Syntax Is All You Need: A Universal-Language Approach to
Mutant Generation

SOURAV DEB, Northern Arizona University, United States
KUSH JAIN, Carnegie Mellon University, United States
RIJNARD VAN TONDER, Mysten Labs, United States
CLAIRE LE GOUES, Carnegie Mellon University, United States
ALEX GROCE, Northern Arizona University, United States

While mutation testing has been a topic of academic interest for decades, it is only recently that “real-world”
developers, including industry leaders such as Google and Meta, have adopted mutation testing. We propose a
new approach to the development of mutation testing tools, and in particular the core challenge of generating
mutants. Current practice tends towards two limited approaches to mutation generation: mutants are either (1)
generated at the bytecode/IR level, and thus neither human readable nor adaptable to source-level features of
languages or projects, or (2) generated at the source level by language-specific tools that are hard to write and
maintain, and in fact are often abandoned by both developers and users. We propose instead that source-level
mutation generation is a special case of program transformation in general, and that adopting this approach
allows for a single tool that can effectively generate source-level mutants for essentially any programming
language. Furthermore, by using parser parser combinators many of the seeming limitations of an any-language
approach can be overcome, without the need to parse specific languages. We compare this new approach to
mutation to existing tools, and demonstrate the advantages of using parser parser combinators to improve on
a regular-expression based approach to generation. Finally, we show that our approach can provide effective
mutant generation even for a language for which it lacks any language-specific operators, and that is not very
similar in syntax to any language it has been applied to previously.

CCS Concepts: « Software and its engineering — Dynamic analysis; Software testing and debugging.
Additional Key Words and Phrases: Software Testing, Mutants, Mutation Generation

ACM Reference Format:

Sourav Deb, Kush Jain, Rijnard van Tonder, Claire Le Goues, and Alex Groce. 2024. Syntax Is All You Need:
A Universal-Language Approach to Mutant Generation. Proc. ACM Softw. Eng. 1, FSE, Article 30 (July 2024),
21 pages. https://doi.org/10.1145/3643756

1 INTRODUCTION

Mutation testing, though introduced in the late 1970s [22, 22, 23], has long been a topic of academic
interest. With the recent adoption of mutation testing by bellwether software industry companies
including Google [31], Meta [4], and Amazon [24], interest in using mutation testing for real-world
projects has grown widely in practice.

Authors’ addresses: Sourav Deb, Northern Arizona University, Flagstaff, AZ, United States; Kush Jain, Carnegie Mellon
University, Pittsburgh, PA, United States; Rijnard van Tonder, Mysten Labs, Palo Alto, CA, United States; Claire Le Goues,
Carnegie Mellon University, Pittsburgh, PA, United States; Alex Groce, Northern Arizona University, Flagstaff, AZ, United
States.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM 2994-970X/2024/7-ART30

https://doi.org/10.1145/3643756

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 30. Publication date: July 2024.

30:2 Trovato et al.

Indeed, interest in mutation testing has become widespread enough in the open source community
that a popular (more than 300 stars on GitHub) repository, “Awesome Mutation Testing,” lists more
than 40 tools, covering almost twenty languages.! Some of these tools are the products of academic
research; others are essentially the hobby projects of developers interested in enabling mutation
testing for their favorite language.

This diversity of tools highlights the growth of widespread interest in mutation testing. However,
it also demonstrates various ways that bringing mutation testing to typically polyglot modern
projects is cumbersome. Each language (or IR, at minimum) requires its own underlying mutation
and testing framework. Mutation tools are not trivial to develop; the smallest single-language tools
we examined were nearly 4K LOC, and the mean size of a mutation testing tool was over 20K
non-comment source lines.

Newer languages, including ones with considerable interest in the development community,
often lack mutation testing tools. Even languages with a long history may long lack a working
mutation testing tool; e.g., it was not until 2014 that Haskell had such a tool [21]. Furthermore, the
Haskell mutation tool is no longer supported,? and it appears that no successor tool has appeared
in the ensuing years.®> Haskell developers (until now, see below) have no option for performing
true mutation testing. Similarly, while the R language is used by more than 2 million statisticians
and data scientists, the only mutation testing tool for R is a prototype-in-progress that supports a
very limited set of mutation operators (https://github.com/sckott/mutant); the last update to the
tool was made in late 2021.

Indeed, abandonment is a feature of the sad history of many mutation testing tools, exacerbating
the challenges of its uptake. The page listing abandoned mutation testing tools (https://github.com/
theofidry/awesome-mutation-testing/blob/master/abandoned.md) lists almost half as many tools
as are under active maintenance. Each tool represents considerable development effort, and was
popular enough to be noted in the “Awesome Mutation Testing” resource. Many of the abandoned
repositories have more than 20 stars, suggesting inconvenienced users, especially for tools targeting
evolving languages. While this is a minor concern for languages such as C that are relatively
stable, it means that a mutation tool may fail to parse C++ 2020, and is particularly problematic for
faster-moving languages like Rust.

A great deal of research effort has been devoted to devising clever schemes for reducing the
computational burden of mutation testing over the years (e.g., [19, 28, 34]); in practice, however,
the recent adoption of mutation testing arguably relies more on the availability of vast (cloud)
computing resources than any particular approach from the literature, beyond heuristic restrictions
on the mutants used (e.g., one per line, or only some simple operators). On the other hand, almost
no research has addressed perhaps the most central issue of mutation testing: in the absence of a
working mutation testing tool for the language in which one is developing software, one cannot
obtain the benefits of mutation testing. The absence of such tools is due to the high human cost
of developing and maintaining mutation testing tools. In particular, new languages may have
unstable grammars, and few tools to aid developers in parsing and manipulating source code.
Ideally, mutation testing would be available for any newly proposed programming language, as
soon as that language has any community of users at all. In the present state-of-the-art, however, it
may be years before even rudimentary tools appear, and they may “disappear” shortly there-after.
In fact, the difficulties of parsing code make bytecode or IL-level mutation a popular recent choice

https://github.com/theofidry/awesome-mutation- testing

2The last commits or package updates were in 2015, and the primary author confirms that changes to haskell-src-ext
since introduced render it unusable at present.

3There is FitSpec [5] which is maintained, but FitSpec does not perform traditional mutation testing or produce source code
(or bytecode) mutants; it rather performs black-box type-aware mutation of function return values.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 30. Publication date: July 2024.

Syntax Is All You Need: A Universal-Language Approach to Mutant Generation 30:3

in tool development, despite the advantages of source-based mutation for users [17], including the
ability to read and understand mutants (which is often essential if one aims to add a test to kill a
mutant) and to define mutants in terms of source-level language (or even project/library-specific
features). Moreover, even arguably less desirable bytecode mutation approach is not available for
languages that do not compile to, e.g., Java or LLVM bytecode- e.g., Haskell and R.

Developing a large number of mutation testing tools, each requiring its own development
community, workflow for mutation, and effort to keep up with language changes, may, however,
be unnecessary. The core problem of mutation testing, mutant generation, is simply a particular
instance of the problem of program transformation. Program transformation considers the problem
of taking a program, P, and producing a program, P’ that is the result of applying some function f
to P (i.e., P’ = f(P)). In mutant generation, we consider a family of functions f where each f, ;. is
an instantiation of a mutation operator o (as classically, if often informally, defined in the literature)
at a particular program location loc in P. The inclusion of loc in the specification of f indicates
that the problem is a specialization of general program transformation in that all classic mutation
operators we are aware of are local: they only affect a small portion of a program, generally a
contiguous string of characters or tokens.

Moreover, as this suggests, mutation testing can be treated as an almost entirely syntactic
transformation problem; in fact, in their classic introduction to software testing, Ammann and
Offutt refer to mutation testing as “syntax-based testing” [3]. While, e.g., refactoring may need to
“understand” a program to some extent, mutation can often operate with essentially no context
beyond a single line of code.

We further propose that in fact, for the most part, mutant generation need not even “know”
the syntax of a target language, in terms of a complete grammar. Instead, mutation testing can
operate to a large extent in a universal manner, where programs are transformed at the level of
local patterns. That is, each o and loc can be defined without reference to, e.g., the context-free
grammar of a programming language, but only with respect to a position in P treated as a string,
and a transformation on a string defined in terms of, e.g., regular expressions with capture and
replacement. Treating mutant generation in this way has two major benefits:

(1) A single tool can provide mutant generation for almost any programming language, without
needing to parse that language, and rules for one language can be re-used for another
language. This reduces the development and maintenance effort for mutation testing tools by
orders of magnitude. Moreover, it removes the need for many maintenance activities related
to parsing code; such changes need to be made only when a change to the language would
introduce new mutation operators or modify existing ones. The local nature of operators
tends to make the second case rare.

(2) The existing literature on multi-lingual or language agnostic program transformation can be
applied to the problem of mutant generation, making it easy to express mutation operators
that operate across many languages, and efficient to generate valid mutants even in the
absence of language-specific development effort.

It is true that this approach to mutant generation does pay a cost in terms of generating invalid
mutants that must be rejected at the compilation stage of the mutation testing process. However,
as observed by Pizzoleto et al. in their systematic review of mutation testing [32] cost reduction
approaches, mutation testing consists of four stages: 1) execution of a test suite on the un-mutated
program, 2) generation of mutants, 3) execution of the test suite on the mutants, and 4) analysis (by
a human, usually) of the mutants. It is only steps 3 and 4 that are “very costly,” as Pizzoletto et al.
note. Our approach increases the costs of the second step only, and, as we discuss below, can help
reduce costs of steps 3 and 4.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 30. Publication date: July 2024.

30:4 Trovato et al.

The contributions of this paper are therefore:

(1) The description of a novel approach to mutant generation based on generalized description of
multi-lingual program transformations that allows a single tool to handle mutant generation
for essentially all programming languages. This approach also makes mutation testing almost
trivial to extend to most new languages and even allows developers to write project-specific
rules easily without having to modify a mutation tool’s implementation.

(2) A proposal to use parser parser combinators to improve the efficiency and expressive power
of that approach, and an evaluation of the gains thus achieved.

(3) A comparison of an implementation of mutant generation based on this approach with
existing tools for four important programming languages. The single-language tools range
from approximately 3,800 LOC to nearly 60,000 LOC, and, we emphasize, each handles
one programming language. Our tool, which provides comparable core mutation testing
functionality, supports over a dozen languages using only about 2,200 LOC of Python and
less than 500 lines for rules defining mutation operators over a dozen specific languages
(and which can effectively mutate an essentially unlimited number of other languages). Our
approach enables a smaller tool than any other tool we examined (by over 1000 LOC) to
support a rich set of operators for all languages covered by other tools, plus additional
languages.

(4) Far from being limited by its implementation size and universality, our tool generates a larger
number of valid, non-equivalent mutants for every language we examined than any competing,
language-specific tool. That these additional mutants are meaningful, rather than obscure, is
further supported by the fact that our mutation scores are similar to those for other tools.

(5) A small case study showing that our approach produces useful results, even without the defi-
nition of language-specific rules, for Haskell, a language arguably well outside the language
paradigms we considered when developing the universal mutation rules.

Our tool implementing these ideas, the universalmutator, is available on GitHub at https://github.
com/agroce/universalmutator, and can be installed via Python pip. We welcome contributions
and improvement suggestions. Our tool is the official recommended tool for mutation of Solidity
programs (https://docs.soliditylang.org/en/latest/resources.html).

2 A UNIVERSAL-LANGUAGE SYNTAX-BASED APPROACH

The key insight of this paper is that most mutation operators proposed in the literature do not in fact
require parsing of source code. Consider, for example, one of the most commonly used mutation
operators, replacement of arithmetic operations. We do not need to parse a program containing the
string ‘ ‘x + y’’ in order to replace that string with ¢ ‘x - y’’. Instead, this change is guaranteed
to be effected if we simply search the program, represented as a string, for all occurrences of “ ‘+’ 7,
and produce for each such occurrence, a mutant where the character is replaced by ¢ ‘-’’. Many
languages express arithmetic as infix operators between expressions; if expressed syntactically,
mutations for them can be expressed once, trivially implementing a large fraction of the classic
Mothra [25] mutation operators. In a syntactical (but not semantic) sense, we claim, there is almost
a “universal” (very abstract, never implemented) programming language, of which almost all
particular programming languages can be treated as mere dialects.

The obvious objection to this simplistic approach is that unless we parse the code to identify
arithmetic expressions, some of these replacements will be invalid; the universal language is not
actually real! E.g., in a C++ program we will produce mutants like x-+ replacing x++. However,
most of these instances can be avoided by slightly more judicious choice of search target, e.g.,
instances of ‘ ‘+’’ where the preceding or following character is not another ¢ ‘+’’. This may still

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 30. Publication date: July 2024.

Syntax Is All You Need: A Universal-Language Approach to Mutant Generation 30:5

in some cases produce invalid mutants, but rejecting such mutants is easy, since they will fail to
compile. Of course, we pay the price of compiling each mutant at generation time.

On the positive side, this argues that we can replace a complex implementation requiring parsing
and analysis with one that only requires string search-and-replace. Such an implementation on face
can be done using much less code. Moreover, defining new mutation operators is not a matter of
understanding a parsed program representation, but is essentially a matter of providing two strings,
where the second is a proposed replacement for the first. This simplifies operator specification
from implementation of tree transformations into a minimal list.

Of course, simple string replacement cannot handle many interesting mutations. Consider the
classic case of statement deletion, one of the most widely used and important mutation operators [7].
This cannot be concisely specified with string pairs. However, if we allow the use of regular expression
match and replace pairs, we can express this operator, with some precision:

(M\s*) (\S+[A{3T+.%)\n ==> \1/%\2%/\n

In Python regular expression syntax, this expresses the replacement of strings with a possibly-
empty amount of white space followed by a character pattern indicating a line of source code, with
the same source code, preserving indentation, turned into a comment. While much more expressive
than simple string replacement, regular expressions are familiar to most developers.

2.1 Hierarchies of Operator Applicability

Regular expressions suggest a mechanism for textual transformation customized to multiple target
languages, which could then share a single engine to apply rules to source files without the
complexity of parsing. However, we observe an additional property of mutation operators and
mutation testing that speaks to the potential of a language-agnostic approach: many of the most
widely used mutation operators in the literature are universal. For example, consider the case of
replacing instances of ‘ ‘+’’ with ¢ ‘-’’. This mutation is not tied to any particular language, but
applies to almost all programming languages in use. Others are not quite so widely applicable, but
still apply to a large number of specific languages, e.g., many programming languages share C’s
logical operators, though important exceptions like Python and Lisp-family languages do not.

Implementing a tool for a language L therefore, generally need not require writing rules for all
mutation operators to be applied to L programs, but instead can proceed by process of 1) identifying
L’s place in a hierarchy of language families, and then 2) identifying additional operators needed
for L itself. The first of these tasks is often trivial, as in practice there are only a few basic syntactic
forms for languages, at the level needed to describe transformation rules for operators. In fact,
ignoring the second step will often provide “good-enough” mutation testing, in that, for example,
most of the Mothra rules and statement deletion can be entirely handled without descending to the
specific-language level at all.

As an example, consider mutation of Java code. Many typical Java mutants can be generated
by the kind of “universal” rules (e.g., arithmetic operator replacements) considered above. Other
mutation operators suitable for Java source are provided by considering the set of “C-like” languages
that use the logical operators and control constructs common to e.g., Java, C, and C++ (if, while,
etc.). Statement deletion at the line level can also be implemented by using the common comment
notation for such languages. Implementing Java mutation, given universal and C-like rules, may
require no more than a handful of additional rules.

The left-hand-side of Table 1 shows examples of universal, C-like, and language-specific rules
for a few languages, taken directly from our implementation (see Section 3). In all cases, the form
of arule is: regexp ==> replacement, using Python regular expression and replacement syntax.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 30. Publication date: July 2024.

30:6 Trovato et al.

Table 1. Mutation operator rule examples, using regular expressions (left) and the Comby language (right),
based on parser parser combinators.

Regexp ‘ Comby
Universal
< ==> > :[al<:[b] ==> :[al>:[b]
< ==> == :[al<:[b] ==> :[a]l==:[b]
< ==> <= :[al<:[b] ==> :[al<=:[b]
C-Like
else ==> else ==>

if (\(.%\)) ==> if (I\1) | if (:[cond]) ==> if (!(:[condl))
if (\(.*%\)) ==> if (1==1) if (:[cond]) ==> if (1==1)

Language-Specific

synchronized ==> synchronized ==>

(*\s*) (\S+.*\n) ==> \1pass | :[s]l:[expr]:[1f [\n]]

==> :[s]pass:[1f]
any_of ==> all_of any_of ==> all_of

Such rules are often non-trivial to write and read (and especially to debug); we show below that
using parser parser combinators often simplifies and clarifies matters.

We first show universal rules drawn from the large set of transformations for less-than compar-
isons. The C-like rules are somewhat more complex: for removing elses (which always leaves valid
code in C-like languages, but with the else clause always executing) and for replacing if conditions
with, respectively, a negation and a constantly true expression. Finally, we show language-specific
rules, for, respectively, Java, Python (statement deletion, including a pass and respecting indenta-
tion level), and C++. The last rule was contributed by a user using our tool to perform mutation
testing on the Bitcoin core implementation. For a C++ program, all of the universal rules and C-like
rules will be applied, plus the last language-specific rule. For a Python program, however, only the
universal and Python-specific rules apply.

2.2 Beyond Regular Expressions with Parser Parser Combinators

While regular expressions have been shown to be capable of driving mutant generation, we propose
going beyond regular expressions using a lightweight parser-driven approach that attunes mutation
operators to language-general syntax-aware transformations. Such operators can perform tasks that
go beyond regular transforms and ensure syntactically well-formed outputs (e.g., transformations
must preserve balanced parentheses or braces). More generally, operators can be made sensitive to
coarse-grained context-free grammar properties. In short, these operators go beyond the expressivity
of regular expressions to generate more varied and more valid mutants.

Parser parser combinators [35] is a recent approach enabling syntax-transformation for multiple
languages, and (we show) an apt choice for mutation testing operators. This key idea is to replace
code constructs common to many languages (e.g., multi-line code blocks delineated by braces)
with simple declarative patterns. Using parser combinators for coarse syntax matching avoids the
complexity of integrating heterogeneous rewrite tools for mutation testing (e.g., one for Java, one
for C++) and human effort to implement language-specific mutation operators (e.g., where the user
has to learn to write operators for each language tool). The mechanization and expressive properties
of parser parser combinators are covered in prior literature [35]; in this paper we demonstrate that

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 30. Publication date: July 2024.

Syntax Is All You Need: A Universal-Language Approach to Mutant Generation 30:7

their application is uniquely effective for universal source-based mutation testing. In particular, we
build mutation operators with Comby (https://comby.dev), the tool that implements parser parser
combinators to declaratively match and rewrite source code syntax.

Comby is especially suited for matching multi-line code blocks and disambiguating code from
comments and strings—constructs that otherwise confound and complicate regular expression
patterns. Comby supports over 40 languages and implements a generic parser for additional
languages to recognize their syntactic constructs. The following is a brief overview of Comby
definitions and syntax for mutation operators implemented in our approach:

e :[hole] syntax matches source code assigned to a variable hole. Holes match all characters
(including whitespace) lazily up to its suffix (analogous to .*? in regex), but only within its
level of balanced delimiters. For example, {: [hole]} will match all characters inside balanced
braces. By default, parentheses and square brackets are also treated as balanced delimiters, as
applicable to most languages.

e ":[x]" matches the body of a well-quoted string. Unlike : [x] (without quotes), the quoted
variety implies that a data string may be any value, including strings that contain unbalanced
parentheses, like "item)".

e :[hole:e] matches words like hello and contiguous well-balanced expression-like syntax,

like print("hello world") or (a + b). It stops matching at whitespace boundaries, and so

does not match a string like a + b. It also does not match unbalanced code syntax like foo)
in typical languages where expressions are expected to be well-balanced.

:[[holel] matches alphanumeric characters in source code (similar to \w+ in regex).

When variable hole occurs multiple times in a match template, matched values must be equal.

Non-whitespace characters are matched literally.

Contiguous whitespace (e.g., spaces, newline) match contiguous whitespace in the source

code. That is, match templates are sensitive to the presence of whitespace, but not exact layout

(i.e., the number of spaces may not correspond exactly between template and source code).

e Matching is insensitive to comments. Comments are parsed as whitespace when matching
non-hole syntax.

The right-hand-side of Table 1 shows the same regular-expression rules implemented as Comby
patterns. While some simple rules are unchanged, others are either more succinct or provide more
context as to applicability (e.g., only less than between valid holes should be mutated). This shows
the further major benefit of using Comby: once a user has learned the simple concepts above, it
is often much easier to read—and especially write—mutation operator definitions in Comby than
using regular expressions. The added precision comes not only “for free” but in fact yields a benefit
for the “end-user-programmer” of mutations.

Comby provides mechanisms to further define custom match syntax and behavior beyond these
standard patterns. Comby patterns can also embed regular expressions, subsuming their expressive
power to enable regex-based mutation operators intermixed with context-free syntax properties.

3 IMPLEMENTATION

We implemented our approach in a mutation testing tool, written in about 2,200 lines of Python.
The rules defining mutation operators for a set of languages including C, C++, Python, Java, Lisp,
Swift, Rust, Solidity, Fe, Vyper, JavaScript, and Go, required another 436 lines; this is the total for
Comby and regexp-based rules, so each version requires only 218 lines of rule definitions. The tool
makes use of parser parser combinators via the comby-python module.

While many tools provide a GUI front-end, or integrate to a particular testing library, we chose to
focus on an easily configured CLI, allowing a user to specify the commmands used to build mutants

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 30. Publication date: July 2024.

30:8 Trovato et al.

or run tests. While less convenient in the case where there is a good fit between a tool’s integrations
and a project’s environment, we found this flexibility useful even when limiting considerations
to a single language. For example, the widely used PIT system is strongly tied to certain versions
of JUnit, and mutating projects using a different testing infrastructure, or an older JUnit, can be
difficult. Our approach also is suitable for use in CI and other automated environments. The tool
attempts to automatically identify which rule sets to use in mutating a source file, but can also be
instructed to run fewer or more rule sets, and allows users to supply their own custom rule sets.

For the most part we expect users to provide build commands, but do support automatic compi-
lation and comparison of mutants for Python, Solidity, Fe, Vyper, Swift, Rust, and Java, including
Trivial Compiler Equivalence [29] checks for redundancy of mutants. These default handlers can
always be over-ridden if they do not work with a particular build setup (for Python, the approach
almost always works, but in the case of multi-file projects in other languages, it usually requires
some manual setup).

The tool also provides a number of utilities, including mechanisms for incorporating code
coverage into mutant selection, integration with a Python automated testing tool, prioritization of
unkilled mutants to show dis-similar mutants early in a ranking (similar to the FPF approach to
identifying unique bugs found in fuzzing [6]), and tools for pruning a class of mutants based on
some criteria (e.g., removing all mutants of logging statements from a set of generated mutants).

3.1 Supported Languages and Operators

For comparison, Google has used its substantial resources to provide mutant generation for C++,
Java, Python, Javascript, Go, Typescript, and Common Lisp [30], all of which we also support. The
operators Google uses for these languages (based on the original Mothra operators [25]) are a subset
of those provided by our implementation, with the caveat that block removal is only supported
when using Comby; regular expression mutation is limited to single-line statement deletion. For
Lisp-like languages, the difficulty of identifying statements vs. value-returning function calls
makes use of block deletion somewhat impractical. The majority of the Google Mothra operators
can be implemented as universal rules for all languages; only specializing logical operators and
implementing block/statement deletion even requires language identification. In addition to these
core operators, we provide a number of additional operators for every language offered.

There is generally a one-to-one correspondence between Comby and Regexp rules in our imple-
mentation. The number of Comby rules (which is a small multiple of the number of “operators”
being defined) for languages discussed below, at each hierarchical level in our implementation, is:
75 (universal), 33 (Python), 16 (C-like), 14 (C++), 7 (Java), and 2 (Rust).

The primary limitation of our tool is that it does not offer operators that require semantic
knowledge of the program beyond the identification of roles offered by Comby. The only operator
from the mutation testing literature that we are aware of that as a consequence cannot be supported
by our approach is variable replacement. However, we are aware of no widely-used tool or even
recent study of mutation testing that makes use of this type of operator, suggesting that it is difficult
for other methods to implement, and is not in demand by users.

One concern with our approach is that every time the program changes, the cost of invalid
mutants must be paid again. However, the locality of mutants and source changes in fact means
this is seldom required. Because a mutant is a small source change, updating a mutant to reflect
even large changes to a source file is nearly cost-free, and if the original mutant was valid, the new
mutant will usually also be valid. New mutant generation is only required for new lines of code and
modified lines of code. Our implementation allows the use of the git merge-file algorithm to
control the modification of most mutants, and uses our mechanism for selective mutant generation
to force mutation where there is a conflict in a “mutant patch”

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 30. Publication date: July 2024.

Syntax Is All You Need: A Universal-Language Approach to Mutant Generation 30:9

4 EXPERIMENTAL EVALUATION

e RQ1: How does the use of parser parser combinators modify the efficiency (in terms of
invalid mutants) and effectiveness (in terms of mutation score and equivalent mutants) of
the universal approach to mutant generation?

e RQ2: How does the universal approach, using regular expressions or parser parser combinator
rules, compare to existing single-language mutation tools, in terms of number of generated
mutants, mutation scores, equivalent mutants, and other evaluation measures used in the
literature?

Both research questions were addressed by generating and running mutants for a set of four
programming languages: C++, Java, Python, and Rust. The criteria for language selection was as
follows: C++, Java, and Python are among the most widely used programming languages at present.
Furthermore, C++, unlike C, can be notoriously hard to parse, making development of mutation
tools that use an AST and properly consider mutants of, e.g., code inside a template, difficult. Java
is the language in which mutation testing has been studied most extensively in recent literature,
and PIT is almost certainly the most popular and widely used mutation tool. Python long suffered
from a lack of working and maintained mutation tools, despite a large number of abandoned efforts,
though at present it is served by multiple maintained, AST-based tools. Finally, Rust is an “emerging
language” with few tools targeting it. Table 4 gives an overview of tools we identified for each
language as working tools capable of single-file mutant generation.

To evaluate both RQ1 and RQ2 we assembled a set of 24 source files, six from each language
(about 9,000 total non-comment LOC). We first selected, using the GitHub search API and manual
examination, six GitHub projects for each language meeting a set of criteria:

(1) The project must have a minimum of 1,000 stars.

(2) The percentage of source languages other than the target language must be small.

(3) There must be an executable test suite where all tests pass.

(4) The project must be relatively easy to build, without a large set of external dependencies.
(5) In addition, for Java, we required use of maven.

Files were then selected by picking for each project, the largest source file that was less than
20KB in size (we restricted our study to smaller source files because we had to manually examine
mutants for equivalence, and determining context of changes for larger files proved extremely
time-consuming). If that file was not covered by the test suite, the next closest to 20KB in order
was chosen. Finally, if no source file under 20KB existed or was covered by tests, the smallest file
larger than 20KB covered by tests was selected.

We additionally present a small case study, applying our implementation to a program in a
language for which it has no rules, Haskell. The case study concerns a fairly trivial example, but
was chosen due to being the only program for which data was available as to the effectiveness of
the tool we compared against (since that tool no longer works).

4.1 Regular Expressions vs. Parser Parser Combinators

While the primary advantages of using parser parser combinators as a basis for mutant generation
are in expressiveness and ease of use, particularly rule readability, a second advantage is a reduction
in the number of invalid mutants generated.

Table 2 and Table 3 compare generated mutants for Regex and Comby modes of our tool. Invalid
mutants are mutants that the tool produces, but which fail to compile. The cost of each such mutant
is usually small, since compilation generally fails early for trivial reasons (e.g., break or continue
outside a loop), but reducing the number of such mutants directly reduces the cost of initial mutant
generation, and generally indicates a better “understanding” of the source being mutated.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 30. Publication date: July 2024.

30:10 Trovato et al.

Table 2. Regex vs. Comby for C++ (top), Java (middle), and Rust (bottom). LOC describes the project files
considered. Muts. is total number of mutants generated for those files. Invalid mutants are those that don’t
compile. Mut. Score refers to the Mutation Score.

C++
Regex Comby

Mut. Mut.
Project LOC | Muts. % Valid N Muts. % Valid N

Score Score
ompl 525 2533 23.49% 0.05 2174 25.94% 0.07
libgraphgqlparser 137 741 21.19% 0.90 440 29.77% 0.89
rethinkdb_rebirth 471 2246 24.27% 0.12 2009 24.49% 0.10
Xoreos 732 3876 62.41% 0.01 3297 69.15% 0.01
libxmljs 630 3989 22.09% 0.62 4008 19.71% 0.64
tiny-diff.-simulator 195 1282 58.27% 0.05 1214 63.43% 0.04

Valid Invalid % Valid Mut. Score

Mean 890.67 1553.83 35.28% 0.29
Regex
Overall Std.Dev. 787.62 956.31 19.48% 0.38
Mean 837.83 1352.50 38.75% 0.29
Comby
Std.Dev. 745.78 1058.33 21.66% 0.37
Java
Regex Comby
Mut. Mut.
Project LOC | Muts. %Valid . o0 | Muts. %Valid . -
Score Score
pebble 279 1014 8.48% 0.81 752 11.30% 0.80
spring-hateoas 397 2479 10.00% 0.33 1384 12.43% 0.37
javacc 363 1888 28.70% 0.23 1276 38.71% 0.21
coffee-gb 463 1927 11.63% 0.21 798 21.80% 0.23
egads 252 2454 25.43% 0.71 1163 51.33% 0.71
apk-parser 324 1583 22.17% 0.07 1199 27.77% 0.08
Valid Invalid % Valid Mut. Score
Mean 345.83 1545.00 17.74% 0.39
Regex
Overall Std.Dev. 203.86 467.98 8.73% 0.30
Comb Mean 309.17 786.17 27.22% 0.40
Y Std.Dev. 202.44 235.24 15.59% 0.29
Rust
Regex Comby
Mut. Mut.
Project LOC | Muts. % Valid ut Muts. % Valid ut
Score Score
cargo release 346 2014 42.25% 0.85 2401 70.39% 0.80
passarine 376 2294 9.29% 0.57 1691 10.23% 0.52
typos 463 1920 20.10% 0.76 1565 23.39% 0.77
ord 533 2858 26.66% 0.73 2312 27.81% 0.83
bazuka 285 1554 29.02% 0.62 1322 30.41% 0.73
strum 90 428 11.92% 0.16 368 13.58% 0.22
Valid Invalid % Valid Mut. Score
Mean 452.33 1392.33 23.21% 0.62
Regex
Overall Std.Dev. 309.05 656.76 12.16% 0.24
Comb Mean 554.00 1055.83 29.30% 0.65
Y Std.Dev. 592.63 508.30 21.62% 0.25

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 30. Publication date: July 2024.

Syntax Is All You Need: A Universal-Language Approach to Mutant Generation 30:11

Table 3. Regex vs. Comby for Python. LOC describes the project files considered. Muts. is total number of
mutants generated for those files. Invalid mutants are ones that fail module load. We use TCE to check for
redundant Python mutants, shown under “Red.”

Regex Comby

Mut. Mut.

Project LOC | Muts. Red. % Valid N Muts. Red. % Valid v

Score Score

keract 402 | 3984 729 4153% 028 | 3067 533 47.96% 0.26

dtw 118 | 2106 567 46.20% 052 | 1835 639 47.19% 0.55

notion- 189 | 1038 82 18.89% 057 | 1019 122 19.23% 0.60

sdk-py

atlassian- |0 907 19.99% 064 | 1319 351 2525% 0.62
python-api

ESD 698 | 6268 1642 29.46% 007 | 3874 614 44.18% 0.07

fiber 358 | 1565 163 31.08% 0.62 | 1466 241 31.24% 0.64

Red. Valid Invalid % Valid Mut. Score

Repey Mean 56500 913.00 1267.33 31.19% 0.45

Overall & StdDev. 58479 70893 81335 11.06% 0.23

Comby Mean 41667 83933 84067 3584% 0.46

Y StdDev. 21162 62879 41899 12.28% 0.24

The mean (and median) percentage of mutants that are valid is higher for Comby for all languages.
On average, even for a single modestly sized file, using parser parser combinators saves 100-600
failed compilations.

The number of valid mutants is usually slightly smaller for Comby, but Comby actually produces
a larger mean (but not median) number of mutants for Rust, due to one project where Comby
produces a much larger number of valid mutants. The small gain in valid mutants for Regexp is
partly due to Regexp (unfortunately) mutating some comments, and partly due to a reported, but
not yet fixed, bug in the Python front-end to Comby, affecting an operator that swaps literal list
items. As discussed below, mutation scores and mutant equivalence rates are very similar for both
modes; mean mutation scores differed by at most 0.3, and project scores by more only for Rust.

For Python, TCE on Python bytecode was possible. The number of redundant (equivalent to the
original bytecode, or the bytecode of an already-generated mutant) mutants was overall similar for
both Regex and Comby, though varied widely by file.

In sum, in addition to providing a major advantage in expressiveness (the ability to easily define
complex multi-line mutations that preserve structure, e.g. going beyond statement deletion to
block deletion), parser parser combinators offer a notable gain in the efficiency of initial mutant
generation, with no apparent loss of overall effectiveness.

4.2 Universal Source-Based Mutation vs. Previous Approaches

We then attempted to compare the quality of the approximately 15K valid mutants generated by
our tool using Comby to mutants generated by competing tools for the relevant languages. Table 4
shows the set of tools compared. We attempted to identify well-maintained and commonly used
open source tools for each language chosen. The tools cover a number of paradigms; for the most
part we did not choose bytecode based tools, since these often make it difficult or impossible to
mutate a single source file. PIT, however, provides this functionality and is perhaps the paradigmatic
bytecode based mutation tool. Only Dextool, for C++, implements the mutant schema [34] approach

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 30. Publication date: July 2024.

30:12 Trovato et al.

Table 4. Overview of Mutation Testing Tools. Our tool has significantly fewer lines of code than the single-
language tools.

Language ‘ Tool ‘ URL ‘ LOC

Mutmut https://github.com/boxed/mutmut 3870
Python

cosmic-ray https://github.com/sixty-north/cosmic-ray 4599
Java PIT https://github.com/hcoles/pitest 59577

LittleDarwin https://github.com/aliparsai/LittleDarwin 22359
Rust ‘ Cargo-Mutants ‘ https://github.com/sourcefrog/cargo-mutants ‘ 7020
C++ ‘ Dextool ‘ https://github.com/joakim-brannstrom/dextool ‘ 38611
ALL ‘ Universalmutator ‘ https://github.com/agroce/universalmutator ‘ 2244

often advocated in the research literature, where a single metaprogram is produced and, e.g.,
environment variabes are used to control which particular version of a program actually executes.
Using a schema has the major advantage of dramatically reducing the time required to compile
mutants. We speculate, however, that the fact that the approach is somewhat complex to implement
for some kinds of mutants, and furthermore fails if even one invalid mutant is generated, has
dissuaded most developers of non-academic tools from adopting it.

The most striking thing about this table, and a strong support for the central argument of this
paper, is that our implementation, which covers all the languages considered plus a number of
additional languages, is the smallest of the tools by a margin of over 1,000 LOC, and can be extended
to handle additional languages with minimal effort. Each currently supported language requires
about 15 rules on average, though these must be implemented as both Regex and Comby rules if
both modes are to be used for the language.

The central question is: does using a universal approach produce notably less effective mutation
testing? Or, to put it another way, does the substantial effort required to develop and maintain
a mutation tool for a single language pay off in obvious advantages in mutation testing results?
Tables 5-8 show the results of mutation testing for the generated mutants for our tool, in Comby
mode, and the above-listed tools for each of the four studied languages.

We do not report the time taken for mutation generation and testing. Dextool uses mutant schema,
and PIT performs bytecode mutation, so both are much faster for compiling mutants, but other
tools took similar amounts of time to compile mutants. Mutant execution time was also generally
similar, except for tools that produced very few mutants. We expect that our approach is generally
slower for initial mutant generation, due to a higher number of invalid mutants, but that this cost is
relatively small compared to the time required to compile and execute valid mutants for almost all
projects. An informal study of large Java projects by the author of the PIT gradle plugin [1] suggests
that even a successful compile of a typical project takes somewhere between one-sixth to one-third
the time required for executing tests, and failed compiles are usually faster than successful ones,
since invalid mutants almost always fail during parsing, and so code generation, optimization, and
linking are not performed.

We estimated mutant equivalence when possible by examining a sample of 30 randomly selected
unkilled mutants for each file. For some tools, human inspection of the individual unkilled mutants
was not possible. However, we were of course able to estimtate the percent of unkilled mutants that
were equivalent for our two modes for all files, and these numbers can be put in the perspective of
rates reported in the literature. Reports of equivalent mutant percentages in the literature sometimes

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 30. Publication date: July 2024.

Syntax Is All You Need: A Universal-Language Approach to Mutant Generation 30:13

report the percent of all mutants (including killed mutants, which obviously cannot be equivalent)
that are equivalent. We follow Schuler and Zeller [33] in reporting the percentage of unkilled
mutants that were found to be equivalent. Schuler and Zeller found about 45% of unkilled mutants
of Java programs to be equivalent. Other reports of lower rates, e.g, 9% [27] or 7% [29], report the
percent of all mutants, and so map to much higher rates of equivalence over unkilled mutants. We
suggest that as a fraction of unkilled mutants, a rate of 30% or fewer equivalent mutants is good,
and a rate of 10% or below is very good.

Table 5. C++ (Comby vs. Dextool). We cannot measure equivalent mutants for Dextool.

Comby Dextool

Mut. Mut.
Project Muts. v % Eqv. | Muts. N

Score Score
ompl 564 0.07 26.7% 278 0.08
libgraphglparser 131 090 33.3% 52 0.96
rethinkdb_rebirth 492 0.10 12.7% 25 0.36
XO0reos 2280 0.01 3.3% 414 0.02
libxmljs 790 0.64 6.7% 830 0.46
tiny-differentiable-simulator 770 0.04 0% 61 0.21
Mean 837.83 0.29 13.67% | 276.67 0.33
Std.Dev. 745.78 0.37 13.50% | 311.56 0.38

Table 6. Java (Comby vs. PIT vs. LittleDarwin). LittleDarwin and PIT produce no equivalent mutants.

Comby PIT LittleDarwin

Mut. Mut. Mut.
Project Muts. v % Eqv | Muts. v Muts. v

Score Score Score
pebble 85 0.81 3.3% 20 0.95 8 1.00
spring-hateoas 172 0.37 10.0% 114 0.28 38 0.39
javacc 494 0.21 3.3% 143 0.21 82 0.78
coffee-gb 174 0.23 0% 36 0.89 29 0.38
egads 597 0.71 20.0% 107 0.81 85 0.87
apk-parser 333 0.08 3.3% 89 0.16 33 0.09
Mean 309.17 0.40 7.9% | 84.83 0.55 | 45.83 0.59
Std.Dev. 202.44 0.29 7.3% 47.60 0.37 30.93 0.35

Previous studies comparing mutation tools for Java [2, 9, 20] found that results for individual
projects often varied considerably across tools without indicating a clear advantage for one tool
over another. Our primary criteria for comparing tools is whether there is an overall pattern of
clearly less-effective mutation for our approach. We only report results for Comby, as Comby and
Regexp approaches produced nearly identical mutation scores, and had similar equivalence rates.
In fact, Regexp equivalence rates were somewhat lower over all than those shown here. Full results
for Regexp mutation execution are included in our replication package.

4.2.1 C++. We found only one tool that allowed single-file mutation and worked reliably for C++.
Dextool generally produced fewer mutants than either mode of our tool, and for some projects
produced an extremely small number of mutants. E.g., for the tiny-differentiable-simulator

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 30. Publication date: July 2024.

30:14 Trovato et al.

Table 7. Python (Comby vs. Mutmut vs. CosmicRay)

Comby Mutmut CosmicRay
Mut. Mut. Mut.
Proj Muts. » E Muts. » E Muts. » E
roject uts Score % Eqv uts Score % Eqv uts Score % Eqv
keract 1471 0.26 6.7% 482 0.72 20.0% 921 0.27 3.3%
dtw 866 0.55 0% 270 0.44 3.3% 713 0.46 27.7%
notion-sdk-py 196 0.60 13.3% 63 0.65 0% 52 0.44 13.9%
atlassian- 333 062 300% | 174 071 133% | 106 074 3.5%
python-api
ESD 1712 0.07 6.7% 720 0.08 13.3% 1013 0.06 6.7%
Fiber 458 0.64 23.3% 222 0.57 46.7% 320 0.81 20.0%
Mean 839.33 0.46 13.3% | 321.83 0.53 16.1% | 520.93 0.46 12.34%
Std.Dev. 628.80 0.24 11.4% | 239.04 0.24 16.7% | 417.50 0.28 9.57%
Table 8. Rust (Comby vs. Cargo-Mutants)
Comby Cargo-Mutants
. Mut. Mut.
Project Muts. Score % Eqv. | Muts. Score % Eqv.
cargo release 1690 0.80 0% 5 0.40 0%
passarine 173 0.52 26.7% 0 0.00 0%
typos 366 0.77 10.0% 6 0.83 0%
ord 643 0.83 20.0% 6 1.00 0%
bazuka 402 0.73 16.7% 0 0.00 0%
strum 50 0.22 6.7% 2 1.00 0%
Mean 554.00 0.64 13.3% 3.17 0.54 0.00%
Std. Dev 592.63 0.25 9.7% 2.86 0.47 0.00%

project, Dextool only produced a total of 61 mutants, and gave a much higher mutation score
than our two modes. Our tools produced more than 600 additional unkilled mutants, and none
of the inspected mutants were equivalent. Similarly, Dextool only found 2 unkilled mutants for
the libgraphqglparser project. We doubt that the set of test weaknesses in the code is adequately
represented by such a small number of mutants when our tools were able to produce significantly
more unkilled mutants. Even assuming Dextool’s mutants are never equivalent (possible though
not necessarily likely) and supposing that a third of our generated mutants are equivalent, it seems
likely that Dextool is missing important mutants in some cases. Overall, mean mutation scores
were similar for Dextool and our tool, while median mutation scores were much lower for our tool,
which produced many more unkilled mutants for some projects. While our equivalence rate was
somewhat high for one project, it was generally good compared to results in the literature. For C++,
there seems to be no reason to suspect that the universal approach is producing sub-par mutation
testing.

4.2.2 Java. For Java, we compare to PIT, arguably the standard for mutation testing tools in real-
world usage (and a tool very frequently used in the literature) as well as LittleDarwin, a source-based
tool. Our tool produces lower but comparable mutation scores, and usually acceptable or excellent
equivalence rates. LittleDarwin produces no equivalent mutants, but is a highly conservative

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 30. Publication date: July 2024.

Syntax Is All You Need: A Universal-Language Approach to Mutant Generation 30:15

tool, only implementing a small set of operators, and not including statement deletion. PIT also
produced no equivalent mutants; the limited set of operators applicable at the bytecode level tends
to produce non-equivalent mutants by nature. Our tools always produced more non-equivalent
unkilled mutants than PIT by a large margin. Our equivalence rates were uniformly low, with a
median of only 3.3% equivalent mutants.

4.2.3 Python. Our comparison of Python mutation tools again showed that there is no evident
disadvantage to using our approach, in terms of mutation testing results. Comby, with one exception,
achieved a very good equivalence rate. Again, discarding equivalent mutants, our tool produced
more mutants, and more unkilled mutants, than other tools, but still had a similar overall mutation
score (the only clear outlier in scores is Mutmut’s troublingly high score for the keract project).

4.2.4 Rust. Finally, for Rust, we observed that the Cargo-Mutants tool simply does not generate
many mutants for most source files. Mutation scores were broadly similar to ours, though lower, and
none of the generated mutants we examined were equivalent, but for two projects Cargo-Mutants
did not produce any compilable mutants even though our tool was able to produce a large number
of non-equivalent mutants. Our tool did produce a moderately high percentage of equivalent
mutants for two projects, but these numbers are still well within the range of expected results in
past inspections of equivalent mutants. We also note that for Rust the cost for invalid mutants
is unusually low, due to the availability of cargo check which very quickly checks that code
compiles, without actually compiling it, making our approach more attractive. Some C++ compilers
also offer fast syntax check facilities, e.g., -fsyntax-only in g++.

4.2.5 Discussion: Summary of Tool Comparisons. Our tools produce somewhat lower mutation
scores than other tools, and higher (though still generally good) equivalence rates than some tools,
but clearly fall into the same broad similarity of behavior reported for high-quality mutation tools
in the literature comparing Java mutation tools. The tools with very low or zero equivalence rates,
furthermore, are very conservative in mutation generation, and often simply don’t produce many
mutants. In fact, inspection of the non-comment source lines as measured by CLOC as compared
to results as shown in Tables 2, Tables 6 and 8 shows that for many programs, LittleDarwin and
Cargo-Mutants generated much less than one mutant per actual line code. Such a conservative
approach is likely to produce few or no actionable (unkilled and non-equivalent) mutants for a
program with even a moderately high-adequacy test suite. But such suites are arguably the ones
where mutation testing offers the most promise, by allowing the detection of very subtle remaining
holes in tests for high-criticality software.

We speculate that our somewhat lower scores and possibly higher equivalence rates derive from
the simple fact that we generate substantially more mutants than most tools, even after excluding
equivalent mutants. In fact, for every single language studied, our tool generated the largest number
of mutants, without a compensatingly higher equivalence rate, or a very much lower mutation
score. Our mean number of generated valid, non-equivalent mutants (estimating based on our
sample) was more than a factor of two larger than the nearest competing tool for all languages
except Python, and was still more than 300 mutants larger than any other tool for Python.

The ease of defining mutation operators, plus our interest in generating large numbers of mutants
and prioritizing the most interesting, in order to make mutation testing useful for projects with
extremely high quality test suites, or even using projects using formal verification (as in the work of
Groce et al. [13]), has encouraged us to take a “let a thousand flowers bloom” approach to choosing
mutation operators. For example, our approach provides many more control-flow mutations than
most tools, due to our observation that test suites sometimes fail to check for loop execution counts
other than one and zero. Few other tools introduce break and continue statements into programs,

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 30. Publication date: July 2024.

30:16 Trovato et al.

qsort :: [Int] -> [Int]
gsort [1 = [1]
gsort (x: xs) = gsort 1 ++ [x] ++ gsort r

where 1 = filter (< x) xs
r = filter (>= x) xs

g b w N =

Fig. 1. Example from MuCheck Paper [21]

or transform one into the other. These mutants are often equivalent (in fact, they give rise to a large
number of our equivalent mutants reported above), but also sometimes expose subtle weaknesses in
a high quality test suite, in our experience. In general, we take our philosophy of mutation from the
proposal by Gopinath et al. [10, 11] that expanding the set of mutation operations and classes of
such operations, in the long run, is more important than using only a small set of “good” operators,
in that the end-goal of mutation testing is to identify weaknesses in test suites, not simply to
estimate a single score. The price paid for this expansiveness in allowing ways to detect weaknesses
in testing is a larger number of mutants to execute, and a slightly larger number of equivalent
mutants. However, this is not a fundamental limitation or forced choice. We propose as future work
to split the operators for each level of the hierarchy into core operators and a set of “aggressive”
operators that includes our full current set of operators.

In fact, this brings us back to a point made in the introduction. While our approach introduces
some unavoidable costs in the (relatively cheap, compared to execution and analysis) compilation
stage of mutation testing, it may offer more flexibility in addressing execution and analysis stages.
Defining limited custom sets of operators to run is trivial in our setting, making it easy to execute
only, e.g., statement mutations, or, in a numeric-computation intensive codebase, only arithmetic
operators. Expanding the hierarchical structure to include “famillies” of mutation operators is
trivial, and gives users great control over mutation. Our approach produces source copies of all
mutants, making it easy to apply techniques like Predictive Mutation Testing [36] that work with
source code. This also makes it easy to integrate, as we already have done, heuristic aids to mutant
analysis such as ranking of unkilled mutants by similarity and “interstingness,” an approach that
has already proven useful in using mutation testing to improve static analysis tools [12].

4.3 Haskell Case Study

Figure 1 shows a simple Haskell program, the motivating example in the paper presenting the
MuCheck [21] mutation testing tool for Haskell. As noted in the introduction, to our knowledge
MuCheck is the first (and perhaps only) mutation tool for Haskell code. MuCheck has not been
updated since 2015. To see how our approach fares when mutating code in a language for which 1)
it has no specific rules and 2) the assumption of a simple C-like syntax does not hold, we applied
our implementation to this example.

Using regular expressions, and only the universal rules, our tool generates 10 valid mutants and
34 invalid mutants of the code (22.73% valid mutants). Comby produces an identical 10 valid mutants,
but 65 invalid mutants (13.33% validity). Both tools produce a large number of invalid mutants
here due to including rules such as adding break and continue that are sufficiently widespread
in applicability to be included in our “universal” set but do not apply to Haskell; we believe that
Comby’s awareness of Haskell syntax in this case actually gives it more opportunities to apply
such “inappropriate” mutants.

These mutants produce a mutation score of 0.8 for the two properties defined in the original
MuCheck paper. In other words, like MuCheck, our tool is able to determine that the properties

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 30. Publication date: July 2024.

Syntax Is All You Need: A Universal-Language Approach to Mutant Generation 30:17

provided are insufficient. In particular, while they check idempotence and that the result is sorted,
they do not check that the result of gsort is a permutaton of the input list. The MuCheck paper only
provides mutation scores for the two properties independently. For idempotence, MuCheck gives a
mutation score of 0.84, and our implementation yields a score of 0.8. Checking only sortedness,
MuCheck yields a score of 0.61, while our approach produces an even lower score of 0.4. Our
lower scores are not due to equivalent mutants: adding a property to check that the sorted list is a
permutation of the original list kills all our mutants. Our implementation does not provide the small
set of Haskell-specific mutations provided by MuCheck (e.g., type-aware function replacement). It
nonetheless produces clearly useful mutants, even for a language arguably radically different from
those for which the universal rules were developed.

4.4 Comparison with GPT 4

[0..] ==> [1..]

1

2 I0 () ==> IO String

3 "Current TODO list:" ==> "Updated TODO list:"

4 "Invalid command: " ==> "Unrecognized command: "

Listing 1. Example of GPT-4 Mutants for a Simple Haskell Program

head :[list] ==> last :[list]
tail :[list] ==> init :[list]
(:Lexpr1l) && (:Lexpr2]) ==> (:Lexpr1]) || (:Lexpr2])
(:Lexpr1l) >>= (:Lexpr2]) ==> (:Lexpr1l) >> (:Lexpr2l)

A W N =

Listing 2. GPT-4 Comby Haskell Rules

To understand how our approach compares with state of the art large language models (LLM),
we prompted GPT-4 to generate a mutation testing tool for Haskell. Surprisingly, the generated
program had no syntax errors, and even ran to produce a mutant. However, the program only
implemented the inverting conditionals operation and some basic module mutations, a small subset
of all the operators our tool implements, despite our tool being unaware of Haskell’s existence.
Asking the LLM to expand the set of rules produces more operators; however the number of mutants
generated by such an approach is still a small subset of what our approach is capable of doing, even
for a language we do not technically support.

Another approach is to have LLMs generate mutants for a given program. We experiment with
prompting GPT-4 to generate mutants for a simple Haskell TODO-list management program.
listing 1 shows the mutants that GPT-4 generated for this program (formatted as before ==> after).
Notice that some of the mutants generated make sense, and resemble bugs a developer might make
(replacing 0 with 1 or using the wrong data type). However, GPT-4 also generated mutants changing
strings for all outputs to the console. These are not fruitful mutants; the messages (potentially)
could be checked, but the arbitrary nature of such strings makes them poor mutants (which is why
no mutation tools we are aware of implement such an operator).

While LLMs are not able to generate fully working language specific mutation testing tools from
scratch, they are capable of generating rules in our formats that are specific to a given language.
For example, prompting GPT-4 to generate Haskell rules for our tool generates the set of rules seen
in listing 2. The generated rules are both valid Comby syntax and language-specific. E.g., replacing
head with tail is a useful Haskell-specific rule. This suggests that while extending other tools
to include new rules often involves writing complex code to manipulate ASTs, our tool may be

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 30. Publication date: July 2024.

30:18 Trovato et al.

extensible simply by requesting an LLM to implement a natural language description of the desired
rule(s), since GPT-4 already knows how to use Comby (and write regular expressions).
5 THREATS TO VALIDITY

Our study only examined 24 total source files, from 24 different projects, across four different
languages, a total of about 9,000 lines of non-comment source code. None of these files were very
large, though they were of sizes common to many source files in projects across GitHub, and none
were less than about 100 non-comment lines of code. More importantly, there is no established
way to compare mutation tools. Previous studies of the topic have generally simply expected that
a useful tool must generate a significant number of non-equivalent unkilled mutants, and yield
mutation scores that are broadly similar to those of other tools, both tests that our tool passes with
ease (and some tools we compared to do not always pass).

6 RELATED WORK

Many approaches have been proposed to tackle the computational cost of mutation, including
weak-mutation, meta-mutation, mutation-sampling, and predicting which mutants will be killed [19,
26, 34, 37]. Approaches to reducing the cost of mutation analysis were categorized as do smarter, do
faster, and do fewer by Offutt et al. [28]. The do smarter approaches include space-time trade-offs,
weak mutation analysis, and parallelization of mutation analysis. The do faster approaches include
mutant schema generation, code patching, and other methods to make mutants run faster. Finally,
the do fewer approaches try to reduce the number of mutants examined, and include selective
mutation and mutant sampling. None of these approaches focus on the cost in human time to
develop and maintain mutation testing tools. In fact, the complexity and sophistication of some of
these approaches imposes a daunting barrier to those who would develop “good” mutation tools
for a new language.

Hariri et al. compared C mutation approaches at the source and compiler IR levels [17] and found
that overall source level mutation was better, producing fewer mutants overall, but matching the
IR approach in the important measures of surface and minimal mutants and overall mutation score.
Numerous studies compare Java mutation tools [9, 20], including a recent article for a more general
audience in Communications of the ACM [2] (perhaps indicating a growing interest in practical
mutation testing), which showed that users considered active maintenance, support for a variety
of testing frameworks, and support for recent Java versions as the most important features in a
Java mutation tool. The approach proposed in this paper by its nature tends to promise all three of
these key factors without imposing burdens on maintainers. More recently, there has been some
effort to create a language agnostic mutation testing tool [8]. However, this tool uses Wodel, a new
(and hard-to-read, compared to Comby) DSL for expressing operators, and requires users to define
a set of operators for each language, without sharing of rules. Groce et al. originally presented an
initial prototype of our approach in a short tool paper, lacking parser-parser combinator support or
a non-trivial empirical evaluation [14]. The universalmutator was used in previous work proposing
mutation-based evaluation and improvement of static analysis tools [12], as a basis for the mutation
approach (using Comby) adopted in a paper on improving turn-key compiler fuzzing [16], and as a
basis for incorporating mutation generation in fuzzing [15], as well as in other work simply using
it as a mutation tool.

7 CONCLUSIONS AND FUTURE WORK

We conclude that, by using a hierarchical, source-based approach, either relying on a pure-text regu-
lar expression definition of mutation operators or a richer parser parser combinator transformation
definition, it is possible to implement effective, easily extensible mutation testing for essentially all

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 30. Publication date: July 2024.

Syntax Is All You Need: A Universal-Language Approach to Mutant Generation 30:19

commonly used programming languages, and likely most not-so-commonly-used programming
languages, in very few lines of code. Our approach fundamentally relies on the insight that program
mutation is just a restricted instance of the general problem of program transformation, where
transformations are highly syntactic (rather than semantics-aware) and highly localized.

As future work, we plan to give users more control over which mutation operators are used,
with controls common to multiple languages. Our approach is a good fit to modern large software
projects, which are often multilingual [18]: a single mutation tool can be used for an entire project.

8 DATA AVAILABILITY

We have made a full replication package available at https://figshare.com/s/7ab4bc9a156fec248528.
See the README.md file included for details. The package contains Python scripts to run our data
collection and experiments, as well as full source code for our tool.

9 ACKNOWLEDGMENTS

A portion of this work was funded by the National Science Foundation under NSF awards CCF-
2129388, CCF-1910067, and CCF-2129446. We also thank all contributors to the Universalmutator
and Comby projects.

REFERENCES

[1] [n.d.]. How fast (or slow) mutation testing really is? https://solidsoft.wordpress.com/2017/09/19/how-fast-or-slow-
mutation-testing-really-is/.

[2] Domenico Amalfitano, Ana C. R. Paiva, Alexis Inquel, Luis Pinto, Anna Rita Fasolino, and René Just. 2022. How Do
Java Mutation Tools Differ? Commun. ACM 65, 12 (nov 2022), 74-89. https://doi.org/10.1145/3526099

[3] Paul Ammann and Jeff Offutt. 2016. Introduction to software testing. Cambridge University Press.

[4] Moritz Beller, Chu-Pan Wong, Johannes Bader, Andrew Scott, Mateusz Machalica, Satish Chandra, and Erik Meijer. 2021.
What It Would Take to Use Mutation Testing in Industry - A Study at Facebook. In International Conference on Software
Engineering: Software Engineering in Practice. IEEE, 268-277. https://doi.org/10.1109/ICSE-SEIP52600.2021.00036

[5] Rudy Braquehais and Colin Runciman. 2016. FitSpec: Refining Property Sets for Functional Testing. In Proceedings of
the 9th International Symposium on Haskell (Nara, Japan) (Haskell 2016). Association for Computing Machinery, New
York, NY, USA, 1-12. https://doi.org/10.1145/2976002.2976003

[6] Yang Chen, Alex Groce, Chaogiang Zhang, Weng-Keen Wong, Xiaoli Fern, Eric Eide, and John Regehr. 2013. Taming
Compiler Fuzzers. In Conference on Programming Language Design and Implementation (Seattle, Washington, USA) (PLDI
’13). Association for Computing Machinery, New York, NY, USA, 197-208. https://doi.org/10.1145/2491956.2462173

[7] Lin Deng, Jeff Offutt, and Nan Li. 2013. Empirical evaluation of the statement deletion mutation operator. In 2013 IEEE
Sixth International Conference on Software Testing, Verification and Validation. IEEE, 84-93.

[8] Pablo Gémez-Abajo, Esther Guerra, Juan de Lara, and Mercedes G. Merayo. 2021. Wodel-Test: A Model-Based
Framework for Language-Independent Mutation Testing. Softw. Syst. Model. 20, 3 (jun 2021), 767-793. https:
//doi.org/10.1007/s10270-020-00827-0

[9] Rahul Gopinath, Iftekhar Ahmed, Mohammad Amin Alipour, Carlos Jensen, and Alex Groce. 2017. Does choice of
mutation tool matter? Software Quality Journal 25 (2017), 871-920.

[10] Rahul Gopinath, Iftekhar Ahmed, Mohammad Amin Alipour, Carlos Jensen, and Alex Groce. 2017. Mutation reduction
strategies considered harmful. IEEE Transactions on Reliability 66, 3 (2017), 854-874.

[11] Rahul Gopinath, Mohammad Amin Alipour, Iftekhar Ahmed, Carlos Jensen, and Alex Groce. 2016. On The Limits
of Mutation Reduction Strategies. In 2016 IEEE/ACM 38th International Conference on Software Engineering (ICSE).
511-522.

[12] Alex Groce, Iftekhar Ahmed, Josselin Feist, Gustavo Grieco, Jiri Gesi, Mehran Meidani, and Qihong Chen. 2021.
Evaluating and Improving Static Analysis Tools Via Differential Mutation Analysis. In 2021 IEEE 21st International
Conference on Software Quality, Reliability and Security (QRS). 207-218. https://doi.org/10.1109/QRS54544.2021.00032

[13] Alex Groce, Iftekhar Ahmed, Carlos Jensen, Paul E McKenney, and Josie Holmes. 2018. How verified (or tested) is my
code? falsification-driven verification and testing. Automated Software Engineering Journal 25, 4 (2018), 917-960.

[14] Alex Groce, Josie Holmes, Darko Marinov, August Shi, and Lingming Zhang. 2018. An Extensible, Regular-expression-
based Tool for Multi-language Mutant Generation. In International Conference on Software Engineering: Companion

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 30. Publication date: July 2024.

30:20

[15]

[16]

[17]

[18

[19

[20

[21

[22

[23
[24
[25

[26

[27
[28

[29

[30

[31

[32

[33

[34

[35

[t

—

—

—

]

—_ S

[t

—

—

—

_

Trovato et al.

Proceeedings (Gothenburg, Sweden) (ICSE 2018). ACM, New York, NY, USA, 25-28. https://doi.org/10.1145/3183440.
3183485

Alex Groce, Goutamkumar Tulajappa Kalburgi, Claire Le Goues, Kush Jain, and Rahul Gopinath. 2022. Registered
report: First, fuzz the mutants. In International Fuzzing Workshop, ser. FUZZING, Vol. 22.

Alex Groce, Rijnard van Tonder, Goutamkumar Tulajappa Kalburgi, and Claire Le Goues. 2022. Making no-fuss
compiler fuzzing effective. In Proceedings of the 31st ACM SIGPLAN International Conference on Compiler Construction
(Seoul, South Korea) (CC 2022). Association for Computing Machinery, New York, NY, USA, 194-204. https://doi.org/
10.1145/3497776.3517765

Farah Hariri, August Shi, Vimuth Fernando, Suleman Mahmood, and Darko Marinov. 2019. Comparing Mutation
Testing at the Levels of Source Code and Compiler Intermediate Representation. In 2019 12th IEEE Conference on
Software Testing, Validation and Verification (ICST). 114-124. https://doi.org/10.1109/ICST.2019.00021

Shin Hong, Byeongcheol Lee, Tachoon Kwak, Yiru Jeon, Bongsuk Ko, Yunho Kim, and Moonzoo Kim. 2015. Mutation-
Based Fault Localization for Real-World Multilingual Programs (T). In 2015 30th IEEE/ACM International Conference on
Automated Software Engineering (ASE). 464-475. https://doi.org/10.1109/ASE.2015.14

Samuel J. Kaufman, Ryan Featherman, Justin Alvin, Bob Kurtz, Paul Ammann, and René Just. 2022. Prioritizing Mutants
to Guide Mutation Testing. In Proceedings of the International Conference on Software Engineering (ICSE).

Marinos Kintis, Mike Papadakis, Andreas Papadopoulos, Evangelos Valvis, and Nicos Malevris. 2016. Analysing and
Comparing the Effectiveness of Mutation Testing Tools: A Manual Study. In 2016 IEEE 16th International Working
Conference on Source Code Analysis and Manipulation (SCAM). 147-156. https://doi.org/10.1109/SCAM.2016.28

Duc Le, Mohammad Amin Alipour, Rahul Gopinath, and Alex Groce. 2014. MuCheck: An Extensible Tool for
Mutation Testing of Haskell Programs. In Proceedings of the 2014 International Symposium on Software Testing and
Analysis (San Jose, CA, USA) (ISSTA 2014). Association for Computing Machinery, New York, NY, USA, 429-432.
https://doi.org/10.1145/2610384.2628052

Richard J. Lipton, Richard A DeMillo, and Frederick G Sayward. 1978. Hints on test data selection: Help for the
practicing programmer. Computer 11, 4 (1978), 34-41.

Aditya P Mathur. 2012. Foundations of Software Testing. Addison-Wesley.

Giorgio Natili. [n.d.]. Mutation Testing at Scale. https://slides.com/giorgionatili/mutation-testing-at-scale.

A Jefferson Offutt, Ammei Lee, Gregg Rothermel, Roland H Untch, and Christian Zapf. 1996. An experimental
determination of sufficient mutant operators. ACM Transactions on Software Engineering and Methodology (TOSEM) 5,
2 (1996), 99-118.

A. Jefferson Offutt, Ammei Lee, Gregg Rothermel, Roland H. Untch, and Christian Zapf. 1996. An Experimental
Determination of Sufficient Mutant Operators. ACM Trans. Softw. Eng. Methodol. 5, 2 (apr 1996), 99-118. https:
//doi.org/10.1145/227607.227610

A Jefferson Offutt and Jie Pan. 1997. Automatically detecting equivalent mutants and infeasible paths. Software testing,
verification and reliability 7, 3 (1997), 165-192.

A Jefferson Offutt and Roland H Untch. 2001. Mutation 2000: Uniting the orthogonal. In Mutation testing for the new
century. Springer, 34-44.

Mike Papadakis, Yue Jia, Mark Harman, and Yves Le Traon. 2015. Trivial Compiler Equivalence: A Large Scale Empirical
Study of a Simple Fast and Effective Equivalent Mutant Detection Technique. In International Conference on Software
Engineering.

Goran Petrovic and Marko Ivankovic. 2018. State of mutation testing at google. In International Conference on
Software Engineering: Software Engineering in Practice, Frances Paulisch and Jan Bosch (Eds.). ACM, 163-171. https:
//doi.org/10.1145/3183519.3183521

Goran Petrovic, Marko Ivankovic, Bob Kurtz, Paul Ammann, and René Just. 2018. An Industrial Application of
Mutation Testing: Lessons, Challenges, and Research Directions. In 2018 IEEE International Conference on Software
Testing, Verification and Validation Workshops (ICSTW). 47-53. https://doi.org/10.1109/ICSTW.2018.00027
Alessandro Viola Pizzoleto, Fabiano Cutigi Ferrari, Jeff Offutt, Leo Fernandes, and Marcio Ribeiro. 2019. A systematic
literature review of techniques and metrics to reduce the cost of mutation testing. Journal of Systems and Software 157
(2019), 110388.

David Schuler and Andreas Zeller. 2013. Covering and Uncovering Equivalent Mutants. Soft-
ware Testing, Verification and Reliability 23, 5 (2013), 353-374. https://doi.org/10.1002/stvr.1473
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/stvr.1473

Roland H. Untch, A. Jefferson Offutt, and Mary Jean Harrold. 1993. Mutation Analysis Using Mutant Schemata.
SIGSOFT Softw. Eng. Notes 18, 3 (jul 1993), 139-148. https://doi.org/10.1145/174146.154265

Rijnard van Tonder and Claire Le Goues. 2019. Lightweight Multi-Language Syntax Transformation with Parser Parser
Combinators. In Conference on Programming language Design and Implementation (PLDI ’19).

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 30. Publication date: July 2024.

Syntax Is All You Need: A Universal-Language Approach to Mutant Generation 30:21

[36] Jie Zhang, Ziyi Wang, Lingming Zhang, Dan Hao, Lei Zang, Shiyang Cheng, and Lu Zhang. 2016. Predictive Mutation
Testing. In International Symposium on Software Testing and Analysis (Saarbriicken, Germany) (ISSTA 2016). Association
for Computing Machinery, New York, NY, USA, 342-353. https://doi.org/10.1145/2931037.2931038

[37] Jie Zhang, Ziyi Wang, Lingming Zhang, Dan Hao, Lei Zang, Shiyang Cheng, and Lu Zhang. 2016. Predictive Mutation
Testing. In Proceedings of the 25th International Symposium on Software Testing and Analysis (Saarbriicken, Germany)

(ISSTA 2016). Association for Computing Machinery, New York, NY, USA, 342-353. https://doi.org/10.1145/2931037.
2931038

Received 2023-09-27; accepted 2024-01-23

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 30. Publication date: July 2024.

	Abstract
	1 Introduction
	2 A Universal-Language Syntax-Based Approach
	2.1 Hierarchies of Operator Applicability
	2.2 Beyond Regular Expressions with Parser Parser Combinators

	3 Implementation
	3.1 Supported Languages and Operators

	4 Experimental Evaluation
	4.1 Regular Expressions vs. Parser Parser Combinators
	4.2 Universal Source-Based Mutation vs. Previous Approaches
	4.3 Haskell Case Study
	4.4 Comparison with GPT 4

	5 Threats to Validity
	6 Related Work
	7 Conclusions and Future Work
	8 Data Availability
	9 Acknowledgments
	References

