
Contextual Predictive Mutation Testing

Kush Jain
Carnegie Mellon University

United States

Uri Alon
Carnegie Mellon University

United States

Alex Groce
Northern Arizona University

United States

Claire Le Goues
Carnegie Mellon University

United States

ABSTRACT

Mutation testing is a powerful technique for assessing and improv-

ing test suite quality that arti�cially introduces bugs and checks

whether the test suites catch them. However, it is also computation-

ally expensive and rarely scales to large projects. One promising

recent approach to tackling this problem uses machine learning to

predict whether the tests will detect the synthetic bugs, without

actually running those tests. However, existing predictive muta-

tion testing approaches still misclassify 33% of a randomly sampled

set of mutant-test suite pairs. We introduce MutationBERT, an ap-

proach for predictive mutation testing that simultaneously encodes

the source method mutation and test method, capturing key context

in the input representation. Thanks to its higher precision, Mu-

tationBERT saves 33% of the time spent by prior work to verify

live mutants, and improves precision, recall, and F1 score in both

same project and cross project settings. MutationBERT not only

enhances the state-of-the-art in predictive mutation testing, but

also presents practical bene�ts for real-world applications, both in

saving developer time and �nding hard to detect mutants.

CCS CONCEPTS

• Software and its engineering → Dynamic analysis; Soft-

ware testing and debugging.

KEYWORDS

test oracles, code coverage, mutation analysis

ACM Reference Format:

Kush Jain, Uri Alon, Alex Groce, and Claire Le Goues. 2023. Contextual

Predictive Mutation Testing. In Proceedings of the 31st ACM Joint European

Software Engineering Conference and Symposium on the Foundations of Soft-

ware Engineering (ESEC/FSE ’23), December 3–9, 2023, San Francisco, CA, USA.

ACM,NewYork, NY, USA, 12 pages. https://doi.org/10.1145/3611643.3616289

1 INTRODUCTION

Mutation testing is a well established technique for evaluating test

suite quality [7, 12, 15]. Mutation testing works by introducing

synthetic bugs based on a �xed set of rules (“mutation operators”),

ranging from inverting conditional statements to changing unary

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0327-0/23/12.
https://doi.org/10.1145/3611643.3616289

and binary operators. The test suite is then run on each buggy code

copy (also referred to as a “mutant” of the original program. If the

test suite fails on a mutant, the mutant is considered “detected”

(or “killed”; this is the desired outcome), otherwise the mutant is

“undetected” (a “live” mutant).

Empirically, mutation testing has been shown to improve test

suites in ways correlated with real world fault detection [17, 25].

However, one of its major limitations is its computational cost:

test suites must be run on each mutant, in principle. Large-scale

systems commonly have hundreds of thousands of mutants [9, 11],

since mutants scale with size of the codebase and mutation opera-

tors considered. Myriad approaches, including weak mutation [14],

meta mutation [31], mutation sampling [9], and mutant prioriti-

zation [19], have been proposed to tackle this computational cost.

However, they typically require still intractably expensive instru-

mentation or static and dynamic analyses, and usually rely on some

kind of random sampling, compromising their usefulness in prac-

tice. Mutation testing has begun to achieve industry adoption [4, 26]

at companies like Meta and Google, leveraging additional heuris-

tics and idle compute time. However, current industrial practice

is focused on identifying undetected mutants in newly committed

code. This is, in essence, the tip of the iceberg; the vast underwa-

ter domain of undetected mutants (and, thus, test weaknesses) in

existing code pre-dates the adoption of limited mutation analysis.

Running all mutants on existing large codebases to surface these

problems is still too expensive.

Research on Predictive Mutation Testing1 [20, 22, 36] takes a

di�erent approach to scalable mutation testing, using machine

learning to predict whether a mutant will be detected or not with-

out actually running the tests. The initial PMT work [36] empirically

demonstrated a correlation between static and dynamic code fea-

tures and mutant detection, but falls short of practical utility [1] in

terms of actual F1 or accuracy of the resulting model. Seshat [20]

improves on the original PMT model by using “natural language

channels”, including the modi�ed code (pre- and post-mutation),

and keywords from the test method and source method name. This

eliminates the expensive dynamic analyses from the PMT approach

and providesmore detailed prediction of which tests detect amutant

in particular (the mutant-test matrix). However, although Seshat

outperforms the original PMT model, it still su�ers from signi�cant

false postives, with a precision of 0.66 on our test set (Section 4),

costing valuable developer time.

1The �rst publication [36] both named the problem “Predictive Mutation Testing” and
introduced a model/approach to solve it named “PMT”. In general in this paper, we use
“PMT” to refer to the problem of predicting whether a test/suite will detect a mutant,
rather than the speci�c model proposed in that paper.

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Kush Jain, Uri Alon, Alex Groce, and Claire Le Goues

Code Files

Test Files

M1 M2

T1

T2

Mutant-Test Matrix

 Mutation Testing
Tool

Data
Preprocessing

MutationBERT
Model

Mutated Method-Covered
Test Suite Pairs

Mutant-Test
Method File Pair

1 2 3 4

Figure 1: An overview of MutationBERT’s work�ow. Step 1⃝ provides source and test �les to a mutation testing tool. In Step

2⃝, the mutation tool generates mutants and correspondng covering tests, which are preprocessed, tokenized, and formatted.

In Step 3⃝, MutationBERT takes these inputs to produce (Step 4⃝) the full mutant-test matrix.

We observe that there is signi�cant additional contextual infor-

mation embedded in both source and test code well beyond simply

the mutated line and method names considered in prior work. By

context, we mean both the method surrounding a modi�ed line

for a given mutant, as well as the body of the test method, in their

entirety. This intuition is supported by the fact that code and test

context are strongly correlated with how useful a mutant is (in

terms of whether a mutant is redundant, equivalent, or trivial) [18].

In this paper, we build on this insight to enable e�ective and e�cient

contextual predictive mutation testing.

We introduce MutationBERT, a model for predictive mutation

testing that takes as input the mutated source method and cor-

responding test method. MutationBERT learns the relationship

between them to predict whether the test will fail on that modi�ed

method. To this end, we introduce a novel input representation

that encodes each mutation as a token level di� applied to a source

method, followed by the corresponding test. We then use a pre-

trained transformer [32] architecture to encode source and test

methods, and further �netune it for our task.

A transformer maps a sequence of tokens to a contextual em-

bedding that can subsequently be �netuned to downstream tasks.

Transformers have been shown to be highly e�ective across a wide

range of software engineering tasks, ranging from code completion

to merge con�ict resolution [2, 8, 30, 34]. Their highly parallel archi-

tecture means that inference time is low, as compared to RNNs used

in prior work in predictive mutation testing [20]. To our knowledge,

our work is the �rst to apply this recent advancement to this domain.

As implied by the name, MutationBERT builds on recent advance-

ments in pretrained code models by �netuning CodeBERT [8] for

mutation testing. Due to having seen so much code, pretrained mod-

els have a better representation and understanding of source code

syntax and semantics, and thus are better equipped for tackling

source-intensive tasks such as mutation testing.

Like Seshat, MutationBERT requires no computationally expen-

sive static or dynamic analysis, nor instrumentation, as Mutation-

BERT operates entirely on source text. MutationBERT can also

generate the full mutant-test matrix. Generating the full matrix is

essential for many applications of mutation testing. For example, if

a mutant is predicted to be detected by only a very small number of

tests, the prediction can be con�rmed by running just those tests.

Mutants predicted to be undetected can similarly be checked by

running the tests considered most likely (though still unlikely) to

detect them. Importantly in practice, a developer who wants to add

testing to cover an undetected mutant will certainly want to know

which existing tests would be most likely to detect the mutant, since

often the way to �x such a problem is to strengthen the oracle or

extend the behavior of an existing test.

To summarize, our core contributions are as follows:

• An extensive empirical evaluation of predictive mutation

testing tools, measuring both inference time and the runtime

cost savings. We consider the tradeo� between precision and

recall, and discuss its impact on the end user, �nding that

MutationBERT’s higher precision saves 33% of the total time

spent checking mutants over prior work. We also evaluate

ability to detect non-trivial mutants, �nding MutationBERT

has a 30% improvement in accuracy over the state-of-the-art.

• We introduce MutationBERT, the �rst predictive mutation

testing model to incorporate source and test code context.

MutationBERT can predict entire mutant-test matrices along

with whether mutants are detected or not by test suites.

MutationBERT has a 8% improvement in F1 score when

predicting test matrices, and over a 12% improvement in

F1 score over the state-of-the-art baseline when predicting

whether a mutant is detected. While recall remains relatively

stable, precision improves by 25%, meaning that mutants

labeled as undetected by MutationBERT are much less likely

to be false postives.

• We perform an extensive analysis of the design decisions, in-

cluding an examination of alternative input representations

that leverage both source and test method context. We �nd

that token-level di� is the most e�ective input representation

for mutant prediction.

We release our dataset, source code, and model checkpoints at

https://doi.org/10.5281/zenodo.7600371, including detailed instruc-

tions on how to reproduce all of our results and use our model. We

hope that this will enable the community to deploy our model and

further build upon our work.

2 CONTEXTUAL PREDICTIVE MUTATION
TESTING

Figure 1 overviews the MutationBERT work�ow. Our work�ow

takes a project and test suite as input, and uses a given source-level

Contextual Predictive Mutation Testing ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

1 public RegularTimePeriod next() {

2 Hour result;

3 - if (this.hour != LAST_HOUR_IN_DAY) {

4 + if (this.hour > LAST_HOUR_IN_DAY) {

5 result = new Hour(this.hour + 1, this.day);

6 }

7 ...

8 }

9

10 public void testNext () {

11 Hour h = new Hour(1, 12, 23, 2000);

12 h = (Hour) h.next();

13 assertEquals (2000, h.getYear ());

14 ...

15 }

(a) Motivating example

1 <CLS>

2 public RegularTimePeriod next() {

3 Hour result;

4 if (this.hour <BEFORE> != <AFTER> > <ENDDIFF>

5 LAST_HOUR_IN_DAY) {

6 result = new Hour(this.hour + 1, this.day);

7 }

8 ...

9 }

10 <SEP>

11 public void testNext () {

12 Hour h = new Hour(1, 12, 23, 2000);

13 h = (Hour) h.next();

14 assertEquals (2000, h.getYear ());

15 ...

16 }

(b) Model encoding of example

Figure 2: A snippet of code from the popular JFreeChart Java project, where a mutation changing != to > is applied (Figure 2a).

The provided test fails to detect thismutant. Figure 2b shows howwe encode thismutant in our approach. Newly added special

tokens are marked in brown .

mutation testing tool (step 1⃝, Section 2.1) to generate a set of mu-

tants and tests that cover them (step 2⃝). Most mutation testing

tools provide coverage out of the box, as a way to prune uncov-

ered mutants, which will always be undetected. We encode the

method/test pairs in an input representation (step 3⃝, Section 2.2),

to be passed as input to our trained model (step 4⃝, Section 2.3).

The model predicts whether the test will detect or fail to detect

the mutant (step 5⃝). Over all mutant-test pairs, these predictions

comprise the mutant-test matrix for the program. This output can

be optionally post-processed to aggregate predictions across the

whole test suite. This produces for the user a set of mutants likely

undetected by the test suite; these can be inspected directly, or

ranked by existing mutant prioritization algorithms [4, 19, 26]. As

the developer adds tests, more interesting mutants are identi�ed,

leading to better test suites over time.

As an illustrative example, consider Figure 2a, which shows a

(simpli�ed) code and test snippet from JFreeChart.2 The next()

method returns the next hour for a given RegularTimePeriod.

The testNext method checks that it works correctly for 23:00 on

December 1st, 2000. Although this test method may look compre-

hensive, note that it does not fail if we change the != operator

to > on line 3. A better test suite would include another method

that includes a time that is not the last hour of a day, which would

correctly fail on the mutated code. We will refer to this example

throughout subsequent sections to clarify our contribution.

2.1 (Predictive) Mutation Testing

Mutation testing [7] is the process of synthetically introducing

faults into programs and measuring the e�ectiveness of tests in

catching them. A set of program transformations, known as “mu-

tation operators” take regular code and create buggy copies of it.

These operators vary [6, 10, 16], but some common operators in-

clude negating conditions (if (a) to if (!a)), replacing arithmetic

operators (a + b to a - b), replacing relational operators (a < b

to a > b), and �ipping conditionals (a == b to a || b). Each time

2https://github.com/jfree/jfreechart

one of these rules is applied to a program, a new mutant is created,

each di�ering only slightly from the original program. The change

in Figure 2a creates one such mutant for the next() method.

Test adequacy is measured by running the entire test suite on

each mutant; the goal is a test suite that detects all mutants, in-

creasing con�dence that the suite would detect unintentional bugs

as well. The test suite corresponding to the single test testNext()

in Figure 2a does not detect the mutant; presenting this mutant to

a developer would ideally motivate them to create the necessary

additional tests. Mutation score, or the ratio of detected mutants

to total mutants, provides a rough measure of test adequacy, out-

performing code coverage in terms of correlation with real-world

fault detection [17, 25]. Mutation testing has seen some industry

adoption [4, 26]. Prominent recent uses at Facebook and Google

apply it only to changed code at commit-time, which still requires

large amounts of idle compute [27] because of the massive com-

putational expense of running it over an entire codebase. Tackling

this scalability problem [5] is the core motivation of our work.

Our approach is parametric with respect to existing source-level

mutation testing tool and can integrate with existing approaches

like Major [16] and universalmutator [10]. For our evaluation we

use a set of mutants collected by Major [16] on the Defects4J 2.0

dataset provided by Kim et al. [20] with the Seshat experiments.

Techniques for Predictive mutation testing [20, 22, 36] use ma-

chine learning to predict whether a test or a test suite will detect

a mutant without actually running those tests. We provide more

detailed comparison in Section 7. For the purposes of understand-

ing our technique, however, note that one limitation of the �rst

ML-based approach for mutation testing prediction [36] is that its

performance degrades signi�cantly when it is not trained/evaluated

on mutants that are not covered (executed) by any of the tests in

the test suite [1]. Uncovered mutants are trivially undetected by

a test suite, since a test cannot fail due to a bug on a line it does

not execute. They are thus not interesting for the task of predictive

mutation testing. We therefore follow precedent set in subsequent

work [20] and exclude uncovered mutants from the task.

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Kush Jain, Uri Alon, Alex Groce, and Claire Le Goues

2.2 Input Representation

Our goal is to train a model that predicts whether a given test will

detect a given mutant. Concretely, a mutant is a typically small

modi�cation to a typically much larger code �le. Prior e�orts to rep-

resent code changes for the purpose of ML, fall into three main cate-

gories: de�ning a set of features related to the modi�cation [20, 36]

representing the modi�cation with a graph [21, 33, 35] or repre-

senting the “before” and “after” of the modi�cation with multiple

embeddings [30].

For earlier PMT models [20, 36] that did not use pretrained

transformers, de�ning a set of features and aggregating them into a

single vector made sense. However, to leverage the gains from using

a pretrained model like CodeBERT [8], we need to represent our

inputs in the same way as the pretrained model, making the feature-

based approach unviable. Following best practices in pretrained

transformers, we use the same input embeddings for encoding the

mutated code and the tests.

Thus, we represent each mutant-test pair as a token level di� to

MutationBERT, using the special tokens <BEFORE>, <AFTER> and

<ENDDIFF>. For example, if the line ...if a == b:... is changed

to ...if a != b:..., we encode it in the following manner: ...if

a <BEFORE> == <AFTER> != <ENDDIFF> b:.... This encode di�s

compactly, while preserving original code structure.

Figure 2b shows how our model encodes the motivating exam-

ple. We provide the model with the source method encoded as a

token-level di�, followed by the test method. Our model then out-

puts whether such a mutant is detected or undetected. We follow

CodeBERT [8] in their use of special tokens <CLS> and <SEP>. Code-

BERT uses <CLS> and <SEP> to denote code and natural language

input, using <CLS> token for downstream classi�cation tasks (we

discuss this in more detail in Section 2.3). Similarly, we separate

code and test with the special <SEP> token. We take the hidden

representation of the <CLS> token as the vector which we train the

model to classify whether this mutant is detected or not.

2.3 Model

Our model can predict either the entire mutant-test matrix for a

project, or whether a single mutant is detected by an entire test

suite. Our model is a pre-trained CodeBERTmodel �ne-tuned to the

mutation testing task, with a novel input representation. CodeBERT

[8] is a pretrained model that leverages the transformer architec-

ture [32]. It was trained to predict masked tokens (code or natural

language tokens replaced with <MASK>) for both source code and

natural language. CodeBERT uses special <CLS> and <SEP> tokens

to denote code and natural language, using the <CLS> token for

classi�cation in downstream tasks. CodeBERT was pretrained on a

corpus of 6.4 million functions across seven di�erent programming

languages; large pretrained models like CodeBERT are applicable

to a variety of downstream tasks ranging from code completion [8],

to merge con�ict resolution [30], and code summarization [2]. To

the best of our knowledge, we are the �rst to leverage pretrained

models for the task of predictive mutation testing.

We formulate mutation analysis as a binary classi�cation task

to CodeBERT. We provide CodeBERT with both the source method

encoded as a token level di� and the test method (Section 2.2).

After feeding the input to CodeBERT, we pass the encoding of the

<CLS> token through a linear layer, which is then used to make the

�nal classi�cation. The model is called for each mutant-test pair to

construct the entire mutant-test matrix.

We use the probability output of the model to aggregate pre-

dictions across each mutant’s set of covered tests, and consider a

mutant to be “detected” if the con�dence of the model on at least

one of the tests is greater than 0.25:

predĉ,Đ =

{

“detected” (ģėĮĪ ∈ĐĉīĪėĪğĥĤþāĎĐ (ĉ, Ī)) > 0.25

“undetected” otherwise

(1)

where ĉ corresponds to the mutant and Đ corresponds to the

set of tests that cover the mutant. We chose 0.25 as our con�dence

threshold, as it was able to reduce the number of false positives

when evaluated on our validation dataset, with a precision of 0.76,

while not reducing the overall F1 score of 0.80.

3 EXPERIMENTAL SETUP

We compare MutationBERT with Seshat [20], the current state-of-

the-art model for PMT, using the dataset from that paper. We ask

the following research questions:

RQ1: E�ectiveness: How well does MutationBERT perform

in a same project setting? In a same project setting, a PMT model

is trained on previous versions of a project, and then used to pre-

dict test matrices, unkilled mutants, or mutation scores for subse-

quent versions. We compare MutationBERT to Seshat on a within-

project task, evaluating the models’ correctness when predicting

test-mutant matrices and over the test suite- level aggregation.

RQ2: Generality: How well does MutationBERT perform in

a cross project setting? In a cross project setting, a PMT model is

trained using data from one project and then used to predict test-

mutant behavior for a di�erent project. This is much more di�cult

than the same project setting, but could be especially applicable

when starting a new project, for example. We compare Mutation-

BERT to Seshat on the cross-project task using the same metrics as

the same project task.

RQ3: Design Decisions: How do di�erent input representa-

tions and aggregation approaches a�ect our �nal model?We

analyze and compare several input representations as well as ag-

gregation approaches to validate the design decisions underlying

MutationBERT.

RQ4:QualitativeAnalysis:What are causes ofMutationBERT

mispredictions?Wemanually examine 100 cases where ourmodel

misclassi�es a mutant as detected or undetected to identify common

reasons for failures and better understand limitations.

RQ5: E�ciency: How e�cient is MutationBERT compared

to prior work, and regular mutation testing? We address how

MutationBERT compares to Seshat, and characterize the perfor-

mance improvement it provides over regular mutation testing.

RQ6:Mutant Importance: How e�ective isMutationBERT at

predicting di�cult-to-detect mutants?

We address howMutationBERT compares to Seshat with regards

to how many tests detect a mutant, a proxy for mutant di�culty.

Contextual Predictive Mutation Testing ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

Table 1: Our dataset comprising of 6 Defects4J 2.0 projects.

Project Date LOC #tests

commons-lang 2013-07-26 21,788 2,291

jfreechart 2010-02-09 96,382 2,193

gson 2017-05-31 7,826 1,029

commons-cli 2010-06-17 2,497 354

jackson-core 2019-01-06 25,218 573

commons-csv 2017-12-11 1,619 290

3.1 Baseline

We compare against the Seshat baseline [20]. Seshat is a state-

of-the-art model for mutation testing, which has been shown to

outperform PMT [36] by 0.14 to 0.45 F1 score depending on project.

Similar to our model, Seshat has no overhead in static or dynamic

analysis, operating entirely on source level features, unlike the prior

model PMT, which requires both static and dynamic analysis to run.

However, unlike our model, Seshat operates over a set of features:

the source method name, the test method name, the mutated line

before and after, and a one-hot encoding of the mutation operator.

Seshat �rst encodes the source and test method names with a bidi-

rectional GRU. It then concatinates the resulting embeddings with

a one-hot encoding of the mutation operator to classify the mutant

as detected or undetected by the test.

Like our model, Seshat outputs a con�dence score for each

mutant-test pair, which we aggregate to predict whether the mutant

is detected or not by the entire test suite. We aggregate Seshat’s

predictions across each mutant’s set of covered tests by comparing

con�dence to a threshold. We set this threshold to 0.10, which in

our experiments produced the highest F1 score for Seshat in valida-

tion (Seshat does not mention a a threshold in their paper, so we

perform the same optimization as we did for MutationBERT). We

thus aggregate as follows:

predĉ,Đ =

{

“detected” (ģėĮĪ ∈Đ ďěĩℎėĪ (ĉ, Ī)) > 0.10

“undetected” otherwise
(2)

where M corresponds to the mutant and T corresponds to the set of

tests that cover the mutant.

3.2 Dataset

We reuse the dataset released with the Seshat experiments [20].

This dataset consists of a full mutation analysis in Major [16] of

six large scale Java projects, with extensive testing, across multiple

versions, taken from Defects4J v2.0.0 (statistics shown in Table 1).

This dataset considers only mutants that are actually covered by

some test, since uncovered mutants cannot be detected by a given

test suite (and can be discarded with a simple coverage heuristic).

Note that the Seshat evaluation [20] analyzed the cross-version

setting in detail, training models on previous versions of programs

to predict matrices for subsequent versions. The models remain

e�ective across versions many years apart. This is likely a function

of the fact that code (and mutation behavior) is quite stable over

time, as shown in the dataset description in Kim et al. [20].

Table 2: Tests, mutants and mutant-test pairs (pairs) for

both same project and cross project settings, across training

(train), validation (val), and test (test) sets. Note that mutant-

test pairs only include tests that cover a given mutation.

Split #tests #mutants #pairs

Same Project

train 6,124 68,702 1,522,924

val 5,644 8,688 197,527

test 5,637 8,648 195,140

Cross Project

train 4,725 79,128 1,460,344

val 1,171 5,427 402,296

test 261 1,040 42,687

Thus, in the interest of space and computational e�ort, we restrict

our attention to single versions per project for all RQs. We select

the latest versions of the six projects in Defects4J 2.0 and perform

a 80-10-10 split between train, validation and test sets. In the same

project setting, we split by mutant-test suite pair. This is in contrast

to the prior evaluation, that is, mutant-test pairs from the same test

suite must be part of the same subset. Practically, our envisioned

application does not include a situation where a PMT model could

be trained on data corresponding to whether half the tests in a

given test suite detect a given mutant, and then used to predict the

behavior of the other half. This explains why we reran Seshat (and

why our numbers may not match those in the original paper). For

the cross project setting, we split by project, where each project

consists of a set of mutant-test suite pairs. We use the exact same

splits for our model and for Seshat. Table 2 shows statistics about

our same project and cross project splits.

3.3 Preprocessing and Training

We use the pretrained RoBERTa tokenizer (BPE tokenizer [29]) with

vocabulary size of 50,000 tokens for all programming languages that

is provided with CodeBERT. We �netune CodeBERT with context

window size of 1024 tokens, and thus only provide MutationBERT

the �rst 1024 tokens of the code and test combinations. Such cases

account for 14.6% of all mutant test pairs.

We follow the same steps that Kim et al. [20] took to train Seshat.

We train Seshat for 10 epochs, with a batch size of 512, and learning

rate of 3e-3. We trainMutationBERT for eight epochs with learning

rate of 1e-5 and batch size of 64. We use a weighted loss function

according to the distribution of detected and undetected mutant-

test pairs. We use a linear warmup to 1000 steps, followed by a

cosine annealing decay, in accordance with best practices for �ne

tuning transformers [28]. Both models’ loss functions converge

using these settings. We �ne-tuned our model on a Nvidia GeForce

RTX 3080 for one week for a total of 115k steps.

3.4 Metrics and Settings

One way to use models for predictive mutation testing is to com-

pute mutant-test matrices, which predict, for each mutant, whether

each test passes or fails. In general, most tests pass on most mu-

tants. That is, a test detecting a mutant is the minority class. In this

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Kush Jain, Uri Alon, Alex Groce, and Claire Le Goues

setting, model precision refers to how accurately mutants are iden-

ti�ed as detected, while recall refers to the proportion of detected

mutants labeled correctly. In the mutant-test matrix setting 72% of

mutant-test pairs are undetected. We care that our model is able to

accurately predict the remaining 28% of detected mutants; the goal

is to identify the few tests that detect each mutant.

Another way to use these models is to predict whether an entire

test suite detects a particular mutant. Here, the majority class is

detected mutants; 61% of mutants are detected. The core goal here is

to accurately identify the undetected mutants, to guide developers

to improve test suites. Therefore, we de�ne precision and recall

di�erently than in the the mutant-test matrix setting. In the test

suite setting, model precision refers to how accurately mutants are

identi�ed as undetected, while recall refers to the proportion of

undetected mutants that are classi�ed correctly. Precision is thus

important in understanding the potential cost of a PMT model in

terms of time needed to either actual run the test suite to con�rm its

predictions, or time wasted by a developer inspecting an ultimately

uninteresting mutant. Recall is also important to overall model

usefulness: if a model misses a large number of undetected mutants,

key gaps in test suite quality could remain.

We report precision, recall and F1 score (which balances the

two) for all models in the �rst three research questions. For RQ1

(same project) and RQ2 (cross project), we evaluate performance

both on the base test set (195,140 mutant-test pairs). For e�cacy of

prediction over the entire test suite, we evaluate MutationBERT on

the same dataset, aggregated at the test suite level (8648 test suites).

For RQ3, we evaluate di�erent aggregation thresholds and input

representation choices on the validation set consisting of 120,710

mutants, again reporting precision, recall, and F1 scores; we evalu-

ate both mutant-test predictions and mutant-test suite predictions.

Due to compute constaints associated with a larger context win-

dow, we use the 512 token context window to evaluate di�erent

thresholds and input representations.

For RQ4, to ensure a representative sample of misclassi�cations,

we randomly select 100 examples where our model misclassi�es

a mutant as being detected or undetected. We manually examine

each example and try to understand the cause of the misprediction.

Finally, we bucket these mispredictions in a series of categories and

discuss these in detail. We do this to inform a general assay of the

limitations of our technique; we do not make strong claims about

the generalizability of this qualitative assessment.

For RQ5, we run 1000 iterations of Seshat and MutationBERT,

with a batch size of one, on a workstation with an Nvidia GeForce

RTX 3080 GPU, with 100 warmup iterations. We report the average

time taken over these 1000 iterations as the inference time for

each model. To compute comparative time and speedups against

regular mutation testing, we use numbers from previous work [20]

in conjunction with our inference time numbers.

For RQ6, we report accuracy of Seshat and MutationBERT with

respect to percentage of tests that kill a mutant. The goal is to

measure whether MutationBERT is only correctly classifying "easy"

to detect or "trivial" mutants where the majority of tests detect the

given mutant or whether MutationBERT is capable of correctly

classifying mutants that are more di�cult to detect.

4 RESULTS AND ANALYSIS

We report results for all �ve RQs, and discuss their implications.

4.1 RQ1: Same Project Performance

Table 3 shows the results of MutationBERT and Seshat on the test

set for the same project setting. The center columns show results

in predicting whether a test will detect a particular mutant, rele-

vant to constructing the overall mutant-test matrix. MutationBERT

outperforms Seshat across all metrics: MutationBERT’s F1 score is

0.75, compared to Seshat’s 0.67. Interestingly, MutationBERT and

Seshat have similar precision (0.66 for Seshat vs 0.72 for Mutation-

BERT); the models report similar numbers of false positives (cases

where the models misclassify a test as detecting a mutant). How-

ever, MutationBERT has higher recall (0.77, versus 0.68), meaning

that MutationBERT is more likely to correctly identify cases where

a test detects a mutant.

When the predictions are aggregated into test suite level predic-

tions (right-hand columns), recall that undetected mutants are the

minority class, �ipping the meaning of precision and recall (Sec-

tion 3.4). Seshat and MutationBERT both �nd similar numbers of

undetected mutants, but MutationBERT has much higher precision,

0.81, compared to Seshat’s 0.56. False positives are costly, as they

cost developers valuable time examining mutants that are in reality

detected by their test suite.

Another way of viewing these results is in terms of the di�er-

ence between themutation score estimated by a predictive mutation

model, and the actual mutation score. Recall that mutation score

is the true ratio of detected mutants to total mutants; empirically,

mutation score provides a better measure of test adequacy than

code coverage [17, 25] and thus is useful (albeit usually expensive)

to compute. The gold mutation score (true mutation score) on our

test set is 0.59. Seshat estimates a mutation score of 0.40 over the

entire dataset, an error of 0.19. MutationBERT computes a muta-

tion score of 0.61, a di�erence of only 0.02 from the true answer.

MutationBERT thus has much lower error in estimating mutation

score on this dataset as compared to Seshat.

4.2 RQ2: Cross Project Performance

Table 3 also shows the cross project setting (bottom rows), where a

model is trained on one set of projects and evaluated on another.

Again, MutationBERT outperforms Seshat (0.68 precision and 0.37

recall for MutationBERT and 0.58 precision and 0.29 recall for Se-

shat). That said, in the mutant-test predictions, both precision and

recall drop signi�cantly for both approaches; this suggests that

training data containing project-speci�c vocabulary and methods

contribute substantially to the same project performance. This is

consistent with other results showing that projects have distinct

vocabulary and style, making cross project prediction di�cult for

many tasks [3, 13]. Precision continues to be quite a bit higher than

recall in the cross project setting, for both models.

At the test suite level, we �nd that MutationBERT outperforms

Seshat on all metrics. Precision is very low for both tools; Seshat

and MutationBERT both misclassify a signi�cant proportion of

undetected mutants, however MutationBERT has a signi�cantly

higher precision. Recall is also low in the cross project setting, at

0.39 for Seshat and 0.65 for MutationBERT. However, this indicates

Contextual Predictive Mutation Testing ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

Table 3: Comparison between Seshat and MutationBERT on both same project and cross project settings in terms of precision,

recall and F1 score. In both same project and cross project settings, MutationBERT outperforms Seshat across all metrics, with

an F1 score di�erence of 12% on the same project setting and F1 score di�erence of 28% on the cross project setting.

Setting Model
Mutant-Test Matrix Test Suite

Precision Recall F1 Precision Recall F1

Same Project
Seshat 0.66 0.68 0.67 0.56 0.82 0.67

MutationBERT 0.72 0.77 0.75 0.81 0.78 0.79

Cross Project
Seshat 0.58 0.29 0.38 0.24 0.39 0.30

MutationBERT 0.68 0.37 0.48 0.52 0.65 0.58

that in a cross project setting MutationBERT is capable of �nding

more undetected mutants than Seshat.

On the cross project test set, the gold mutation score is 0.77.

Seshat di�ers from this value signi�cantly, with a mutation score

of 0.63 (error of 0.14). MutationBERT is much closer, predicting a

mutation score of 0.72 (error of 0.05).

4.3 RQ3: Input Representations and
Aggregation Approaches

We proposed a new input representation for the mutation predic-

tion problem. Here, we describe several alternatives that we then

experimentally evaluate. We also describe alternative aggregation

approaches. Then, we evaluate these alternatives (all on the vali-

dation set) to motivate the input representation and aggregation

approaches in our �nal model.

4.3.1 Input Representations. We outline various input representa-

tions that incorporate source and test context for our model. For

all input representations, we separate method code and test code

with a <CLS> token, which we use for classi�cation.

No Di� (Binary Task): Our simplest approach is to directly ap-

ply the mutation and feed the model both the mutated version of

the code and unmutated version of the code. For example, when

changing == to != in ...if a == b:... we feed the model both

...if a == b:... and ...if a != b:... (Figure 3b).

Since we have likelihood scores for both the mutated and un-

mutated versions of the code, we try two modes of evaluation. Our

�rst mode feeds the model the mutated code, and takes its pre-

diction. Our second mode feeds the model both the mutated code

and unmutated code and obtains its probability of being detected.

Then it subtracts these two probabilities from each other (since we

know the �rst datapoint is always undetected), and compares this

di�erence against a dynamically set threshold. We try all thresholds

between 0.01 and 0.99 in increments of 0.01 on the validation set,

and select the best performing threshold.

Token Level Di�:We represent each mutation as a token level di�.

For example if a line ...if a == b:... is changed to ...if a !=

b:..., we encode it in the following manner: ...if a <BEFORE>

== <AFTER> != <ENDDIFF> b:... (Figure 3c). This allows for the

most compact footprint in encoding the di�s, allowing our model

to learn how certain di�s coupled with the surrounding code and

test are correlated with a mutant being detected or not detected.

Line Level Di�: For line level di�s, we represent di�s in terms of

change to source lines. This input representation is similar to token

Table 4: Precision, recall and F1 scores of all models at pre-

dicting the mutant-test matrix on the validation set. Token

di� and line di� are the best performing models, with an F1

score of 0.78.

Model Precision Recall F1

Seshat 0.73 0.75 0.74

Token Di� 0.79 0.77 0.78

Line Di� 0.79 0.77 0.78

No Di� (Normal) 0.74 0.72 0.73

No Di� (Threshold - 0.01) 0.73 0.72 0.73

level di�. In our example, we encode the mutation as ...<BEFORE>

if a == b: <AFTER> if a != b: <ENDDIFF> ... (Figure 3d).

We hypothesize that this might perform better than token di�, as

CodeBERT was pretrained for tasks such as next line prediction.

4.3.2 Aggregation Approaches. We outline aggregation approaches

that we tried for our test matrix model. Practically, this aggregation

holds value, as undetected mutants (mutants not detected by the

entire test suite) are ones of interest to developers, as they indi-

cate testing inadequacy. Speci�cally, in order to use such a model,

aggregate predictions need to be accurate, otherwise undetected

mutants will be identi�ed incorrectly.

Threshold Aggregation: We aggregate the predictions of both

predictive mutation testing models by using various probability

thresholds (0.1, 0.25, 0.5, 0.75 and 0.9). Speci�cally, we only label

a test as detecting a mutant if the model predicts the test detects

the mutant with probability above the de�ned threshold. We vary

thresholds to observe their e�ect on precision, recall, and F1 score.

LearnedAggregation:Wealso tried learning an aggregation based

o� of the embeddings of the <CLS> token after CodeBERT encoding.

We use a transformer with three layers to take these embeddings

and aggregate them. We then use a linear layer to classify based o�

of this learned aggregate embedding whether the test suite detects

or fails to detect the mutant. We evaluate this learned aggrega-

tion both using a weighted loss function (according to the data

distribution) and using a normal loss function.

4.3.3 Experimental Results. We evaluate input representations on

our validation set for Defects4J 2.0. The data distribution is 72%

undetected and 28% detected for test matrices. The No Di� model

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Kush Jain, Uri Alon, Alex Groce, and Claire Le Goues

- if (a == b)...

+ if (a != b)...

(a) Example source mutation

<CLS> ...if (a == b)... <SEP> ...

<CLS> ...if (a != b)... <SEP> ...

(b) No Di�

<CLS> ...if (a <BEFORE> == <AFTER> != <ENDDIFF> b)... <SEP> ...

(c) Token Di�

<CLS> ... <BEFORE> if (a == b) <AFTER> if (a != b) <ENDDIFF> ... <SEP> ...

(d) Line Di�

Figure 3: Input representations for encoding mutations applied to source code. Each sub�gure shows a di�erent input repre-

sentation on the same example of changing == to !=. Token di� and line di� were the best performing input representations

and we chose to use token di� as the �nal input representation in MutationBERT.

requires two examples per mutant, making an even more unbal-

anced distribution (86% undetected, 14% detected). Therefore, in

training these models, we use a weighted loss function that penal-

izes missclass�cations of detected mutants more than undetected

mutants. The weights are di�erent for the Token Di� and Line Di�

models and the No Di� model.

Table 4 compares our novel input representations against the

baseline Seshat model. Token Di� and Line Di� perform almost

identically, with approximately a 4% improvement in F1 score over

baseline (we use the token di� model for our other results). Some-

what surprisingly, when the di� is not explicitly speci�ed (in the

No Di� models), the model fails to reason about how code relates

to tests passing or failing This is further supported by the thresh-

olding (in the No Di� models) having no e�ect on validation F1

score (regardless of what the threshold is from 0.01 to 0.99). We

hypothesize that knowing the mutation applied is a key piece of

context for accurate predictions. Both our token and line di� models

have tokens that specify the start and end of the applied operator.

We similarly evaluate aggregation strategies on the validation

set, at the test suite level (the goal of the aggregation strategies is

to predict over test suites). Table 5 shows results of all aggregation

strategies we tried on the validation set.

We �nd that even with the small change in F1 score between the

two models for test matrix prediction, there is signi�cant change

in F1 score when it is aggregated at the test suite level. This is

due to the compounding e�ect of errors, as an error in any one of

the tests in the test matrix can cause the whole suite to be labeled

incorrectly, making even a small di�erence in F1 score equate to

large di�erences in the aggregated matrix.

To select thresholds, we use the validation set and the F1 score

followed by precision. Precision is more important than recall here,

because the cost of a false postive is high. Speci�cally, a false posi-

tive means that a developer will see a mutant that is supposed to

indicate test inadequacy when in reality their tests are adequate. We

�nd that the best threshold for Seshat is 0.10 and the best threshold

for MutationBERT is 0.25.

4.4 RQ4: Tool Misclassi�cations

To understand our model’s limitations, we examined 100 randomly

sampled examples of MutationBERT misclassi�cations from our

Table 5: Threshold and aggregation approaches, predicting

test suites on the validation set. The best threshold for Se-

shat is 0.10; for MutationBERT, 0.25. We �nd that the trans-

former aggregation approaches have lower precision than

the selected threshold approach, meaning more false posi-

tives.

Model Threshold Precision Recall F1

Seshat

0.10 0.57 0.83 0.67

0.25 0.56 0.85 0.67

0.50 0.48 0.92 0.66

0.75 0.52 0.87 0.65

0.90 0.51 0.89 0.65

MutationBERT

0.10 0.76 0.84 0.80

0.25 0.76 0.84 0.80

0.50 0.75 0.86 0.80

0.75 0.74 0.87 0.80

0.90 0.73 0.88 0.80

trans (weighted) N/A 0.75 0.85 0.80

trans (unweighted) N/A 0.75 0.85 0.80

Table 6: Reasons MutationBERT incorrectly classi�es mu-

tants. In 71/100 cases, MutationBERT lacks su�cient con-

text, while in the remaining 29/100 cases MutationBERT

misses a contextual clue.

Category Case Count

Not enough context

Helper test method 44

Method 24

Class 3

Missed clue
Code 22

Method name 7

validation set. We categorize causes of failures in Table 6. Upon

inspection, we classi�ed each example into two high-level buckets:

Not enough context and Missed clue. Not enough context refers to

cases where the model was missing context that even a human

would need to classify the case correctly. The large majority of

Contextual Predictive Mutation Testing ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

our examples (71/100) fell under this bucket. The second category

consists of Missed clues, where the model missed some crucial clue

to mutant behavior (29/100).

We were able to subdivide the high-level buckets into common

subcategories. For Not enough context these are Helper test method,

Method and Class. Helper test method refers to cases where the test

method consists primarily of invocations to another method. One

example is as follows:

public void testJava2DToValue () {

checkPointsToValue(edge , plotArea);

this.axis.setRange (0.5, 10);

checkPointsToValue(edge , plotArea);

...

}

Testmethod testJava2DToValue invokes helpermethod checkPointsToValue

multiple times. Without the helper method code, MutationBERT

lacks the context (or even knowledge of relevant test assertions) to

make an accurate prediction on any mutant.

The Method category refers to the model lacking necessary

source context. For example:

public <T> TypeAdapter <T> create (...)

public void testDeserializeNullField () throws

IOException {

Truck truck = truckAdapter.fromJson (...);

...

}

This example shows a test that invokes the fromJson method, which

then invokes create. Without the code for fromJson, MutationBERT

cannot reason about how a mutant in create would a�ect a test

calling fromJson.

Finally Class refers to cases where the constructor of a class is

mutated, but the test invokes a subclass and thus is missing the

subclass constructor context. The following example shows this:

public StrokeMap ()

public void testCloning () {

PiePlot p1 = new PiePlot ();

...

}

In this example, testCloning is invoking the constructor of PiePlot,

which is a subclass of StrokeMap. Without seeing the constructor

of PiePlot, MutationBERT cannot understand how mutants to the

StrokeMap constructor a�ect the test.

Missed clue is divided into Code and Method name. Code refers

to cases where the model missed a context clue in the source code

that indicated that mutant detetion. For example:

1 public boolean hasNext () throws IOException {

2 ...

3 - return p != PEEKED_END_OBJECT

4 - && p != PEEKED_END_ARRAY;

5 + return true && p != PEEKED_END_ARRAY;

6 }

7

8 public void testDoubleArrayDeserialization () {

9 double [] values = gson.fromJson (...)

10 assertEquals (0.0, values [0]);

11 ...

12 }

In this example, the mutant on line 3, replaces the object check

with true, but the test is only for arrays. Thus, the mutant will not

be detected by the provided test, since the object check is not being

tested. MutationBERT misses the correlation between the object

check and the test asserts all looking at arrays.

Finally, Method name refers to cases where the model fails to

detect an important context clue in the method name. For example:

1 public BufferedImage createBufferedImage (...,

ChartRenderingInfo info) {

2 ...

3 - if (info != null) {

4 + if (true) {

5 info.setRenderingSource (...);

6 }

7 }

8

9 public void testDrawWithNullInfo ()

This example shows a mutant that replaces a null check on infowith

true. Since the test is a case where info is null, on the mutated code,

there will be a null pointer dereference. Thus a NullPointerException

will be thrown and the mutant will be killed. MutationBERT fails to

see the correlation between the test name and the mutant applied.

4.5 RQ5: E�ciency

Finally, we discuss the e�ciency and performance bene�ts of Mu-

tationBERT as compared to Major or Seshat. Table 7 shows time to

run each tool, including Major, for all mutants in a project (center

column), and time to run including a con�rmatory check for the

predictive techniques (right-hand columns).

Seshat and MutationBERT have comparable inference time in

our experiments: 34 ms for MutationBERT and 17 ms for Seshat. In

terms of practical impact on a user interested in per-mutant predic-

tion, the di�erence between 17 and 34 ms is negligible. Meanwhile,

as Table 7 shows, the time required to compute a full mutation

score for a given project is the same order of magnitude (10s of

minutes), while both an order-of-magnitude faster than Major.

However, despite being slower than Seshat on a per-prediction

basis, MutationBERT still o�ers signi�cant computational savings

for the end-user aiming to improve a test suite (the original goal

of mutation testing, and consistent with its use at companies like

Google and Meta). In this setting, the user receives a list of unde-

tected mutants to inspect and use to create new tests. A practical

application for predictive mutation testing should include a check

of each predicted-undetected mutant before presenting the list to

the developer to �lter incorrect predictions; this ensures that the

tool is presenting truly actionable information and saves the de-

veloper time and frustration in con�rming the tool’s results. The

right-hand-side of Table 7 shows that because MutationBERT has

higher precision than Seshat (and similar recall), its predictions can

be veri�ed and thus put to use by the developer much more quickly.

4.6 RQ6: Mutant Importance

Figure 4 shows model accuracy of both Seshat and MutationBERT

with respect to percentage of detecting tests in a given mutant’s test

suite. Mutants with a high proportion of detecting tests are likely

to be trivial, while mutants with few detecting tests are more likely

to be interesting. We compare MutationBERT to Seshat in detecting

trivial vs hard to detect mutants by reporting model accuracy as a

function of percentage of detecting tests. Mutants that are killed by

all tests are trivial, and we hypothesize they are easier for models

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Kush Jain, Uri Alon, Alex Groce, and Claire Le Goues

Table 7: Time to run Major, MutationBERT, and Seshat, over all mutants (center columns), or incorporating a con�rmation

check before presenting unkilled mutants to the user (right-hand columns).

No Checking Checking

Project Major (s) MutationBERT (s) Seshat (s) MutationBERT (s) Seshat (s)

commons-lang 12,924 748 374 3324 5767

jfreechart 64,719 1424 712 18458 23838

gson 16,738 150 75 6136 8611

commons-cli 1,290 53 26 542 841

jackson-core 113,343 809 405 33035 52231

commons-csv 5,289 36 18 1458 2550

0.0 0.2 0.4 0.6 0.8 1.0

Percentage of killing tests

0.4

0.5

0.6

0.7

0.8

A
v
e
ra

g
e
 a

c
c
u
ra

c
y

Average accuracy vs percentage of killing tests

(a) Accuracy vs. percentage of killing mutants for Seshat

0.0 0.2 0.4 0.6 0.8 1.0

Percentage of killing tests

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

A
v
e
ra

g
e
 a

c
c
u
ra

c
y

Average accuracy vs percentage of killing tests

(b) Accuracy vs. percentage of killing mutants for MutationBERT

Figure 4: Accuracy vs. percentage of killing mutants for Se-

shat and MutationBERT
to detect, while mutants with fewer detecting tests are more likely

to be interesting and more di�cult for models to detect.

As expected, both approaches are less accurate at detecting mu-

tants that fail fewer tests. Importantly, however, MutationBERT out-

performs Seshat considerably on harder-to-detect mutants (those

failing 1%-20% of the test suite), by 30%. Although Seshat is slightly

more accurate at classifying mutants that fail no tests at all (0.82

accuracy vs. 0.78), MutationBERT’s overall accuracy is higher, by

17%. Overall, MutationBERT is more accurate than prior work in

predicting mutant behavior, especially the hard-to-detect cases.

5 DISCUSSION

Practically, MutationBERT is useful for both of the core end user

tasks in mutation testing: 1) as a more complete measure of testing

adaquacy (computing mutation score) [9, 23] and 2) to identify

undetected mutants that indicate potential inadequacies in existing

testing e�orts [4, 26].

In the classical sense, mutation testing serves to evaluate test

suite quality [7, 12, 15]. Mutation score, or the proportion of de-

tected mutants to total mutants, provides a powerful measure of

howwell tested, including in terms of actual oracle strength, a given

piece of code is. MutationBERT drastically reduces the amount of

time needed to compute mutation score, taking approximately 30

ms per mutant test pair, substantially lower than the actual cost

of executing a test (and compiling mutants). The error rate of Mu-

tationBERT is also low, with MutationBERT having below a 5%

error in predicting mutation score for both same and cross project

settings, substantially lower than Seshat. Further note that as Ta-

ble 7 shows, it is plausible that using MutationBERT to approximate

mutation score will be faster (in our data, about twice as fast) as

even approximating score by sampling as few as 10% of mutants.

Sampling 10% of mutants is likely to be no more accurate than

MutationBERT [9], and additionally provides no data on mutants

not sampled, while our approach provides a good approximation

of the result for all mutants.

More recently, companies like Google [26] and Facebook [4] use

mutation testing to pinpoint undetected mutants that reveal issues

with test adaquacy. MutationBERT substantially saves time here, as

unlike Seshat, it still achieves over 60% accuracy in predicting hard

to detect mutants.When shown a set of undetectedmutants, a devel-

oper would be able to trust MutationBERT’s output. Even verifying

the output of all mutants classi�ed as undetected by MutationBERT

�rst saves 71% of time when compared to regular mutation testing,

signi�cantly more than Seshat’s 57% time savings. We note that

with very high actual mutation scores (where examining unkilled

mutants is most useful), the time required to discover Ĥ undetected

mutants using MutationBERT is likely to be much better than with

Seshat or traditional mutation testing.

Contextual Predictive Mutation Testing ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

6 LIMITATIONS AND THREATS

Limitations: MutationBERT depends on GPU availablity to e�-

ciently make predictions. On a CPU, MutationBERT takes 84 mil-

liseconds per prediction, or 12 mutant-test pairs per second (a far

cry from the 29 mutant-test pairs per second on a GPU). Note that

both these CPU and GPU times are theoretical worst cases, since

these times were computed using a batch size of one. Many current

CI pipelines are largely CPU-based, potentially compromising prac-

tical utility. However, cloud providers increasingly provide GPU

access; recently, GitHub actions announced plans to do the same for

CI.3 Indeed, GPUs are becoming more broadly accessible, including

via idle GPU time or services like Google Colab. Future testing

approaches are thus increasingly realistic to deploy in practice.

Threats to Validity: The main internal threat to validity is our

implementation of MutationBERT. We used widely available and

popular libraries such as PyTorch and Pandas for managing data

and building the model to help mitigate this threat. We release our

models and implementation for inspection and extension by others.

The external threats to validity lie in our dataset of mutants and

tests. We reused the data produced by prior work on a large dataset

(Defects4J) that has been used and validated in many other studies

in software engineering. Since this dataset is sourced from multiple

di�erent projects, the results are more likely to generalize.

Finally, threats to construct validity lie primarily in our evalua-

tion metrics. We report widely used metrics in machine learning,

i.e., precision, recall and F1 score. We also practically discuss how

these metrics translate to the real world use case.

7 RELATED WORK

Several approaches have been proposed to tackle the computational

cost of mutant execution, including weak-mutation, meta-mutation,

mutation-sampling, and mutant prioritization. O�utt et. al [23]

propose reducing the set of mutation operators in order to prune

the seach space of mutants. Gopinath et al. [9] demonstrate that

with a small fraction of mutants randomly sampled, one can easily

approximate mutation score. Meta mutation [31] combines multiple

mutants into one larger combined mutant and executes the test on

this combined mutant. Kaufman et. al [19] focus on computing the

probability that mutants advance the adequacy of a given test suite.

Google [26] and Meta [4] apply mutation testing only to changed

code at commit-time, and display undetected mutants as part of

code review. Developers can quickly identify potential testing gaps

before code reaches production. Google further uses heuristics

[26] to avoid mutating arid lines (lines that when mutated create

unproductive mutants, such as logging statements), while Meta uses

a learned targeted set of mutation operators [4]. However, even

this more narrow application (just to changed code in a commit,

restricted to one mutant-per-line or a small set of operators) is

expensive, requiring large amounts of idle compute [27].

Approaches to reducing the cost of mutation analysis were cate-

gorized as do smarter, do faster, and do fewer by O�utt et al. [24].

The do smarter approaches include space-time trade-o�s, weak

mutation analysis, and parallelization of mutation analysis. The

do faster approaches include mutant schema generation and other

3https://github.com/github/roadmap/issues/505

methods to make mutants run faster. Finally, do fewer approaches

include selective mutation and mutant sampling.

Recently, PredictiveMutation Testing [36] proposed a newmeans

of tackling these problems through the use of machine learning.

PMT de�nes a set of features and uses these to predict whether a

given mutant is detected or not by the test suite. The original PMT

approach requires costly instrumentation to collect features. Seshat

[20] achives higher accuracy with lower overhead by exclusively

using information about the source code and mutation itself (source

method, test method, and mutated line).

Similar to Seshat, we also exclusively use information about the

source code and mutation itself; however we exploit CodeBERT

(a model pre-trained on source code) over the context of both the

source and test methods alongwith a representation of themutation

applied. We �nd that this additional context is helpful in predicting

the outcome of whether a mutant is detected or undetected, in both

same-project and cross-project settings.

8 CONCLUSION

In this paper, we present MutationBERT, a tool for predicting both

test matrices and aggregating these predictions. We perform an

extensive evaluation of our model, �nding that we save 33% of

Seshat’s time if a developer were to verify all mutants that either

model predicted as undetected. We also outperform Seshat, the

state of the art model by 8% F1 score in predicting test matrices

and 12% F1 score in predicting the aggregated test suite outcome.

We also achieve similar performance in the cross project setting,

outperforming Seshat by 10% F1 score in predicting test matrices

and 28% F1 score in predicting test suites. Finally, we analyze cases

where our model fails to classify the mutant as detected or unde-

tected. From this analysis, we �nd that in the majority of cases

where our model incorrectly class�es a test as detecting or failing

to detect a mutant, it lacks su�cient context. This context often lies

in test helper methods, or methods that are invoked by the test that

invoke the source method. MutationBERT has a relatively limited

context window of 1024 tokens, so incorporating this additional

information would likely require using a large language model with

larger context window sizes such as Codex.

9 DATA AVAILABLITY

We make all data, modeling checkpoints, and code publically avail-

able at https://doi.org/10.5281/zenodo.7600371. We include steps

required to reproduce our results in the README �le both from

scratch and using our provided checkpoints. The scripts to run our

preprocessing are under preprocessing; scripts to train our model

are under runtime; and scripts to run our evaluation on the test

set are under evaluation. Full information on how to reproduce

our results is available in README.md.

10 ACKNOWLEDGEMENTS

We would like to thank the authors of Seshat for providing us with

data and code for our baseline experiments. This work is supported

in part by the US National Science Foundation, awards CCF-2129388

and CCF-1910067.

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Kush Jain, Uri Alon, Alex Groce, and Claire Le Goues

REFERENCES
[1] Alireza Aghamohammadi and Seyed-Hassan Mirian-Hosseinabadi. 2020. The

Threat to the Validity of Predictive Mutation Testing: The Impact of Uncovered
Mutants. CoRR abs/2005.11532 (2020). https://doi.org/10.48550/arXiv.2005.11532

[2] Wasi Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. 2021. Uni-
�ed Pre-training for Program Understanding and Generation. In North American
Chapter of the Association for Computational Linguistics: Human Language Tech-
nologies (NAACL-HLT ’21). 2655–2668. https://doi.org/10.18653/v1/2021.naacl-
main.211

[3] Tou�que Ahmed and Premkumar Devanbu. 2023. Few-Shot Training LLMs for
Project-Speci�c Code-Summarization. In Automated Software Engineering (ASE
’23). Article 177, 5 pages. https://doi.org/10.1145/3551349.3559555

[4] Moritz Beller, Chu-PanWong, Johannes Bader, Andrew Scott, Mateusz Machalica,
Satish Chandra, and Erik Meijer. 2021. What It Would Take to Use Mutation
Testing in Industry - A Study at Facebook. In International Conference on Software
Engineering: Software Engineering in Practice (ICSE ’18). IEEE, 268–277. https:
//doi.org/10.1109/ICSE-SEIP52600.2021.00036

[5] N. N. Bokaei and M. R. Keyvanpour. 2019. A Comparative Study of Whole
Issues and Challenges in Mutation Testing. In Conference on Knowledge Based
Engineering and Innovation (KBEI ’19). 745–754. https://doi.org/10.1109/KBEI.
2019.8735019

[6] Henry Coles, Thomas Laurent, Christopher Henard, Mike Papadakis, and An-
thony Ventresque. 2016. PIT: A Practical Mutation Testing Tool for Java (Demo).
In International Symposium on Software Testing and Analysis (ISSTA ’16). 449–452.
https://doi.org/10.1145/2931037.2948707

[7] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. 1978. Hints on Test Data Selection:
Help for the Practicing Programmer. IEEE Computer 11, 4 (Apr 1978), 34–41.
https://doi.org/10.1109/C-M.1978.218136

[8] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,
Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, and Ming Zhou. 2020. CodeBERT:
A Pre-Trained Model for Programming and Natural Languages. In Findings of
the Association for Computational Linguistics: EMNLP (EMNLP ’20). 1536–1547.
https://doi.org/10.18653/v1/2020.�ndings-emnlp.139

[9] Rahul Gopinath, Amin Alipour, Iftekhar Ahmed, Carlos Jensen, and Alex Groce.
2015. How Hard Does Mutation Analysis Have to Be, Anyway?. In Software
Reliability Engineering. 216–227. https://doi.org/10.1109/ISSRE.2015.7381815

[10] Alex Groce, Josie Holmes, Darko Marinov, August Shi, and Lingming Zhang.
2018. An Extensible, Regular-Expression-Based Tool for Multi-Language Mutant
Generation. In International Conference on Software Engineering (ICSE ’18). 25–28.
https://doi.org/10.1145/3183440.3183485

[11] Alex Groce, Kush Jain, Rijnard van Tonder, Goutamkumar Tulajappa Kalburgi,
and Claire Le Goues. 2022. Looking for Lacunae in Bitcoin Core’s Fuzzing E�orts.
In International Conference on Software Engineering: Software Engineering in
Practice (ICSE ’22). https://doi.org/10.1145/3510457.3513072

[12] R.G. Hamlet. 1977. Testing Programswith the Aid of a Compiler. IEEE Transactions
on Software Engineering SE-3, 4 (1977), 279–290. https://doi.org/10.1109/TSE.
1977.231145

[13] Vincent J Hellendoorn and Premkumar Devanbu. 2017. Are Deep Neural Net-
works the Best Choice forModeling Source Code?. In JointMeeting of the European
Software Engineering Conference and the Symposium on the Foundations of Software
Engineering (ESEC/FSE ’17). 763–773. https://doi.org/10.1145/3106237.3106290

[14] W.E. Howden. 1982. Weak Mutation Testing and Completeness of Test Sets. IEEE
Transactions on Software Engineering SE-8, 4 (1982), 371–379. https://doi.org/10.
1109/TSE.1982.235571

[15] Yue Jia and Mark Harman. 2010. An analysis and survey of the development of
mutation testing. IEEE Transactions on Software Engineering 37, 5 (2010), 649–678.
https://doi.org/10.1109/TSE.2010.62

[16] René Just. 2014. The Major Mutation Framework: E�cient and Scalable Mutation
Analysis for Java. In International Symposium on Software Testing and Analysis
(ISSTA ’14). Association for Computing Machinery, 433–436. https://doi.org/10.
1145/2610384.2628053

[17] René Just, Darioush Jalali, Laura Inozemtseva, Michael D Ernst, Reid Holmes, and
Gordon Fraser. 2014. Are Mutants a Valid Substitute for Real Faults in Software
Testing?. In Symposium on Foundations of Software Engineering (FSE ’14). 654–665.
https://doi.org/10.1145/2635868.2635929

[18] René Just, Bob Kurtz, and Paul Ammann. 2017. Inferring Mutant Utility from
Program Context. In ACM SIGSOFT International Symposium on Software Testing
and Analysis (ISSTA ’17). 284–294. https://doi.org/10.1145/3092703.3092732

[19] Samuel J. Kaufman, Ryan Featherman, Justin Alvin, Bob Kurtz, Paul Ammann, and
René Just. 2022. Prioritizing Mutants to Guide Mutation Testing. In International
Conference on Software Engineering (ICSE ’22). https://doi.org/10.1145/3510003.
3510187

[20] Jinhan Kim, Juyoung Jeon, Shin Hong, and Shin Yoo. 2022. Predictive Mutation
Analysis via the Natural Language Channel in Source Code. ACM Transactions
on Software Engineering Methodology 31, 4, Article 73 (2022). https://doi.org/10.
1145/3510417

[21] Wei Ma, Mengjie Zhao, Ezekiel Soremekun, Qiang Hu, Jie M. Zhang, Mike Pa-
padakis, Maxime Cordy, Xiaofei Xie, and Yves Le Traon. 2022. GraphCode2Vec:
Generic Code Embedding via Lexical and Program Dependence Analyses. In
Mining Software Repositories (MSR ’22). 524–536. https://doi.org/10.1145/3524842.
3528456

[22] Dongyu Mao, Lingchao Chen, and Lingming Zhang. 2019. An Extensive Study
on Cross-Project Predictive Mutation Testing. In Software Testing, Validation and
Veri�cation (ICST ’19). 160–171. https://doi.org/10.1109/ICST.2019.00025

[23] A. Je�erson O�utt, Ammei Lee, Gregg Rothermel, Roland H. Untch, and Christian
Zapf. 1996. An Experimental Determination of Su�cient Mutant Operators. ACM
Transactions on Software Engineering Methodology 5, 2 (1996), 99–118. https:
//doi.org/10.1145/227607.227610

[24] A. Je�erson O�utt and Roland H. Untch. 2001. Mutation 2000: Uniting the
Orthogonal. In Mutation Testing for the New Century. Springer, 34–44. https:
//doi.org/10.5555/571305.571314

[25] Mike Papadakis, Donghwan Shin, Shin Yoo, and Doo-Hwan Bae. 2018. Are
Mutation Scores Correlated with Real Fault Detection? A Large Scale Empirical
Study on the Relationship between Mutants and Real Faults. In International
Conference on Software Engineering (ICSE ’18). 537–548. https://doi.org/10.1145/
3180155.3180183

[26] Goran Petrovic and Marko Ivankovic. 2018. State of Mutation Testing at Google.
In International Conference on Software Engineering: Software Engineering in
Practice (ICSE ’18). 163–171. https://doi.org/10.1145/3183519.3183521

[27] Goran Petrovic, Marko Ivankovic, Bob Kurtz, Paul Ammann, and René Just. 2018.
An Industrial Application of Mutation Testing: Lessons, Challenges, and Research
Directions. In Software Testing, Veri�cation and Validation Workshops (ICSTW
’18). 47–53. https://doi.org/10.1109/ICSTW.2018.00027

[28] Martin Popel and Ondrej Bojar. 2018. Training Tips for the Transformer Model.
CoRR abs/1804.00247 (2018). https://doi.org/10.48550/arXiv.1804.00247

[29] Rico Sennrich, Barry Haddow, and Alexandra Birch. 2016. Neural Machine
Translation of Rare Words with Subword Units. In Association for Computational
Linguistics (ACL ’16). 1715–1725. https://doi.org/10.18653/v1/P16-1162

[30] Alexey Svyatkovskiy, Sarah Fakhoury, Negar Ghorbani, Todd Mytkowicz, Eliz-
abeth Dinella, Christian Bird, Jinu Jang, Neel Sundaresan, and Shuvendu K.
Lahiri. 2022. Program Merge Con�ict Resolution via Neural Transformers.
In Symposium on the Foundations of Software Engineering (FSE ’22). 822–833.
https://doi.org/10.1145/3540250.3549163

[31] Roland H. Untch, A. Je�erson O�utt, and Mary Jean Harrold. 1993. Mutation
Analysis Using Mutant Schemata. ACM SIGSOFT Software Engineering Notes 18,
3 (1993), 139–148. https://doi.org/10.1145/154183.154265

[32] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is
all you need. Advances in Neural Information Processing Systems 30 (2017).
https://doi.org/10.5555/3295222.3295349

[33] Wenhan Wang, Ge Li, Bo Ma, Xin Xia, and Zhi Jin. 2020. Detecting Code Clones
with Graph Neural Network and Flow-Augmented Abstract Syntax Tree. CoRR
abs/2002.08653 (2020). https://doi.org/10.48550/arXiv.2002.08653

[34] Yue Wang, Weishi Wang, Sha�q Joty, and Steven C.H. Hoi. 2021. CodeT5:
Identi�er-aware Uni�ed Pre-trained Encoder-Decoder Models for Code Un-
derstanding and Generation. In Empirical Methods in Natural Language Pro-
cessing (EMNLP ’21). Association for Computational Linguistics, 8696–8708.
https://doi.org/10.18653/v1/2021.emnlp-main.685

[35] Michihiro Yasunaga and Percy Liang. 2020. Graph-Based, Self-Supervised Pro-
gram Repair from Diagnostic Feedback. In International Conference on Machine
Learning (ICML’20). Article 1001. https://doi.org/10.5555/3524938.3525939

[36] Jie Zhang, Ziyi Wang, Lingming Zhang, Dan Hao, Lei Zang, Shiyang Cheng,
and Lu Zhang. 2016. Predictive Mutation Testing. In International Symposium
on Software Testing and Analysis (ISSTA ’16). 342–353. https://doi.org/10.1145/
2931037.2931038

Received 2023-02-02; accepted 2023-07-27

	Abstract
	1 Introduction
	2 Contextual Predictive Mutation Testing
	2.1 (Predictive) Mutation Testing
	2.2 Input Representation
	2.3 Model

	3 Experimental Setup
	3.1 Baseline
	3.2 Dataset
	3.3 Preprocessing and Training
	3.4 Metrics and Settings

	4 Results and Analysis
	4.1 RQ1: Same Project Performance
	4.2 RQ2: Cross Project Performance
	4.3 RQ3: Input Representations and Aggregation Approaches
	4.4 RQ4: Tool Misclassifications
	4.5 RQ5: Efficiency
	4.6 RQ6: Mutant Importance

	5 Discussion
	6 Limitations and Threats
	7 Related Work
	8 Conclusion
	9 Data Availablity
	10 Acknowledgements
	References

