

1 **Role of Hydroperoxy Radicals in Heterogeneous Oxidation of Oxygenated**
2 **Organic Aerosols**

3

4 Wen Zhang¹, Kassem Issa², Tiffany Tang¹, Haofei Zhang^{1*}

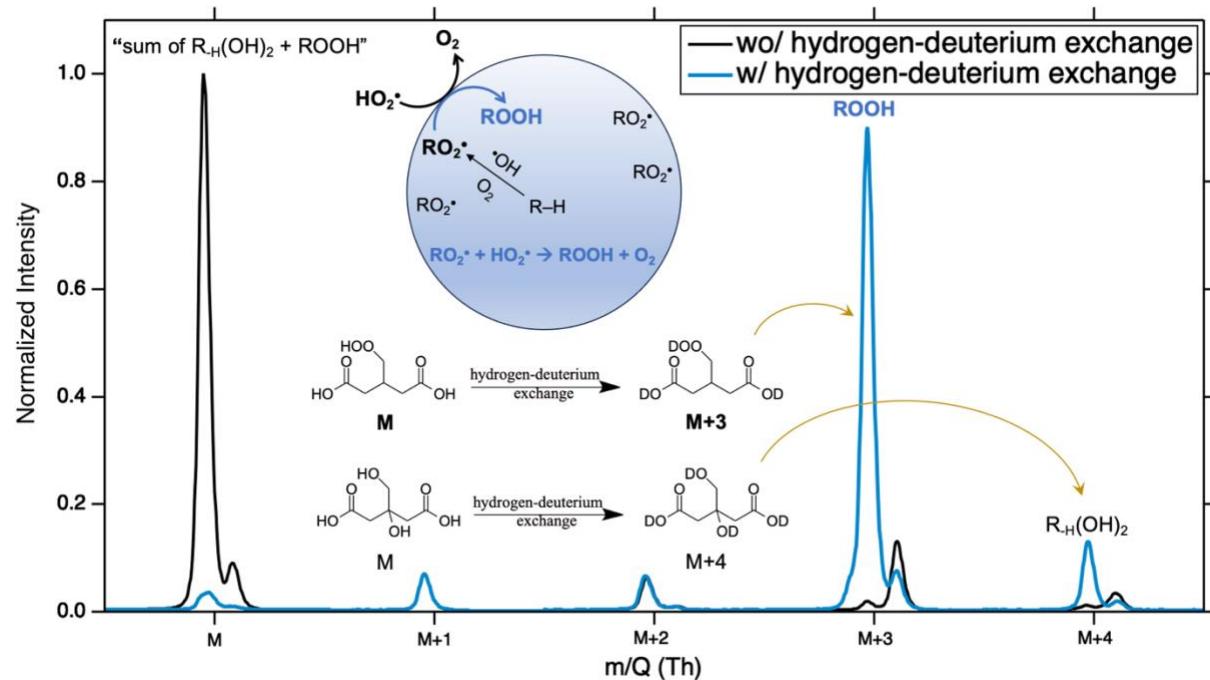
5 ¹Department of Chemistry, University of California, Riverside, California 92507, USA

6 ²Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside,
7 California 92507, USA

8 *Corresponding Author. Email: haofei.zhang@ucr.edu

9 **Abstract**

10 Heterogeneous oxidative aging of organic aerosols (OA) occurs ubiquitously in the
11 atmosphere, initiated by oxidants such as the hydroxyl radicals ($\cdot\text{OH}$). Hydroperoxyl radicals
12 (HO_2^\bullet) are also important oxidant in the troposphere and its gas-phase chemistry has been well
13 studied. However, the role of HO_2^\bullet in heterogeneous OA oxidation remains elusive. Here, we carry
14 out $\cdot\text{OH}$ -initiated heterogeneous oxidation of several OA model systems under different HO_2^\bullet
15 conditions in a flow tube reactor and characterize the molecular oxidation products using a suite
16 of mass spectrometry instrumentation. By using hydrogen-deuterium exchange with thermal
17 desorption iodide-adduct chemical ionization mass spectrometry, we provide direct observation of
18 organic hydroperoxide (ROOH) formation from heterogeneous HO_2^\bullet and peroxy radicals (RO_2^\bullet)
19 reactions for the first time. The ROOH may contribute substantially to the oxidation products,
20 varied with the parent OA chemical structure. Furthermore, by regulating RO_2^\bullet reaction pathways,
21 HO_2^\bullet also greatly influence the overall composition of the oxidized OA. Lastly, we suggest that
22 the $\text{RO}_2^\bullet + \text{HO}_2^\bullet$ reactions readily occur at the OA particle interface rather than in the particle bulk.
23 These findings provide new mechanistic insights into the heterogeneous OA oxidation chemistry
24 and help fill the critical knowledge gap in understanding atmospheric OA oxidative aging.


25

26 **Keywords:** Interfacial chemistry, peroxy radicals, organic hydroperoxides, hydrogen-deuterium
27 exchange, mass spectrometry

28

29 **Synopsis:** Hydroperoxyl radicals leads to the formation of organic hydroperoxides at aerosol
30 particle interface during heterogeneous oxidation of organic aerosols in the atmosphere.

31 TOC:

32

33 **Introduction**

34 Organic aerosols (OA) account for a large fraction of fine particulate matter (PM_{2.5}) in the
35 atmosphere, significantly impacting climate, visibility and human health.¹⁻³ Throughout their
36 lifetime, OA particles undergo heterogeneous oxidative aging by gaseous oxidants, such as
37 hydroxyl radical (•OH), which continuously affect their reactivity, chemical composition, and
38 properties.⁴⁻⁶ Hydroperoxyl radicals (HO₂•), closely coupled with •OH, are another important gas-
39 phase reactive oxidants in the atmosphere and are primarily generated by daytime photochemical
40 reactions.⁷⁻⁹ The typical tropospheric [HO₂•]/[•OH] ratios are approximately within the range of
41 10–100, with [HO₂•] up to the order of 10⁸ molecules cm⁻³.¹⁰⁻¹³

42 The oxidation mechanism and related kinetics of HO_x• (≡ HO₂• + •OH) reactions are well-
43 studied in the gas phase.¹⁴⁻¹⁷ •OH initiates the oxidation of a generic gas-phase organic molecule
44 (R–H) by H abstraction to produce an alkyl radical (R•), and a subsequent peroxy radical (RO₂•)
45 is formed after molecular oxygen addition. In the absence of nitrogen oxides, the RO₂• primarily
46 undergo bimolecular reactions with HO₂• to form organic hydroperoxides (ROOH) and with
47 another RO₂• to produce an alcohol–carbonyl pair (i.e., ROH and R–H=O), wherein both pathways
48 could also form alkoxy radicals (RO•) with varied branching ratios depending on the RO₂•
49 structure.¹⁸⁻²³ The labile hydroperoxide functionality in ROOH has a significant impact on the
50 subsequent organic degradation and evolution in both the gas and particle phases.^{19, 24-26} In strong
51 contrast to this well-known gas-phase HO₂• chemistry, the mechanistic understanding of the
52 multiphase HO₂• processes is very limited despite that kinetic observations of HO₂• uptake on the
53 interface of aerosol particles have been widely reported, especially for aqueous aerosols.²⁷⁻³² For
54 example, Lakey et al.²⁹ reported HO₂• uptake onto aerosol particles with the uptake coefficient
55 from < 0.004 (dry particles) to ~0.09 (aqueous particles) in laboratory studies; Copper et al.²⁷ and

56 Zhou et al.³¹ observed HO₂• uptake onto ambient aerosols with the uptake coefficient of 0.025 –
57 0.24. George and Abbatt⁶ summarized the heterogeneous •OH oxidation mechanisms of OA in
58 analogy to the gas-phase oxidation and proposed that the RO₂• + HO₂• reactions proceed in a
59 similar manner leading to ROOH formation. But to our knowledge, no prior work has reported the
60 direct observation of this pathway. For instance, previous studies have attempted to indirectly
61 probe ROOH formation by including the reaction mechanism in a kinetic model²³ or estimating
62 the number of oxygen atoms added per reacted parent OA.³³ But conclusive evidence for ROOH
63 formation in heterogeneous oxidation was not provided due to the challenges in directly detecting
64 ROOH. Furthermore, it is unclear how gaseous HO₂• affects heterogeneous OA oxidation kinetics
65 and molecular composition by regulating RO• formation and hence secondary chain propagation
66 chemistry.^{6, 23, 34} Lastly, it is also elusive whether the RO₂• + HO₂• reactions (if any) occur at the
67 particle interface following collisions or in the bulk by the absorption mechanism.²⁹

68 In the study, we perform •OH-initiated heterogeneous oxidation experiments of several
69 oxygenated OA model systems under varied [•OH] and [HO₂•] with controlled [HO₂•]/[•OH] ratios.
70 These OA model surrogates contain multiple functional groups with a wide range of O/C ratios of
71 0.40 – 1.00, representing moderately to highly oxidized OA in the atmosphere. We characterize
72 the molecular composition of the heterogeneously oxidized OA by a suite of mass spectrometry
73 instrumentation.^{5, 35-37} From these measurements, we report direct observation of ROOH formation
74 and propose the •OH-initiated heterogeneous OA oxidation mechanisms under atmospherically
75 relevant [HO₂•]/[•OH] ratios.

76

77 **Materials and Methods**

78 ***Chemicals and reagents***

79 The chemicals and reagents with their purities and suppliers used in this study are as
80 follows: 3-methylglutaric acid (TCI, >99.0%), adipic acid (Sigma-Aldrich, ≥99.5%), glucose
81 (TCI, >98%), tricarballylic acid (Acros Organics, 99%), 1, 2, 3, 4-butanetetracarboxylic acid
82 (Acros Organics, >99%), camphoric acid (Sigma-Aldrich, 99%), 1, 3, 5-cyclohexanetricarboxylic
83 acid (Sigma-Aldrich, cis 90%), suberic acid (TCI, >99%), xylitol (Acros Organics, >99%),
84 methanol (Fisher Chemical, 99.9%), hydrogen peroxide (H₂O₂, Fisher Chemical, 30% aq. soln.),
85 water (Fisher Chemical, HPLC Grade Submicron Filtered), deuterium oxide (thermo scientific,
86 99.8 atom % D), toluene (Certified ACS, 99.9%), pyridine (DriSolv., 99.8%), BSTFA W/1%
87 TMCS (Restek Corporation), acetonitrile (Fisher Chemical, 99.95%), tartaric acid (TCI, >99.0%)
88 and isoprene (Alfa Aesar, 99%). None of the above chemicals nor regents were used with further
89 purification.

90

91 ***Experimental details***

92 All experiments were carried out in a Quartz laminar flow tube reactor (FTR, ~4.12 L)
93 under room temperature (~ 295 ± 2 K).^{5, 35-39} The relative humidity (RH) was adjusted by
94 controlling the fractions of clean dry air through vs. bypassing a water bubbler to achieve the
95 relatively high-RH condition (77 ± 3%) or low-RH condition (32 ± 3%). The total flow rate in the
96 FTR was 4 L min⁻¹, corresponding to a residence time of ~ 60 s. O₃ was introduced into the FTR
97 by passing pure O₂ through an ozone generator (Jelight, Model 610). •OH were generated by O₃
98 photolysis in the presence of water vapor by two mercury UV lamps ($\lambda = 254$ nm). A total of nine
99 OA model compounds with multiple different functional groups were studied under high-RH

100 conditions, including 3-methylglutaric acid ($C_6H_{10}O_4$), adipic acid ($C_6H_{10}O_4$), glucose ($C_6H_{12}O_6$),
101 tricarballylic acid ($C_6H_8O_6$), 1, 2, 3, 4-butanetetracarboxylic acid ($C_8H_{10}O_8$), camphoric acid
102 ($C_{10}H_{16}O_4$), 1, 3, 5-cyclohexanetricarboxylic acid ($C_9H_{12}O_6$), suberic acid ($C_8H_{14}O_4$), and xylitol
103 ($C_5H_{12}O_5$). A constant output aerosol atomizer (TSI Inc. Model 3076) was used to generate
104 polydisperse OA particles from aqueous solutions (1 g L^{-1}) of these model compounds. The typical
105 OA particle mass loading in the FTR was $2600 - 5000\text{ }\mu\text{g m}^{-3}$; the mean surface-weighted particle
106 diameters of the generated OA surrogates were in the range of $200 \pm 20\text{ nm} - 240 \pm 30\text{ nm}$. The
107 high aerosol mass loadings are necessary to ensure that minimal fractions of the OA species, which
108 already have low volatilities, are in the gas phase such that any observed ROOH is formed in the
109 condensed phase. For these nine model systems, two oxidation conditions were examined, i.e.,
110 $[\text{HO}_2^\bullet]/[\cdot\text{OH}] < 1$ vs. $[\text{HO}_2^\bullet]/[\cdot\text{OH}] \sim 40$ (see the section below and **Supporting Information, SI**,
111 **Table S1** for experimental details). Among these OA surrogates, 3-methylglutaric acid was
112 investigated in greater detail under more experimental conditions, including varied RH and particle
113 sizes, more scattered $[\text{HO}_2^\bullet]/[\cdot\text{OH}]$ scenarios, and more comprehensive product characterization.
114 This allows for a closer examination of the HO_2^\bullet heterogeneous chemistry and its impacts on the
115 oxidation kinetics and OA molecular composition.

116 The OA particle size distribution and number concentration were measured by a scanning
117 electrical mobility sizer (SEMS) and mixing condensation particle counter (MCPC), respectively
118 (Brechtel Inc., 2100). O_3 concentration was measured by an ozone analyzer (Thermo
119 Environmental Instrument, Inc., 49C) after a HEPA filter that removes particles at the FTR exit.
120 The OA particles were guided through a charcoal denuder to remove gas-phase compounds
121 followed by a 1.6 L min^{-1} dilution flow containing humidified air with H_2O or D_2O . With D_2O , it
122 allows for hydrogen-deuterium exchange (HDX) on any labile hydrogen atoms (i.e., H in $-\text{O}-\text{H}$

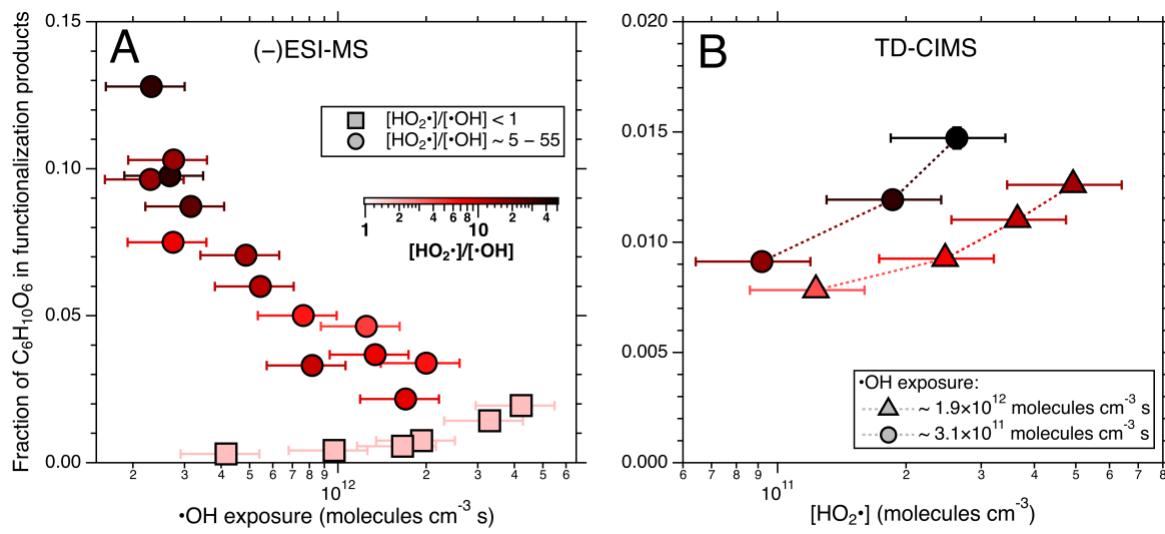
123 and $-\text{O}-\text{O}-\text{H}$ converted to D).⁴⁰ HDX is a useful approach to determine the number of active
124 hydrogen attached to heteroatom, helping separate and detect individual molecules of alcohols,
125 phenols, carboxylic acids, hydroperoxides, amines, and amides, etc. from complex mixtures.⁴¹⁻⁴³
126 However, the exchange of hydrogen and deuterium is reversible and the exchange rate relies on
127 experimental conditions.^{42, 43} Thus, the completeness of HDX needs to be verified. The diluted OA
128 particles were then sampled by a thermal desorption chemical ionization time-of-flight mass
129 spectrometer (TD-CIMS, Aerodyne Research Inc., $\text{m}/\Delta\text{m} \sim 4000$) with the I^- chemical ionization
130 source for real-time molecular composition analysis, with the TD temperature set to 180 °C to
131 vaporize most OA species.^{5, 38} The effectiveness of the set TD temperature was tested by measuring
132 the ratios of particle mass loading through the TD tubing with versus without heating. As a result,
133 under this TD temperature, only $\sim 0.8\%$ and $\sim 1.6\%$ of unoxidized and oxidized 3-methylglutaric
134 acid particles remained in the particle phase, respectively, indicating the high efficiencies of
135 vaporizing the OA particles into the gas phase. In addition to real-time characterization, aerosol
136 samples at all oxidation stages were collected by a sequential spot sampler (Aerosol Devices Inc.,
137 SS110) for offline analyses using an electrospray ionization time-of-flight mass spectrometer in
138 the negative ion mode ((-)ESI-MS, Aerodyne Research Inc.)³⁸ and a gas chromatography mass
139 spectrometer (GC-MS, Agilent Inc., 7890 GC and 5975 MSD) with prior derivatization^{39, 44, 45} in
140 the 3-methylglutaric acid experiments. The (-)ESI-MS was utilized to examine the role of HO_2^\bullet
141 in the comprehensive OA molecular composition. The GC-MS analysis was conducted to study
142 the HO_2^\bullet impacts on heterogeneous OA oxidation kinetics and provide some insights into the
143 isomer-resolved products.

144

145 ***HO_x• control and estimation***

146 For the heterogeneous oxidation experiments requiring higher $[HO_2^\bullet]/[^\bullet OH]$, methanol was
147 continuously injected into the FTR by a syringe pump (Chemex Inc.) at controlled rates. The $^\bullet OH$
148 oxidation of methanol is known to efficiently generate HO_2^\bullet .⁴⁶⁻⁴⁸ Without a detection method to
149 directly quantify $[^\bullet OH]$ and $[HO_2^\bullet]$, their concentrations were estimated by a photochemical box
150 model based on MCM v3.2 including all the inorganic gas-phase reactions and methanol oxidation
151 mechanism.^{39, 49, 50} The chemical reactions to generate $^\bullet OH$ and HO_2^\bullet in the box model are listed
152 in the **SI, Table S2**. The estimation of $[^\bullet OH]$ was carried out using this approach in our prior
153 studies.^{39, 51} In these reactions, the only unknown parameters are O_3 photolysis rate constant and
154 $^\bullet OH$ and HO_2^\bullet wall loss rate constants.⁵¹ We set these values as tuning parameters and optimized
155 their values to reach the best measurement-simulation agreement. Specifically, the measured and
156 simulated $[O_3]$ were used to constrain O_3 photolysis rates; $[^\bullet OH]$ experimentally determined by
157 the consumption of methanol measured using a high-sensitivity proton-transfer-reaction mass
158 spectrometer (PTR-MS, Ionicon Analytik Inc.) were used to constrain $^\bullet OH$ wall loss rate constant
159 in the box model. Lastly, the production of H_2O_2 has been used to estimate $[HO_2^\bullet]$ in prior research
160 because HO_2^\bullet is the principal H_2O_2 source.^{52, 53} We followed the same approach and constrained
161 the HO_2^\bullet wall loss rate constant by comparing simulated $[H_2O_2]$ ⁵³ with that quantified using H_2O_2
162 standards detected by I^- -CIMS. The model performance was verified by comparing simulation
163 outputs and measurements in characteristic experiments (**Figure S1**). The comparison results
164 suggest that the model can simulate $[^\bullet OH]$ and $[HO_2^\bullet]$ within 30% accuracy under most
165 experimental conditions. The model results suggest that in the absence of added methanol, HO_2^\bullet
166 can be produced by $^\bullet OH + O_3$, but the resultant $[HO_2^\bullet]/[^\bullet OH]$ ratio is only < 1 , much lower than
167 atmospheric conditions. With methanol oxidized by $^\bullet OH$, we can achieve much higher

168 $[\text{HO}_2^\bullet]/[\cdot\text{OH}]$ by regulating O_3 and methanol injection concentrations. We hence used this box
169 model to design the initial $[\text{O}_3]$ and [methanol] in experiments to reach controllable $[\text{HO}_2^\bullet]/[\cdot\text{OH}]$
170 with maximum values ~ 55 , which is relevant to real atmospheric conditions. The $\cdot\text{OH}$ exposure
171 ranged from 9×10^{10} to 4×10^{12} molecules $\text{cm}^{-3} \text{ s}$ in all experiments.


172

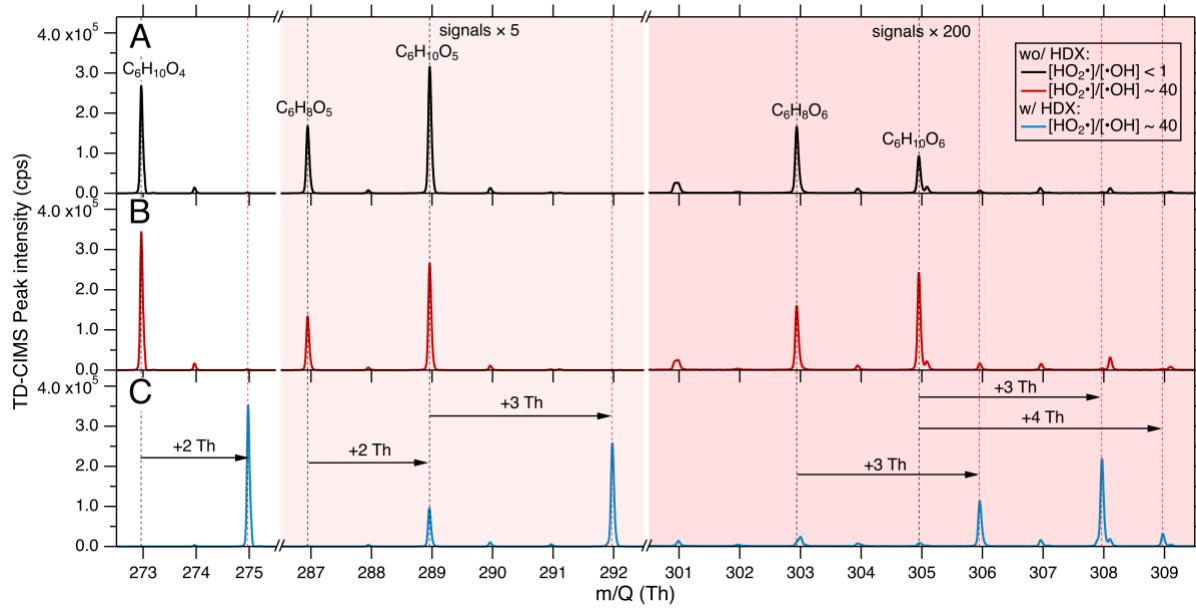
173 **Results and Discussion**

174 ***ROOH formation during OA heterogeneous oxidation***

175 Consistent with the well-accepted mechanism described above, the OH -initiated
176 heterogeneous oxidation of all the studied oxygenated OA surrogates forms a series of multi-
177 functionalized products through RO_2^\bullet self-reaction, including the first-generation products of
178 carbonyls ($\text{R}-\text{H}=\text{O}$), alcohols (ROH), along with the second-generation products of dicarbonyls [$\text{R}-$
179 $_{3\text{H}}(\text{=O})_2$], hydroxycarbonyls [$\text{R}-_{2\text{H}}(\text{=O})\text{OH}$], and diols [$\text{R}-_{\text{H}}(\text{OH})_2$].^{5, 6, 33, 35} Because ROOH and the
180 diol are isomers, it is impossible to differentiate them by typical mass spectrometry analysis,
181 causing challenges for ROOH identification. But because they are formed by different oxidation
182 generations and pathways, we attempt to demonstrate their different abundances under varied $[\cdot\text{OH}]$
183 and $[\text{HO}_2^\bullet]$. In the (–)ESI-MS results for 3-methylglutaric acid oxidation shown in **Figure 1A**,
184 $\text{C}_6\text{H}_{10}\text{O}_6$ [sum of ROOH and $\text{R}-_{\text{H}}(\text{OH})_2$] were formed with very limited fraction among all the
185 major functionalization products (< 1% signals) under $[\text{HO}_2^\bullet]/[\cdot\text{OH}] < 1$ and low $[\cdot\text{OH}]$. Its relative
186 abundance increases with enhanced $\cdot\text{OH}$ exposure, indicative of the formation of the second-
187 generation product $\text{R}-_{\text{H}}(\text{OH})_2$.³³ In contrast, under identical $[\cdot\text{OH}]$ and thus likely similar amount
188 of $\text{R}-_{\text{H}}(\text{OH})_2$, the fractions of $\text{C}_6\text{H}_{10}\text{O}_6$ are much greater (up to $\sim 10\%$) with higher $[\text{HO}_2^\bullet]/[\cdot\text{OH}]$.
189 The gap is especially significant under lower $[\cdot\text{OH}]$, suggesting that ROOH formed from $\text{RO}_2^\bullet +$
190 HO_2^\bullet is likely the dominant contributor to $\text{C}_6\text{H}_{10}\text{O}_6$ where multigenerational oxidation is limited.

191 Likewise, results from the TD-CIMS measurements of relative $C_6H_{10}O_6$ signals from 3-
 192 methylglutaric acid oxidation (**Figure 1B**) under two constant conditions of $\cdot OH$ exposure
 193 conditions both exhibit increasing trends as a function of $[HO_2^\bullet]$, supporting formation of ROOH
 194 from $RO_2^\bullet + HO_2^\bullet$. Notably, the fractions of $C_6H_{10}O_6$ among the major products are always higher
 195 under lower $\cdot OH$ exposure condition, further suggesting that ROOH as a main contributor.

196

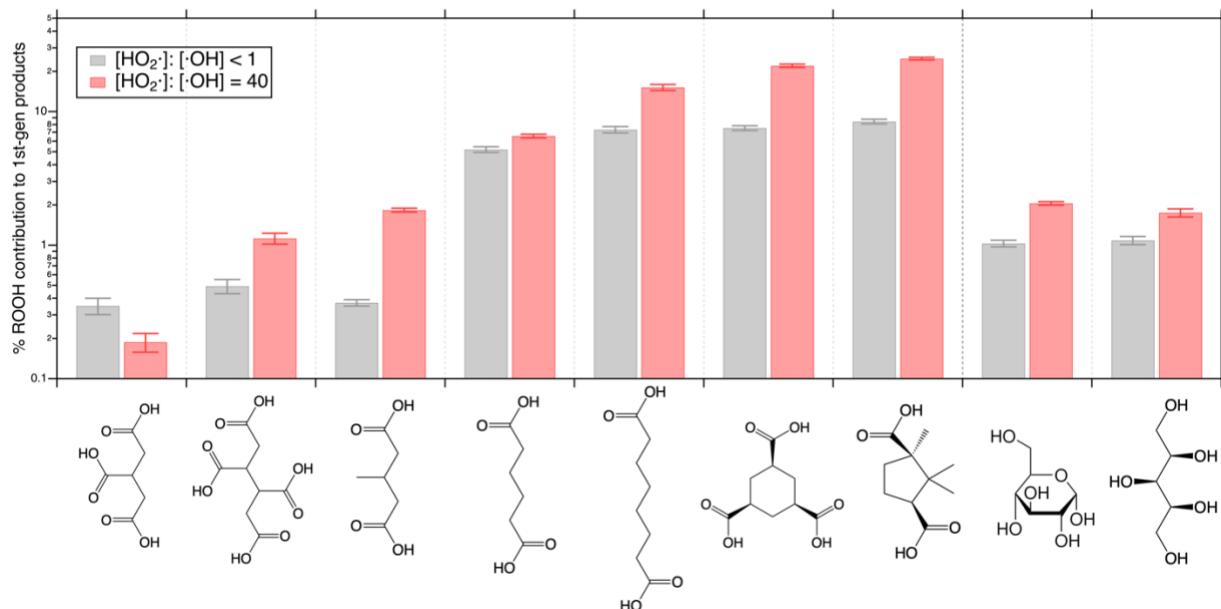

197 **Figure 1.** The fractions of $C_6H_{10}O_6$ in all the functionalization products, including $C_6H_8O_5$ (R-
 198 $H=O$), $C_6H_{10}O_5$ (ROH), $C_6H_6O_6$ [$R_{-3}H(=O)_2$], $C_6H_8O_6$ [$R_{-2}H(=O)OH$], and $C_6H_{10}O_6$ [sum of ROOH
 199 and $R-H(OH)_2$], from 3-methylglutaric acid oxidation in (A) (-)ESI-MS results as a function of
 200 $\cdot OH$ exposure; and (B) TD-CIMS results as a function of $[HO_2^\bullet]$. The $[HO_2^\bullet]/[\cdot OH]$ ratios ranged
 201 between < 1 and 55 are indicated by the color scheme shown in (A).

202

203 **Figure 2** illustrates the TD-CIMS mass spectra for the heterogeneously oxidized 3-
 204 methylglutaric acid and **Figures S3–S10** show similar results for the other studied OA surrogates.
 205 Two conditions with identical $\cdot OH$ exposure but very different $[HO_2^\bullet]/[\cdot OH]$ are focused with the
 206 ratio of < 1 (without methanol) and ~ 40 (with methanol, determined by the box model). The

207 C₆H₁₀O₆ signals in **Figures 2A–2B** show the sum of ROOH and R-H(OH)₂, which are much
208 stronger with higher [HO₂•]/[•OH] under similar [•OH], while the differences for the other major
209 peaks are negligible (**Figure 2B** vs. **2A**), indicating the enhanced ROOH formation from RO₂• +
210 HO₂• and agreeing with results illustrated in **Figure 1**. To unambiguously determine ROOH
211 formation and abundance, we applied the HDX method to couple with the TD-CIMS to separate
212 ROOH from R-H(OH)₂. HDX is expected to occur on functional groups with labile H atoms (i.e.,
213 H in –O–H and –O–O–H).^{54–56} In the experiments using D₂O, the I[–] clusters of a detectable organic
214 molecule (i.e., [M+I][–]) were observed to undergo a m/Q shift by mass units corresponding to the
215 number of labile H atoms in the organic molecule structure. Under the assumption of identical
216 sensitivity of ROOH and R-H(OH)₂ in TD-CIMS, the I[–] adduct ion of C₆H₁₀O₆ from 3-
217 methylglutaric acid heterogeneous oxidation has a m/Q shift of 3 Th by ~85% based on peak
218 intensities, corresponding to the ROOH, and a m/Q shift of 4 Th by ~15%, corresponding to the
219 R-H(OH)₂ (**Figure 2C**). This directly demonstrates that ROOH is the major form of C₆H₁₀O₆ under
220 the studied conditions. We ruled out the possibility of incomplete HDX for R-H(OH)₂ by testing
221 tartaric acid, a chemical with two carboxylic acid groups and two alcohol groups, which exhibits
222 complete HDX with a m/Q shift of 4 Th (**Figure S2**). The other studied OA model compounds
223 with multiple alcohols or carboxylic acids also exhibit complete HDX. These results elucidate the
224 formation of ROOH during heterogeneous •OH oxidation of OA for the first time. In a prior work,
225 ROOH formation has also been reported during •OH oxidation of electrospray-generated
226 microdroplets, but whether its formation was from gaseous HO₂• reacting with aqueous RO₂• at
227 the microdroplet interface was not fully examined.⁵⁷ As a minor note, the m/Q shifts for the other
228 species in the mass spectra are also consistent with their expected functionalities. As shown in
229 **Figure 2C**, most of the initial C₆H₁₀O₆ signals are contributed by ROOH under atmospherically

230 relevant $[\text{HO}_2^\bullet]/[\cdot\text{OH}]$, strongly supporting the importance of ROOH from $\text{RO}_2^\bullet + \text{HO}_2^\bullet$ during
 231 heterogeneous $\cdot\text{OH}$ oxidation.



232
 233 **Figure 2.** The mass spectra of $\cdot\text{OH}$ -initiated heterogeneous oxidation of 3-methylglutaric acid
 234 under (A) $[\text{HO}_2^\bullet]/[\cdot\text{OH}] < 1$ in the presence of H_2O , (B) $[\text{HO}_2^\bullet]/[\cdot\text{OH}] \sim 40$ in the presence of H_2O
 235 and (C) $[\text{HO}_2^\bullet]/[\cdot\text{OH}] \sim 40$ in the presence of D_2O . The major products are labeled with the mass
 236 spectra peaks and the mass shifts during HDX are indicated.

237
 238 The unambiguous formation of ROOH was not only observed from the 3-methylglutaric
 239 acid systems, but also from the other studied OA surrogates, as shown in **Figures S3–S10**. We
 240 further calculated the intensity-based fractions of ROOH among the first-generation
 241 functionalization products (i.e., the sum of ROOH, $\text{R}-\text{H}=\text{O}$, and ROH) in the oxidized OA under a
 242 range of $\cdot\text{OH}$ exposure (7.6×10^{11} – 1.5×10^{12} molecules cm^{-3} s) for all the investigated OA
 243 surrogates (**Figure 3**). We found that high $[\text{HO}_2^\bullet]/[\cdot\text{OH}]$ leads to an increase in the ROOH fractions
 244 for all the model systems except for tricarballylic acid. This suggests that the proposed ROOH

245 formation from $\text{RO}_2^\bullet + \text{HO}_2^\bullet$ is rather a generic reaction during heterogeneous oxidation of OA.
246 The relative abundance of ROOH for these OA surrogates ranges from $0.37 \pm 0.02\%$ to $10.37 \pm 1.10\%$
247 under $[\text{HO}_2^\bullet]/[\cdot\text{OH}] < 1$ but are enhanced to $1.83 \pm 0.06\% - 24.95 \pm 0.53\%$ under $[\text{HO}_2^\bullet]/[\cdot\text{OH}] \sim$
248 40. It should also be emphasized that ROOH are known to be thermally labile and could undergo
249 decomposition during thermal desorption in TD-CIMS.⁵⁸⁻⁶¹ To provide some quantitative
250 constraint of the thermal decomposition, we generated a well-known gas-phase ROOH, isoprene
251 hydroxy hydroperoxide (ISOPOOH, $\text{C}_5\text{H}_{10}\text{O}_3$)^{53, 62-65} in the FTR from isoprene oxidation, which
252 is the dominant product detected at m/Q 245 Th by I^- -CIMS.⁶⁶ The isoprene oxidation products
253 including ISOPOOH was sampled by the TD-CIMS under room temperature and 180°C (the same
254 operation temperature for the oxidized OA model systems). We found that the $\text{C}_5\text{H}_{10}\text{O}_3$ signal
255 dropped by $\sim 2/3$ under 180°C (**Figure S11**), indicating that the actual ROOH can be 3 times more
256 substantial than the results reported in **Figure 3**. Taking the ROOH thermal decomposition loss
257 into account, the ROOH relative abundance in 3-methylglutaric acid heterogeneous oxidation
258 under $[\text{HO}_2^\bullet]/[\cdot\text{OH}] \sim 40$ are in similar magnitude between the TD-CIMS measurements ($\sim 6\%$)
259 and the ($-$)ESI-MS data ($\sim 10\%$, **Figure 1**). The ROOH relative abundance among the first-
260 generation functionalization products approximately reflects the branching ratio of $\text{RO}_2^\bullet + \text{HO}_2^\bullet$
261 against $\text{RO}_2^\bullet + \text{RO}_2^\bullet$. These results thus suggest that the branching ratio of $\text{RO}_2^\bullet + \text{HO}_2^\bullet$ in
262 heterogeneous OA oxidation under atmospheric $[\text{HO}_2^\bullet]/[\cdot\text{OH}]$ may account for up to $\sim 50\%$ of the
263 RO_2^\bullet bimolecular fates, estimated using the highest ROOH contribution shown in **Figure 3**
264 considering thermal decomposition. We should note that this approximation assumes that all the
265 functionalization products have similar sensitivities in I^- -CIMS and similar sensitivities in ($-$)ESI-
266 MS, which is not confirmed due to the lack of authentic standards. But it is likely a reasonable
267 estimate considering the similar chemical structures of the products for each OA surrogate system.

268 However, different ROOH may have distinct thermal decomposition behavior and treating all
269 ROOH the same could lead to some uncertainties.

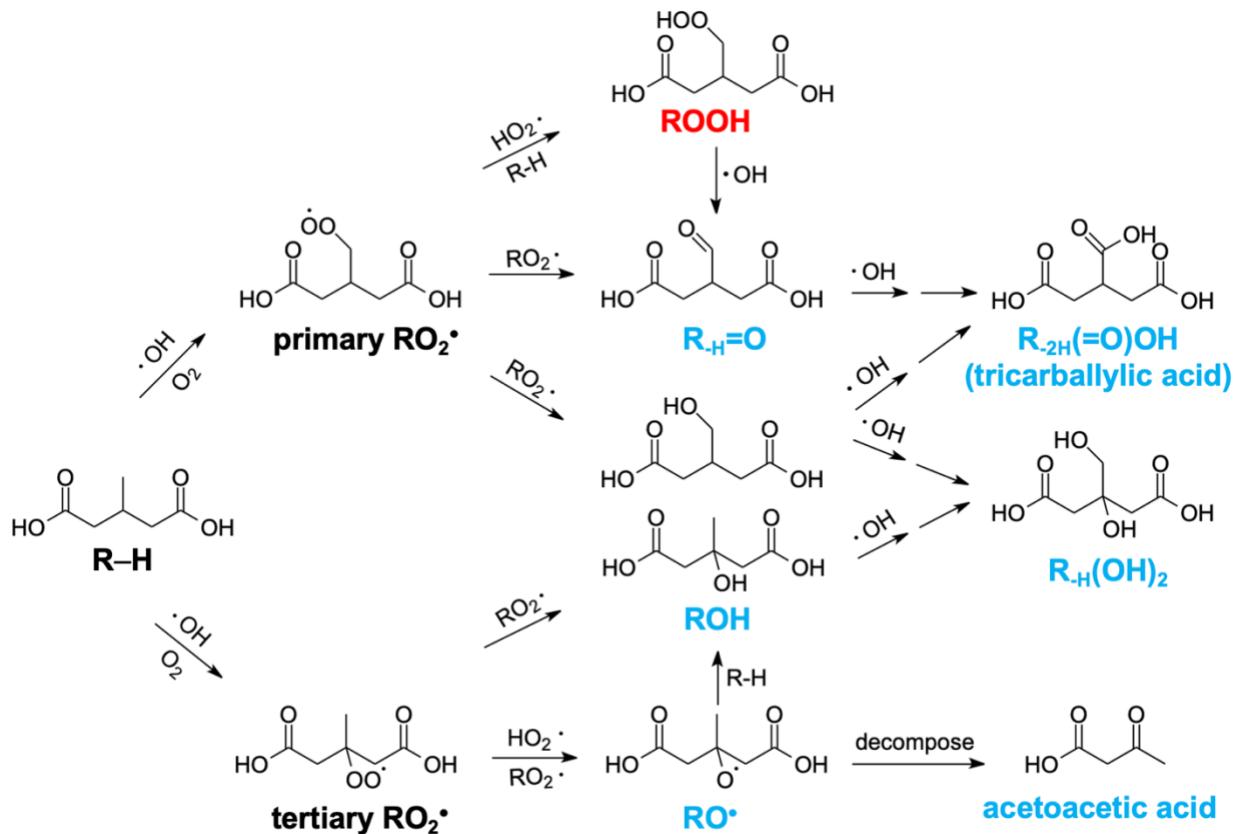
270

271 **Figure 3.** The intensity-based relative abundance (%) of ROOH among the first-generation
272 oxidation products for different OA surrogates under $[HO_2^\bullet]/[^\bullet OH] < 1$ vs. $[HO_2^\bullet]/[^\bullet OH] \sim 40$.

273

274 Obviously, the ROOH enhancement (by a factor of 1.3 – 5.0) is to a much lesser degree
275 compared to that of $[HO_2^\bullet]$ (by a factor of > 40) and the reason for this is unclear. We suspect that
276 the HO_2^\bullet uptake and reaction with RO_2^\bullet is more efficient under lower $[HO_2^\bullet]$. The other possible
277 explanation is that the bimolecular autoxidation (i.e., $RO_2^\bullet + R-H$) that we previously proposed
278 may partly contribute to the observed ROOH.⁵ This would be surprising and may suggest that the
279 bimolecular autoxidation may be rapid enough to compete with $RO_2^\bullet + RO_2^\bullet/ HO_2^\bullet$ reactions even
280 under high $[^\bullet OH]$. Future studies are warranted to elucidate the ROOH formation mechanisms
281 under low $[HO_2^\bullet]/[^\bullet OH]$. But regardless, the enhanced ROOH formation with higher $[HO_2^\bullet]/[^\bullet OH]$

282 reported here clearly demonstrates the occurrence and importance of $\text{RO}_2^\bullet + \text{HO}_2^\bullet$ reactions in
283 heterogeneous OA oxidation.


284

285 ***The role of HO_2^\bullet in heterogeneous oxidation kinetics and molecular composition***

286 With the elucidation of ROOH formation from $\text{RO}_2^\bullet + \text{HO}_2^\bullet$ reactions, we continue to
287 examine how HO_2^\bullet affects the OA oxidative aging kinetics. It is well known that the $\text{RO}_2^\bullet + \text{RO}_2^\bullet$
288 reactions may partly form RO^\bullet , which can abstract H from R–H and form RO_2^\bullet (known as chain
289 propagation). This process effectively contributes to the R–H degradation.^{6, 34} The substantial
290 presence of HO_2^\bullet could compete with RO_2^\bullet to react with RO_2^\bullet and hence reduce the RO^\bullet formation
291 from $\text{RO}_2^\bullet + \text{RO}_2^\bullet$ as a smaller fraction of RO_2^\bullet undergoes self-reaction. By this mechanism, it is
292 expected that the OA oxidation kinetics may be slower with enhanced HO_2^\bullet . Here, we investigated
293 the degradation of 3-methylglutaric acid as a function of $\cdot\text{OH}$ exposure and obtained the oxidation
294 kinetics from the GC-MS measurements. As shown in **Figure S12**, the enhancement of HO_2^\bullet plays
295 a negligible role in the decay rates of 3-methylglutaric acid within the measurement uncertainties,
296 suggesting that the $\text{RO}_2^\bullet + \text{HO}_2^\bullet$ reactions offset the reduced RO^\bullet formation from inhibited RO_2^\bullet
297 + RO_2^\bullet and sustain the secondary chemistry. This can be explained by that $\text{RO}_2^\bullet + \text{HO}_2^\bullet$ reactions
298 also directly produce RO^\bullet (and release $\cdot\text{OH}$);²⁰⁻²³ the ROOH may also be photolyzed into RO^\bullet and
299 $\cdot\text{OH}$.^{19, 23-26} Indicated by the kinetic results for the case of 3-methylglutaric acid, the RO^\bullet and $\cdot\text{OH}$
300 from $\text{RO}_2^\bullet + \text{HO}_2^\bullet$ contributed to 3-methylglutaric acid oxidation to a similar extent as RO^\bullet from
301 $\text{RO}_2^\bullet + \text{RO}_2^\bullet$.

302 As reported by Kurtén et al.⁶⁷ for gas-phase $\text{RO}_2^\bullet + \text{HO}_2^\bullet$, the $\text{RO}^\bullet + \cdot\text{OH}$ formation
303 pathway may have a large branching ratio if the RO_2^\bullet is on a tertiary carbon.²¹⁻²³ In contrast, the

304 less substituted primary and secondary RO₂• are likely the main contributors to ROOH formation.
305 In the case of 3-methylglutaric acid, the primary oxidation site is the tertiary carbon, followed by
306 the primary carbon, while the two secondary carbons adjacent to the carboxylic acids are less
307 oxidized due to the mesomeric effect, as discussed in our prior work and supported by new isomer-
308 resolved GC-MS results (**Figure S13**).³⁵ For example, the dominant alcohol product (> 80%) has
309 the –OH group on the tertiary carbon; the dominant carbonyl product (> 80%) has the C=O group
310 on the primary carbon (i.e., an aldehyde). This aldehyde tends to be further oxidized into
311 tricarballylic acid. Based on this, a mechanism for 3-methylglutaric acid •OH oxidation is shown
312 in **Figure 4**.^{6, 23, 68, 69} It is expected that, by reacting with HO₂•, the dominant tertiary RO₂• mainly
313 produces RO• + •OH and the less abundant primary RO₂• mainly forms ROOH.²¹⁻²³ This agrees
314 with that the relative abundance of ROOH during 3-methylglutaric acid oxidation is on the lower
315 side among all the studies OA surrogates (**Figure 3**). In fact, as shown in **Figure 3**, all the studied
316 OA model compounds with tertiary carbons as the primary oxidation sites have relatively lower
317 ROOH abundance, while those with secondary and primary carbons as the main oxidation sites
318 (i.e., 1, 3, 5-cyclohexanetricarboxylic acid, camphoric acid, adipic acid and suberic acid) exhibit
319 much stronger ROOH formation. These discrepancies among different OA model systems are
320 highly consistent with our proposed RO₂• + HO₂• mechanisms.

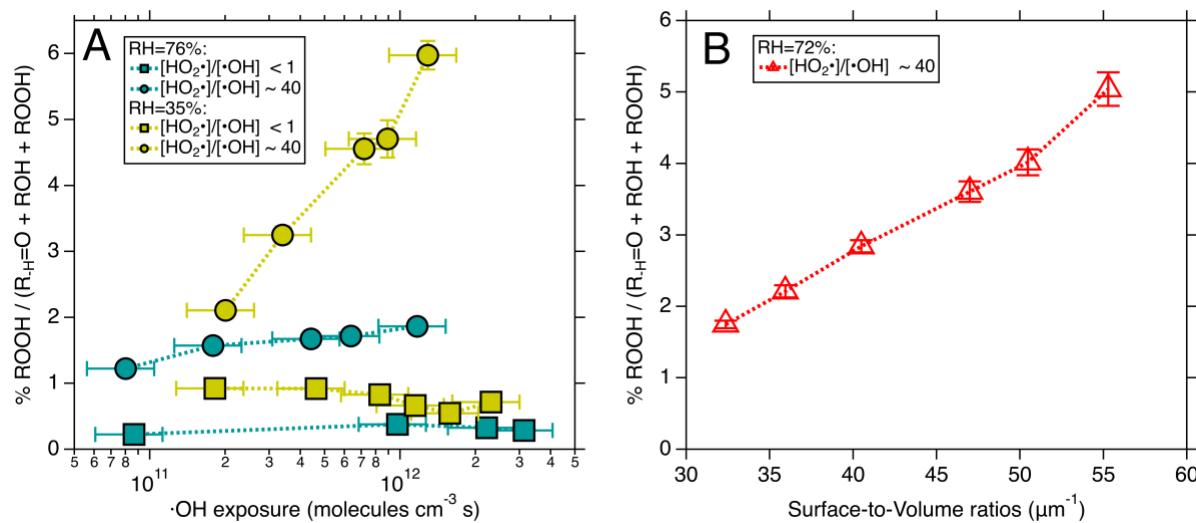
321

322 **Figure 4.** The proposed mechanism of $\cdot\text{OH}$ -initiated heterogeneous oxidation of 3-methylglutaric
323 acid mediated by HO_2^\bullet reactions.

324

325 Despite the little influence on the oxidation kinetics for 3-methylglutaric acid, HO_2^\bullet have
326 a greater impact on OA molecular composition through heterogeneous oxidation. As expected, the
327 formation of ROH and R-H=O from $\text{RO}_2^\bullet + \text{RO}_2^\bullet$ reactions is suppressed under high $[\text{HO}_2^\bullet]/[\cdot\text{OH}]$
328 because more RO_2^\bullet react with HO_2^\bullet (**Figure S14A – B**). Due to the RO^\bullet produced from $\text{RO}_2^\bullet +$
329 HO_2^\bullet sustaining the chain propagation chemistry from which ROH is a product (**Figure 4**),²⁰⁻²³ it
330 is also expected that suppression for ROH is to a lesser extent than R-H=O . However, this is not
331 the case. In fact, the ratio of $\text{R-H=O}/\text{ROH}$ slightly increases with higher HO_2^\bullet (**Figure S15**),
332 indicating an efficient pathway to form R-H=O with ROOH involved. We suggest that R-H=O can

333 be formed from further $\cdot\text{OH}$ oxidation of the primary ROOH with $\cdot\text{OH}$ as the co-product (**Figure**
334 **4**). The tertiary RO $^\bullet$ can also undergo fragmentation reactions to produce smaller molecules,
335 mainly acetoacetic acid (C₄H₆O₃, **Figure 4**).^{5,34} As shown in **Figure S16A**, the absolute intensities
336 of acetoacetic acid measured by TD-CIMS under different [HO₂ $^\bullet$]/[$\cdot\text{OH}$] vary insignificantly,
337 agreeing with the discussion above that RO₂ $^\bullet$ + HO₂ $^\bullet$ reactions offset the decreased formation of
338 RO $^\bullet$ from RO₂ $^\bullet$ + RO₂ $^\bullet$. On the other hand, the much higher abundance of acetoacetic acid relative
339 to ROH + R-H=O in the presence of additional HO₂ $^\bullet$ (**Figure S16B**) suggests that a great fraction
340 of the RO $^\bullet$ that undergoes fragmentation comes from RO₂ $^\bullet$ + HO₂ $^\bullet$, rather than RO₂ $^\bullet$ + RO₂ $^\bullet$.


341 Finally, we examined how HO₂ $^\bullet$ affected the overall OA composition. As shown in **Figure**
342 **S17**, we present the average carbon oxidation state (OSc) and O/C ratio from the 3-methylglutaric
343 acid heterogeneous oxidation under different [HO₂ $^\bullet$] and [$\cdot\text{OH}$] conditions, based on the observed
344 (−)ESI-MS intensities of all the observed oxidation products with chemical formulas of C₁₋₆H₂₋
345 ₁₀O₃₋₈. The OSc and O/C ratios increase by ~0.10 and ~0.05, respectively, as [HO₂ $^\bullet$] increased by
346 sevenfold under a constant lower [$\cdot\text{OH}$] of $\sim 4.4 \times 10^9$ molecules cm⁻³, indicating that HO₂ $^\bullet$
347 facilitates OA chemical evolution. In contrast, in similar experiments but with higher [$\cdot\text{OH}$] of \sim
348 2.4×10^{10} molecules cm⁻³, the OSc and O/C ratios do not exhibit as prominent increasing trends
349 with enhanced [HO₂ $^\bullet$]. These results suggest that under high [$\cdot\text{OH}$] and hence high [RO₂ $^\bullet$], RO₂ $^\bullet$
350 + RO₂ $^\bullet$ reactions are already sufficient, and thus the impacts of HO₂ $^\bullet$ on the overall heterogeneous
351 oxidative aging is less pronounced.

352

353 ***The interfacial nature of RO₂ $^\bullet$ + HO₂ $^\bullet$***

354 In order to further investigate where the $\text{RO}_2^\bullet + \text{HO}_2^\bullet$ reactions take place in the particles,
355 we examined ROOH formation under both high-RH and low-RH conditions using 3-
356 methylglutaric acid. It was expected that the HO_2^\bullet uptake is more effective under higher RH,^{28, 30}
357 but surprisingly, the ROOH formation was higher under lower RH regardless of $[\text{HO}_2^\bullet]/[\cdot\text{OH}]$
358 (**Figure 5A**). The higher ROOH relative abundance under the low-RH condition turns out to be a
359 result of both more strongly increased ROOH signals and decreased R-H=O and ROH signals from
360 the TD-CIMS measurements. The more prominent decrease in R-H=O and ROH intensities under
361 lower RH is expected due to larger diffusion limitation and reduced parent OA reactivities.⁷⁰ But
362 unexpectedly, the slower oxidation and hence reduced RO_2^\bullet formation is somehow offset by the
363 promoted $\text{RO}_2^\bullet + \text{HO}_2^\bullet$ which leads to higher ROOH. Previous studies have reported that aerosol
364 particles containing low water contents tend to have negligible HO_2^\bullet uptake due to the diffusion
365 limitation.^{28, 30} The key difference here is that the OA particles interacting with gaseous HO_2^\bullet are
366 oxidized and contain RO_2^\bullet at the interface. We thus hypothesize that the higher ROOH fractions
367 under lower RH is because the $\text{RO}_2^\bullet + \text{HO}_2^\bullet$ reaction takes place at the particle interface
368 immediately after collision, rather than by the absorption mechanism. The viscosities for the
369 probing compound, 3-methylglutaric acid, were estimated to be 2.06×10^1 and 6.22×10^{-2} Pa s
370 under low and high RH, respectively, using the AIOMFAC model as described in our previous
371 work.^{5, 39} Despite the reduced total RO_2^\bullet formation under the low-RH conditions, the formed RO_2^\bullet
372 are less mobile and more effectively accumulated at the particle surface region due to slower
373 diffusion, allowing the colliding HO_2^\bullet to react with the interfacial RO_2^\bullet more readily. Previous
374 studies suggested that functionalized ROOH such as hydroxymethyl hydroperoxides⁷¹ and α -
375 acyloxyalkyl hydroperoxides⁷² may undergo water-catalyzed decomposition, with the
376 decomposition time scale for α -acyloxyalkyl hydroperoxides at $\sim 10\text{--}30$ min. This is much longer

377 than the experimental time scale in this work (i.e., ~1 min). For the generic ROOH studied here,
378 the aqueous decomposition is likely even slower, which suggests that aqueous decomposition is
379 not the major reason for our observation shown in **Figure 5A**. In addition, the oxidized aerosols
380 under two different RH conditions were collected by the spot sampler where the particles were
381 grown into aqueous droplets under supersaturation conditions and sit in the form of droplets for a
382 few minutes before the (–)ESI-MS analysis. Thus, the fact that the (–)ESI-MS results (**Figure S18**)
383 are consistent with those from TD-CIMS rules out possibility that the lower ROOH under the high-
384 RH condition is due to aqueous decomposition. Rather, we suggest that the ROOH formation is
385 indeed promoted under the low-RH condition. Moreover, by varying the concentration of 3-
386 methylglutaric acid in the aerosol atomizer, the particle size distribution was also modified,
387 resulting in varied particle surface-to-volume ratio by a factor of two. With increased surface-to-
388 volume ratio, the ROOH relative abundance through the same heterogeneous oxidation
389 experiments (i.e., identical [$\cdot\text{OH}$] and [$\text{HO}_2\cdot$]) also increased (**Figure 5B**), supporting the above
390 hypothesis that the $\text{RO}_2\cdot + \text{HO}_2\cdot$ reaction occurs at particle interface. In the atmosphere, particle
391 surface uptake is an important loss pathway for gaseous $\text{HO}_2\cdot$.^{27, 31, 73} We suggest that the presence
392 of $\text{RO}_2\cdot$ at the interface in the particle bound could enhance the $\text{HO}_2\cdot$ uptake and also
393 heterogeneous ROOH formation.

396 **Figure 5.** The fractions of ROOH among the first-generation functionalization products under (A)
 397 varied RH and $[\text{HO}_2^{\bullet}] / [\cdot\text{OH}]$ conditions as a function of $\cdot\text{OH}$ exposure, and (B) varied surface-to-
 398 volume ratios.

400 **Atmospheric Implications**

401 In this work, we report heterogeneous $\text{RO}_2^{\bullet} + \text{HO}_2^{\bullet}$ reactions during $\cdot\text{OH}$ -initiated
 402 oxidative aging for several oxygenated OA model systems. Direct observations of ROOH
 403 formation from these reactions are shown for the first time by using HDX with the TD-CIMS
 404 analysis. The heterogeneously formed ROOH may contribute significantly to the total oxidized
 405 OA. Evidence is also shown to support that the heterogeneous $\text{RO}_2^{\bullet} + \text{HO}_2^{\bullet}$ reactions may also
 406 produce $\text{RO}^{\bullet} + \cdot\text{OH}$ for tertiary RO_2^{\bullet} , similar to that reported in the gas-phase systems.²⁰⁻²³ These
 407 two $\text{RO}_2^{\bullet} + \text{HO}_2^{\bullet}$ reaction pathways together facilitate compositional change of the
 408 heterogeneously oxidized OA particles. This HO_2^{\bullet} -involved chemistry is suggested to occur at the
 409 particle interface and is promoted when the interface is enriched with RO_2^{\bullet} .

410 Prior field observations suggested significant loss of HO₂• through aerosol uptake.⁷⁴⁻⁷⁷ The
411 work reported here provides new mechanistic insights into the subsequent fates of the uptaken
412 HO₂• in the particle phase. The first RO₂• + HO₂• pathway leads to the formation of ROOH, which
413 are a class of reactive oxygen species that are known to cause adverse health effects.⁷⁸ This reaction
414 has been highly emphasized in the gas phase for decades because ROOH substantially contribute
415 to the atmospheric secondary organic aerosols.^{18, 65, 79} The ROOH formation via heterogeneous
416 oxidative reactions reported here has not been recognized despite of the general hypothesis.⁶ The
417 other RO₂• + HO₂• pathway forms RO• + •OH,²⁰⁻²³ thus recycling radicals in the condensed phase
418 and propagating secondary chemistry. In the explicitly studied 3-methylglutaric acid system, this
419 pathway is likely very important, owing to the tertiary carbon as the primary oxidation site. It
420 remains to be studied to what extent the other OA model compounds undergo this pathway and
421 how the varied results may affect the overall oxidation kinetics. It is likely that for compounds that
422 more dominantly undergo the first pathway and form ROOH, the overall oxidation could be slower.
423 Nevertheless, the products from heterogeneous RO₂• + HO₂• reactions are crucial species and
424 intermediates and may impact the OA composition and properties significantly.

425 This work, together with several of our prior studies,^{5, 36, 39} demonstrate that the multiphase
426 oxidation of OA particles can have very complex mechanisms and kinetics, especially when the
427 oxidation occurs under atmospherically relevant conditions (e.g., in the presence of inorganic
428 species, lower [•OH], and higher [HO₂•]/[•OH]). These results suggest that typical laboratory
429 experiments do not accurately mimic atmospheric multiphase oxidation processes. The key
430 environmental factors need to be better represented in laboratory setup and their influences need
431 to be systematically investigated in future studies to help better understand OA chemical evolution
432 in the atmosphere.

433

434 **Associated Contents**

435 Supporting Information

436 Additional experimental details, MCM model simulations for HO_x• estimation, additional
437 mass spectra for chemical standards and oxidation products, GC-MS data, and supplementary
438 kinetic and chemical composition results.

439

440 **Author Information**

441 Corresponding Authors

442 E-mail address: haofei.zhang@ucr.edu (H. Zhang).

443 Notes

444 The authors declare no competing financial interest.

445

446 **Acknowledgements**

447 This work is supported by the U.S. National Science Foundation (CHE-2002413). K. I.
448 was supported by the Research in Science and Engineering (RISE) undergraduate research
449 program at UC Riverside.

References

(1) Boucher, O.; Randall, D.; Artaxo, P.; Bretherton, C.; Feingold, C.; Forster, P.; Kerminen, V.-M.; Kondo, Y.; Liao, H.; Lohmann, U.; et al. *Clouds and Aerosols*; IPCC: 2013; p 657.

(2) Dockery, D. W.; Pope, C. A.; Xu, X.; Spengler, J. D.; Ware, J. H.; Fay, M. E.; Ferris, B. G.; Speizer, F. E. An Association between Air Pollution and Mortality in Six U.S. Cities. *N. Engl. J. Med.* **1993**, *329* (24), 1753-1759.

(3) Ramanathan, V.; Crutzen, P. J.; Kiehl, J. T.; Rosenfeld, D. Aerosols, Climate, and the Hydrological Cycle. *Science* **2001**, *294* (5549), 2119-2124.

(4) Kristiansen, N. I.; Stohl, A.; Olivie, D. J. L.; Croft, B.; Søvde, O. A.; Klein, H.; Christoudias, T.; Kunkel, D.; Leadbetter, S. J.; Lee, Y. H.; et al. Evaluation of observed and modelled aerosol lifetimes using radioactive tracers of opportunity and an ensemble of 19 global models. *Atmos. Chem. Phys.* **2016**, *16* (5), 3525-3561.

(5) Zhang, W.; Zhao, Z.; Shen, C.; Zhang, H. Unexpectedly Efficient Aging of Organic Aerosols Mediated by Autoxidation. *Environ. Sci. Technol.* **2023**, *57* (17), 6965-6974.

(6) George, I. J.; Abbatt, J. P. D. Heterogeneous oxidation of atmospheric aerosol particles by gas-phase radicals. *Nat. Chem.* **2010**, *2* (9), 713-722.

(7) Calvert, J. G.; Pitts, J. N. *Photochemistry*; Wiley, 1966.

(8) González Palacios, L.; Corral Arroyo, P.; Aregahegn, K. Z.; Steimer, S. S.; Bartels-Rausch, T.; Nozière, B.; George, C.; Ammann, M.; Volkamer, R. Heterogeneous photochemistry of imidazole-2-carboxaldehyde: HO₂ radical formation and aerosol growth. *Atmos. Chem. Phys.* **2016**, *16* (18), 11823-11836.

(9) Stone, D.; Whalley, L. K.; Heard, D. E. Tropospheric OH and HO₂ radicals: field measurements and model comparisons. *Chem. Soc. Rev.* **2012**, *41* (19), 6348-6404.

(10) Fuchs, H.; Brauers, T.; Dorn, H. P.; Harder, H.; Häseler, R.; Hofzumahaus, A.; Holland, F.; Kanaya, Y.; Kajii, Y.; Kubistin, D.; et al. Technical Note: Formal blind intercomparison of HO₂ measurements in the atmosphere simulation chamber SAPHIR during the HOxComp campaign. *Atmos. Chem. Phys.* **2010**, *10* (24), 12233-12250.

(11) Nussbaumer, C. M.; Fischer, H.; Lelieveld, J.; Pozzer, A. What controls ozone sensitivity in the upper tropical troposphere? *EGUphere* **2023**, *2023*, 1-25.

(12) Levy, H. Normal Atmosphere: Large Radical and Formaldehyde Concentrations Predicted. *Science* **1971**, *173* (3992), 141-143.

(13) McConnell, J. C.; McElroy, M. B.; Wofsy, S. C. Natural Sources of Atmospheric CO. *Nature* **1971**, *233* (5316), 187-188.

(14) Atkinson, R. Kinetics and mechanisms of the gas-phase reactions of the hydroxyl radical with organic compounds under atmospheric conditions. *Chem. Rev.* **1986**, *86* (1), 69-201.

(15) Atkinson, R.; Arey, J. Atmospheric Degradation of Volatile Organic Compounds. *Chem. Rev.* **2003**, *103* (12), 4605-4638.

(16) Orlando, J. J.; Tyndall, G. S. Laboratory studies of organic peroxy radical chemistry: an overview with emphasis on recent issues of atmospheric significance. *Chem. Soc. Rev.* **2012**, *41* (19), 6294-6317.

(17) Zieman, P. J.; Atkinson, R. Kinetics, products, and mechanisms of secondary organic aerosol formation. *Chem. Soc. Rev.* **2012**, *41* (19), 6582-6605.

(18) Kroll, J. H.; Seinfeld, J. H. Chemistry of secondary organic aerosol: Formation and evolution of low-volatility organics in the atmosphere. *Atmos. Environ.* **2008**, *42* (16), 3593-3624.

494 (19) Docherty, K. S.; Wu, W.; Lim, Y. B.; Ziemann, P. J. Contributions of Organic Peroxides to
495 Secondary Aerosol Formed from Reactions of Monoterpenes with O₃. *Environ. Sci. Technol.* **2005**,
496 39 (11), 4049-4059.

497 (20) D'Ambro, E. L.; Hyttinen, N.; Møller, K. H.; Iyer, S.; Otkjær, R. V.; Bell, D. M.; Liu, J.;
498 Lopez-Hilfiker, F. D.; Schobesberger, S.; Shilling, J. E.; et al. Pathways to Highly Oxidized
499 Products in the Δ3-Carene + OH System. *Environ. Sci. Technol.* **2022**, 56 (4), 2213-2224.

500 (21) Iyer, S.; Reiman, H.; Møller, K. H.; Rissanen, M. P.; Kjaergaard, H. G.; Kurtén, T.
501 Computational Investigation of RO₂ + HO₂ and RO₂ + RO₂ Reactions of Monoterpene Derived
502 First-Generation Peroxy Radicals Leading to Radical Recycling. *J. Phys. Chem. A* **2018**, 122 (49),
503 9542-9552.

504 (22) Hasson, A. S.; Tyndall, G. S.; Orlando, J. J.; Singh, S.; Hernandez, S. Q.; Campbell, S.; Ibarra,
505 Y. Branching Ratios for the Reaction of Selected Carbonyl-Containing Peroxy Radicals with
506 Hydroperoxy Radicals. *J. Phys. Chem. A* **2012**, 116 (24), 6264-6281.

507 (23) McNeill, V. F.; Yatavelli, R. L. N.; Thornton, J. A.; Stipe, C. B.; Landgrebe, O.
508 Heterogeneous OH oxidation of palmitic acid in single component and internally mixed aerosol
509 particles: vaporization and the role of particle phase. *Atmos. Chem. Phys.* **2008**, 8 (17), 5465-5476.

510 (24) Tong, H.; Arangio, A. M.; Lakey, P. S. J.; Berkemeier, T.; Liu, F.; Kampf, C. J.; Brune, W.
511 H.; Pöschl, U.; Shiraiwa, M. Hydroxyl radicals from secondary organic aerosol decomposition in
512 water. *Atmos. Chem. Phys.* **2016**, 16 (3), 1761-1771.

513 (25) Vereecken, L.; Müller, J. F.; Peeters, J. Low-volatility poly-oxygenates in the OH-initiated
514 atmospheric oxidation of α-pinene: impact of non-traditional peroxy radical chemistry. *Phys.
515 Chem. Chem. Phys.* **2007**, 9 (38), 5241-5248.

516 (26) Epstein, S. A.; Blair, S. L.; Nizkorodov, S. A. Direct photolysis of α-pinene ozonolysis
517 secondary organic aerosol: Effect on particle mass and peroxide content. *Environ. Sci. Technol.*
518 **2014**, 48 (19), 11251-11258.

519 (27) Cooper, P. L.; Abbatt, J. P. D. Heterogeneous Interactions of OH and HO₂ Radicals with
520 Surfaces Characteristic of Atmospheric Particulate Matter. *J. Phys. Chem.* **1996**, 100 (6), 2249-
521 2254.

522 (28) Lakey, P. S. J.; Berkemeier, T.; Krapf, M.; Dommen, J.; Steimer, S. S.; Whalley, L. K.;
523 Ingham, T.; Baeza-Romero, M. T.; Pöschl, U.; Shiraiwa, M.; et al. The effect of viscosity and
524 diffusion on the HO₂ uptake by sucrose and secondary organic aerosol particles. *Atmos. Chem.
525 Phys.* **2016**, 16 (20), 13035-13047.

526 (29) Lakey, P. S. J.; George, I. J.; Whalley, L. K.; Baeza-Romero, M. T.; Heard, D. E.
527 Measurements of the HO₂ uptake coefficients onto single component organic aerosols. *Environ.
528 Sci. Technol.* **2015**, 49 (8), 4878-4885.

529 (30) Thornton, J.; Abbatt, J. P. D. Measurements of HO₂ uptake to aqueous aerosol: Mass
530 accommodation coefficients and net reactive loss. *J. Geophys. Res.: Atmos.* **2005**, 110 (D8).

531 (31) Zhou, J.; Murano, K.; Kohno, N.; Sakamoto, Y.; Kajii, Y. Real-time quantification of the total
532 HO₂ reactivity of ambient air and HO₂ uptake kinetics onto ambient aerosols in Kyoto (Japan).
533 *Atmos. Environ.* **2020**, 223, 117189.

534 (32) Taketani, F.; Kanaya, Y.; Akimoto, H. Heterogeneous loss of HO₂ by KCl, synthetic sea salt,
535 and natural seawater aerosol particles. *Atmos. Environ.* **2009**, 43 (9), 1660-1665.

536 (33) Smith, J. D.; Kroll, J. H.; Cappa, C. D.; Che, D. L.; Liu, C. L.; Ahmed, M.; Leone, S. R.;
537 Worsnop, D. R.; Wilson, K. R. The heterogeneous reaction of hydroxyl radicals with sub-micron
538 squalane particles: a model system for understanding the oxidative aging of ambient aerosols.
539 *Atmos. Chem. Phys.* **2009**, 9 (9), 3209-3222.

540 (34) Richards-Henderson, N. K.; Goldstein, A. H.; Wilson, K. R. Large enhancement in the
541 heterogeneous oxidation rate of organic aerosols by hydroxyl radicals in the presence of nitric
542 oxide. *J. Phys. Chem. Lett.* **2015**, *6* (22), 4451-4455.

543 (35) Zhao, Z.; Yang, X.; Lee, J.; Tolentino, R.; Mayorga, R.; Zhang, W.; Zhang, H. Diverse
544 reactions in highly functionalized organic aerosols during thermal desorption. *ACS Earth Space
545 Chem.* **2020**, *4* (2), 283-296.

546 (36) Zhao, Z.; Tolentino, R.; Lee, J.; Vuong, A.; Yang, X.; Zhang, H. Interfacial dimerization by
547 organic radical reactions during heterogeneous oxidative aging of oxygenated organic aerosols. *J.
548 Phys. Chem. A* **2019**, *123* (50), 10782-10792.

549 (37) Zhao, Z.; Mayorga, R.; Lee, J.; Yang, X.; Tolentino, R.; Zhang, W.; Vuong, A.; Zhang, H. Site-specific mechanisms in OH-initiated organic aerosol heterogeneous oxidation revealed by
550 isomer-resolved molecular characterization. *ACS Earth Space Chem.* **2020**, *4* (5), 783-794.

552 (38) Zhao, Z.; Xu, Q.; Yang, X.; Zhang, H. Heterogeneous ozonolysis of endocyclic unsaturated
553 organic aerosol proxies: Implications for Criegee intermediate dynamics and later-generation
554 reactions. *ACS Earth Space Chem.* **2019**, *3* (3), 344-356.

555 (39) Shen, C.; Zhang, W.; Choczynski, J.; Davies, J. F.; Zhang, H. Phase State and Relative
556 Humidity Regulate the Heterogeneous Oxidation Kinetics and Pathways of Organic-Inorganic
557 Mixed Aerosols. *Environ. Sci. Technol.* **2022**, *56* (22), 15398-15407.

558 (40) Berndt, T.; Richters, S.; Jokinen, T.; Hyttinen, N.; Kurtén, T.; Otkjær, R. V.; Kjaergaard, H.
559 G.; Stratmann, F.; Herrmann, H.; Sipilä, M.; et al. Hydroxyl radical-induced formation of highly
560 oxidized organic compounds. *Nat. Commun.* **2016**, *7* (1), 13677.

561 (41) Hunt, D. F.; McEwen, C. N.; Upham, R. A. Determination of active hydrogen in organic
562 compounds by chemical ionization mass spectrometry. *Anal. Chem.* **1972**, *44* (7), 1292-1294.

563 (42) Damont, A.; Legrand, A.; Cao, C.; Fenaille, F.; Tabet, J.-C. Hydrogen/deuterium exchange
564 mass spectrometry in the world of small molecules. *Mass Spectrom. Rev.* **2023**, *42* (4), 1300-1331.

565 (43) Kostyukevich, Y.; Acter, T.; Zherebker, A.; Ahmed, A.; Kim, S.; Nikolaev, E. Hydrogen/deuterium exchange in mass spectrometry. *Mass Spectrom. Rev.* **2018**, *37* (6), 811-853.

567 (44) Zhao, Z.; Le, C.; Xu, Q.; Peng, W.; Jiang, H.; Lin, Y.-H.; Cocker, D. R.; Zhang, H. Compositional evolution of secondary organic aerosol as temperature and relative humidity cycle
568 in atmospherically relevant ranges. *ACS Earth Space Chem.* **2019**, *3* (11), 2549-2558.

570 (45) Mayorga, R. J.; Zhao, Z.; Zhang, H. Formation of secondary organic aerosol from nitrate
571 radical oxidation of phenolic VOCs: Implications for nitration mechanisms and brown carbon
572 formation. *Atmos. Environ.* **2021**, *244*, 117910.

573 (46) Docherty, K. S.; Ziemann, P. J. Effects of Stabilized Criegee Intermediate and OH Radical
574 Scavengers on Aerosol Formation from Reactions of β -Pinene with O₃. *Aerosol Sci. Technol.* **2003**,
575 *37* (11), 877-891.

576 (47) Physicochemical and Physical Treatment of Pollutants and Wastes. In *Environmental
577 Chemistry: Fundamentals*, Ibanez, J. G., Hernandez-Esparza, M., Doria-Serrano, C., Fregoso-
578 Infante, A., Singh, M. M. Eds.; Springer New York, 2007; pp 237-275.

579 (48) Atkinson, R.; Baulch, D. L.; Cox, R. A.; Crowley, J. N.; Hampson, R. F.; Hynes, R. G.; Jenkin,
580 M. E.; Rossi, M. J.; Troe, J.; Subcommittee, I. Evaluated kinetic and photochemical data for
581 atmospheric chemistry: Volume II – gas phase reactions of organic species. *Atmos. Chem.
582 Phys.* **2006**, *6* (11), 3625-4055.

583 (49) Jenkin, M. E.; Young, J. C.; Rickard, A. R. The MCM v3.3.1 degradation scheme for isoprene.
584 *Atmos. Chem. Phys.* **2015**, *15* (20), 11433-11459.

585 (50) Jenkin, M. E.; Saunders, S. M.; Wagner, V.; Pilling, M. J. Protocol for the development of
586 the Master Chemical Mechanism, MCM v3 (Part B): tropospheric degradation of aromatic volatile
587 organic compounds. *Atmos. Chem. Phys.* **2003**, 3 (1), 181-193.

588 (51) Faust, J. A.; Abbatt, J. P. D. Organic Surfactants Protect Dissolved Aerosol Components
589 against Heterogeneous Oxidation. *J. Phys. Chem. A* **2019**, 123 (10), 2114-2124.

590 (52) Christensen, L. E.; Okumura, M.; Sander, S. P.; Salawitch, R. J.; Toon, G. C.; Sen, B.; Blavier,
591 J. F.; Jucks, K. W. Kinetics of $\text{HO}_2 + \text{HO}_2 \rightarrow \text{H}_2\text{O}_2 + \text{O}_2$: Implications for Stratospheric H_2O_2 .
592 *Geophys. Res. Lett.* **2002**, 29 (9), 13-11-13-14.

593 (53) Crounse, J. D.; Paulot, F.; Kjaergaard, H. G.; Wennberg, P. O. Peroxy radical isomerization
594 in the oxidation of isoprene. *Phys. Chem. Chem. Phys.* **2011**, 13 (30), 13607-13613,
595 10.1039/C1CP21330J.

596 (54) Russell, G. A. Deuterium-isotope effects in the autoxidation of aralkyl hydrocarbons.
597 mechanism of the interaction of peroxy radicals¹. *J. Am. Chem. Soc.* **1957**, 79 (14), 3871-3877.

598 (55) McCloskey, J. A. [16] Introduction of deuterium by exchange for measurement by mass
599 spectrometry. In *Methods in Enzymology*, Vol. 193; Academic Press, 1990; pp 329-338.

600 (56) Custer, T. G.; Kato, S.; Fall, R.; Bierbaum, V. M. Negative ion mass spectrometry and the
601 detection of carbonyls and HCN from clover. *Geophys. Res. Lett.* **2000**, 27 (23), 3849-3852.

602 (57) Enami, S.; Hoffmann, M. R.; Colussi, A. J. In Situ Mass Spectrometric Detection of Interfacial
603 Intermediates in the Oxidation of RCOOH(aq) by Gas-Phase OH-Radicals. *J. Phys. Chem. A* **2014**,
604 118 (23), 4130-4137.

605 (58) Krapf, M.; El Haddad, I.; Bruns, Emily A.; Molteni, U.; Daellenbach, Kaspar R.; Prévôt,
606 André S. H.; Baltensperger, U.; Dommen, J. Labile peroxides in secondary organic aerosol. *Chem*
607 **2016**, 1 (4), 603-616.

608 (59) Pospisilova, V.; Lopez-Hilfiker, F. D.; Bell, D. M.; El Haddad, I.; Mohr, C.; Huang, W.;
609 Heikkinen, L.; Xiao, M.; Dommen, J.; Prevot, A. S. H.; et al. On the fate of oxygenated organic
610 molecules in atmospheric aerosol particles. *Sci. Adv.* 6 (11), eaax8922.

611 (60) Mertes, P.; Pfaffenberger, L.; Dommen, J.; Kalberer, M.; Baltensperger, U. Development of
612 a sensitive long path absorption photometer to quantify peroxides in aerosol particles (Peroxide-
613 LOPAP). *Atmos. Meas. Tech.* **2012**, 5 (10), 2339-2348.

614 (61) Pagonis, D.; Ziemann, P. J. Chemistry of hydroperoxycarbonyls in secondary organic aerosol.
615 *Aerosol Sci. Technol.* **2018**, 52 (10), 1178-1193.

616 (62) Paulot, F.; Crounse, J. D.; Kjaergaard, H. G.; Kürten, A.; St. Clair, J. M.; Seinfeld, J. H.;
617 Wennberg, P. O. Unexpected Epoxide Formation in the Gas-Phase Photooxidation of Isoprene.
618 *Science* **2009**, 325 (5941), 730.

619 (63) St. Clair, J. M.; Rivera-Rios, J. C.; Crounse, J. D.; Knap, H. C.; Bates, K. H.; Teng, A. P.;
620 Jørgensen, S.; Kjaergaard, H. G.; Keutsch, F. N.; Wennberg, P. O. Kinetics and Products of the
621 Reaction of the First-Generation Isoprene Hydroxy Hydroperoxide (ISOPOOH) with OH. *J. Phys.*
622 *Chem. A* **2016**, 120 (9), 1441-1451.

623 (64) Mettke, P.; Brüggemann, M.; Mutzel, A.; Gräfe, R.; Herrmann, H. Secondary Organic
624 Aerosol (SOA) through Uptake of Isoprene Hydroxy Hydroperoxides (ISOPOOH) and its
625 Oxidation Products. *ACS Earth Space Chem.* **2023**, 7 (5), 1025-1037.

626 (65) Surratt, J. D.; Chan, A. W. H.; Eddingsaas, N. C.; Chan, M.; Loza, C. L.; Kwan, A. J.; Hersey,
627 S. P.; Flagan, R. C.; Wennberg, P. O.; Seinfeld, J. H. Reactive intermediates revealed in secondary
628 organic aerosol formation from isoprene. *Proc. Natl. Acad. Sci. U.S.A.* **2010**, 107 (15), 6640.

629 (66) Zhang, W.; Zhang, H. Secondary ion chemistry mediated by ozone and acidic organic
630 molecules in iodide-adduct chemical ionization mass spectrometry. *Anal. Chem.* **2021**, *93* (24),
631 8595-8602.

632 (67) Kurtén, T.; Møller, K. H.; Nguyen, T. B.; Schwantes, R. H.; Misztal, P. K.; Su, L.; Wennberg,
633 P. O.; Fry, J. L.; Kjaergaard, H. G. Alkoxy radical bond scissions explain the anomalously low
634 secondary organic aerosol and organonitrate yields from α -pinene + NO_3 . *J. Phys. Chem. Lett.*
635 **2017**, *8* (13), 2826-2834.

636 (68) Zhang, H.; Ruehl, C. R.; Chan, A. W. H.; Nah, T.; Worton, D. R.; Isaacman, G.; Goldstein,
637 A. H.; Wilson, K. R. OH-initiated heterogeneous oxidation of cholestane: A model system for
638 understanding the photochemical aging of cyclic alkane aerosols. *J. Phys. Chem. A* **2013**, *117* (47),
639 12449-12458.

640 (69) Nah, T.; Zhang, H.; Worton, D. R.; Ruehl, C. R.; Kirk, B. B.; Goldstein, A. H.; Leone, S. R.;
641 Wilson, K. R. Isomeric Product Detection in the Heterogeneous Reaction of Hydroxyl Radicals
642 with Aerosol Composed of Branched and Linear Unsaturated Organic Molecules. *J. Phys. Chem. A*
643 **2014**, *118* (49), 11555-11571.

644 (70) Chan, M. N.; Zhang, H.; Goldstein, A. H.; Wilson, K. R. Role of water and phase in the
645 heterogeneous oxidation of solid and aqueous succinic acid aerosol by hydroxyl radicals. *J. Phys.*
646 *Chem. C* **2014**, *118* (50), 28978-28992.

647 (71) Crehuet, R.; Anglada, J. M.; Bofill, J. M. Tropospheric Formation of Hydroxymethyl
648 Hydroperoxide, Formic Acid, H_2O_2 , and OH from Carbonyl Oxide in the Presence of Water Vapor:
649 A Theoretical Study of the Reaction Mechanism. *Chem. Eur. J.* **2001**, *7* (10), 2227-2235.

650 (72) Zhao, R.; Kenseth, C. M.; Huang, Y.; Dalleska, N. F.; Kuang, X. M.; Chen, J.; Paulson, S. E.;
651 Seinfeld, J. H. Rapid aqueous-phase hydrolysis of ester hydroperoxides arising from criegee
652 intermediates and organic acids. *J. Phys. Chem. A* **2018**, *122* (23), 5190-5201.

653 (73) Dyson, J. E.; Whalley, L. K.; Slater, E. J.; Woodward-Massey, R.; Ye, C.; Lee, J. D.; Squires,
654 F.; Hopkins, J. R.; Dunmore, R. E.; Shaw, M.; et al. Impact of HO_2 aerosol uptake on radical levels
655 and O_3 production during summertime in Beijing. *Atmos. Chem. Phys.* **2023**, *23* (10), 5679-5697.

656 (74) Brune, W. H.; Tan, D.; Faloona, I. F.; Jaeglé, L.; Jacob, D. J.; Heikes, B. G.; Snow, J.; Kondo,
657 Y.; Shetter, R.; Sachse, G. W.; et al. OH and HO_2 chemistry in the North Atlantic free troposphere.
658 *Geophys. Res. Lett.* **1999**, *26* (20), 3077-3080.

659 (75) Jaeglé, L.; Jacob, D. J.; Brune, W. H.; Faloona, I.; Tan, D.; Heikes, B. G.; Kondo, Y.; Sachse,
660 G. W.; Anderson, B.; Gregory, G. L.; et al. Photochemistry of HO_x in the upper troposphere at
661 northern midlatitudes. *J. Geophys. Res.: Atmos.* **2000**, *105* (D3), 3877-3892.

662 (76) Olson, J. R.; Crawford, J. H.; Chen, G.; Fried, A.; Evans, M. J.; Jordan, C. E.; Sandholm, S.
663 T.; Davis, D. D.; Anderson, B. E.; Avery, M. A.; et al. Testing fast photochemical theory during
664 TRACE-P based on measurements of OH, HO_2 , and CH_2O . *J. Geophys. Res.: Atmos.* **2004**, *109*
665 (D15).

666 (77) Olson, J. R.; Crawford, J. H.; Chen, G.; Brune, W. H.; Faloona, I. C.; Tan, D.; Harder, H.;
667 Martinez, M. A reevaluation of airborne HO_x observations from NASA field campaigns. *J.*
668 *Geophys. Res.: Atmos.* **2006**, *111* (D10).

669 (78) Pöschl, U.; Shiraiwa, M. Multiphase chemistry at the atmosphere–biosphere interface
670 influencing climate and public health in the anthropocene. *Chem. Rev.* **2015**, *115* (10), 4440-4475.

671 (79) Kleindienst, T. E.; Lewandowski, M.; Offenberg, J. H.; Jaoui, M.; Edney, E. O. The formation
672 of secondary organic aerosol from the isoprene + OH reaction in the absence of NO_x . *Atmos. Chem.*
673 *Phys.* **2009**, *9* (17), 6541-6558.

674