limitation of our study is that the corals were

maintained under well-fed conditions, which may not accurately

represent the nutrient-poor environments typical of most coral

reefs. Future research should aim to replicate these experiments

under oligotrophic conditions to better simulate natural

reef conditions.
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