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Abstract

Heterogeneous oxidative aging of organic aerosols (OA) occurs ubiquitously in the
atmosphere, initiated by oxidants such as the hydroxyl radicals (¢*OH). Hydroperoxyl radicals
(HO2®) are also important oxidant in the troposphere and its gas-phase chemistry has been well
studied. However, the role of HO2* in heterogeneous OA oxidation remains elusive. Here, we carry
out *OH-initiated heterogeneous oxidation of several OA model systems under different HO2*
conditions in a flow tube reactor and characterize the molecular oxidation products using a suite
of mass spectrometry instrumentation. By using hydrogen-deuterium exchange with thermal
desorption iodide-adduct chemical ionization mass spectrometry, we provide direct observation of
organic hydroperoxide (ROOH) formation from heterogeneous HO:* and peroxy radicals (RO2*)
reactions for the first time. The ROOH may contribute substantially to the oxidation products,
varied with the parent OA chemical structure. Furthermore, by regulating RO2* reaction pathways,
HO2* also greatly influence the overall composition of the oxidized OA. Lastly, we suggest that
the RO2* + HO>* reactions readily occur at the OA particle interface rather than in the particle bulk.
These findings provide new mechanistic insights into the heterogeneous OA oxidation chemistry

and help fill the critical knowledge gap in understanding atmospheric OA oxidative aging.

Keywords: Interfacial chemistry, peroxy radicals, organic hydroperoxides, hydrogen-deuterium

exchange, mass spectrometry

Synopsis: Hydroperoxyl radicals leads to the formation of organic hydroperoxides at aerosol

particle interface during heterogeneous oxidation of organic aerosols in the atmosphere.
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Introduction

Organic aerosols (OA) account for a large fraction of fine particulate matter (PM2.5) in the
atmosphere, significantly impacting climate, visibility and human health.!" Throughout their
lifetime, OA particles undergo heterogeneous oxidative aging by gaseous oxidants, such as
hydroxyl radical (*OH), which continuously affect their reactivity, chemical composition, and
properties.*® Hydroperoxyl radicals (HO2*), closely coupled with *OH, are another important gas-
phase reactive oxidants in the atmosphere and are primarily generated by daytime photochemical
reactions.” The typical tropospheric [HO2°]/[*OH] ratios are approximately within the range of
10-100, with [HO2°] up to the order of 10® molecules cm3.19-13

The oxidation mechanism and related kinetics of HO,* (= HO2* + *OH) reactions are well-
studied in the gas phase.!*!7 *OH initiates the oxidation of a generic gas-phase organic molecule
(R—H) by H abstraction to produce an alkyl radical (R*), and a subsequent peroxy radical (RO2*)
is formed after molecular oxygen addition. In the absence of nitrogen oxides, the RO2* primarily
undergo bimolecular reactions with HO2* to form organic hydroperoxides (ROOH) and with
another RO2* to produce an alcohol-carbonyl pair (i.e., ROH and R-n=0), wherein both pathways
could also form alkoxy radicals (RO®) with varied branching ratios depending on the RO2°
structure.'®2* The labile hydroperoxide functionality in ROOH has a significant impact on the
subsequent organic degradation and evolution in both the gas and particle phases.'®> 2426 In strong
contrast to this well-known gas-phase HO2* chemistry, the mechanistic understanding of the
multiphase HO2*® processes is very limited despite that kinetic observations of HO2* uptake on the
interface of aerosol particles have been widely reported, especially for aqueous aerosols.?”3? For
example, Lakey et al.?’ reported HO2® uptake onto aerosol particles with the uptake coefficient

from < 0.004 (dry particles) to ~0.09 (aqueous particles) in laboratory studies; Copper et al.?” and
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Zhou et al.3! observed HO2*® uptake onto ambient aerosols with the uptake coefficient of 0.025 —
0.24. George and Abbatt® summarized the heterogeneous *OH oxidation mechanisms of OA in
analogy to the gas-phase oxidation and proposed that the RO2* + HO:* reactions proceed in a
similar manner leading to ROOH formation. But to our knowledge, no prior work has reported the
direct observation of this pathway. For instance, previous studies have attempted to indirectly
probe ROOH formation by including the reaction mechanism in a kinetic model®® or estimating
the number of oxygen atoms added per reacted parent OA.>* But conclusive evidence for ROOH
formation in heterogeneous oxidation was not provided due to the challenges in directly detecting
ROOH. Furthermore, it is unclear how gaseous HOz* affects heterogeneous OA oxidation kinetics
and molecular composition by regulating RO*® formation and hence secondary chain propagation
chemistry.® 2334 Lastly, it is also elusive whether the RO2® + HO:*® reactions (if any) occur at the
particle interface following collisions or in the bulk by the absorption mechanism.?

In the study, we perform *OH-initiated heterogeneous oxidation experiments of several
oxygenated OA model systems under varied [*OH] and [HO:*] with controlled [HO2*]/[*OH] ratios.
These OA model surrogates contain multiple functional groups with a wide range of O/C ratios of
0.40 — 1.00, representing moderately to highly oxidized OA in the atmosphere. We characterize
the molecular composition of the heterogeneously oxidized OA by a suite of mass spectrometry
instrumentation.> 3337 From these measurements, we report direct observation of ROOH formation
and propose the *OH-initiated heterogeneous OA oxidation mechanisms under atmospherically

relevant [HO2°*]/[*OH] ratios.
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Materials and Methods
Chemicals and reagents

The chemicals and reagents with their purities and suppliers used in this study are as
follows: 3-methylglutaric acid (TCI, >99.0%), adipic acid (Sigma-Aldrich, >99.5%), glucose
(TCI, >98%), tricarballylic acid (Acros Organics, 99%), 1, 2, 3, 4-butanetetracarboxylic acid
(Acros Organics, >99%), camphoric acid (Sigma-Aldrich, 99%), 1, 3, 5-cyclohexanetricarboxylic
acid (Sigma-Aldrich, cis 90%), suberic acid (TCI, >99%), xylitol (Acros Organics, >99%),
methanol (Fisher Chemical, 99.9%), hydrogen peroxide (H20:, Fisher Chemical, 30% aq. soln.),
water (Fisher Chemical, HPLC Grade Submicron Filtered), deuterium oxide (thermo scientific,
99.8 atom % D), toluene (Certified ACS, 99.9%), pyridine (DriSolv., 99.8%), BSTFA W/1%
TMCS (Restek Corporation), acetonitrile (Fisher Chemical, 99.95%), tartaric acid (TCI, >99.0%)
and isoprene (Alfa Aesar, 99%). None of the above chemicals nor regents were used with further

purification.

Experimental details

All experiments were carried out in a Quartz laminar flow tube reactor (FTR, ~4.12 L)
under room temperature (~ 295 + 2 K).> 33 The relative humidity (RH) was adjusted by
controlling the fractions of clean dry air through vs. bypassing a water bubbler to achieve the
relatively high-RH condition (77 £ 3%) or low-RH condition (32 £ 3%). The total flow rate in the
FTR was 4 L min™!, corresponding to a residence time of ~ 60 s. O3 was introduced into the FTR
by passing pure Oz through an ozone generator (Jelight, Model 610). *OH were generated by O3
photolysis in the presence of water vapor by two mercury UV lamps (A = 254 nm). A total of nine

OA model compounds with multiple different functional groups were studied under high-RH
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conditions, including 3-methylglutaric acid (CéH1004), adipic acid (CcH1004), glucose (CcH1205),
tricarballylic acid (CsHsOe), 1, 2, 3, 4-butanetetracarboxylic acid (CsHi100s), camphoric acid
(C10H1604), 1, 3, 5-cyclohexanetricarboxylic acid (CoH120¢), suberic acid (CsH1404), and xylitol
(CsHi1205). A constant output aerosol atomizer (TSI Inc. Model 3076) was used to generate
polydisperse OA particles from aqueous solutions (1 g L') of these model compounds. The typical
OA particle mass loading in the FTR was 2600 — 5000 pg m; the mean surface-weighted particle
diameters of the generated OA surrogates were in the range of 200 £+ 20 nm — 240 + 30 nm. The
high aerosol mass loadings are necessary to ensure that minimal fractions of the OA species, which
already have low volatilities, are in the gas phase such that any observed ROOH is formed in the
condensed phase. For these nine model systems, two oxidation conditions were examined, i.e.,
[HO2*J/[*OH] < 1 vs. [HO2*)/[*OH] ~ 40 (see the section below and Supporting Information, SI,
Table S1 for experimental details). Among these OA surrogates, 3-methylglutaric acid was
investigated in greater detail under more experimental conditions, including varied RH and particle
sizes, more scattered [HO2*]/[*OH] scenarios, and more comprehensive product characterization.
This allows for a closer examination of the HO2* heterogeneous chemistry and its impacts on the
oxidation kinetics and OA molecular composition.

The OA particle size distribution and number concentration were measured by a scanning
electrical mobility sizer (SEMS) and mixing condensation particle counter (MCPC), respectively
(Brechtel Inc., 2100). Os concentration was measured by an ozone analyzer (Thermo
Environmental Instrument, Inc., 49C) after a HEPA filter that removes particles at the FTR exit.
The OA particles were guided through a charcoal denuder to remove gas-phase compounds
followed by a 1.6 L min"! dilution flow containing humidified air with H20 or D20. With D20, it

allows for hydrogen-deuterium exchange (HDX) on any labile hydrogen atoms (i.e., H in —O-H
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and ~O-O-H converted to D).* HDX is a useful approach to determine the number of active
hydrogen attached to heteroatom, helping separate and detect individual molecules of alcohols,
phenols, carboxylic acids, hydroperoxides, amines, and amides, etc. from complex mixtures.*!-43
However, the exchange of hydrogen and deuterium is reversible and the exchange rate relies on
experimental conditions.*>* Thus, the completeness of HDX needs to be verified. The diluted OA
particles were then sampled by a thermal desorption chemical ionization time-of-flight mass
spectrometer (TD-CIMS, Aerodyne Research Inc., m/Am ~ 4000) with the I chemical ionization
source for real-time molecular composition analysis, with the TD temperature set to 180 °C to
vaporize most OA species.> 38 The effectiveness of the set TD temperature was tested by measuring
the ratios of particle mass loading through the TD tubing with versus without heating. As a result,
under this TD temperature, only ~0.8% and ~1.6% of unoxidized and oxidized 3-methylglutaric
acid particles remained in the particle phase, respectively, indicating the high efficiencies of
vaporizing the OA particles into the gas phase. In addition to real-time characterization, aerosol
samples at all oxidation stages were collected by a sequential spot sampler (Aerosol Devices Inc.,
SS110) for offline analyses using an electrospray ionization time-of-flight mass spectrometer in
the negative ion mode ((-)ESI-MS, Aerodyne Research Inc.)*® and a gas chromatography mass
spectrometer (GC-MS, Agilent Inc., 7890 GC and 5975 MSD) with prior derivatization®® 4% in
the 3-methylglutaric acid experiments. The (—)ESI-MS was utilized to examine the role of HO>*
in the comprehensive OA molecular composition. The GC-MS analysis was conducted to study

the HO2* impacts on heterogeneous OA oxidation kinetics and provide some insights into the

isomer-resolved products.

HOx* control and estimation
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For the heterogeneous oxidation experiments requiring higher [HO2°*]/[*OH], methanol was
continuously injected into the FTR by a syringe pump (Chemyx Inc.) at controlled rates. The *OH
oxidation of methanol is known to efficiently generate HO2°*.448 Without a detection method to
directly quantify [*OH] and [HO2*], their concentrations were estimated by a photochemical box
model based on MCM v3.2 including all the inorganic gas-phase reactions and methanol oxidation
mechanism.3% 4% 39 The chemical reactions to generate *OH and HO2® in the box model are listed
in the SI, Table S2. The estimation of [*OH] was carried out using this approach in our prior
studies.*® 3! In these reactions, the only unknown parameters are O3 photolysis rate constant and
*OH and HO2* wall loss rate constants.>! We set these values as tuning parameters and optimized
their values to reach the best measurement-simulation agreement. Specifically, the measured and
simulated [O3] were used to constrain O3 photolysis rates; [*OH] experimentally determined by
the consumption of methanol measured using a high-sensitivity proton-transfer-reaction mass
spectrometer (PTR-MS, Ionicon Analytik Inc.) were used to constrain *OH wall loss rate constant
in the box model. Lastly, the production of H202 has been used to estimate [HO2°] in prior research
because HO:" is the principal H20:2 source.> 3> We followed the same approach and constrained
the HO2* wall loss rate constant by comparing simulated [H202]°* with that quantified using H2O2
standards detected by I"-CIMS. The model performance was verified by comparing simulation
outputs and measurements in characteristic experiments (Figure S1). The comparison results
suggest that the model can simulate [*OH] and [HO:2*] within 30% accuracy under most
experimental conditions. The model results suggest that in the absence of added methanol, HO>*
can be produced by *OH + O3, but the resultant [HO2*]/[*OH] ratio is only < 1, much lower than

atmospheric conditions. With methanol oxidized by °*OH, we can achieve much higher
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[HO2°J/[*OH] by regulating O3 and methanol injection concentrations. We hence used this box
model to design the initial [O3] and [methanol] in experiments to reach controllable [HO2*]/[*OH]
with maximum values ~ 55, which is relevant to real atmospheric conditions. The *OH exposure

ranged from 9 x 10'° to 4 x 10'2 molecules cm™ s in all experiments.

Results and Discussion
ROOH formation during OA heterogeneous oxidation

Consistent with the well-accepted mechanism described above, the OH-initiated
heterogeneous oxidation of all the studied oxygenated OA surrogates forms a series of multi-
functionalized products through RO2* self-reaction, including the first-generation products of
carbonyls (R-n=0), alcohols (ROH), along with the second-generation products of dicarbonyls [R-
31(=0)2], hydroxycarbonyls [R-2n(=0)OH], and diols [R-u(OH)2].> % 33:35 Because ROOH and the
diol are isomers, it is impossible to differentiate them by typical mass spectrometry analysis,
causing challenges for ROOH identification. But because they are formed by different oxidation
generations and pathways, we attempt to demonstrate their different abundances under varied [*OH]
and [HO2*]. In the (—)ESI-MS results for 3-methylglutaric acid oxidation shown in Figure 1A,
CsH1006 [sum of ROOH and R-u(OH)2] were formed with very limited fraction among all the
major functionalization products (< 1% signals) under [HO2*]/[*OH] <1 and low [*OH]. Its relative
abundance increases with enhanced *OH exposure, indicative of the formation of the second-
generation product R-u(OH)2.3 In contrast, under identical ["OH] and thus likely similar amount
of R-n(OH):, the fractions of CsH100O¢ are much greater (up to ~ 10%) with higher [HO2*]/[*OH].
The gap is especially significant under lower [*OH], suggesting that ROOH formed from RO2* +

HO2* is likely the dominant contributor to CcH100s where multigenerational oxidation is limited.

10
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Likewise, results from the TD-CIMS measurements of relative CeHi10O¢ signals from 3-

methylglutaric acid oxidation (Figure 1B) under two constant conditions of *OH exposure
conditions both exhibit increasing trends as a function of [HO2*], supporting formation of ROOH
from RO2* + HO»". Notably, the fractions of CsH1006 among the major products are always higher

under lower *OH exposure condition, further suggesting that ROOH as a main contributor.
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Figure 1. The fractions of CséHi100Os in all the functionalization products, including C¢HsOs (R-
1=0), CsH1005 (ROH), CsH6O6 [R-31(=0)2], CeHsOs [R-2n(=0)OH], and CsH1006 [sum of ROOH
and R-u(OH)2], from 3-methylglutaric acid oxidation in (A) (—)ESI-MS results as a function of

*OH exposure; and (B) TD-CIMS results as a function of [HO2*]. The [HO2*]/[*OH] ratios ranged

between < 1 and 55 are indicated by the color scheme shown in (A).

Figure 2 illustrates the TD-CIMS mass spectra for the heterogeneously oxidized 3-
methylglutaric acid and Figures S3—S10 show similar results for the other studied OA surrogates.
Two conditions with identical *OH exposure but very different [HO2*]/[*OH] are focused with the

ratio of < 1 (without methanol) and ~ 40 (with methanol, determined by the box model). The

11
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CsH1006 signals in Figures 2A-2B show the sum of ROOH and R-u(OH)2, which are much
stronger with higher [HO2*]/[*OH] under similar [*OH], while the differences for the other major
peaks are negligible (Figure 2B vs. 2A), indicating the enhanced ROOH formation from RO2* +
HO:2* and agreeing with results illustrated in Figure 1. To unambiguously determine ROOH
formation and abundance, we applied the HDX method to couple with the TD-CIMS to separate
ROOH from R-u(OH)2. HDX is expected to occur on functional groups with labile H atoms (i.e.,
H in —O-H and —O—O-H).>*¢ In the experiments using D20, the I” clusters of a detectable organic
molecule (i.e., [M+]]") were observed to undergo a m/Q shift by mass units corresponding to the
number of labile H atoms in the organic molecule structure. Under the assumption of identical
sensitivity of ROOH and R-u(OH)2 in TD-CIMS, the I" adduct ion of CéHi100¢ from 3-
methylglutaric acid heterogeneous oxidation has a m/Q shift of 3 Th by ~85% based on peak
intensities, corresponding to the ROOH, and a m/Q shift of 4 Th by ~15%, corresponding to the
R-n(OH):2 (Figure 2C). This directly demonstrates that ROOH is the major form of C¢H100O6 under
the studied conditions. We ruled out the possibility of incomplete HDX for R-u(OH)2 by testing
tartaric acid, a chemical with two carboxylic acid groups and two alcohol groups, which exhibits
complete HDX with a m/Q shift of 4 Th (Figure S2). The other studied OA model compounds
with multiple alcohols or carboxylic acids also exhibit complete HDX. These results elucidate the
formation of ROOH during heterogeneous *OH oxidation of OA for the first time. In a prior work,
ROOH formation has also been reported during *OH oxidation of electrospray-generated
microdroplets, but whether its formation was from gaseous HO:* reacting with aqueous RO:* at
the microdroplet interface was not fully examined.>’ As a minor note, the m/Q shifts for the other
species in the mass spectra are also consistent with their expected functionalities. As shown in

Figure 2C, most of the initial CéH10Os signals are contributed by ROOH under atmospherically

12
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relevant [HO2°*]/[*OH], strongly supporting the importance of ROOH from RO2* + HO2* during

heterogeneous *OH oxidation.
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Figure 2. The mass spectra of *OH-initiated heterogeneous oxidation of 3-methylglutaric acid
under (A) [HO2°*)/[*OH] < 1 in the presence of H20, (B) [HO2*]/[*OH] ~ 40 in the presence of H2O
and (C) [HO2°]/[*OH] ~ 40 in the presence of D20. The major products are labeled with the mass

spectra peaks and the mass shifts during HDX are indicated.

The unambiguous formation of ROOH was not only observed from the 3-methylglutaric
acid systems, but also from the other studied OA surrogates, as shown in Figures S3—-S10. We
further calculated the intensity-based fractions of ROOH among the first-generation
functionalization products (i.e., the sum of ROOH, R-n=0, and ROH) in the oxidized OA under a
range of *OH exposure (7.6 x 10''=1.5 x 10'2 molecules cm™ s) for all the investigated OA
surrogates (Figure 3). We found that high [HO2*]/[*OH] leads to an increase in the ROOH fractions

for all the model systems except for tricarballylic acid. This suggests that the proposed ROOH

13



245  formation from RO2* + HO»® is rather a generic reaction during heterogeneous oxidation of OA.
246  The relative abundance of ROOH for these OA surrogates ranges from 0.37+0.02% to 10.37+1.10%
247  under [HO2*)/[*OH] < 1 but are enhanced to 1.83+0.06% — 24.95+0.53% under [HO2*]/[*OH] ~
248  40. It should also be emphasized that ROOH are known to be thermally labile and could undergo
249  decomposition during thermal desorption in TD-CIMS.’#®! To provide some quantitative
250  constraint of the thermal decomposition, we generated a well-known gas-phase ROOH, isoprene
251  hydroxy hydroperoxide (ISOPOOH, CsH1003)* 6265 in the FTR from isoprene oxidation, which
252  is the dominant product detected at m/Q 245 Th by I"-CIMS.%¢ The isoprene oxidation products
253  including ISOPOOH was sampled by the TD-CIMS under room temperature and 180 °C (the same
254  operation temperature for the oxidized OA model systems). We found that the CsHi0O3 signal
255  dropped by ~2/3 under 180 °C (Figure S11), indicating that the actual ROOH can be 3 times more
256  substantial than the results reported in Figure 3. Taking the ROOH thermal decomposition loss
257  into account, the ROOH relative abundance in 3-methylglutaric acid heterogeneous oxidation
258  under [HO2*)/[*OH] ~ 40 are in similar magnitude between the TD-CIMS measurements (~6%)
259  and the (—)ESI-MS data (~10%, Figure 1). The ROOH relative abundance among the first-
260  generation functionalization products approximately reflects the branching ratio of RO2* + HO>*
261  against RO2* + ROz*. These results thus suggest that the branching ratio of RO2* + HO2*® in
262  heterogeneous OA oxidation under atmospheric [HO2*]/[*OH] may account for up to ~50% of the
263  RO»* bimolecular fates, estimated using the highest ROOH contribution shown in Figure 3
264  considering thermal decomposition. We should note that this approximation assumes that all the
265  functionalization products have similar sensitivities in I"-CIMS and similar sensitivities in (—)ESI-
266  MS, which is not confirmed due to the lack of authentic standards. But it is likely a reasonable

267  estimate considering the similar chemical structures of the products for each OA surrogate system.

14



268  However, different ROOH may have distinct thermal decomposition behavior and treating all

269  ROOH the same could lead to some uncertainties.
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271  Figure 3. The intensity-based relative abundance (%) of ROOH among the first-generation
272 oxidation products for different OA surrogates under [HO2*]/[*OH] < 1 vs. [HO2*]/[*OH] ~ 40.
273

274 Obviously, the ROOH enhancement (by a factor of 1.3 — 5.0) is to a much lesser degree
275  compared to that of [HO2*] (by a factor of > 40) and the reason for this is unclear. We suspect that
276  the HO:® uptake and reaction with RO2* is more efficient under lower [HO2*]. The other possible
277  explanation is that the bimolecular autoxidation (i.e., RO2* + R—H) that we previously proposed
278  may partly contribute to the observed ROOH.> This would be surprising and may suggest that the
279  bimolecular autoxidation may be rapid enough to compete with RO2* + RO2*/ HO:* reactions even
280  under high [*OH]. Future studies are warranted to elucidate the ROOH formation mechanisms

281  under low [HO2*]/[*OH]. But regardless, the enhanced ROOH formation with higher [HO2*]/[*OH]
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reported here clearly demonstrates the occurrence and importance of RO2* + HO2*® reactions in

heterogeneous OA oxidation.

The role of HO:* in heterogeneous oxidation kinetics and molecular composition

With the elucidation of ROOH formation from ROz* + HO:* reactions, we continue to
examine how HO2* affects the OA oxidative aging kinetics. It is well known that the RO2* + RO>*
reactions may partly form RO®, which can abstract H from R—H and form RO2* (known as chain
propagation). This process effectively contributes to the R—H degradation.® 3* The substantial
presence of HO2* could compete with RO:* to react with RO2* and hence reduce the RO*® formation
from RO2* + RO»* as a smaller fraction of RO2® undergoes self-reaction. By this mechanism, it is
expected that the OA oxidation kinetics may be slower with enhanced HO>°®. Here, we investigated
the degradation of 3-methylglutaric acid as a function of *OH exposure and obtained the oxidation
kinetics from the GC-MS measurements. As shown in Figure S12, the enhancement of HO2® plays
a negligible role in the decay rates of 3-methylglutaric acid within the measurement uncertainties,
suggesting that the RO2* + HO:* reactions offset the reduced RO*® formation from inhibited RO2*
+RO2* and sustain the secondary chemistry. This can be explained by that RO2* + HO2* reactions
also directly produce RO* (and release *OH);2%-2* the ROOH may also be photolyzed into RO* and
*OH.1%-23-26 Indicated by the kinetic results for the case of 3-methylglutaric acid, the RO* and *OH
from RO2* + HO:* contributed to 3-methylglutaric acid oxidation to a similar extent as RO* from
RO2* + RO2".

As reported by Kurtén et al.” for gas-phase RO2* + HO:°®, the RO*® + *OH formation

pathway may have a large branching ratio if the RO2* is on a tertiary carbon.?!?* In contrast, the
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less substituted primary and secondary RO»* are likely the main contributors to ROOH formation.
In the case of 3-methylglutaric acid, the primary oxidation site is the tertiary carbon, followed by
the primary carbon, while the two secondary carbons adjacent to the carboxylic acids are less
oxidized due to the mesomeric effect, as discussed in our prior work and supported by new isomer-
resolved GC-MS results (Figure S13).3° For example, the dominant alcohol product (> 80%) has
the —OH group on the tertiary carbon; the dominant carbonyl product (> 80%) has the C=O group
on the primary carbon (i.e., an aldehyde). This aldehyde tends to be further oxidized into
tricarballylic acid. Based on this, a mechanism for 3-methylglutaric acid *OH oxidation is shown
in Figure 4.5 2% 6.9 Tt is expected that, by reacting with HO:°®, the dominant tertiary RO2* mainly
produces RO® + *OH and the less abundant primary RO2* mainly forms ROOH.?!">* This agrees
with that the relative abundance of ROOH during 3-methylglutaric acid oxidation is on the lower
side among all the studies OA surrogates (Figure 3). In fact, as shown in Figure 3, all the studied
OA model compounds with tertiary carbons as the primary oxidation sites have relatively lower
ROOH abundance, while those with secondary and primary carbons as the main oxidation sites
(i.e., 1, 3, 5-cyclohexanetricarboxylic acid, camphoric acid, adipic acid and suberic acid) exhibit
much stronger ROOH formation. These discrepancies among different OA model systems are

highly consistent with our proposed RO2* + HO2* mechanisms.
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Figure 4. The proposed mechanism of *OH-initiated heterogeneous oxidation of 3-methylglutaric

acid mediated by HO2* reactions.

Despite the little influence on the oxidation kinetics for 3-methylglutaric acid, HO2* have

a greater impact on OA molecular composition through heterogeneous oxidation. As expected, the

formation of ROH and R-u=0 from RO2°* + RO2* reactions is suppressed under high [HO2°*]/[*OH]

because more RO2*® react with HO2* (Figure S14A — B). Due to the RO® produced from RO2* +

HO2* sustaining the chain propagation chemistry from which ROH is a product (Figure 4),2%-23 it

is also expected that suppression for ROH is to a lesser extent than R-n=0. However, this is not

the case. In fact, the ratio of R.y=O/ROH slightly increases with higher HO>* (Figure S15),

indicating an efficient pathway to form R-y=0 with ROOH involved. We suggest that R-u=0 can
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be formed from further *OH oxidation of the primary ROOH with *OH as the co-product (Figure
4). The tertiary RO® can also undergo fragmentation reactions to produce smaller molecules,
mainly acetoacetic acid (C4HgO3, Figure 4).>°* As shown in Figure S16A, the absolute intensities
of acetoacetic acid measured by TD-CIMS under different [HO2°]/[*OH] vary insignificantly,
agreeing with the discussion above that RO2* + HOz® reactions offset the decreased formation of
RO* from ROz* + RO:*. On the other hand, the much higher abundance of acetoacetic acid relative
to ROH + R.p=0 in the presence of additional HOz* (Figure S16B) suggests that a great fraction
of the RO*® that undergoes fragmentation comes from RO2* + HOz®, rather than RO2* + RO:".
Finally, we examined how HO:* affected the overall OA composition. As shown in Figure
S17, we present the average carbon oxidation state (OSc) and O/C ratio from the 3-methylglutaric
acid heterogeneous oxidation under different [HO2*] and [*OH] conditions, based on the observed
(-)ESI-MS intensities of all the observed oxidation products with chemical formulas of Ci-sHo-
1003-8. The OSc and O/C ratios increase by ~0.10 and ~0.05, respectively, as [HO2*] increased by
sevenfold under a constant lower [*OH] of ~ 4.4 x 10° molecules cm™, indicating that HO2*
facilitates OA chemical evolution. In contrast, in similar experiments but with higher [*OH] of ~
2.4 x 10'° molecules cm, the OSc and O/C ratios do not exhibit as prominent increasing trends
with enhanced [HO:*]. These results suggest that under high [*OH] and hence high [RO2*], RO2*
+ RO2° reactions are already sufficient, and thus the impacts of HO2*® on the overall heterogeneous

oxidative aging is less pronounced.

The interfacial nature of RO2° + HO>*
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In order to further investigate where the RO2* + HO2* reactions take place in the particles,
we examined ROOH formation under both high-RH and low-RH conditions using 3-
methylglutaric acid. It was expected that the HO2® uptake is more effective under higher RH,?: 30
but surprisingly, the ROOH formation was higher under lower RH regardless of [HO2*]/[*OH]
(Figure 5A). The higher ROOH relative abundance under the low-RH condition turns out to be a
result of both more strongly increased ROOH signals and decreased R-n=0O and ROH signals from
the TD-CIMS measurements. The more prominent decrease in R-u=0 and ROH intensities under
lower RH is expected due to larger diffusion limitation and reduced parent OA reactivities.”® But
unexpectedly, the slower oxidation and hence reduced ROz* formation is somehow offset by the
promoted RO2* + HO2* which leads to higher ROOH. Previous studies have reported that aerosol
particles containing low water contents tend to have negligible HO2* uptake due to the diffusion
limitation.?® 3° The key difference here is that the OA particles interacting with gaseous HO2® are
oxidized and contain RO2* at the interface. We thus hypothesize that the higher ROOH fractions
under lower RH is because the RO2* + HO»* reaction takes place at the particle interface
immediately after collision, rather than by the absorption mechanism. The viscosities for the
probing compound, 3-methylglutaric acid, were estimated to be 2.06 x 10" and 6.22 x 102 Pa s
under low and high RH, respectively, using the AIOMFAC model as described in our previous
work.> 3 Despite the reduced total RO2® formation under the low-RH conditions, the formed RO:*
are less mobile and more effectively accumulated at the particle surface region due to slower
diffusion, allowing the colliding HO:* to react with the interfacial RO2* more readily. Previous
studies suggested that functionalized ROOH such as hydroxymethyl hydroperoxides’! and a-
acyloxyalkyl hydroperoxides’”> may undergo water-catalyzed decomposition, with the

decomposition time scale for a-acyloxyalkyl hydroperoxides at ~10—-30 min. This is much longer
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than the experimental time scale in this work (i.e., ~1 min). For the generic ROOH studied here,
the aqueous decomposition is likely even slower, which suggests that aqueous decomposition is
not the major reason for our observation shown in Figure 5A. In addition, the oxidized aerosols
under two different RH conditions were collected by the spot sampler where the particles were
grown into aqueous droplets under supersaturation conditions and sit in the form of droplets for a
few minutes before the (—)ESI-MS analysis. Thus, the fact that the (—-)ESI-MS results (Figure S18)
are consistent with those from TD-CIMS rules out possibility that the lower ROOH under the high-
RH condition is due to aqueous decomposition. Rather, we suggest that the ROOH formation is
indeed promoted under the low-RH condition. Moreover, by varying the concentration of 3-
methylglutaric acid in the aerosol atomizer, the particle size distribution was also modified,
resulting in varied particle surface-to-volume ratio by a factor of two. With increased surface-to-
volume ratio, the ROOH relative abundance through the same heterogeneous oxidation
experiments (i.e., identical [*OH] and [HO2*]) also increased (Figure 5B), supporting the above
hypothesis that the RO2* + HO:* reaction occurs at particle interface. In the atmosphere, particle
surface uptake is an important loss pathway for gaseous HO2*.2"-3!-7* We suggest that the presence
of RO2* at the interface in the particle bound could enhance the HO:* uptake and also

heterogeneous ROOH formation.
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Figure 5. The fractions of ROOH among the first-generation functionalization products under (A)
varied RH and [HO2°*]/[*OH] conditions as a function of *OH exposure, and (B) varied surface-to-

volume ratios.

Atmospheric Implications

In this work, we report heterogeneous RO2* + HO:* reactions during °*OH-initiated
oxidative aging for several oxygenated OA model systems. Direct observations of ROOH
formation from these reactions are shown for the first time by using HDX with the TD-CIMS
analysis. The heterogeneously formed ROOH may contribute significantly to the total oxidized
OA. Evidence is also shown to support that the heterogeneous RO2* + HOz* reactions may also
produce RO*® + *OH for tertiary RO2°, similar to that reported in the gas-phase systems.?’2* These
two RO:2* + HO:* reaction pathways together facilitate compositional change of the
heterogeneously oxidized OA particles. This HO2*-involved chemistry is suggested to occur at the

particle interface and is promoted when the interface is enriched with RO>°.
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Prior field observations suggested significant loss of HO2® through aerosol uptake.”*”” The
work reported here provides new mechanistic insights into the subsequent fates of the uptaken
HO:* in the particle phase. The first RO2* + HO2* pathway leads to the formation of ROOH, which
are a class of reactive oxygen species that are known to cause adverse health effects.”® This reaction
has been highly emphasized in the gas phase for decades because ROOH substantially contribute
to the atmospheric secondary organic aerosols.!® > 7 The ROOH formation via heterogeneous
oxidative reactions reported here has not been recognized despite of the general hypothesis.® The
other RO2* + HO2*® pathway forms RO* + *OH,?%-23 thus recycling radicals in the condensed phase
and propagating secondary chemistry. In the explicitly studied 3-methylglutaric acid system, this
pathway is likely very important, owing to the tertiary carbon as the primary oxidation site. It
remains to be studied to what extent the other OA model compounds undergo this pathway and
how the varied results may affect the overall oxidation kinetics. It is likely that for compounds that
more dominantly undergo the first pathway and form ROOH, the overall oxidation could be slower.
Nevertheless, the products from heterogeneous RO2* + HO2® reactions are crucial species and
intermediates and may impact the OA composition and properties significantly.

This work, together with several of our prior studies,> 3¢ 3 demonstrate that the multiphase
oxidation of OA particles can have very complex mechanisms and kinetics, especially when the
oxidation occurs under atmospherically relevant conditions (e.g., in the presence of inorganic
species, lower [*OH], and higher [HO2*]/[*OH]). These results suggest that typical laboratory
experiments do not accurately mimic atmospheric multiphase oxidation processes. The key
environmental factors need to be better represented in laboratory setup and their influences need
to be systematically investigated in future studies to help better understand OA chemical evolution

in the atmosphere.
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