

1

2 Pressure-driven Membrane Desalination

3

4

5

6 Weifan Liu^a, Joshua L. Livingston^a, Li Wang^b, Zhangxin Wang^{c, d}, Martina del Cerro^e,
7 Saad A. Younssi^f, Razi Epsztein^g, Menachem Elimelech^{* e}, and Shihong Lin^{* a, h}

8

9

10

11 ^aDepartment of Civil and Environmental Engineering, Vanderbilt University, Nashville, Tennessee
12 37235-1831, USA

13 ^b State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution
14 Control and Ecological Security, Tongji Advanced Membrane Technology Center, School of
15 Environmental Science and Engineering, Tongji University, Shanghai 200092, China

16 ^c School of Ecology, Environment and Resources, Guangdong University of Technology,
17 Guangzhou, Guangdong 510006, China

18 ^d Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou
19 511458, China

20 ^e Department of Chemical and Environmental Engineering, Yale University, New Haven, CT,
21 06520-8286, USA

22 ^f Laboratory of Materials, Membranes and Environment, Faculty of Sciences and Technologies,
23 Hassan II University of Casablanca, P.O. Box 146, Mohammedia 20650, Morocco

24 ^g Faculty of Civil and Environmental Engineering, Technion – Israel Institute of Technology, Haifa
25 32000, Israel

26 ^h Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville,
27 Tennessee 37235-1831, USA

28

29 *Email:

30 Menachem Elimelech, menachem.elimelech@yale.edu;

31 Shihong Lin, shihong.lin@vanderbilt.edu

35 **Abstract**

36 Pressure-driven membrane desalination (PMD), such as reverse osmosis (RO) or nanofiltration
37 (NF), has become an energy-efficient technology to address water shortage by tapping into saline
38 waters to augment freshwater supply. This Primer describes several key methodological aspects
39 of PMD, including membrane fabrication, characterization, and performance evaluation, system
40 modeling, as well as process configurations and applications. State-of-the-art RO and NF
41 membranes are thin-film composite polyamide (TFC-PA) membranes, which is the focus of our
42 discussion on membrane development. We first describe the fabrication of TFC-PA membranes
43 using interfacial polymerization and alternative methods. We then discuss the techniques for
44 characterizing the morphological, structural, and interfacial properties of TFC-PA membranes,
45 followed by a discussion on the experimental procedures and model frameworks for evaluating
46 membrane performance. Certain caveats in data collection, interpretation, and reproducibility are
47 discussed with best practices recommended. Additionally, we also introduce the general method
48 for modeling module-scale behavior of PMD processes and discuss the process configurations
49 along with existing and emerging applications of PMD. Finally, we provide an outlook for the
50 development of PMD, highlighting the most meaningful directions for future research to further
51 advance PMD beyond the state of the art.

53 [H1] Introduction

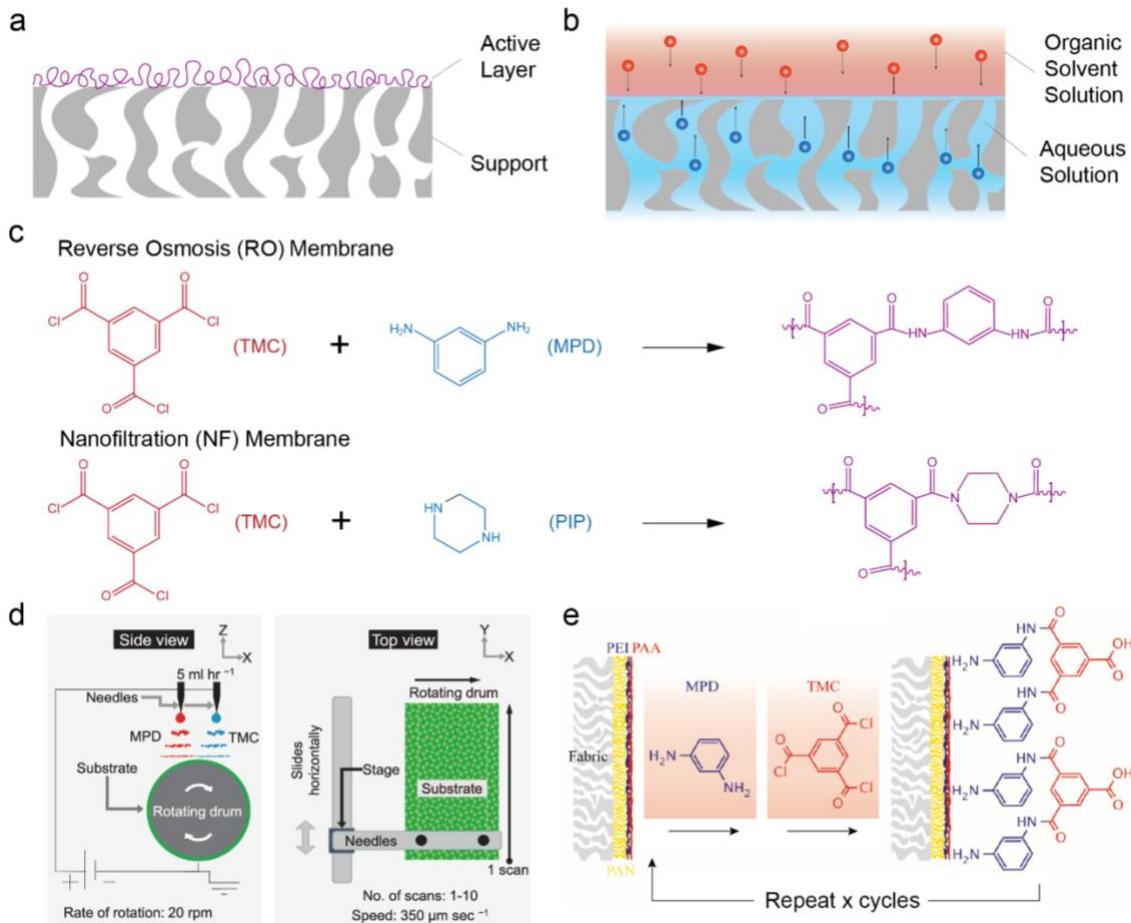
54 Pressure-driven membrane desalination (PMD) with **reverse osmosis [G]** (RO) has been at the
55 cutting edge of freshwater production from saline waters for decades¹. The breakthrough of this
56 process occurred in the early 1960s with the invention of the first asymmetric cellulose acetate RO
57 membrane by Loeb and Sourirajan². The semi-permeable membrane with a thin active layer
58 enabled the production of desalinated water at high water flux under practical pressures, leading to
59 successful implementation of RO at scale. The introduction of the thin-film composite polyamide
60 (TFC-PA) membrane in the late 1970s^{3,4} and the continuous improvements in the process
61 engineering over the following decades (e.g., installation of energy recovery devices, EDR, and
62 high-efficiency pumps) have further boosted the preeminence of RO over other seawater
63 desalination technologies¹. Beyond seawater RO (SWRO), the desalination of brackish water and
64 municipal wastewater with lower salinity has also become practical using brackish water RO
65 (BWRO) or **nanofiltration [G]** (NF), which utilize similar salt-rejecting membranes with looser
66 structure that enables higher water flux at the cost of lower salt rejection⁵.

67 The fundamental principle of PMD can be described as follows. To induce water flow from
68 the high-salinity feed water to the low-salinity product water against the natural direction of water
69 osmosis, the hydraulic pressure difference applied over the membrane must exceed osmotic
70 pressure difference across the membrane⁶. Excess pressure beyond the osmotic pressure difference
71 is applied to provide driving force for finite water flux and to overcome resistances to water flow
72 through the membrane pores, which induces irreversible losses or generates entropy¹. The applied
73 hydraulic pressure (up to 80 bar for SWRO but lower for BWRO and NF) depends on feed salinity,
74 the water recovery (WR) ratio, membrane permeability, and other operating and system design
75 parameters⁷. Notably, the irreversible losses or entropy generation in RO are substantially lower
76 than that in traditional thermal desalination techniques based on evaporation, rendering RO a
77 highly energy-efficient approach for seawater desalination with a total energy consumption much
78 closer to the thermodynamic limit (i.e., Gibbs free energy of separation) than thermal
79 desalination^{8,9}.

80 Accounting for the largest share of globally desalinated water, state-of-the-art RO
81 desalination still faces challenges that limit broader applications and stimulate extensive research.
82 One noticeable example is the low rejection of neutral solutes (e.g., boron and specific

83 micropollutants) by current RO membranes, which requires the introduction of an additional RO
84 pass in some applications, thus increasing the capital and operational cost¹⁰. Other examples
85 include the detrimental sensitivity of PA RO membranes to chlorine¹¹, decline of water flux over
86 time due to membrane fouling and scaling¹², and brine management¹³. Ongoing research is
87 therefore directed to address these shortcomings by exploring new membrane materials^{14,15} and
88 process designs^{16,17}.

89 In addition to the applied research to improve the performance of current PMD systems,
90 fundamental studies to elucidate molecular transport phenomena in RO/NF membranes have been
91 a major scientific pillar of the membrane research field¹⁸. Water and solute transport in RO/NF
92 membranes have remained the center of theoretical study over the years, promoting the
93 development of several mathematical models to describe **mass transfer [G]** in these membranes¹⁹.
94 Most notably, the solution-diffusion model, describing water and solute transport as a two-step
95 process of molecular partition into the membrane and the subsequent diffusion through the
96 membrane, has prevailed in the membrane community for many years due to its simplicity and
97 ability to explain certain major trends in membrane performance²⁰. More recently, with additional
98 experimental evidence, progress in molecular simulations, and development of experimental
99 techniques with higher spatial and temporal resolution to study the kinetics of molecular transport
100 through the membrane pore²¹⁻²³, updated models and theories for mass transport in RO membranes
101 have been proposed²⁴⁻²⁶. Such exploration of fundamental transport phenomena in RO has
102 promoted the collaboration between membrane scientists and researchers from other fields^{22,27,28}.


103 Observing the success of RO over the past 60 years for revolutionizing water desalination,
104 this Primer overviews state-of-the-art methodologies and applications of PMD with RO and NF.
105 We first introduce standard methods to fabricate, characterize, and test RO/NF membranes. Next,
106 we discuss established approaches to analyze results from membrane characterization and interpret
107 data from membrane performance tests using existing and recent transport models applied to both
108 coupon and module scale systems. We also introduce and discuss traditional and emerging
109 applications of PMD, highlighting current limitations of the method and challenges associated with
110 reproducibility and data deposition. We conclude with an outlook to summarize the challenges and
111 opportunities of PMD that require future research to address.

112 **[H1] Experimentation**

113 **[H2] Membrane fabrication**

114 State-of-the-art RO or NF membranes are TFC-PA membranes comprising an ultrathin, salt-
115 rejecting PA active layer prepared atop a microporous support that provides mechanical integrity
116 against applied pressure (**Fig. 1a**)²⁹. The standard approach to fabricate TFC-PA membranes in
117 industry is based on a process called **interfacial polymerization [G]** (IP), where a PA layer form
118 via a self-inhibiting polycondensation reaction occurring at a water-organic solvent interface (**Fig.**
119 **1b**)^{4,30-32}. Specifically, a microporous polysulfone (PS) or polyethersulfone (PES) support
120 impregnated with an aqueous solution of amine monomers is exposed to an organic solvent
121 solution of acyl chloride. The amine monomer is typically m-phenylenediamine (MPD) for making
122 SWRO membranes and piperazine (PIP) for making NF membranes, whereas trimethylol chloride
123 (TMC) is often used as the acyl chloride with hexane as the organic solvent (**Fig. 1c**)¹⁴. It is
124 believed that the amine monomers diffuse across the water-hexane interface to react with TMC in
125 the hexane phase near the interface, forming a thin and crosslinked PA layer anchored to the
126 microporous support³³. The PA layer is typically less than 100 nm because its formation creates a
127 barrier for the further encounter of amine and acyl chloride molecules for continuous
128 polycondensation reaction, thus rendering the IP process “self-inhibiting”^{30,34}.

129 The morphology and performance of the TFC-PA is influenced by multiple factors in the IP
130 process, including but not limited to, monomer species and solvent type (note that mixture of
131 monomers or solvents can also be used)³⁵⁻³⁸, the introduction of various additives (e.g., surfactants,
132 organic molecules, salts, and nanoparticles)³⁹⁻⁴², the support layer structure^{43,44}, water chemistry
133 of the amine solution⁴⁵, the use of interlayers^{44,46}, and the environmental conditions in the IP and/or
134 post-treatment (annealing) process³⁸. Detailed impacts of these factors on the morphology and
135 performance of TFC-PA can be found in several recent reviews^{31,47-50}. Despite decades of research
136 that generates a large body of knowledge on practical ways to improve performance of TFC-PA
137 membranes, mechanistic understanding of the details of PA layer formation remains insufficient.

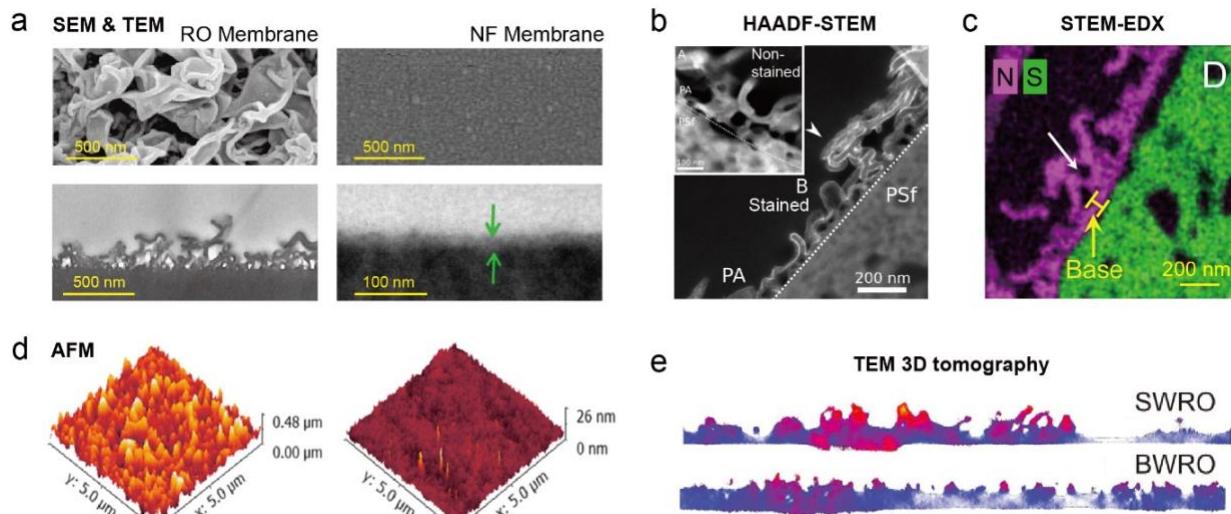
138

139 **Fig. 1 | Membrane fabrication methods.** **a.** Structure of the thin-film composite polyamide (TFC-
140 PA) membrane. **b.** Interfacial polymerization occurring at the interface between an organic solvent
141 solution of acid chlorides and an aqueous solution of amines. **c.** The polycondensation reaction
142 of trimesoyl chloride (TMC) with m-phenylenediamine (MPD, for making reverse osmosis (RO)
143 membranes) or piperazine (PIP, for making nanofiltration (NF) membranes). **d.** Schematic of TFC-
144 PA membrane fabrication using electrospray-based additive manufacturing. **e.** Layer-by-layer
145 deposition of reactive monomers to form TFC membranes. Figure d and figure e are adapted with
146 permission from ref. 51 and ref. 58, respectively.

147

148 Beyond TFC-PA fabricated using the IP process, recent studies have explored the approach
149 of additive manufacturing to make TFC-PA membrane by sequential deposition of amines and
150 acyl chlorides using electrospray (Fig. 1d)^{51,52}. Advantages of this additive approach for
151 membrane fabrication include the formation of smooth PA layers with controllable film thickness,
152 possibly more controllable microstructure⁵³, more efficient utilization of monomers, saving in
153 solvents, and the possibility of adopting new polymer chemistries alternative to polyamide^{51,54}. As
154 a relatively new approach, however, electrospray method has not produced TFC-PA membranes

155 with better performance than those fabricated using the state-of-the-art IP processes. Another
156 extensively investigated method of fabricating RO and NF membranes is layer-by-layer deposition
157 of molecules (polyelectrolytes or reactive monomers) on a substrate to form TFC membranes (**Fig.**
158 **1e**)^{55–58}. Despite the advantage of having a rich selection of polymer chemistry to control
159 membrane properties, membranes made via layer-by-layer deposition have not been applied for
160 desalination at an industrial scale due to the inability to achieve ultrahigh salt rejection and slow
161 speed of the layer-by-layer deposition approach as compared to the very fast IP process⁵⁹. Due to
162 the dominance of TFC-PA membranes in practical desalination applications, the following
163 discussion will focus on TFC-PA membranes formed via IP, although most of the methods for
164 characterization, performance testing, and modeling apply regardless of the specific material
165 chemistry and fabrication method.


166 **[H2] Membrane characterization**

167 The physicochemical properties of a TFC-PA membrane have strong impacts on its desalination
168 performance and are thus extensively characterized in many studies focusing on membrane
169 fabrication. In general, a TFC-PA membrane is characterized for its morphology and structure,
170 chemical composition, and interfacial properties, which will be discussed below.

171 **[H3] Morphology and structure.**

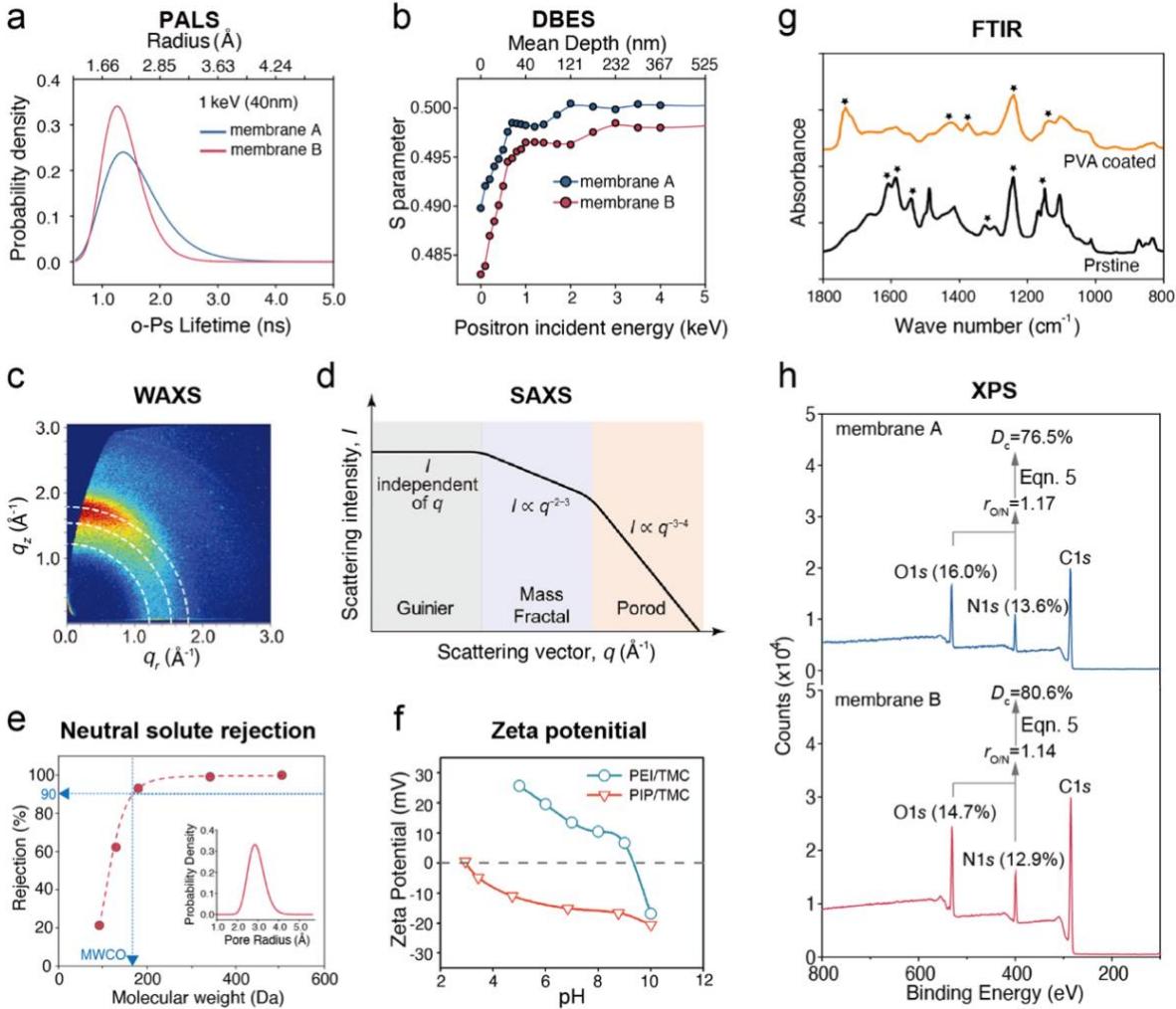
172 Three types of microscopic techniques are commonly used to characterize the morphology of TFC-
173 PA membranes (**Fig. 2**), including scanning electron microscopy (SEM), transmission electron
174 microscopy (TEM), and atomic force microscopy (AFM). SEM micrographs provide direct
175 visualization of the surface (top-view) and cross-sectional morphology⁶⁰. For example, TFC-PA
176 membranes made using MPD amine monomers (for SWRO) have been shown to have ridge-and-
177 valley morphology for the PA layer^{60,61}, whereas those fabricated using PIP amine monomers (for
178 NF) typically have nodular morphology^{62,63} (**Fig. 2a**). Other interesting morphologies, such as
179 stripes^{39,62}, craters^{64,65}, and 2D fractals⁴⁰, can also emerge with IP processes modified with
180 additives or post-treatment. TEM is mostly performed to image the cross-section of TFC-PA
181 membranes for evaluating the PA layer thickness and identifying voids in the PA layer by
182 distinguishing different parts (the PA layer, the PS/PES support, and voids) based on their
183 difference in electron transmittance (**Fig. 2a**). The interface of the PA layer and the PS/PES support
184 can be more clearly discerned by increasing their contrast in electron transmission via staining the
185 PA layer with heavy metals⁶⁶, or using elemental mapping based on energy dispersive X-ray

186 spectroscopy (EDS) in scanning transmission electron microscopy (STEM)⁵⁹. With metal staining
 187 or elemental mapping, the cross-sectional TEM micrographs can provide clear distinction between
 188 the PA and the microporous support layer (Fig. 2b, 2c)^{66,67}.

189
 190 **Fig. 2 | Advanced imaging characterization results of TFC-PA membranes.** **a.** Scanning
 191 electron microscopy (SEM, top) and Transmission electron microscopy (TEM, bottom) images for
 192 RO and NF membranes. RO PA membrane has the clear “ridge and valley” structure. **b.** High-
 193 angle annular dark-field scanning transmission electron microscopy ((HAADF-STEM) of a stained
 194 membrane present a clear interfacial structure of TFC-PA membrane compared to the non-
 195 stained membrane (inset). **c.** Elemental mapping of the PA-PS interface by STEM coupled with
 196 energy-dispersive X-ray spectroscopy (STEM-EDS) shows that the PA layer (in magenta) is
 197 abundant in nitrogen where PS support (in green) is abundant in sulfur. **d.** Atomic force
 198 microscopy (AFM) micrographs for RO and NF membranes show that RO membrane has a higher
 199 surface roughness than NF membrane. **e.** 3D visualization of the PA polymer network by HAADF-
 200 STEM. The distribution of solid (polymer) density is presented as a heat map (red for high density).
 201 The images are adapted with permission from ref. 61 and 63 (a), 66 (b), 67 (c), 54 (d), and 71 (e).
 202

203 Micrographs from SEM and TEM can also be complemented by surface topographical
 204 analysis of AFM images (Fig. 2d)⁵⁴. In AFM, the root-mean-square roughness, R_{rms} , defined as

$$R_{rms} = \sqrt{\frac{\sum_{i=1}^N (z_i - \bar{z})^2}{N - 1}} \quad (1)$$


205 where z_i is the altitude of pixel i , \bar{z} is the average of z_i throughout the surveyed area, and N is the
 206 total number of pixels in the surveyed area. R_{rms} based on AFM topography is often used to
 207 facilitate quantitative evaluation and comparison of TFC-PA membrane surface roughness^{68,69}. For
 208 example, TFC-PA membranes fabricated using MPD are rougher than those fabricated using PIP
 209 based on the comparison of their root-mean-square roughness⁶⁸. Because AFM relies on the force
 210 interaction between the cantilever tip and the membrane surface, it cannot capture morphological

211 features such as voids and lateral concavities. AFM with line profile analysis has also been used
212 in obtaining the size distribution of surface pores in NF membranes⁶⁹. Recently, 3D tomography
213 based on TEM or STEM has emerged as a powerful imagining technique that can provide valuable
214 information regarding surface morphology and internal pore structure of the PA layer⁷⁰⁻⁷². The
215 general idea of 3D tomography is the reconstruction of 3D structure from a series of 2D projection
216 images obtained using different angles. In high-angle annular dark-field (HAADF) mode, STEM-
217 based 3D tomography can also reveal the thickness and density distribution in the polymer
218 film^{70,71}. For example, HAADF-STEM can map the nanoscale distribution of polymer density
219 from measured nanoscale intensity distribution (**Fig. 2e**)⁷¹ and yield fractional free volume
220 distribution from which water transport characteristics can be inferred⁷⁰⁻⁷².

221 **[Au: I suggest adding a H3 heading here of “pore size and structure”]**

222 **[H3] Pore size and structure**

223 The internal pore structure of the PA layer can also be probed using non-imaging techniques, most
224 notably positron annihilation spectroscopy (PAS) and X-ray or neutron scattering. Specifically,
225 positron annihilation lifetime spectroscopy (PALS) and Doppler broadening energy spectroscopy
226 (DBES) can be obtained from PAS measurements. In PALS, low-energy positrons are injected
227 into the PA film to form electron-positronium ions that would undergo rapid self-annihilation in
228 polymer rich regions but slow self-annihilation in polymer-deficient regions (pores or free
229 volumes)⁷³. The distribution of electron-positronium ion lifetime can thus be translated to the
230 distribution of free volume size. DBES records the momentum densities of γ -ray radiation released
231 during the annihilation from which parameters dependent on the microstructure of the polymer are
232 extracted⁷⁴. DBES has been used to obtain the depth profile of the free volume by varying the positron
233 beam energy in the PA layer^{39,74}. One typical way to present the PALS data is to plot the probability
234 density function of the triplet state ortho-positronium (o-Ps) lifetime which also corresponds to
235 free-volume radius (**Fig. 3a**)³⁹. The *S* parameter in DBES data as a function of positron incident
236 energy can also be used to reveal depth profile of the free volume in PA layer (**Fig. 3b**)³⁹.

237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256

Fig. 3 | Representative results of non-microscopic characterization of structural, chemical, and interfacial properties of TFC-PA membranes. **a.** Pore size distributions of the PA layer derived from of positron annihilation lifetime spectroscopy (PALS). **b.** Evolution of S parameters as a function of film mean depth obtained from Doppler broadening energy spectroscopy (DBES). **c.** Representative pattern from wide-angle X-ray scattering (WAXS) of a PA film. **d.** Representative results from small-angle X-ray scattering (SAXS) of PA bulk dispersion. **e.** Rejections of neutral solutes of different molecular weight. The MWCO corresponds to the molecular weight of the solute rejected by 90%. Inset: pore size distribution of PA active layers fitted log-normal distribution with “sieving assumption”. **f.** Zeta potential of the more positively charged TFC-PA membrane made using PEI as the amine vs. that of the more negatively charged TFC-PA membrane made using PIP as the amine. **g.** Comparison of ATR-FTIR spectra between a pristine (uncoated) TFC-PA membrane and a polyvinyl alcohol (PVA) coated TFC-PA membrane. The uncoated TFC-PA membrane shows characteristic peaks (noted with star) of PA bonds and the PS support while the PVA coated membranes reveals additional peaks related to hydroxyl and acetate groups of the PVA coating. **h.** Representative results from XPS measurements and illustration of how it can be used to determine the degree of crosslinking (D_c). The images are adapted with permission from ref. 39 (a, b, e, h), 77 (c), 78 (d), 96 and 104 (f), and 93 (g).

Scattering techniques, such as wide-angle X-ray scattering (WAXS), small-angle X-ray scattering (SAXS), and small-angle neutron scattering (SANS), provide information regarding the polymer structure at different scales depending on the scattering vector q (defined as $q = 4\pi \sin \theta / \lambda$ with θ and λ being the scattering angle and the wavelength of incident radiation, respectively). Specifically, WAXS can provide structural insights at the molecular or atomic scale (0.1-10 Å), whereas SAXS and SANS can unveil mesoscale structural insights (10-1,000 Å).^{4,75,76} Representative patterns from WAXS⁷⁷ (for polymer film) and SAXS⁷⁸ (for bulk polymer) are shown in **Fig. 3c and 3d**, respectively. The data processing and accurate interpretation of results from PALS, WAXS, and SAXS requires expert knowledge from the respective fields and is beyond the scope of this Primer. More detailed explanation of interpreting results from PALS^{74,79}, DBES⁷⁴, WAXS⁷⁶, and SAXS^{78,80} can be found in the literature.

Although the microscopic, spectroscopic, and scattering techniques discussed above are powerful, some of these instruments are not widely accessible and they do not provide direct information about membrane pore size in the context of solute rejection. One widely practiced method to assess pore size distribution is to measure the rejection of neutral organic solutes of different size (or molecular weight, MW) (**Fig. 3e**). Alcohols⁸¹, sugars³⁹, poly (ethylene glycols) (PEG)^{82,83}, poly (ethylene oxide) (PEO)⁸² of different molecular weights have been used as the probing solutes. Empirical correlations have been proposed to relate the MW of a solute to its Stokes radius (r_s) using the general form of $r_s = aMW^b$, with a and b being the correlation coefficients that depend on the chemical species^{84,85}. The rejections of different organic compounds (concentrations quantified by total organic carbon, TOC) by the sample membranes are measured using filtration experiments and typically plotted against the Stokes radii of the respective compounds. The data points are usually fitted using log-normal distribution as described by the following probability density function (PDF)⁵⁶:

$$\frac{dF(r_p)}{dr_p} = \frac{1}{r_p \ln \sigma_p \sqrt{2\pi}} \exp \left[-\frac{(\ln r_p - \ln \mu_p)^2}{2(\ln \sigma_p)^2} \right] \quad (2)$$

where $F(r_p)$ is the cumulative probability of finding pores with radius smaller than r_p , μ_p is the mean pore size, and σ_p is the geometric standard deviation of pore size. Under the assumption that solutes with a Stokes radius smaller than a specific pore size can *all* permeate through the membrane (which we herein refer to as “sieving assumption” for its similarity to sand sieving), $F(r_p)$ is equivalent to the measured rejection of solutes with a Stokes radius equal to or larger than

286 r_p . Under this framework, μ_p corresponds to the r_s of a solute with a measured rejection of 50%
287 and σ_p correspond to the ratio between r_s of a solute with a rejection of 84.1% and μ_p . In addition,
288 the molecular weight cutoff (MWCO) of a membrane is defined as the molecular weight of a
289 neutral organic solute with a rejection of 90%. Although not as comprehensive as the PDF, MWCO
290 is widely reported as an intuitive parameter quantifying the pore size of commercial membranes
291 and membranes fabricated in laboratory studies.

292 The inference of pore size distribution from solute size-dependent rejection based on
293 Equation 2 relies on the “sieving assumption” which is reasonable for microfiltration or
294 ultrafiltration where convection is the dominant transport mechanism. In NF and RO where
295 diffusion dominates solute transport, due to steric and hydrodynamic effects, rejection of solutes
296 smaller than pore size is finite (i.e., non-zero) and dependent on solute size⁸⁶. Despite the wide
297 adoption of Equation 2 in many studies of TFC-PA membrane development, the validity of
298 “sieving assumption” is questionable. Alternatively, we can apply the hindered transport model
299 that considers the effects of pore and solute size on partition and transport. Based on the hindered
300 transport model, the intrinsic rejection (or real rejection, to be discussed later when introducing
301 concentration polarization) of a neutral solute is given by⁸⁷

$$R_{int} = 1 - \frac{K_C \Phi}{1 - (1 - K_C \Phi) \exp(-Pe)} \quad (3)$$

302 where Φ is the partition coefficient of the solute, Pe is the Peclet number, and K_C is convection
303 hindrance factor (details for calculating of Pe and K_C can be found in **S1** in **Supporting**
304 **Information (SI)**). The partition coefficient of a neutral solute smaller than pore size, assuming
305 only steric interactions, is given by⁸⁷:

$$\Phi = \left(1 - \frac{r_s}{r_p}\right)^2 \quad (4)$$

306 The partition coefficient is zero for solute larger than pore size. The membrane pore size can be
307 estimated using Equations 3 and 4 with solute rejection data obtained using a series of water fluxes.

308 [H3] Chemical composition

309 The chemical composition of TFC-PA membranes can be obtained using spectroscopic techniques
310 such as X-ray photoelectron spectroscopy (XPS) and attenuated total reflection Fourier-transform
311 infrared (ATR-FTIR) spectroscopy⁸⁸. XPS provides the elemental composition of a film with a

312 sample depth < 5 nm and is thus ideal for analyzing a PA layer in a TFC-PA membrane without
313 interference from the PS/PES support⁸⁹. In contrast, ATR-FTR provides information about
314 chemical bonds with a sampling depth of hundreds to thousands of nanometers (depending on the
315 incident radiation wavelength), capturing information from the support layer in a TFC-PA
316 membrane⁹⁰. ATR-FTIR and XPS are often used in conjunction to provide information on the
317 composition of a TFC-PA across multiple length-scale^{88,90}.

318 Analysis of ATR-FTIR spectra can help identify important functional groups of the PA layer
319 and unreacted monomers (e.g., fingerprint peak assignment of MPD/TMC PA system in **Table**
320 **S1**) to evaluate the impact of fabrication conditions on the chemical composition of the PA film.
321 Without interference from the microporous polymer support, it can even be employed to quantify
322 the concentration of functional groups (e.g., carboxylic acid groups) to reveal insights of PA film
323 formation^{90,91}. ATR-FTIR is also often used to characterize TFC-PA membranes with incorporated
324 additives or surface coatings^{90,92,93}. For example, the ATR-FTIR spectrum of uncoated PA layer
325 made from MPD/TMC shows the characteristic peaks of fully aromatic PA at 1608 cm⁻¹ (amide I
326 band from C=O stretching), 1540 cm⁻¹ (amide II band from N–H bending), and 1590 cm⁻¹ (C=C
327 stretching of the aromatic ring)⁹³, whereas the spectrum of PVA coated membranes reveals all the
328 characteristic peaks related to hydroxyl and acetate groups of the PVA precursor in addition to the
329 peaks from the PA layer (**Fig. 3f**)⁹³.

330 XPS, which provides the sample's elemental composition and the relative abundance of each
331 element, plays an important role in TFC-PA membrane characterization because it helps to
332 quantify the degree of crosslinking, an important property of PA layer. To evaluate the degree of
333 crosslinking, the ratio between oxygen (O) and nitrogen (N), or the O/N ratio, is evaluated from
334 the XPS spectrum^{88,90}. For PA without additives, the O/N ratio should be 1:1 for a completely
335 crosslinked PA film and 2:1 if the PA is fully linear, i.e., without inter-chain amide bonds (**Fig.**
336 **S1a in SI**)⁹⁴. Therefore, an O/N ratio closer to 1:1 suggests a higher degree of crosslinking. With
337 the O/N ratio, $r_{O/N}$, the degree of crosslinking (D_c) can be quantified by

$$D_c = \frac{4 - 2r_{O/N}}{1 + r_{O/N}} \quad (5)$$

338 We note that Equation 5 applies only if the polymer chemistry is purely PA. In cases where
339 the PA layer is modified with additive, D_c may not be assessed using Equation 3 and the O/N ratio

340 may even fall outside the range of 1 and 2. The comparison of the peaks for oxygen (O1s) and
341 nitrogen (N1s) peaks yield the abundance ratio between the two elements ($r_{O/N}$, **Fig. 3g**) from
342 which the degree of crosslinking can be estimated using Equation 5. This XPS-based technique to
343 quantify the degree of crosslinking is valid because probing depth of XPS is only several
344 nanometers which is substantially lower than the thickness of the PA layer.

345 **[H3] Interfacial properties**

346 There are two major categories of interfacial properties for TFC-PA membranes: surface charge
347 density/potential and wettability. Surface charge density is important because it dictates Donnan
348 exclusion, which is an important mechanism of salt rejection, and the interaction with charged
349 foulants. A method based on ion adsorption has been developed to quantify the areal density of
350 ionized carboxyl and amine groups from which the areal charge density may be calculated (**Fig.**
351 **S1b**)⁹⁵. This method is based on the specific adsorption of the probing ions to the target functional
352 groups (e.g., Ag⁺ for carboxyl groups and Br⁻ for amine groups) and the quantification of the
353 probing ion concentration in the eluate using inductively coupled plasma mass spectrometry (ICP-
354 MS)^{95,96}. Another method to quantify the carboxyl group density involves the use of uranyl acetate
355 as the probing ion and quantifying the amount of bound uranyl acetate to carboxyl groups using
356 liquid scintillation counting for uranium atoms⁹⁷. In addition, quartz crystal microbalance (QCM)
357 has also been used to determine charge density of TFC-PA membrane via measuring the
358 partitioning of carboxyl group-binding ion (e.g., Cs⁺) from the solution into PA layer (**Fig.**
359 **S1c**)^{98,99}.

360 Compared to surface charge density, the zeta potential of the TFC-PA membrane can be
361 measured directly using commercially available streaming potential instrument (**Fig. S1d**)^{88,100},
362 and is thus much more widely reported in the literature. Zeta potential and surface charge density
363 are semi-quantitatively related based on double layer theory¹⁰¹, but the conversion between these
364 two parameters for membranes requires questionable simplifying assumptions. Notably, the zeta
365 potential provides the electrokinetic potential (i.e., the potential at the electrokinetic plane of
366 shear), not the fixed charged density of the membrane, which can lead to erroneous conclusions
367 about the membrane charge characteristics. For example, the measured zeta potential can be
368 negative even for neutrally charged membranes, such as cellulose acetate, likely due to the
369 adsorption of anions to the membrane^{102,103}. Hence, quantifying the charge density is more useful

370 than zeta potential for mechanistic studies on the role of membrane charge in salt transport through
371 TFC-PA membranes. Zeta potential, however, can be used for semi-quantitative analyses, such as
372 determining the iso-electric point of the membrane^{88,103}, or assessing the impacts of surface
373 modification on the electrokinetic properties of the membrane.

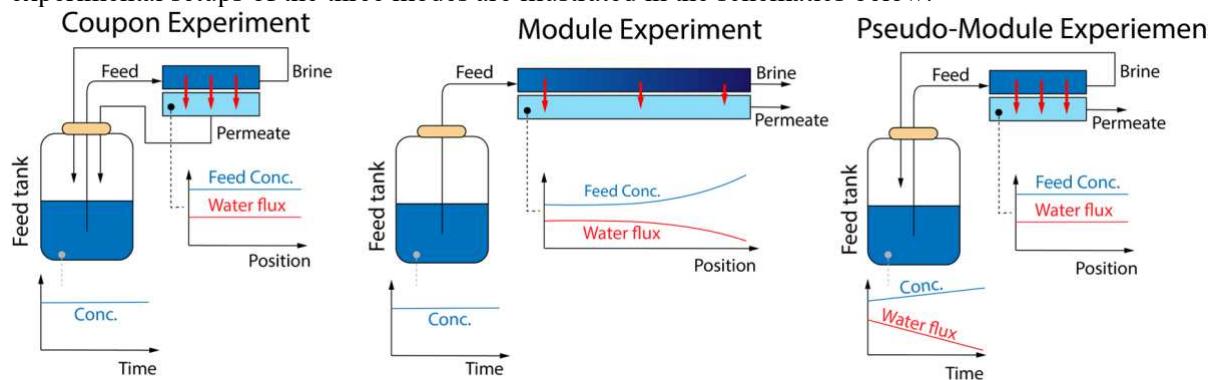
374 The zeta potentials measured using streaming potential technique are reported over a range
375 of pH and can be used to compare the surface charge property of different TFC-PA membranes
376 (**Fig. 4f**)^{96,104}. The zeta potential is expected to become more negative at higher pH due to
377 deprotonation of carboxyl and amine groups⁹⁶, and is also dependent on ionic strength and possibly
378 the background electrolyte¹⁰², especially when specific adsorption is possible (e.g., with Ca^{2+}). As
379 an example to demonstrate the utility of zeta potential measurements, TFC-PA NF membranes
380 made using polyethyleneimine (PEI) as the amine have been shown to be consistently more
381 positively charged than those fabricated using PIP (commercial NF270) (**Fig. 4h**)^{96,104}.

382 The wetting property of a membrane is mostly quantified by measuring water contact angle
383 (WCA) which is relevant in the following aspects. Typically, a PA membrane with more ionized
384 functional groups is more hydrophilic and thus yields a lower WCA^{101,105}. Additionally, surface
385 modification is often performed to TFC-PA membranes to improve hydrophilicity, which is
386 believed to be beneficial to water transport and fouling resistance, and WCA is a critical metric to
387 quantify the effect of hydrophilic modification^{106–108}. While WCA measurement is relatively
388 simple, its interpretation requires caution for fair comparison. Notably, WCA depends not only on
389 the surface energy of the polymer but also on the surface roughness, following the Wenzel's
390 theory¹⁰⁹. This caveat is particularly important when comparing WCA between two TFC-PA
391 membranes with dramatically different morphologies.

392 **[H1] Results**

393 **[H2] Membrane performance testing**

394 Most membrane performance tests in literature are conducted at the coupon-scale (see **Box 1** for
395 coupon-, module-, and pseudo-module-scale experiments) using either crossflow cells with or
396 without spacer or dead-end stirred cells (typically Amicon®)^{110,111}. With a crossflow cell, the feed
397 stream is pressurized using a high-pressure pump and driven through the feed channel filled with
398 a spacer with the feed flow tangent to the membrane. The spacer is important for creating a
399 hydrodynamic condition similar to that in full-scale modules so that a similar degree of


400 concentration polarization (CP) can be achieved at the same crossflow velocity and water flux.
 401 The stirring speed in an dead-end cell also needs to be controlled as it also affects the degree of

402 **Box. 1 Coupon-, module- and pseudo-module-scale experiments**

403 For desalination, the primary performance metric of an RO/NF process at the coupon-scale experiment
 404 is water flux and salt rejection. Coupon experiments are performed using a small membrane area with
 405 a relatively large feed flowrate and with the permeate sent back to the feed tank (except for a small
 volume sampled for analysis) to maintain a constant feed composition. With coupon experiments, we
 can assume that the feed channel composition and water flux in the test cell are spatiotemporally
 constant (assuming no fouling occurs). In contrast to coupon experiments, module-scale experiments
 are performed with a large membrane area (as in practical desalination plants). Using a module with a
 large membrane area induces spatial distribution of composition in the feed channel and water flux.

In labs without access to pilot-scale RO/NF systems, we can also perform pseudo-module-scale experiments to extract module-scale information by using a coupon-scale experimental systems without sending the permeate back to the feed tank. Although spatial distribution of feed channel concentration and water flux are absent in pseudo-module experiment, not sending the permeate back to the feed tank induces a temporal variation of water flux and solute concentration in the feed tank that are equivalent to the spatial distributions of the water flux and feed channel concentration in module-scale experiments. The equivalence can be shown if we plot these parameters against water recovery (WR) converted from time (in pseudo-module-scale experiments) and position (in module-scale experiments). In fact, performing pseudo-module experiment is a convenient way to extract equivalent distributions of concentration and flux in a module. Such distributions cannot be obtained readily in module experiments without a distributed sensor network in the module.

In the literature, most membrane performance tests were performed using coupon-scale experiments to understand material performance of membranes at certain feed compositions and applied pressures. Module-scale or pseudo-module-scale experiments are more relevant to elucidating the system-level behavior of membrane modules in practical desalination plants. The simplified experimental setups of the three modes are illustrated in the schematics below.

Features	Coupon Exp.	Module Exp.	Pseudo-Module Exp.
Membrane area relative to feed flow rate	small	large	small
Permeate back to feed tank	yes	no	no
Spatial distribution of feed channel concentration and water flux	negligible	yes	negligible
Temporal change of feed tank concentration and water flux	no	no	yes

406 Before collecting membrane performance data, membranes are pre-compacted by being
407 subject to the operating pressure over a certain duration to minimize the performance artifacts due
408 to membrane compaction¹¹². Membrane compaction refers to the compression of the PS/PES
409 support layer and perhaps the PA selective layer of the TFC-PA membrane when operated under
410 high pressure, which is a widely reported, unavoidable phenomenon that affects membrane
411 performance for water permeation and salt retention. For measuring water flux, the membrane is
412 compacted under the testing pressure using deionized (DI) water for several to tens of hours until
413 the flux is stable. For testing salt rejection, the membrane should be equilibrated with the salt
414 solution before collecting the permeate samples. For commercial membranes, the manufacturers
415 often provide pre-conditioning protocols (including pre-compaction and chemical conditioning)
416 that should be followed to attain the manufacturer-specified performance.

417 **[H3] Data collection and preliminary processing.**

418 Water flux can be measured by digital flowmeter or be evaluated based on the temporal evolution
419 of cumulative mass of permeate (m_p) which is typically converted to cumulative permeate volume
420 (V), because volumetric flux (commonly expressed in $\text{L m}^{-2} \text{ h}^{-1}$, or LMH) is universally reported.
421 For a membrane coupon, the differential (real time) volumetric water flux, J_W , is given by

$$J_W = \frac{1}{S_m} \frac{dV}{dt} \quad (6)$$

422 where S_m is the effective area of the membrane. In coupon-scale experiments without fouling, J_W
423 should be constant. The decline in J_W is due to either fouling, compaction, or increase in salt
424 concentration (and thus osmotic pressure) in the feed solution in pseudo-module-scale
425 experiments. While J_W is often reported in literature for experiments with saline feed solutions,
426 we recommend also measuring J_W with pure water at different pressures to simplify the data
427 interpretation.

428 Quantifying salt rejection requires measuring the salt concentration in the permeate (with
429 known feed concentration). For desalination, electrical conductivity of the solutions can be
430 conveniently measured and used as a proxy of salt concentration with a calibration curve for dilute
431 solutions. However, if the solutions are highly concentrated or more detailed compositional
432 information on the salt solutions is required, samples can be collected and analyzed for solute
433 concentrations *ex situ* using techniques proper to the analytes. In general, with the feed

434 concentration (C_F) and permeate concentration (C_P), the observed solute rejection (R_{obs} , also
435 called apparent rejection or measured rejection) is calculated using the following equation:

$$R_{obs} = 1 - \frac{C_P}{C_F} \quad (7)$$

436 The observed solute rejection, which is to be distinguished from intrinsic rejection (to be
437 discussed), is calculated based on bulk concentrations and is the most widely reported in literature
438 and directly relevant to practical applications. The observed solute rejection is not an intrinsic
439 property of the membrane as it depends on operational conditions, most notably the permeate flux
440 (or applied pressure) employed during the experiments.

441 [H2] Membrane performance quantification

442 [H3] Water Permeability

443 Water flux and salt rejection, experimentally measured to quantify membrane performance, are
444 not intrinsic performance metric of the membrane. For water transport, the intrinsic performance
445 metric is the water permeability coefficient (or permeance) which is typically denoted as A and
446 defined as ratio of pure water flux (as given in Equation 6) and applied pressure (ΔP):

$$A \equiv \frac{J_W}{\Delta P} \quad (8)$$

447 The most typical unit of A is $\text{L m}^{-2} \text{ h}^{-1} \text{ bar}^{-1}$ (or LMH/bar). Equation 8 suggests that plotting J_W for
448 pure water vs. ΔP should yield a linear curve with a slope of A . This is generally true for water
449 except in the case when membrane compaction occurs (at high pressure), which again highlights
450 the importance of pre-compacting the membrane to working pressure range for accurate
451 performance evaluation. While the mechanistic interpretation of Equation 8 and A value may differ
452 depending on model framework (i.e., pore flow vs. solution diffusion) chosen to describe water
453 transport in PA membrane, Equation 8 always holds.

454 In principle, A can also be evaluated from results of PMD experiments with a salt solution,
455 using the following equation:

$$A = \frac{J_W}{\Delta P - \Delta \pi_m} \quad (9)$$

456 where $\Delta \pi_m$ is the osmotic pressure difference across the PA active layer. For a low-salinity single-
457 salt solution that can be approximated as an ideal solution, $\Delta \pi_m$ can be estimated as

$$\Delta \pi_m \approx \nu R T \Delta C_m \approx n R T (C_{F,m} - C_P) \quad (10)$$

458 where n is the van't Hoff factor (i.e., 2 for NaCl), R is the ideal gas constant, T is absolute
459 temperature, $C_{F,m}$ is the salt concentration at the membrane-solution interface on the feed side, and
460 C_P is the salt concentration of the permeate.

461 Due to **concentration polarization [G]** (CP), $C_{F,m}$ is always higher than the bulk salt
462 concentration of the feed solution, C_F , in RO and NF. CP is influenced by the mass transfer
463 coefficient in the boundary layer that depends on the hydrodynamic conditions in the flow channel.
464 Furthermore, the degree of CP is highly dependent on J_w , which renders $\Delta\pi_m$ also dependent on
465 J_w . Although determining A value by filtration of salt solution and equation 9 is theoretically
466 possible, it is more complicated and less reliable than using filtration of pure water and equation
467 8. We therefore recommend measuring the pure water flux to determine A value.

468 **[H3] Concentration polarization and intrinsic rejection.**

469 Concentration polarization (CP) is an important and universal phenomenon in membrane
470 processes. The occurrence of CP in PMD is caused by the finite kinetics of back diffusion of solutes
471 concentrated near the membrane surface due to convective transport driven by transmembrane
472 water flux^{113,114}. With CP, water flux is related to three salt concentrations — C_F , C_P (bulk), and
473 $C_{F,m}$ (interface) — via the CP factor (f_{CP} , also called CP modulus):

$$f_{CP} \equiv \exp\left(\frac{J_w}{k}\right) = \frac{C_{F,m} - C_P}{C_F - C_P} \quad (11)$$

474 where k is the mass transfer coefficient in the boundary layer (unit: $\text{L m}^{-2} \text{ h}^{-1}$). For RO membranes
475 with high solute rejection, C_P is negligible compared to C_F and $C_{F,m}$, and Equation 11 can be
476 reduced to $f_{CP} = C_{F,m}/C_F$. Equation 11 is derived based on film theory and k can be estimated
477 using correlations (**Box 2**).

478

Box. 2 Film model and determination of mass transfer coefficients

In the film model for concentration polarization, a concentration profile of the rejected solutes develops in a hydrodynamically stagnant boundary layer (i.e., the “film”) due to the convective transport of the solutes toward the solute-rejecting membrane and the diffusive transport of the solutes from the membrane surface to the bulk due to concentration gradient^{114, 115, 210}. Such a concentration profile is exponential within the boundary layer and renders the interfacial concentration, $C_{F,m}$, to be higher than the bulk concentration, C_F .

Based on film model, $k = D_S/\delta$ where D_S is the diffusion coefficient of the solute in the solution and δ is the thickness of the film layer¹¹⁴. The meaning of D_S is relatively clear for neutral solute, more nuanced for a single-salt solution (i.e., binary electrolyte), and intractable for complex solution (e.g., seawater or brackish water). Therefore, the relation $k = D_S/\delta$ is mostly useful for understanding the effect of operational parameters on CP (e.g., to see how hydrodynamics affect δ , and in turn, k). In practical applications, however, k should be evaluated or measured directly. The dependence of k on D_S also suggests that k is dependent on the feed composition.

The boundary layer thickness depends on the hydrodynamic conditions which in turn depends on several factors such as flow channel geometry, flow velocity, and when spacer is used, also the geometry of the spacer. For relatively simple flow channel geometries, correlation equations have been proposed for evaluating the mass transfer coefficient. These equations take the following general form^{210,211}:

$$Sh \equiv \frac{kd_h}{D_S} = aRe^b Sc^c$$

where Sh is the Sherwood number, Re is the Reynold number ($Re \equiv ud_h/\nu$, with u and ν being the flow velocity and kinematic viscosity, respectively, and d_h is the hydraulic diameter for the channel), Sc is the Schmidt number ($Sc \equiv \nu/D_S$), a , b and c are the correlation coefficients depending on flow conditions. Correlations for typical channel geometries are summarized in **Table S1**.

The correlation method is less reliable or useful when the feed channel contains a spacer, especially when the spacer can have different mesh geometries. An alternative way to evaluate k is based on a combination of Equations 9-11²¹²:

$$\frac{J_W}{k} = \ln \left[\frac{\Delta P - J_W/A}{nRT(C_F - C_P)} \right]$$

Experimentally, we can use a single-salt feed solution with a concentration C_F , increase ΔP and measure J_W and C_P (C_P may be dropped for RO membranes). We then can plot the right-hand-side of the above Equation vs. J_W and find the slope which equals $1/k$. This method allows experimental determination of k .

481 Because CP renders $C_{F,m} > C_F$, the observed solute rejection evaluated using Equation 5 is
482 an underestimation of the intrinsic (or real) rejection defined as

$$R_{int} = 1 - \frac{C_P}{C_{F,m}} \quad (12)$$

483 When k is known, the intrinsic rejection, R_{int} , and the observed rejection, R_{obs} , can be
484 interconverted using the following relation⁴⁹:

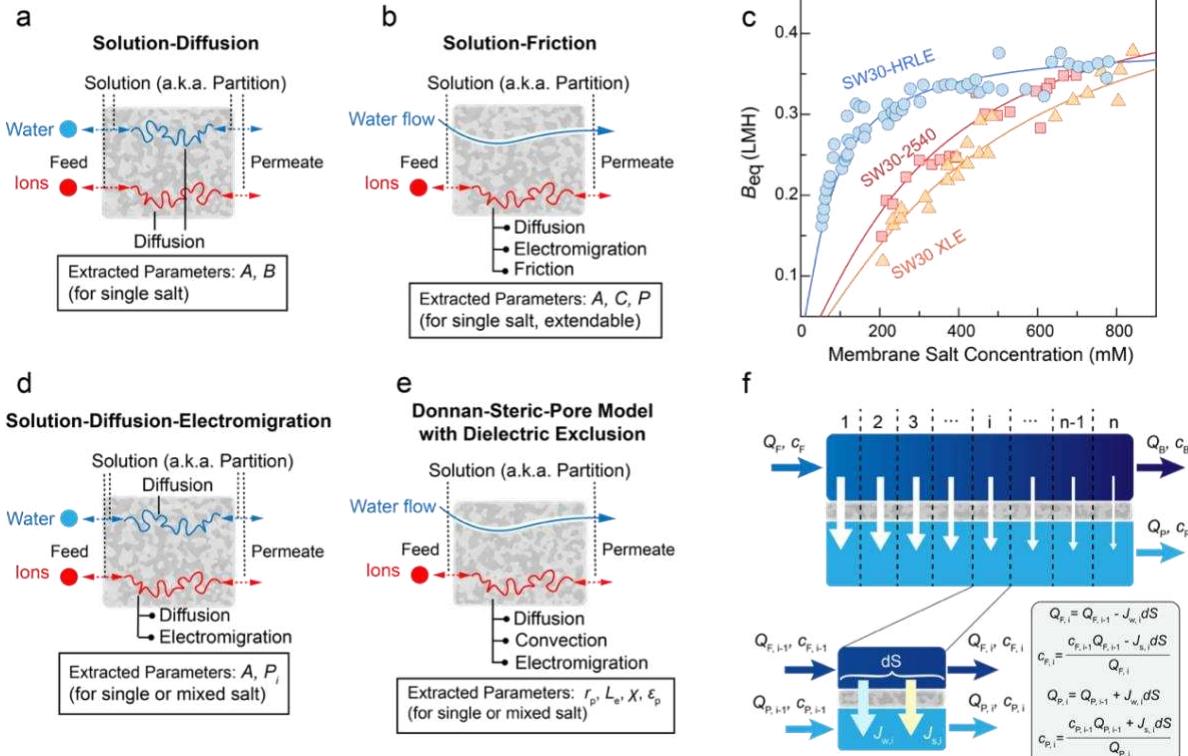
$$R_{int} = \frac{f_{CP}R_{obs}}{1 - R_{obs} + f_{CP}R_{obs}} \quad (13)$$

485

486 [H2] Models and performance metrics for salt transport

487 While R_{int} reflects inherent characteristics of the membrane to a greater extent than R_{obs} , it is still
488 not an intrinsic parameter of the membrane (for a given salt species). In this section, we present
489 several models to extract more intrinsic membrane parameter for salt transport from experimental
490 measurements.

491 [H3] Solution-diffusion model


492 The most widely used model for mass transport is the solution-diffusion (SD) model, which
493 assumes that water and solute species transport independently via first dissolving (or partitioning)
494 into the PA layer, then diffusing across the layer under respective concentration gradients, and
495 finally partitioning out of the layer into the permeate (**Fig. 4a**)^{19,20}. The SD model is convenient
496 because it enables a description of the transport characteristics of a TFC-PA membrane using two
497 parameters: the water permeability coefficient as defined in Equation 8 (or 9) and the solute
498 permeability coefficient, B (unit: LMH), defined as

$$B \equiv \frac{J_S}{\Delta C_m} = \frac{J_S}{C_{F,m} - C_P} \quad (14)$$

499 where ΔC_m is the solute concentration difference across the PA active layer, considering CP that
500 brings C_F in the bulk to $C_{F,m}$ at the membrane surface. Both Equations 8 (or 9) and 14 are based
501 on the principle that, for each species, the flux equals the product of the respective driving force
502 and the permeability coefficient. With further derivations (**S2**), it has been shown that the B value
503 can be calculated using J_W , R_{obs} , and k using the following equation⁴⁹:

$$B = \frac{\frac{J_W}{R_{obs}} - J_W}{f_{CP}} \quad (15)$$

504 Since J_W and R_{obs} can be directly measured and there is an independent way of evaluating k using
 505 Equation 11, B can be experimentally determined.

506
 507 Fig. 4 | RO/NF models at the coupon and module scale. **a.** Solution-diffusion (SD) model with
 508 water permeability coefficient (A) and solute permeability coefficient (B) as the extracted
 509 parameters. **b.** Solution-friction (SF) model with A , transport factor (P), and charge factor (C) as
 510 the extracted parameters. **c.** Dependence of equivalent salt permeability coefficients (B_{eq}) on feed
 511 concentration (C_F) for different RO membranes base on SF model (adapted from ref. 118 with
 512 permission). **d.** Solution-diffusion electro-migration (SDEM) model which considers
 513 electromigration in addition to diffusion. The extracted parameters are A and ion permeabilities,
 514 P_i . One permeability will be extracted for each ion. The SDEM model has been commonly used
 515 for modeling ion transport in NF with mixed salt feed solution. **e.** Donnan Steric Pore Model with
 516 Dielectric Exclusion (DSPM-DE). The four major parameters to be extracted from the DSPM-DE
 517 is pore size (r_p), effective thickness (L_e), effective charge density (X) and dielectric constant within
 518 the pore (ϵ_p). These parameters can be extracted by either a multi-step experimental procedure⁷⁶
 519 or the global optimization technique¹²⁷. **f.** Illustration of module-scale model based on finite
 520 difference. The equations in the box describe the mass balance of water and solutes (ions)
 521 between adjacent cells, considering local water and solute fluxes. Local water flux ($J_{w,i}$) and solute
 522 flux ($J_{s,i}$) are determined based on local solution composition and operating conditions using a
 523 selected coupon-scale model (chosen from SD, SF, SDEM, DSPM-DE, or others).
 524

With this framework based on SD model, the separation performance of each TFC-PA membrane is summarized as a pair of value, A and B , evaluated using Equations 8 (or 9) and 15, respectively. The ratio A/B is also widely reported in literature to quantify the water/solute selectivity^{49,115} (See Section S3 where we discuss why the widely claimed “intrinsic perm-selectivity tradeoff” may not be necessarily intrinsic). A large A/B ratio represents a membrane that favors water permeation but not solute permeation, which facilitates high solute rejection. In fact, R_{obs} has been expressed as a function of A/B using the following equation⁴⁹:

$$R_{obs} = \frac{\frac{A}{B}(\Delta P - f_{CP}\Delta\pi)}{\frac{A}{B}(\Delta P - f_{CP}\Delta\pi) + f_{CP}} \quad (16)$$

where $\Delta\pi$ is the bulk osmotic pressure difference that equals $nRT(C_F - C_P)$ for an ideal solution. Equation 16 reveals that a large A/B ratio and a small f_{CP} are both beneficial to achieving a higher observed solute rejection. The values of A and B are reported in an Open Membrane Database (OMD) which is a web-based database with calculation and analysis tools¹¹⁶. It is, however, important to recognize that most studies (>95%) did not report k or f_{CP} , and a k value of 100 LMH was arbitrarily assumed in OMD for calculating the A and B values for membranes from those studies. The OMD team also proposed a set of standard testing conditions for SWRO and BWRO (Table S3)¹¹⁶. Regardless of the mechanistic correctness (which belongs to another discussion beyond the scope of this paper), the SD framework for characterizing membrane performance has at least two major limitations. First, it is widely recognized that the B coefficient, even for a given salt, is not a constant but rather depends on the salt concentration near the membrane surface (i.e., after considering the CP)^{25,117}, which makes the comparison of B values between different TFC-PA membranes only meaningful at the same interfacial salt concentration. For PMD operations, both feed salt concentration and permeate water flux vary over a wide range, casting doubts on the comparison of B between different experiments²⁵. Second, the SD framework cannot explain negative rejection (i.e., $C_P > C_F$) commonly observed in many NF experiments with mixed electrolytes.

549 [H3] Solution-friction model

550 The solution-friction (SF) describes the coupled transport of water and salt in RO membranes. The
 551 model combines ion partitioning between the solution and membrane phase (like that in the SD
 552 model) and microscopic description of ion transport within the PA layer considering the

553 interactions between the species (i.e., salt ions, water molecules, and the membrane) (**Fig. 4b**)^{25,118}.
 554 The SF model is derived based on force balances for water and salt ions transport through the
 555 membrane. Specifically, the frictional force acting on the salt ions is balanced by the driving force,
 556 i.e., the gradient of chemical potential of salt ions. Similarly, as water transport through the
 557 membrane, the hydrostatic pressure is balanced by the friction between water molecules and the
 558 membrane as well as water molecules and salt ions¹¹⁹.

559 Based on the SF model, Biesheuvel, Elimelech, and colleagues proposed a new framework
 560 to characterize PMD membranes to extract concentration-independent parameters to quantify
 561 membrane performance¹¹⁸. Under this new framework, the observed rejection is given by

$$R_{obs} = 1 - \frac{P}{J_W} \left(\sqrt{\left(\frac{C}{C_F} \right)^2 + \exp \left(\frac{2J_W}{k} \right)} - \frac{C}{C_F} \right) \quad (17)$$

562 where P is called the transport factor that quantifies the “conductance” of the membrane to salt
 563 transport considering partitioning, diffusion, and frictions; and C is called the charge factor
 564 integrating charge density and non-Donnan partition coefficient¹²⁰. Detailed derivation of
 565 Equation 17 and definitions of P and C can be found in the work by Biesheuvel et. al^{118,120}.

566 Recognizing that B is not an intrinsic parameter, the concentration-dependent *equivalent* salt
 567 permeability coefficients, B_{eq} (defined based on Equation 14), can still be evaluated under the SF
 568 framework:

$$B_{eq} = P \left(\sqrt{\left(\frac{C}{C_{F,m}} \right)^2 + 1} - \frac{C}{C_{F,m}} \right) \quad (18)$$

569 We use “equivalent” instead of “observed” (as in the original manuscript) to reserve “observed”
 570 for values that are measured or evaluated without considering CP (whereas Equation 18 already
 571 considers CP). Equation 18 shows the dependence of B_{eq} on C_F , which is summarized in **Fig. 4c**
 572 for several commercial membranes¹¹⁸. In general, B_{eq} increases with increasing interfacial feed
 573 concentration, $C_{F,m}$, and approaches a limit at high $C_{F,m}$, which suppresses Donnan exclusion. The
 574 dependence of B_{obs} on interfacial concentration was found to be stronger for some membranes
 575 (e.g., SW30 series) and almost absent for other membranes (e.g., XLE)¹¹⁸.

576 With this SF-based framework, we can vary J_W by changing the applied pressure at a given
 577 C_F to measure R_{obs} , and fit the data of (J_W, R_{obs}) using Equation 17 to extract P and C , assuming

578 that k can be independently determined using a correlation or an experimental method based on
579 Equation 11. Both Equations 17 and 18 reveal that a lower P and a larger C are beneficial to solute
580 rejection (i.e., a higher R_{obs} and a lower B_{eq}).

581 Comparing the SD framework²⁰ and this new SF-based framework by Biesheuvel et. al.^{25,118},
582 the SD framework quantifies the membrane performance (for removing a specific salt) using two
583 parameters, A and B ; whereas the SF-based framework quantifies the membrane performance
584 using three parameters, A , P and C . For modeling module-scale behavior where feed concentration
585 varies spatially along the feed channel, the SF-based framework based on Equation 17 provides an
586 elegant model to account for concentration dependence and is thus superior to the SD framework.
587 For comparing performance of different membranes under similar operating conditions, however,
588 because of the difficulty of visualizing (A , P , C) data with clarity and giving simple interpretations
589 of P and C to non-experts in membrane transport theory, the SD framework based on (A , B) may
590 still be preferred, despite its lack of rigor and mechanistic insights. An additional practical
591 advantage of the SD framework is that evaluation of B in principle only requires one measurement
592 (based on Equation 15, assuming k has been determined), whereas the determination of P and C
593 requires fitting Equation 17 using multiple data points collected from a series of experiments.

594 [H3] Other models and global parameter determination

595 Other models have been used, mostly in NF (but in principle extendable to RO), for fundamental
596 understanding, modeling module-scale behavior, and occasionally for comparing membrane
597 performance. One example is the solution-diffusion electro-migration (SDEM) model, which
598 keeps the diffusion and electro-migration terms in the extended Nernst-Planck equation but drops
599 the convection term (**Fig. 4d**)¹²¹. SDEM model still uses the concept of permeability, but the
600 permeability is defined for an ion species instead as for a salt species as in the SD model. With
601 permeability for ions and the inclusion of the electro-migration term, the SDEM model allows the
602 prediction of negative rejection of ions in NF with mixed salt feed solutions^{121,122}, which is
603 impossible with the simplistic SD model. Sharing the same weakness of the SD model, however,
604 the SDEM model provides no mechanistic description of the dependence of the ion permeability
605 on feed composition. An imperfect but practical solution to address this challenge is to develop
606 empirical correlations between ion permeabilities and (interfacial) feed composition from
607 experimental data¹²³.

608 Another widely used model is the pore flow model, or the so called Donnan Steric Pore Model
609 with Dielectric Exclusion (DSPM-DE)^{87,124}. The DSPM-DE considers water and ion transport
610 through tortuous cylindrical pores with charge and accounts for steric, Donnan, and dielectric
611 exclusions and hindered transport of solutes within pores (**Fig. 4e**)¹²⁴. Although the DSPM-DE has
612 many simplified assumptions and mechanisms that might be questionable (e.g., the inclusion of
613 dielectric exclusion), it can provide some mechanistic insights of how the change in certain
614 membrane properties (e.g., pore size, charge density) would affect membrane separation
615 performance in a way that the other more phenomenological models cannot provide (e.g., pore size
616 is not a parameter in the SD, SDEM, or SF model). A detailed review of the DSPM-DE with a
617 step-by-step instruction of how to extract parameters for the model was provided by Wang and
618 Lin⁸⁶. The DSPM-DE has been used for modeling module-scale behavior for desalination and
619 selective solute separation.

620 For all these models discussed above, from the simplest SD model to the more complicated
621 DSPM-DE, methodologies have been developed to extract each parameter in the model via multi-
622 step procedures. Depending on the model complexity and structure, stepwise (or sequential)
623 determination of model parameters typically involves different types of experiments and may face
624 intrinsic challenges in uncertainty propagation⁸⁶. Alternatively, a global optimization approach can
625 be used for parameter determination^{125,126}. Briefly, a series of data (water flux and salt rejection)
626 is collected under different combinations of feed concentration and applied pressure. With a
627 chosen model framework, a set of model parameters that best fit the collected data series can be
628 found using non-linear regression.

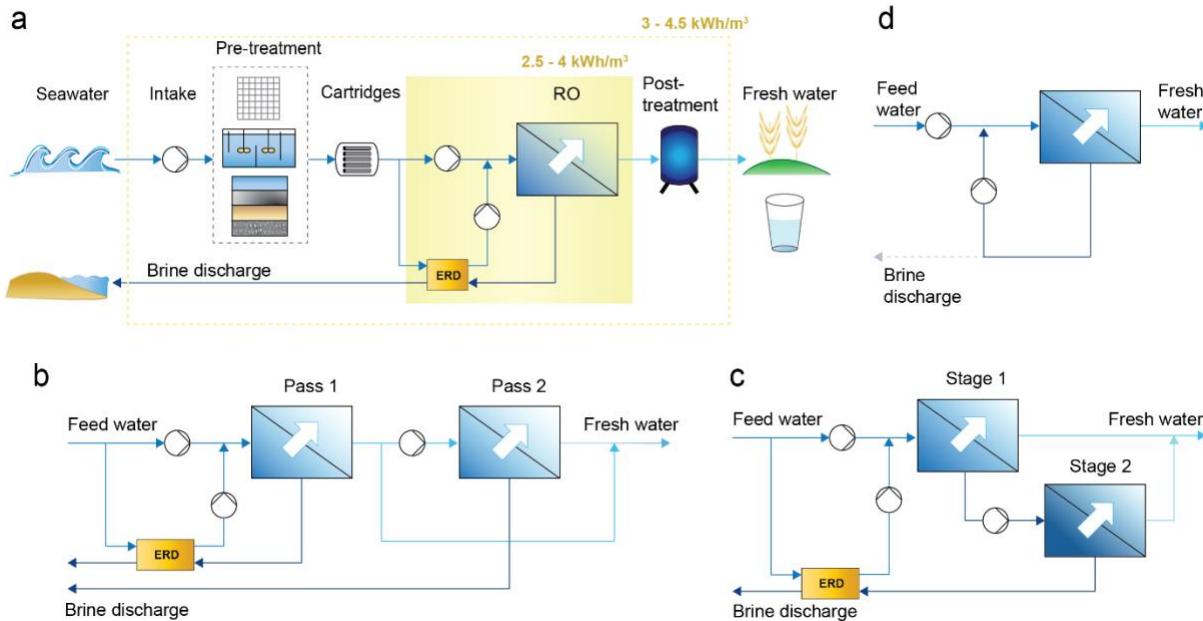
629 **Module-scale modeling and system performance evaluation**

630 With an experimentally validated coupon-scale model, we can model the module-scale mass
631 transfer for PMD¹²⁷. While real PMD modules are typically of spiral-wound configuration with a
632 relatively complex flow pattern, a simplified 2D model based on finite difference method is
633 sufficient for most applications^{128,129}. The 2D model considers both the mass transfer normal to
634 the membrane (i.e., local water and solute fluxes) and the mass balance in the crossflow direction
635 (**Fig. 4f**, details in module-scale modeling can be found in Section **S4**).

636 The solution to the model contains distribution of local water and solute fluxes, flowrates and
637 concentrations in the feed and permeate streams, among other parameters. From the model solution

638 we can evaluate, in addition to WR , important module-scale performance parameters such as
639 average water flux, \bar{J}_W , and module-scale solute rejection, R_{mod} :

$$\bar{J}_W = \frac{Q_P(WR)}{S_m} \quad (19)$$


$$R_{mod} = 1 - \frac{C_P(WR)}{C_{F,0}} \quad (20)$$

640 With the solution to the module-scale model, the specific energy consumption (SEC , i.e., energy
641 consumed per volume of permeate) of the desalination processes can also be evaluated. Besides
642 parameters used in module-scale modeling, SEC is also dependent on system configuration (e.g.,
643 multi-stage, multi-pass, closed-circuit) and the efficiencies of pumps and energy recovery devices
644 (ERDs)¹³⁰. Analyses of SEC with different configurations and levels of complexity are available
645 in literature^{131,132}.

646 [H1] Applications

647 [H2] Seawater desalination

648 RO is the dominant technology for seawater desalination with a global capacity of ~ 36 million m^3
649 day⁻¹^{133–135}. A single-pass SWRO treatment train consists of seawater intake, pre-treatment, RO
650 unit process, post-treatment, and brine discharge (**Fig. 5a**). A typical SWRO system treats water
651 with salinities ranging from 30 to 45 g L^{-1} , and operates at around 50% WR to minimize energy
652 consumption and fouling¹³⁴. Two-pass RO is typically employed to further enhance permeate
653 water quality and reduce the concentrations of certain species, such as boron and chloride^{136–138}
654 (**Fig. 5b**). The working pressure of SWRO ranges from 50 to 80 bar¹³⁹ and the typical average
655 water flux is controlled to below 20 LMH for both fouling prevention and energy consumption
656 considerations^{140,141}. The SEC of the entire treatment train, including intake, pre-treatment, and
657 post-treatment, ranges from 2.5 to 4.0 kWh m^{-3} for modern SWRO plants^{141,142} and is below 2.8
658 kWh m^{-3} for the state-of-the-art facilities^{136,142}. Typically, 60% or more of the total SEC is
659 contributed by the RO unit process¹³⁶. The relatively low SEC can be achieved partially due to the
660 implementation of energy recovery devices that can recover up to more than 95% of the energy
661 embedded in the pressurized brine (retentate) stream¹³⁶.

662
663 Fig. 5 | RO treatment train and configurations. **a.** Illustration of an SWRO desalination plant
664 showing the various unit processes including intake, pre-treatment, RO, post-treatment, and brine
665 discharge. **b.** Two-pass RO operation where the permeate of the first pass is sent to the second
666 pass as feed solution to further improve the permeate quality. **c.** Two-stage RO operation where
667 the retentate from the first stage (lower operating pressure) is further pressurized and sent to the
668 second stage (higher operating pressure). The permeate from both stages are collected as the
669 product water. **d.** Closed-circuit RO (semi-batch RO) operation where the retentate is recirculated
670 and mixed with the feed solution before entering RO module again. The operating pressure is
671 increased over time to overcome the increasing osmotic pressure due to accumulation of salt in
672 the closed-circuit. ERD, energy recovery device.
673

674 The levelized cost of water (LCOW) varies widely due to numerous factors, including local
675 prices of electricity and indirect capital expenses. Economy of scale effects have played a major
676 role in recent years in driving down the costs of desalinated water. For example, the plant at Al
677 Taweelah, United Arab Emirates, produces water at $0.49 \text{ \$ m}^{-3}$ with an installed capacity of 331.8
678 million m^3 per year¹³⁵, while the soon operational Sorek II plant in Israel is expected to produce
679 200 million m^3 per year at $0.41 \text{ \$ m}^{-3}$ ¹⁴³.

680 [H2] Brackish water desalination

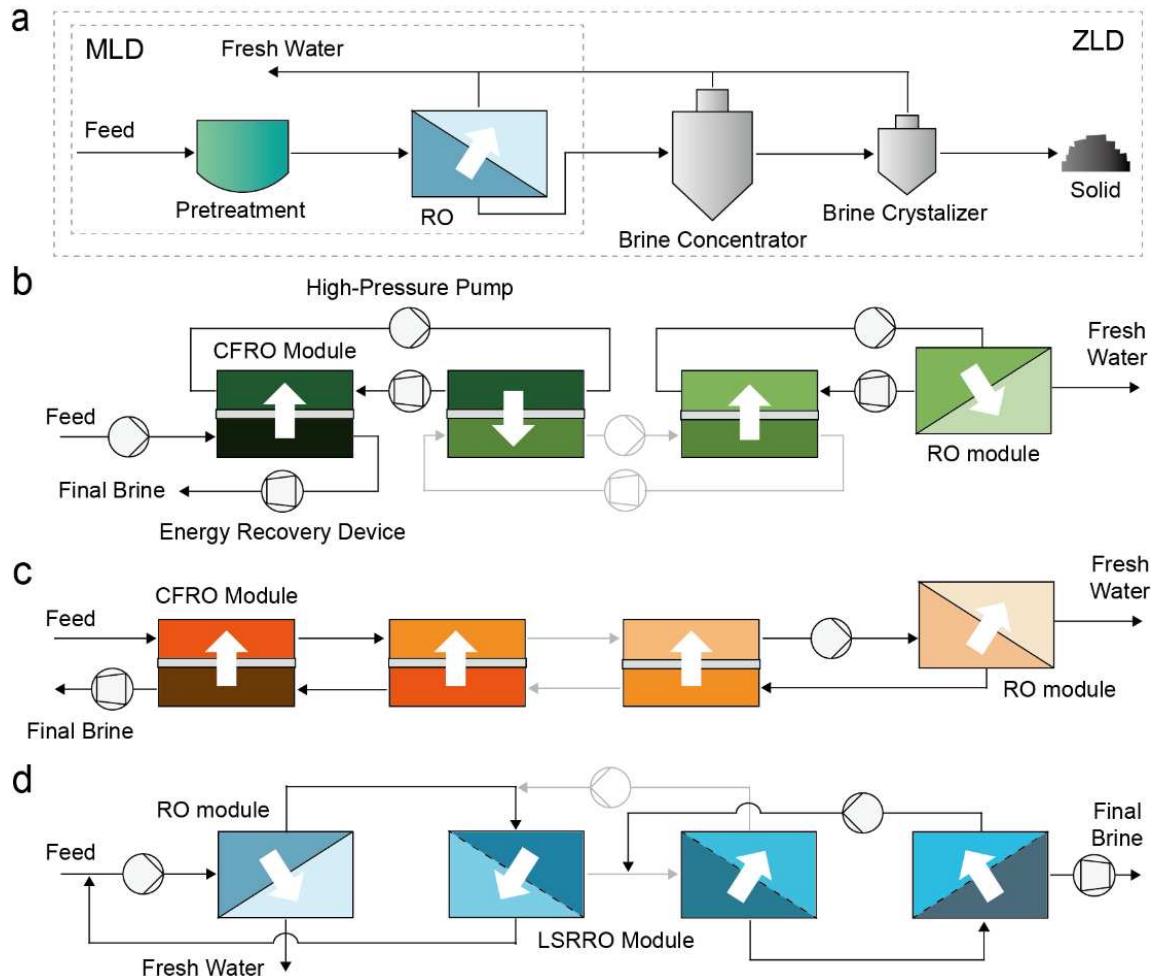
681 Brackish water refers to water with a salinity or total dissolved solids (TDS) beyond 0.5 g L^{-1}
682 (typically below 10 g L^{-1})¹⁴⁴ and is usually groundwater and wastewater but can also be surface
683 water with elevated TDS. Brackish water desalination is critical to augmenting freshwater supply
684 in dry inland regions, comprising over 21% of the total worldwide desalination capacity¹⁴⁵.
685 Brackish water desalination has been practiced at large scales for decades in many countries, such

686 as Israel, Spain, Tunisia, the US, and the UK^{144,146,147}. In the US, RO dominates brackish water
687 desalination applications, accounting for more than 85% of the installed systems to date¹⁴⁸.

688 Typical operating pressure for BWRO ranges from 5 to 30 bar, with a *WR* of 75–85%¹⁴⁹.
689 Though BWRO has a higher *WR* and a lower brine ratio compared to SWRO, brine management
690 remains a major challenge in inland BWRO. BWRO usually uses multiple stages (two stages
691 illustrated in **Fig. 5c**) to improve *WR* and reduce energy consumption^{149,150}. More recently, a new
692 system configuration called closed-circuit RO (CCRO) has been developed. In CCRO, the
693 retentate is recirculated in the closed-circuit and blended with the feed water before entering the
694 RO module as the feed solution (**Fig. 5d**). As salt concentration and osmotic pressure in the closed-
695 circuit increase over time, the applied pressure is ramped up accordingly. CCRO has the benefit
696 of reducing *SEC* compared to single-stage RO and possibly reduced capital cost compared to
697 multi-stage RO. CCRO has also been shown to be capable of reducing fouling/scaling due to flow
698 circulation and its ability to maintain a relatively low water flux everywhere in the module at all
699 time.

700 *SEC* of BWRO processes is approximately 0.8–2.5 kWh m⁻³, depending on the feed salinity,
701 permeate quality requirement, and *WR*^{146,151,152}. Compared to SWRO, BWRO typically operates
702 at a lower pressure and recovers more water which results in smaller brine volumes. Installing an
703 ERD is thus not always beneficial because the energy saving may be eclipsed by the additional
704 capital and maintenance costs^{144,153}. The LCOW for BWRO is typically lower than that of SWRO
705 (at the same scale) but highly dependent on scale and site-specific conditions¹⁴⁴.

706 **[H2] Water Reuse**


707 Water reuse has grown dramatically in the past decades¹⁵⁴. End uses for municipal wastewater
708 reuse projects can be classified into non-potable and potable¹⁵⁵, and range from agricultural and
709 industrial to domestic consumption, with domestic consumption experiencing considerable growth
710 over the past few years¹⁵⁴. Depending on the application, requirements on the product water vary,
711 resulting in different process configurations and levels of treatment. Multiple barrier treatment
712 trains are characteristic of potable reuse systems to guarantee maximum safety of the product
713 water¹⁵⁶. Typical barriers consist of full advanced water treatment, comprising filtration and
714 advanced oxidation, blending with natural waters, and efficient source control programs^{156,157}.
715 Membrane based approaches have gained predominance in potable reuse applications¹⁵⁸, and this

716 trend is likely to continue, prompted by the increasing implementation of multiple barrier
717 systems¹⁵⁴.

718 Potable reuse systems are categorized into direct (DPR) and indirect (IPR), depending on
719 whether the produced water is sent through an environmental buffer before entering drinking water
720 plant¹⁵⁹. In these processes, feed TDS is typically around 1 g L⁻¹ and up to 85% of water is
721 recovered¹⁵⁸. Owing to the low feed TDS, typical operating pressures do not exceed 15 bar¹⁵⁵.
722 Energy consumption for potable reuse systems is generally between 1 and 2 kWh m⁻³¹⁵⁹, although
723 slightly wider ranges have been reported¹⁶⁰, with the variability attributed to process configurations,
724 economies of scale aspects, and if the system is for DPR or IPR. Due to the lower feed osmotic
725 pressure and thus higher attainable WR, water reuse processes are typically configured in multi-
726 stage trains with inter-stage pumping to minimize energy consumption^{158,159}. Like BWRO,
727 incorporation of ERD is not necessarily favorable in economics (as in SWRO) and must be
728 evaluated holistically. The LCOW for water reuse varies with location, technology, and plant
729 capacity but is generally lower than that for SWRO at the same scale¹⁵⁵.

730 **[H2] Brine concentration or brine volume reduction**

731 Hypersaline wastewater treatment is an important frontier where pressure-driven membrane
732 processes can be disruptive¹⁶¹. Due to its superb energy efficiency, conventional RO has already
733 been incorporated in most treatment trains for zero liquid discharge (ZLD) and minimal liquid
734 discharge (MLD), typically concentrating the brine to a TDS of 70 g L⁻¹ (**Fig. 6a**)^{145,146}. Beyond
735 this TDS, a thermal evaporative process, most commonly mechanical vapor compression (MVC),
736 is used to further concentrate brine or even achieve crystallization¹⁶². However, MVC as well as
737 other thermal technologies are energy intensive, lack modularity, and have a high capital cost due
738 to the use of expensive corrosion-resistant alloys. Recent analysis has shown that replacing MVC
739 with pressure-driven membrane processes for concentrating brine at the very high TDS range
740 (70~250 g L⁻¹) has the potential to dramatically reduce the cost of MLD or ZLD¹⁶². There are two
741 main strategies to enable pressure-driven membrane process to concentrate hypersaline brine: (1)
742 developing membranes and modules for high-pressure RO (HPRO) with much higher working
743 pressure (> 100 bar)^{163,164} and (2) developing RO variants that can handle hypersaline brines with
744 an osmotic pressure that is much higher than the applied pressure¹⁶⁵⁻¹⁶⁷.

745
746 Fig. 6 | The use of RO and its variants in brine management. **a.** A representative treatment
747 train for minimal liquid discharge (MLD) and zero liquid discharge (ZLD) where the brine is, after
748 pre-treatment, concentrated by conventional RO to a relatively high TDS and then treated by an
749 MVC-based brine concentrator and/or brine crystallizer. **b.** Osmotically assisted RO (OARO). **c.**
750 Cascading osmotically mediated reverse osmosis (COMRO). Both OARO and COMRO utilize
751 counter-flow RO (CFRO) modules with moderate TDS water in the permeate channel to render
752 the trans-membrane osmotic pressure difference lower than the osmotic pressure of the solution
753 in the feed channel. **d.** Low-salt-rejection RO (LSRRO) where salt-leaking NF membranes are
754 used to render the trans-membrane osmotic pressure difference lower than the osmotic pressure
755 of the solution in the feed channel. LSRRO modules resemble conventional RO modules in design
756 and do not require a counter-flow configuration. All the RO variants, including OARO, COMRO,
757 and LSRRO, will adopt multi-stage with one conventional RO stage to achieve a high water
758 recovery.

759 Except for the elevated operating pressure, the working principle of HPRO is the same as
760 that of conventional RO. In theory, raising the operating pressure to 300 bar can enable HPRO to
761 concentrate brine to a TDS over 250 g L^{-1} with an estimated energy consumption an order of
762 magnitude lower than that of MVC¹⁶³. However, existing RO membranes and modules are not
763 designed to work in this ultrahigh pressure range and will suffer from problems such as membrane

764 compaction, bulging of membranes into spacer opening, and module failure¹¹². Thus, designing
765 membranes and modules that can sustain high operating pressure is key to advance HPRO.

766 To handle high TDS brine without very high operating pressure, variants of RO with counter-
767 current flow modules, such as osmotically assisted RO¹⁶⁶ (OARO, **Fig. 6b**) and
768 cascading osmotically mediated reverse osmosis¹⁶⁵ (COMRO, **Fig. 6c**), are being actively
769 developed. Unlike conventional RO, these RO variants use counter-current flow modules and
770 introduce a saline stream with a moderate TDS in the permeate channel to reduce the osmotic
771 pressure difference across the RO membrane. Water permeation from the high TDS feed stream
772 to the moderate TDS permeate stream occurs because the applied pressure, although lower than
773 the feed osmotic pressure, exceeds the transmembrane osmotic pressure difference. For OARO
774 with three stages, the brine can be concentrated to a TDS beyond 200 g L⁻¹ with an energy
775 consumption substantially lower than MVC^{168,169}.

776 Recently, another RO variant called low-salt-rejection RO (LSRRO) was developed using
777 conventional spiral-wound modules but with low-salt-rejection membranes (**Fig. 6d**)¹⁶⁷. The
778 “leakage” of salt in LSRRO reduces the transmembrane osmotic pressure difference and enables
779 concentrating a high TDS feed stream using an operating pressure lower than the feed osmotic
780 pressure. Theoretical analysis showed that a 3-stage LSRRO process can concentrate the brine to
781 a TDS beyond 200 g L⁻¹ with an energy efficiency potentially even higher than that of OARO¹⁶⁹.
782 LSSRO is also more practical than counter-current flow RO variants because LSSRO can use
783 existing spiral-wound module design and does not have the challenge of internal concentration
784 polarization¹⁶⁷. Therefore, LSRRO is a highly promising technology for brine concentration.

785 **[H1] Reproducibility and data deposition**

786 The main challenges of reproducibility are in membrane fabrication and performance evaluation.
787 Common to many areas of material synthesis research, results from some studies on TFC-PA
788 membrane fabrication have been anecdotally reported to be poorly reproducible. Notably, IP is a
789 complex process with many influencing factors and our understanding of the IP process is still far
790 from thorough. While many researchers try to report, with goodwill, as many experimental details
791 as they consider important, they may still miss to report subtle parameters that turn out to be
792 pertinent in ways that most people are not aware of.

793 For instance, the wetting state of the PS/PES support by the aqueous amine solution is
794 believed to have strong impacts on the morphology and performance of a TFC-PA membrane¹⁷⁰.
795 In addition to additive species and concentration, which are relatively easy to control, the wetting
796 state is also influenced by other factors such as temperature, humidity, removal of excess aqueous
797 solution using blotting or rolling, and when and how to initiate the IP process after the support is
798 wetted. Some of these factors are difficult to quantify, and none of these factors is commonly
799 reported in the literature. Other information that may be critically important but rarely reported
800 includes when and how to terminate the IP process, as well as how to perform post-treatment
801 (annealing) and store the fabricated membrane samples. Better controlling these factors may
802 significantly enhance the replicability of the properties and performance of TFC-PA membranes
803 fabricated in academic labs. But it would require accurate quantification and comprehensive
804 reporting in publications, which is both non-existing and expectedly challenging.

805 Another key challenge for reproducing results from the same commercial membranes, or
806 more commonly, fairly comparing the performance between different lab-fabricated membranes,
807 stems from the inconsistency in performance testing method which has been discussed in detail in
808 **Section 3**. It is important to recognize that measured salt rejection (R_{obs}) is not an intrinsic
809 performance parameter of a membrane but depends on water flux, salt concentration, and the
810 degree of CP. A better understanding of the basic transport theory in PMD as summarized in this
811 Primer will help “membrane material scientists” to conduct more meaningful performance testing
812 and report data that is relevant and useful for cross-experiment comparison.

813 Additionally, the solution pH and temperature can also have substantial influence on the
814 performance of PMD membranes^{171,172}. Their impacts are known but have not received sufficient
815 attention from the broader membrane community. The solution pH influences the ionization of
816 functional groups in PA layer and thus the membrane charge, which in turn affects the salt flux
817 through the TFC-PA membrane¹⁷². In addition, the feed temperature has been shown to have
818 significant impact on water permeability mainly via its impact on liquid viscosity, which renders
819 water and solute fluxes sensitive to temperature¹⁷¹. Therefore, we recommend documentation of
820 solution pH and temperature in the data deposition. For commercial membranes, temperature
821 corrections factors to account for the impact of temperature on water flux are often provided by
822 the membrane manufacturers and water fluxes measured at different temperatures can be converted
823 to flux value at a standardized temperature of 25 °C^{173,174}.

824 The open membrane database (OMD) provides an excellent platform to improve data
825 reproducibility and comparability by recommending best practices and standardized experimental
826 conditions for data acquisition¹¹⁶. The OMD is also the ideal repository for data deposition with
827 its standardized entry forms. The data analysis tools (“calculators” on the OMD website) are also
828 highly instrumental to membrane material scientists who are not well familiar with the transport
829 theory.

830 [H1] Limitations and optimizations

831 [H2] Susceptibility to chlorine oxidation

832 In modern desalination plants, chlorine is added to feedwater in the pretreatment stage to prevent
833 membrane biofouling^{175,176}. However, aromatic PA membranes suffer from oxidative damage due
834 to the susceptibility of the amide links to chlorine^{11,177,178}. The lack of chlorine resistance requires
835 a de-chlorination step before water entering the RO modules to protect the PA membrane from
836 biofouling, followed by a re-chlorination step to control microorganisms in the distribution
837 system¹⁷⁵. Developing membrane with higher chlorine tolerance and similar desalination
838 performance to existing TFC-PA RO membranes is a strategic priority as it would eliminate the
839 need for de-chlorination and re-chlorination, and thus simplify the process scheme, reduce
840 chemical dosage, improve process reliability, and reduce the overall leveled cost¹⁷⁹.

841 Several approaches have been explored to fabricate chlorine-resistant RO membranes¹¹. The
842 first and the most promising approach is to use alternative chemistry to fabricate polyester, sulfone,
843 and epoxide-based membranes that are less susceptible to chlorine attack^{15,37,180,181}. However, the
844 separation performance (i.e., water flux and salt rejection) and long-term stability of these
845 membranes based on alternative chemistries still need to be improved to match that of TFC-PA
846 membranes. The second approach is to apply on the TFC-PA membrane a protective coating such
847 as polyvinyl alcohol (PVA) and poly (N,N-dimethylaminoethyl methacrylate) (PDMAEMA),
848 which often compromises water flux¹⁸²⁻¹⁸⁵. The third approach turns to nonpolymeric materials
849 such as carbon molecular sieves, graphene, and graphene oxide, but poor scalability of these
850 materials hinders mass manufacture and practical applications¹⁸⁶⁻¹⁸⁸. It is important to note that
851 these emerging membranes exhibit poor salt rejection compared to TFC-PA membranes even for
852 very small area membrane coupons^{15,37,182,184,187}.

853 [H2] Insufficient removal of small neutral solutes

854 Compared to salt rejection, RO's performance in rejecting small neutral solutes of concern is
855 insufficient in some scenarios. The first problematic small neutral solute is boron, which is
856 dominantly present as neutral boric acid at seawater pH. Seawater contains 5-7 mg L⁻¹ boron.
857 While the updated WHO guideline for boron concentration in drinking water is 2.4 mg L⁻¹¹⁸⁹ (it
858 used to 0.5 mg L⁻¹ before 2009), the recommended boron level for irrigation water is 0.3-0.5 mg
859 L⁻¹¹⁹⁰, requiring 90-95% rejection of boron (vs. 80-93% for most commercial SWRO
860 membranes^{191,192}). Two-pass RO has been adopted to further remove boron, where a low-pressure,
861 high-flux RO is employed to further polish the 1st pass SWRO permeate, adding capital cost to the
862 desalination process^{191,193}. The second category of small neutral solutes of concern are disinfection
863 byproducts (DBPs)¹⁹⁴, with a famous example being N-nitrosodimethylamine (NDMA)¹⁹⁵. The
864 rejection of small and neutral DBPs by RO membranes varies over a wide range depending on the
865 solution chemistry and operating conditions but is often insufficient for portable reuse¹⁰. Thus,
866 extra pre- or post- treatments are required to further remove small and neutral DBPs until RO
867 membranes with better performance are available.

868 **[H2] Membrane fouling**

869 Like other membrane processes, PMD faces the challenge of membrane fouling. Membrane
870 fouling refers to the deposition of undesirable substances on the membrane surface, which
871 compromises water permeation and permeate quality¹⁹⁶. Based on the foulant type, fouling on
872 PMD membranes can be classified into biofouling, organic fouling, inorganic fouling (or mineral
873 scaling), and colloidal fouling¹⁹⁷. Biofouling is a complex process involving microorganism
874 adhesion and biofilm formation on membrane surfaces¹⁹⁸. The biofilm consists of bacteria and
875 extracellular polymeric substances (EPS) with diverse compositions and is dependent on the
876 environment and bacterial community¹⁹⁹⁻²⁰¹. Organic fouling is caused by natural and effluent
877 organic matter such as humic substances and proteins^{202,203}. Mineral scaling occurs when sparsely
878 soluble salts precipitate out of the solution and subsequently deposit and grow on the membrane
879 surface. Depending on the source of water, typical scalants include gypsum (CaSO₄), calcite
880 (CaCO₃), and silica (SiO₂)¹⁷⁶. Colloidal fouling is caused primarily by the deposition of naturally
881 colloidal particles which are primarily minerals²⁰⁴. The primary indicator of fouling in most bench-
882 scale experiments performed at constant pressure is flux decline²⁰⁴. However, real desalination
883 plants are typically operated at constant water flux, and the practical indicator of fouling is thus
884 increase in applied pressure.

Extensive research has been performed to better understand and mitigate the various types of membrane fouling in PMD and other membrane processes. Effective fouling mitigation strategies include pretreatment, membrane cleaning, and membrane surface modification^{197,205}. Typical pretreatment processes include coagulation/flocculation followed by media or membrane filtration to mitigate colloidal, organic, and biofouling, chlorination to reduce biofouling, and softening or adding antiscalant to inhibit mineral scale formation^{176,206}. These pretreatment processes can slow down, but not eliminate, fouling. Thus, periodic membrane cleaning with chemicals (e.g., acids, bases, surfactants, chelating agents) remains critical to maintaining the long-term membrane performance^{207,208}. Lastly, surface modifications have also been widely investigated for membrane fouling mitigation. The two general strategies for surface modifications are (1) to make the membrane surface more hydrophilic which is believed to reduce the adhesion of substances (especially organics and microbes) to the membrane surface²⁰⁹, or (2) to incorporate microbical substances to the membrane surface for biofouling control²⁰⁰. Membranes with stronger fouling resistance may reduce the level of pretreatment and frequency of membrane cleaning. Despite a large volume of literature, it is unclear if surface modification is widely adopted in commercial TFC-PA membrane fabrication.

[H1] Outlook

PMD has transformed desalination in the last several decades to become an economically viable process for augmenting freshwater supply and is expected to play an increasingly important role in the 21st century in the face of growing regional water scarcity due to climate change. For municipal-scale desalination of seawater, brackish water, and treated wastewater (for portable reuse), PMD has intrinsic advantages in energy efficiency, operational simplicity, and process reliability. In fact, the energy consumption of SWRO is not too far from the thermodynamic limit so that dramatic energy efficiency improvements as once enabled by the advent of TFC-PA membrane and ERD are no longer possible. So, the question arises: What are (and are not) the next steps for pressure-driven membrane desalination?

Developing membranes with high water permeability, despite being the motivation of many studies on membrane fabrication, will only have marginal contribution to further reducing the energy consumption and LCOW for SWRO. The diminishing return of increasing water permeability for SWRO is attributable to (1) limited saving in applied pressure due to the

915 dominance of osmotic pressure difference over membrane resistance in their contributions to the
916 required pressure, (2) limited flux enhancement due to CP, and (3) membrane cost being a small
917 contribution to the LCOW for SWRO. For low-pressure PMD applications, the benefits of
918 developing highly permeable membranes may be more pronounced but must be justified based on
919 LCOW analysis. Rather than focusing on water permeability, practical RO processes can benefit
920 from developing membranes with higher selectivity toward the removal of small neutral solutes
921 (e.g., boron, 1,4-dioxane, DBPs) and with higher resistances against chlorination and different
922 types of fouling. These improvements will lead to a higher performance stability and/or simplified
923 treatment train which in turn result in a lower LCOW.

924 Innovations in system configuration play an important role in further improving the
925 efficiency, reliability, and applicability of PMD. One recent example of such innovation is CCRO
926 which has demonstrated advantages for achieving higher *WR* in BWRO with substantially reduced
927 fouling. Innovations in system configuration are particularly promising when it comes to pushing
928 RO for concentrating high TDS brines. We expect that HPRP and RO variants (LSSRO, OARO,
929 COMRO) will continue to be developed in the next decade to advance RO technology for brine
930 treatment to the next level.

931 Beyond improving membrane performance and designing new system configurations, future
932 work on PMD should continue to advance our fundamental understanding of mass transport
933 through membranes. Better mass transport theories can help us extract intrinsic parameters for
934 membrane performance evaluation and comparison. It will also help us perform more accurate
935 module-scale modeling for process development and optimization.

936

937

938 **Acknowledgement**

939 S. L. and W. L. acknowledges the US-Israel Binational Agricultural Research and Development
940 Fund (Grant No. IS- 5209-19). M. E. acknowledges the Israel-US Collaborative Water-Energy
941 Research Center (Israel-US CoWERC) via Binational Industrial Research and Development
942 Foundation (BIRD) Energy Center Grant EC-15.

943

944 **Contributions**

945 Introduction (R. E., M.E.); Experimentation (W.L, J. L., and S. L.); Results (W.L, J. L., L. W.,
946 Z.W., M. E., R.E., and S. L.); Applications (W. L., M. d. C., S. A. Y., and Z.W.); Reproducibility
947 and data deposition (L. W. and S. L.); Limitations and optimizations (W. L, L. W., and Z. W.);
948 Outlook (R. E., M. E., and S. L.). All authors contributed to reviewing and editing the manuscript.

949

950 **Competing interests**

951 The authors declare no competing interests.

952

953 **Related links**

954 Open membrane database: <https://openmembranedb.org>

955

956 **Glossary**

957 **Reverse osmosis**

958 A membrane-based separation process where a hydraulic pressure is applied to push water through
959 a semipermeable membrane that rejects the solutes.

960

961 **Nanofiltration**

962 A membrane-based separation process similar to RO but with larger membrane pores, higher
963 water flux, and lower solute rejection.

964

965 **Interfacial polymerization**

966 A polymerization reaction to form a thin film at the interface between two immiscible liquids.

967

968

969 **Concentration polarization**

970 A build-up in concentration near membrane surface due to convective transport of solute rejected
971 by the membrane.

972

973 **References**

1. Elimelech, M. & Phillip, W. A. The Future of Seawater Desalination: Energy, Technology, and the Environment. *Science* **333**, 712–717 (2011).
2. Loeb, S. & Sourirajan, S. Sea Water Demineralization by Means of an Osmotic Membrane. in *Saline Water Conversion—II* vol. 38 117–132 (1963).
3. Cadotte, J. E., Petersen, R. J., Larson, R. E. & Erickson, E. E. A new thin-film composite seawater reverse osmosis membrane. *Desalination* **32**, 25–31 (1980).
4. Lu, X. & Elimelech, M. Fabrication of desalination membranes by interfacial polymerization: history, current efforts, and future directions. *Chem Soc Rev* **50**, 6290–6307 (2021).
5. Mohammad, A. W. *et al.* Nanofiltration membranes review: Recent advances and future prospects. *Desalination* **356**, 226–254 (2015).
6. Spiegler, K. S. & El-Sayed, Y. M. The energetics of desalination processes. *Desalination* **134**, 109–128 (2001).
7. Greenlee, L. F., Lawler, D. F., Freeman, B. D., Marrot, B. & Moulin, P. Reverse osmosis desalination: Water sources, technology, and today's challenges. *Water Res* **43**, 2317–2348 (2009).
8. Semiat, R. Energy Issues in Desalination Processes. *Environ Sci Technol* **42**, 8193–8201 (2008).
9. Lin, S. Energy Efficiency of Desalination: Fundamental Insights from Intuitive Interpretation. *Environ Sci Technol* **54**, 76–84 (2019).
10. Werber, J., Deshmukh, A. & Elimelech, M. The Critical Need for Increased Selectivity, Not Increased Water Permeability, for Desalination Membranes. *Environ Sci Technol Lett* **3**, 112–120 (2016).
11. Verbeke, R., Gómez, V. & Vankelecom, I. F. J. Chlorine-resistance of reverse osmosis (RO) polyamide membranes. *Prog Polym Sci* **72**, 1–15 (2017).
12. Jiang, S., Li, Y. & Ladewig, B. P. A review of reverse osmosis membrane fouling and control strategies. *Science of The Total Environment* **595**, 567–583 (2017).
13. Davenport, D. M., Deshmukh, A., Werber, J. & Elimelech, M. High-Pressure Reverse Osmosis for Energy-Efficient Hypersaline Brine Desalination: Current Status, Design Considerations, and Research Needs. *Environ Sci Technol Lett* **5**, 467–475 (2018).

983 **This article provides a comprehensive review on the fabrication and characterization
984 of thin-film composite polyamide membranes.**

997 **This article presents an analysis to show why pressure-driven membrane desalination
998 is intrinsically energy efficient.**

1010 14. Werber, J. R., Osuji, C. O. & Elimelech, M. Materials for next-generation desalination and
1011 water purification membranes. *Nat Rev Mater* **1**, 16018 (2016).

1012 15. Verbeke, R. *et al.* Chlorine-Resistant Epoxide-Based Membranes for Sustainable Water
1013 Desalination. *Environ Sci Technol Lett* **8**, 818–824 (2021).

1014 16. Wang, Z., Deshmukh, A., Du, Y. & Elimelech, M. Minimal and zero liquid discharge with
1015 reverse osmosis using low-salt-rejection membranes. *Water Res* **170**, 115317 (2020).

1016 17. Nativ, P., Leifman, O., Lahav, O. & Epsztein, R. Desalinated brackish water with improved
1017 mineral composition using monovalent-selective nanofiltration followed by reverse osmosis.
1018 *Desalination* **520**, 115364 (2021).

1019 18. Ismail, A. F. & Matsuura, T. Progress in transport theory and characterization method of
1020 Reverse Osmosis (RO) membrane in past fifty years. *Desalination* **434**, 2–11 (2018).

1021 19. Geise, G. M., Paul, D. R. & Freeman, B. D. Fundamental water and salt transport properties
1022 of polymeric materials. *Prog Polym Sci* **39**, 1–42 (2014).

1023 20. Wijmans, J. G. & Baker, R. W. The solution-diffusion model: a review. *J Memb Sci* **107**,
1024 1–21 (1995).

1025 21. Heiranian, M., M. DuChanois, R., L. Ritt, C., Violet, C. & Elimelech, M. Molecular
1026 Simulations to Elucidate Transport Phenomena in Polymeric Membranes. *Environ Sci
1027 Technol* **56**, 3313–3323 (2022).

1028 22. Faucher, S. *et al.* Critical Knowledge Gaps in Mass Transport through Single-Digit
1029 Nanopores: A Review and Perspective. *The Journal of Physical Chemistry C* **123**, 21309–
1030 21326 (2019).

1031 23. Lu, C. *et al.* In Situ Characterization of Dehydration during Ion Transport in Polymeric
1032 Nanochannels. *J Am Chem Soc* **143**, 14242–14252 (2021).

1033 24. Wang, L. *et al.* Water transport in reverse osmosis membranes is governed by pore flow,
1034 not a solution-diffusion mechanism. *Sci Adv* **9**, eadf8488 (2023).
1035 **This article reports experimental and simulation-based evidence to support pore flow
1036 as the true mechanism for water transport in reverse osmosis membranes.**

1037 25. Wang, L. *et al.* Salt and Water Transport in Reverse Osmosis Membranes: Beyond the
1038 Solution-Diffusion Model. *Environ Sci Technol* **55**, 16665–16675 (2021).
1039 **This article introduces a new solution-friction framework for modeling water and salt
1040 transport in reverse osmosis membranes.**

1041 26. Zhou, X. *et al.* Intrapore energy barriers govern ion transport and selectivity of desalination
1042 membranes. *Sci Adv* **6**, eabd9045 (2023).

1043 27. Epsztein, R., DuChanois, R. M., Ritt, C. L., Noy, A. & Elimelech, M. Towards single-
1044 species selectivity of membranes with subnanometre pores. *Nat Nanotechnol* **15**, 426–436
1045 (2020).

1046 28. Aluru, N. R. *et al.* Fluids and Electrolytes under Confinement in Single-Digit Nanopores.
1047 *Chem Rev* **123**, 2737–2831 (2023).

1048 29. Lee, K. P., Arnot, T. C. & Mattia, D. A review of reverse osmosis membrane materials for
1049 desalination—Development to date and future potential. *J Memb Sci* **370**, 1–22 (2011).

1050 30. Song, Y., Sun, P., Henry, L. L. & Sun, B. Mechanisms of structure and performance
1051 controlled thin film composite membrane formation via interfacial polymerization process.
1052 *J Memb Sci* **251**, 67–79 (2005).

1053

1054

1055 31. Freger, V. & Ramon, G. Z. Polyamide desalination membranes: Formation, structure, and
1056 properties. *Prog Polym Sci* **122**, 101451 (2021).

1057 32. Chai, G. Y. & Krantz, W. B. Formation and characterization of polyamide membranes via
1058 interfacial polymerization. *J Memb Sci* **93**, 175–192 (1994).

1059 33. Nowbahar, A. *et al.* Measuring Interfacial Polymerization Kinetics Using Microfluidic
1060 Interferometry. *J Am Chem Soc* **140**, 3173–3176 (2018).

1061 34. Freger, V. Nanoscale Heterogeneity of Polyamide Membranes Formed by Interfacial
1062 Polymerization. *Langmuir* **19**, 4791–4797 (2003).

1063 35. Xie, W. *et al.* Polyamide interfacial composite membranes prepared from m-phenylene
1064 diamine, trimesoyl chloride and a new disulfonated diamine. *J Memb Sci* **403–404**, 152–
1065 161 (2012).

1066 36. Li, L., Zhang, S., Zhang, X. & Zheng, G. Polyamide thin film composite membranes
1067 prepared from isomeric biphenyl tetraacyl chloride and m-phenylenediamine. *J Memb Sci*
1068 **315**, 20–27 (2008).

1069 37. Yao, Y. *et al.* High performance polyester reverse osmosis desalination membrane with
1070 chlorine resistance. *Nat Sustain* **4**, 138–146, (2021).

1071 38. Ghosh, A. K., Jeong, B. H., Huang, X. & Hoek, E. M. V. Impacts of reaction and curing
1072 conditions on polyamide composite reverse osmosis membrane properties. *J Memb Sci* **311**,
1073 34–45 (2008).

1074 39. Liang, Y. *et al.* Polyamide nanofiltration membrane with highly uniform sub-nanometre
1075 pores for sub-1 Å precision separation. *Nat Commun* **11**, 1–9 (2020).

1076 40. Lu, Y. *et al.* Two-dimensional fractal nanocrystals templating for substantial performance
1077 enhancement of polyamide nanofiltration membrane. *Proceedings of the National Academy
1078 of Sciences* **118**, e2019891118 (2021).

1079 41. Khorshidi, B., Thundat, T., Pernitsky, D. & Sadrzadeh, M. A parametric study on the
1080 synergistic impacts of chemical additives on permeation properties of thin film composite
1081 polyamide membrane. *J Memb Sci* **535**, 248–257 (2017).

1082 42. Mansourpanah, Y., Madaeni, S. S. & Rahimpour, A. Fabrication and development of
1083 interfacial polymerized thin-film composite nanofiltration membrane using different
1084 surfactants in organic phase; study of morphology and performance. *J Memb Sci* **343**, 219–
1085 228 (2009).

1086 43. Elfa Peng, L., Yao, Z., Yang, Z., Guo, H. & Y. Tang, C. Dissecting the Role of Substrate
1087 on the Morphology and Separation Properties of Thin Film Composite Polyamide
1088 Membranes: Seeing Is Believing. *Environ Sci Technol* **54**, 6978–6986 (2020).

1089 44. Karan, S., Jiang, Z. & Livingston, A. G. Sub-10 nm polyamide nanofilms with ultrafast
1090 solvent transport for molecular separation. *Science* **348**, 1347–1351 (2015).

1091 45. Ma, X. H. *et al.* Nanofoaming of Polyamide Desalination Membranes to Tune Permeability
1092 and Selectivity. *Environ Sci Technol Lett* **5**, 123–130 (2018).

1093 46. Gao, S. *et al.* Ultrathin Polyamide Nanofiltration Membrane Fabricated on Brush-Painted
1094 Single-Walled Carbon Nanotube Network Support for Ion Sieving. *ACS Nano* **13**, 5278–
1095 5290 (2019).

1096 47. Dai, R., Li, J. & Wang, Z. Constructing interlayer to tailor structure and performance of
1097 thin-film composite polyamide membranes: A review. *Adv Colloid Interface Sci* **282**,
1098 102204 (2020).

1099 48. Shao, S. *et al.* Nanofiltration Membranes with Crumpled Polyamide Films: A Critical
1100 Review on Mechanisms, Performances, and Environmental Applications. *Environ Sci
1101 Technol* **56**, 12811–12827 (2022).

1102 49. Yang, Z., Guo, H. & Tang, C. Y. The upper bound of thin-film composite (TFC) polyamide
1103 membranes for desalination. *J Memb Sci* **590**, 117297 (2019).

1104 **This article provides a review on quantifying the performance of thin-film composite
1105 polyamide membranes based on the solution-diffusion theory.**

1106

1107 50. Peng, L. E. *et al.* A critical review on porous substrates of TFC polyamide membranes:
1108 Mechanisms, membrane performances, and future perspectives. *J Memb Sci* **641**, 119871
1109 (2022).

1110 51. Chowdhury, M. R., Steffes, J., Huey, B. D. & McCutcheon, J. R. 3D printed polyamide
1111 membranes for desalination. *Science* **361**, 682–686 (2018).

1112 52. Kang, Y. *et al.* PIP/TMC Interfacial Polymerization with Electrospray: Novel Loose
1113 Nanofiltration Membrane for Dye Wastewater Treatment. *ACS Appl Mater Interfaces* **12**,
1114 36148–36158 (2020).

1115 53. He, J. *et al.* Molecular mechanisms of thickness-dependent water desalination in polyamide
1116 reverse-osmosis membranes. *J Memb Sci* **674**, 121498 (2023).

1117 54. Ma, X.-H. *et al.* Interfacial Polymerization with Electrosprayed Microdroplets: Toward
1118 Controllable and Ultrathin Polyamide Membranes. *Environ Sci Technol Lett* **5**, 117–122
1119 (2018).

1120 55. J. Harris, J., M. DeRose, P. & L. Bruening, M. Synthesis of Passivating, Nylon-Like
1121 Coatings through Cross-Linking of Ultrathin Polyelectrolyte Films. *J Am Chem Soc* **121**,
1122 1978–1979 (1999).

1123 56. Liang, Y. & Lin, S. Mechanism of Permselectivity Enhancement in Polyelectrolyte-Dense
1124 Nanofiltration Membranes via Surfactant-Assembly Intercalation. *Environ Sci Technol* **55**,
1125 738–748 (2020).

1126 57. DuChanois, R. M., Epsztein, R., Trivedi, J. A. & Elimelech, M. Controlling pore structure
1127 of polyelectrolyte multilayer nanofiltration membranes by tuning polyelectrolyte-salt
1128 interactions. *J Memb Sci* **581**, 413–420 (2019).

1129 58. Gu, J.-E. *et al.* Molecular Layer-by-Layer Assembled Thin-Film Composite Membranes for
1130 Water Desalination. *Advanced Materials* **25**, 4778–4782 (2013).

1131 59. Jin, W., Toutianoush, A. & Tieke, B. Use of Polyelectrolyte Layer-by-Layer Assemblies as
1132 Nanofiltration and Reverse Osmosis Membranes. *Langmuir* **19**, 2550–2553 (2003).

1133 60. Song, X. *et al.* Intrinsic Nanoscale Structure of Thin Film Composite Polyamide
1134 Membranes: Connectivity, Defects, and Structure–Property Correlation. *Environ Sci
1135 Technol* **54**, 3559–3569 (2020).

1136 61. Pacheco, F. A., Pinnau, I., Reinhard, M. & Leckie, J. O. Characterization of isolated
1137 polyamide thin films of RO and NF membranes using novel TEM techniques. *J Memb Sci*
1138 **358**, 51–59 (2010).

1139 62. Tan, Z., Chen, S., Peng, X., Zhang, L. & Gao, C. Polyamide membranes with nanoscale
1140 Turing structures for water purification. *Science* **360**, 518–521 (2018).

1141 63. Guo, H. *et al.* A One-Step Rapid Assembly of Thin Film Coating Using Green Coordination
1142 Complexes for Enhanced Removal of Trace Organic Contaminants by Membranes. *Environ
1143 Sci Technol* **51**, 12638–12643 (2017).

1144 64. Ren, Y. *et al.* High flux thin film nanocomposite membranes based on porous organic
1145 polymers for nanofiltration. *J Memb Sci* **585**, 19–28 (2019).

1146 65. Wang, F. *et al.* Enhanced Water Permeability and Antifouling Property of Coffee-Ring-
1147 Textured Polyamide Membranes by In Situ Incorporation of a Zwitterionic Metal–Organic
1148 Framework. *Environ Sci Technol* **55**, 5324–5334 (2021).

1149 66. Kłosowski, M. M. *et al.* Micro-to nano-scale characterisation of polyamide structures of the
1150 SW30HR RO membrane using advanced electron microscopy and stain tracers. *J Memb Sci*
1151 **520**, 465–476 (2016).

1152 67. Lu, X. *et al.* Elements Provide a Clue: Nanoscale Characterization of Thin-Film Composite
1153 Polyamide Membranes. *ACS Appl Mater Interfaces* **7**, 16917–16922 (2015).

1154 68. Tang, C. Y., Kwon, Y. N. & Leckie, J. O. Effect of membrane chemistry and coating layer
1155 on physiochemical properties of thin film composite polyamide RO and NF membranes: II.
1156 Membrane physiochemical properties and their dependence on polyamide and coating
1157 layers. *Desalination* **242**, 168–182 (2009).

1158 69. Hilal, N., Al-Zoubi, H., Darwish, N. A. & Mohammad, A. W. Characterisation of
1159 nanofiltration membranes using atomic force microscopy. *Desalination* **177**, 187–199
1160 (2005).

1161 70. Culp, T. E. *et al.* Nanoscale control of internal inhomogeneity enhances water transport in
1162 desalination membranes. *Science* **371**, 72–75 (2021).

1163 71. Culp, T. E. *et al.* Electron tomography reveals details of the internal microstructure of
1164 desalination membranes. *Proceedings of the National Academy of Sciences* **115**, 8694–8699
1165 (2018).

1166 72. Pacheco, F., Sougrat, R., Reinhard, M., Leckie, J. O. & Pinnau, I. 3D visualization of the
1167 internal nanostructure of polyamide thin films in RO membranes. *J Memb Sci* **501**, 33–44
1168 (2016).

1169 73. Hung, W.-S. *et al.* Non-destructive means of probing a composite polyamide membrane for
1170 characteristic free volume, void, and chemical composition. *RSC Adv* **6**, 85019–85025
1171 (2016).

1172 74. Chen, H. *et al.* Free-Volume Depth Profile of Polymeric Membranes Studied by Positron
1173 Annihilation Spectroscopy: Layer Structure from Interfacial Polymerization.
1174 *Macromolecules* **40**, 7542–7557 (2007).

1175 75. Li, T., J. Senesi, A. & Lee, B. Small Angle X-ray Scattering for Nanoparticle Research.
1176 *Chem Rev* **116**, 11128–11180 (2016).

1177 76. Mahmood, A. & Wang, J.-L. A Review of Grazing Incidence Small- and Wide-Angle X-
1178 Ray Scattering Techniques for Exploring the Film Morphology of Organic Solar Cells.
1179 *Solar RRL* **4**, 2000337 (2020).

1180 77. Fu, Q. *et al.* Molecular Structure of Aromatic Reverse Osmosis Polyamide Barrier Layers.
1181 *ACS Macro Lett* **8**, 352–356 (2019).

1182 78. Singh, P. S., Ray, P., Xie, Z. & Hoang, M. Synchrotron SAXS to probe cross-linked network
1183 of polyamide ‘reverse osmosis’ and ‘nanofiltration’ membranes. *J Memb Sci* **421–422**, 51–
1184 59 (2012).

1185 79. Ho Kim, S., Kwak, S.-Y. & Suzuki, T. Positron Annihilation Spectroscopic Evidence to
1186 Demonstrate the Flux-Enhancement Mechanism in Morphology-Controlled Thin-Film-
1187 Composite (TFC) Membrane. *Environ Sci Technol* **39**, 1764–1770 (2005).

1188 80. Hilal, N., Ismail, A. F., Matsuura, T. & Oatley-Radcliffe, D. *Membrane characterization*.
1189 (Elsevier, 2017).

1190 **This book introduces the various experimental techniques for membrane**
1191 **characterizations.**

1192

1193

1194 81. Ben-David, A., Oren, Y. & Freger, V. Thermodynamic Factors in Partitioning and Rejection
1195 of Organic Compounds by Polyamide Composite Membranes. *Environ Sci Technol* **40**,
1196 7023–7028 (2006).

1197 82. Zhu, M. M. *et al.* Antifouling and antibacterial behavior of membranes containing
1198 quaternary ammonium and zwitterionic polymers. *J Colloid Interface Sci* **584**, 225–235
1199 (2021).

1200 83. García-Martín, N. *et al.* Pore size analysis from retention of neutral solutes through
1201 nanofiltration membranes. The contribution of concentration–polarization. *Desalination*
1202 **344**, 1–11 (2014).

1203 84. Fetters, L. J., Hadjichristidis, N., Lindner, J. S. & Mays, J. W. Molecular Weight
1204 Dependence of Hydrodynamic and Thermodynamic Properties for Well-Defined Linear
1205 Polymers in Solution. *J Phys Chem Ref Data* **23**, 619–640 (1994).

1206 85. Lee, H., Venable, R. M., MacKerell Jr., A. D. & Pastor, R. W. Molecular Dynamics Studies
1207 of Polyethylene Oxide and Polyethylene Glycol: Hydrodynamic Radius and Shape
1208 Anisotropy. *Biophys J* **95**, 1590–1599 (2008).

1209 86. Wang, R. & Lin, S. Pore model for nanofiltration: History, theoretical framework, key
1210 predictions, limitations, and prospects. *J Memb Sci* **620**, 118809 (2021).

1211 **This article provides a comprehensive review summarizing theoretical framework,**
1212 **procedure of implementation, and limitations of the Donnan Steric Pore Model with**
1213 **Dielectric Exclusion (DSPM-DE)**

1214

1215 87. Bowen, W. R., Mohammad, A. W. & Hilal, N. Characterisation of nanofiltration
1216 membranes for predictive purposes — use of salts, uncharged solutes and atomic force
1217 microscopy. *J Memb Sci* **126**, 91–105 (1997).

1218 88. Tang, C. Y., Kwon, Y. N. & Leckie, J. O. Probing the nano- and micro-scales of reverse
1219 osmosis membranes—A comprehensive characterization of physiochemical properties of
1220 uncoated and coated membranes by XPS, TEM, ATR-FTIR, and streaming potential
1221 measurements. *J Memb Sci* **287**, 146–156 (2007).

1222 89. Chastain, J. & King Jr, R. C. *Handbook of X-ray photoelectron spectroscopy*. Perkin-Elmer
1223 Corporation vol. 40 (Perkin-Elmer Corporation, 1992).

1224 90. Tang, C. Y., Kwon, Y. N. & Leckie, J. O. Effect of membrane chemistry and coating layer
1225 on physiochemical properties of thin film composite polyamide RO and NF membranes: I.
1226 FTIR and XPS characterization of polyamide and coating layer chemistry. *Desalination* **242**,
1227 149–167 (2009).

1228 91. Zimudzi, T. J. *et al.* Quantifying carboxylic acid concentration in model polyamide
1229 desalination membranes via Fourier transform infrared spectroscopy. *Macromolecules* **51**,
1230 6623–6629 (2018).

1231 92. Freger, V. *et al.* Characterization of novel acid-stable NF membranes before and after
1232 exposure to acid using ATR-FTIR, TEM and AFM. *J Memb Sci* **256**, 134–142 (2005).

1233 93. Nikkola, J. *et al.* Surface modification of thin film composite RO membrane for enhanced
1234 anti-biofouling performance. *J Memb Sci* **444**, 192–200 (2013).

1235 94. Zhou, S. *et al.* Unveiling the Growth of Polyamide Nanofilms at Water/Organic Free
1236 Interfaces: Toward Enhanced Water/Salt Selectivity. *Environ Sci Technol* **56**, 10279–10288
1237 (2022).

1238 95. Chen, D., Werber, J. R., Zhao, X. & Elimelech, M. A facile method to quantify the carboxyl
1239 group areal density in the active layer of polyamide thin-film composite membranes. *J
1240 Memb Sci* **534**, 100–108 (2017).

1241 96. Ritt, C. L. *et al.* Ionization behavior of nanoporous polyamide membranes. *Proceedings of
1242 the National Academy of Sciences* **117**, 30191–30200 (2020).

1243 97. Tiraferri, A. & Elimelech, M. Direct quantification of negatively charged functional groups
1244 on membrane surfaces. *J Memb Sci* **389**, (2012).

1245 98. Perry, L. A. & Coronell, O. Reliable, bench-top measurements of charge density in the
1246 active layers of thin-film composite and nanocomposite membranes using quartz crystal
1247 microbalance technology. *J Memb Sci* **429**, 23–33 (2013).

1248 99. Coronell, O., J. Mariñas, B., Zhang, X. & G. Cahill, D. Quantification of Functional Groups
1249 and Modeling of Their Ionization Behavior in the Active Layer of FT30 Reverse Osmosis
1250 Membrane. *Environ Sci Technol* **42**, 5260–5266 (2008).

1251 100. Möckel, D., Staude, E., Dal-Cin, M., Darcovich, K. & Guiver, M. Tangential flow streaming
1252 potential measurements: Hydrodynamic cell characterization and zeta potentials of
1253 carboxylated polysulfone membranes. *J Memb Sci* **145**, 211–222 (1998).

1254 101. Hurwitz, G., Guillen, G. R. & Hoek, E. M. V. Probing polyamide membrane surface charge,
1255 zeta potential, wettability, and hydrophilicity with contact angle measurements. *J Memb Sci*
1256 **349**, 349–357 (2010).

1257 102. Elimelech, M. & O'Melia, C. R. Effect of electrolyte type on the electrophoretic mobility
1258 of polystyrene latex colloids. *Colloids and Surfaces* **44**, (1990).

1259 103. Childress, A. E. & Elimelech, M. Effect of solution chemistry on the surface charge of
1260 polymeric reverse osmosis and nanofiltration membranes. *J Memb Sci* **119**, 253–268 (1996).

1261 104. Xu, P. *et al.* Positive charged PEI-TMC composite nanofiltration membrane for separation
1262 of Li⁺ and Mg²⁺ from brine with high Mg²⁺/Li⁺ ratio. *Desalination* **449**, 57–68 (2019).

1263 105. Ismail, M. F., Islam, M. A., Khorshidi, B., Tehrani-Bagha, A. & Sadrzadeh, M. Surface
1264 characterization of thin-film composite membranes using contact angle technique: Review
1265 of quantification strategies and applications. *Adv Colloid Interface Sci* **299**, 102524 (2022).

1266 106. Li, S. L., Wu, P., Wang, J., Wang, J. & Hu, Y. Fabrication of high performance polyamide
1267 reverse osmosis membrane from monomer 4-morpholino-m-phenylenediamine and
1268 tailoring with zwitterions. *Desalination* **473**, 114169 (2020).

1269 107. Zhang, Y. *et al.* Surface modification of polyamide reverse osmosis membrane with
1270 sulfonated polyvinyl alcohol for antifouling. *Appl Surf Sci* **419**, 177–187 (2017).

1271 108. Liu, C. *et al.* An outstanding antichlorine and antibacterial membrane with quaternary
1272 ammonium salts of alkenes via in situ polymerization for textile wastewater treatment.
1273 *Chemical Engineering Journal* **384**, 123306 (2020).

1274 109. Ismail, M. F., Khorshidi, B. & Sadrzadeh, M. New insights into the impact of nanoscale
1275 surface heterogeneity on the wettability of polymeric membranes. *J Memb Sci* **590**, 117270
1276 (2019).

1277 110. Van der Bruggen, B. Microfiltration, ultrafiltration, nanofiltration, reverse osmosis, and
1278 forward osmosis. *Fundamental Modeling of Membrane Systems: Membrane and Process
1279 Performance* 25–70 (2018).

1280 111. Tansel, B. *et al.* Significance of hydrated radius and hydration shells on ionic permeability
1281 during nanofiltration in dead end and cross flow modes. *Sep Purif Technol* **51**, 40–47 (2006).

1282 112. Davenport, D. M. *et al.* Thin film composite membrane compaction in high-pressure reverse
1283 osmosis. *J Memb Sci* **610**, 118268 (2020).

1284 113. Zydny, A. L. Stagnant film model for concentration polarization in membrane systems. *J
1285 Memb Sci* **130**, 275–281 (1997).

1286 114. Sablani, S., Goosen, M., Al-Belushi, R. & Wilf, M. Concentration polarization in
1287 ultrafiltration and reverse osmosis: a critical review. *Desalination* **141**, 269–289 (2001).

1288 115. Gao, H. *et al.* Revolutionizing Membrane Design Using Machine Learning-Bayesian
1289 Optimization. *Environ Sci Technol* **56**, 2572–2581 (2022).

1290 116. Ritt, C. L. *et al.* The open membrane database: Synthesis–structure–performance
1291 relationships of reverse osmosis membranes. *J Memb Sci* **641**, 119927 (2022).

1292 **This article introduces the Open Membrane Database (OMD) which is a web-based
1293 platform for data depository and analysis: <https://openmembranedb.org>**

1294

1295 117. Mai, Z. *et al.* Activity-derived model for water and salt transport in reverse osmosis
1296 membranes: A combination of film theory and electrolyte theory. *Desalination* **469**, 114094
1297 (2019).

1298 118. Biesheuvel, P. M., Rutten, S. B., Ryzhkov, I. I., Porada, S. & Elimelech, M. Theory for salt
1299 transport in charged reverse osmosis membranes: Novel analytical equations for
1300 desalination performance and experimental validation. *Desalination* **557**, 116580 (2023).

1301 **This article reports a new set of analytical equations to describe the transport of a
1302 single salt in reverse osmosis derived based on the solution-friction framework.**

1303

1304 119. Oren, Y. S. & Biesheuvel, P. M. Theory of ion and water transport in reverse-osmosis
1305 membranes. *Phys Rev Appl* **9**, 24034 (2018).

1306 120. Wang, L. *et al.* Significance of Co-ion Partitioning in Salt Transport through Polyamide
1307 Reverse Osmosis Membranes. *Environ Sci Technol* **57**, 3930–3939 (2023).

1308 121. Yaroshchuk, A., Bruening, M. L. & Licón Bernal, E. E. Solution-Diffusion–Electro-
1309 Migration model and its uses for analysis of nanofiltration, pressure-retarded osmosis and
1310 forward osmosis in multi-ionic solutions. *J Memb Sci* **447**, 463–476 (2013).

1311 **This article introduces the solution-diffusion-electromigration (SDEM) model which
1312 can be used for analyzing transport of multiple ion species.**

1313

1314

1315 122. Yaroshchuk, A. & Bruening, M. L. An analytical solution of the solution-diffusion-
1316 electromigration equations reproduces trends in ion rejections during nanofiltration of
1317 mixed electrolytes. *J Memb Sci* **523**, 361–372 (2017).

1318 123. Wang, R., He, R., He, T., Elimelech, M. & Lin, S. Performance metrics for nanofiltration-
1319 based selective separation for resource extraction and recovery. *Nature Water* **1**, 291–300
1320 (2023).

1321 124. Bowen, W. R. & Welffoot, J. S. Modelling the performance of membrane nanofiltration—
1322 critical assessment and model development. *Chem Eng Sci* **57**, 1121–1137 (2002).

1323 125. Rehman, D. & Lienhard, J. H. Global optimization for accurate and efficient parameter
1324 estimation in nanofiltration. *Journal of Membrane Science Letters* **2**, 100034 (2022).

1325 126. Liang, Y., Dudchenko, A. V. & Mauter, M. S. Novel method for accurately estimating
1326 membrane transport properties and mass transfer coefficients in reverse osmosis. *J Memb
1327 Sci* **679**, 121686 (2023).

1328 **Both Ref. 125 and 126 report a similar approach of model parameter determination
1329 based on minimizing global error.**

1330 127. Biesheuvel, P.M., Porada, S., Elimelech, M., Dykstra, D.E., Tutorial review of reverse
1331 osmosis and electrodialysis, *J Memb Sci* **647**, 120221 (2023).

1332 128. Schwinge, J., Neal, P. R., Wiley, D. E., Fletcher, D. F. & Fane, A. G. Spiral wound modules
1333 and spacers: Review and analysis. *J Memb Sci* **242**, 129–153 (2004).

1334 129. Roy, Y., Sharqawy, M. H. & Lienhard, J. H. Modeling of flat-sheet and spiral-wound
1335 nanofiltration configurations and its application in seawater nanofiltration. *J Memb Sci* **493**,
1336 360–372 (2015).

1337 130. Elimelech, M. & Phillip, W. A. The future of seawater desalination: energy, technology,
1338 and the environment. *Science* **333**, 712–717 (2011).

1339 131. Lin, S. & Elimelech, M. Staged reverse osmosis operation: Configurations, energy
1340 efficiency, and application potential. *Desalination* **366**, 9–14 (2015).

1341 132. Warsinger, D. M., Tow, E. W., Nayar, K. G., Maswadeh, L. A. & Lienhard V, J. H. Energy
1342 efficiency of batch and semi-batch (CCRO) reverse osmosis desalination. *Water Res* **106**,
1343 272–282 (2016).

1344 133. Quon, H. *et al.* Pipe Parity Analysis of Seawater Desalination in the United States:
1345 Exploring Costs, Energy, and Reliability via Case Studies and Scenarios of Emerging
1346 Technology. *ACS ES&T Engineering* **2**, 434–445 (2021).

1347 134. Okamoto, Y. & Lienhard, J. H. How RO membrane permeability and other performance
1348 factors affect process cost and energy use: A review. *Desalination* **470**, 114064 (2019).

1349 135. GWI, DesalData. www.desaldata.com.

1350 136. Kim, J., Park, K., Yang, D. R. & Hong, S. A comprehensive review of energy consumption
1351 of seawater reverse osmosis desalination plants. *Appl Energy* **254**, 113652 (2019).

1352 137. Sauvet-Goichon, B. Ashkelon desalination plant — A successful challenge. *Desalination*
1353 **203**, 75–81 (2007).

1354 138. Hermony, A., Sutzkover-Gutman, I., Talmi, Y. & Fine, O. Palmachim Seawater
1355 desalination plant—seven years of expansions with uninterrupted operation together with
1356 process improvements. *Desalination Water Treat* **55**, 2526–2535 (2015).

1357 139. Okamoto, Y. & Lienhard, J. H. How RO membrane permeability and other performance
1358 factors affect process cost and energy use: A review. *Desalination* **470**, 114064 (2019).

1359 140. Voutchkov, N. Energy use for membrane seawater desalination – current status and trends.
1360 *Desalination* **431**, 2–14 (2018).

1361 141. Amy, G. *et al.* Membrane-based seawater desalination: Present and future prospects.
1362 *Desalination* **401**, 16–21 (2017).

1363 142. Voutchkov, N. Energy use for membrane seawater desalination – current status and trends.
1364 *Desalination* **431**, 2–14 (2018).

1365 143. Sorek II Desalination Plant (Israel). *IDE Tech.* <https://ide-tech.com/en/project/sorek-b-desalination-plant/>.

1366 144. Xu, X. *et al.* Analysis of Brackish Water Desalination for Municipal Uses: Case Studies on
1367 Challenges and Opportunities. *ACS ES&T Engineering* **2**, 306–322 (2022).

1369 145. Jones, E., Qadir, M., van Vliet, M. T. H., Smakhtin, V. & Kang, S. mu. The state of
1370 desalination and brine production: A global outlook. *Science of The Total Environment* **657**,
1371 1343–1356 (2019).

1372 146. Pan, S. Y., Haddad, A. Z., Kumar, A. & Wang, S. W. Brackish water desalination using
1373 reverse osmosis and capacitive deionization at the water-energy nexus. *Water Res* **183**,
1374 116064 (2020).

1375 147. Mogheir, Y., Foul, A. A., Abuhabib, A. A. & Mohammad, A. W. Assessment of large scale
1376 brackish water desalination plants in the Gaza Strip. *Desalination* **314**, 96–100 (2013).

1377 148. Mickley, M. Updated and extended survey of US municipal desalination plants.
1378 *Desalination and Water Purification Research and Development Program Report* (2018).

1379 149. Almulla, A., Eid, M., Côté, P. & Coburn, J. Developments in high recovery brackish water
1380 desalination plants as part of the solution to water quantity problems. *Desalination* **153**,
1381 237–243 (2003).

1382 150. Karime, M., Bouguecha, S. & Hamrouni, B. RO membrane autopsy of Zarzis brackish water
1383 desalination plant. *Desalination* **220**, 258–266 (2008).

1384 151. K. Patel, S., Maarten Biesheuvel, P. & Elimelech, M. Energy Consumption of Brackish
1385 Water Desalination: Identifying the Sweet Spots for Electrodialysis and Reverse Osmosis.
1386 *ACS ES&T Engineering* **1**, 851–864 (2021).

1387 152. Liu, X., Shanbhag, S., V. Bartholomew, T., F. Whitacre, J. & S. Mauter, M. Cost
1388 Comparison of Capacitive Deionization and Reverse Osmosis for Brackish Water
1389 Desalination. *ACS ES&T Engineering* **1**, 261–273 (2020).

1390 153. Drak, A. & Adato, M. Energy recovery consideration in brackish water desalination.
1391 *Desalination* **339**, 34–39 (2014).

1392 154. Global Water Intelligence. *The IDA – Desalination & Reuse Handbook 2022-2023*.

1393 155. E. Giammar, D. *et al.* Cost and Energy Metrics for Municipal Water Reuse. *ACS ES&T
1394 Engineering* **2**, 489–507 (2021).

1395 156. Metcalf & Eddy, Inc. an A. C., Asano, T., Burton, F. & Leverenz, H. Water Reuse
1396 Technologies and Treatment Systems: An Overview. in *Water Reuse: Issues, Technologies,
1397 and Applications* (McGraw-Hill Education, 2007).

1398 157. L. Marron, E., A. Mitch, W., von Gunten, U. & L. Sedlak, D. A Tale of Two Treatments:
1399 The Multiple Barrier Approach to Removing Chemical Contaminants During Potable Water
1400 Reuse. *Acc Chem Res* **52**, 615–622 (2019).

1401 158. Warsinger, D. M. *et al.* A review of polymeric membranes and processes for potable water
1402 reuse. *Prog Polym Sci* **81**, 209–237 (2018).

1403 159. Tow, E. W. *et al.* Modeling the energy consumption of potable water reuse schemes. *Water
1404 Res X* **13**, 100126 (2021).

1405 160. Sim, A. & Mauter, M. S. Cost and energy intensity of US potable water reuse systems.
1406 *Environ Sci (Camb)* **7**, 748–761 (2021).

1407 161. Grant, S. B. *et al.* Taking the ‘waste’ out of ‘wastewater’ for human water security and
1408 ecosystem sustainability. *Science* vol. 337 Preprint at
1409 <https://doi.org/10.1126/science.1216852> (2012).

1410 162. Tong, T. & Elimelech, M. The Global Rise of Zero Liquid Discharge for Wastewater
1411 Management: Drivers, Technologies, and Future Directions. *Environ Sci Technol* **50**, 6846–
1412 6855 (2016).

1413 163. Davenport, D. M., Deshmukh, A., R. Werber, J. & Elimelech, M. High-Pressure Reverse
1414 Osmosis for Energy-Efficient Hypersaline Brine Desalination: Current Status, Design
1415 Considerations, and Research Needs. *Environ Sci Technol Lett* **5**, 467–475 (2018).

1416 164. Davenport, D. M., Wang, L., Shalusky, E. & Elimelech, M. Design principles and
1417 challenges of bench-scale high-pressure reverse osmosis up to 150 bar. *Desalination* **517**,
1418 115237 (2021).

1419 165. Chen, X. & Yin Yip, N. Unlocking High-Salinity Desalination with Cascading Osmotically
1420 Mediated Reverse Osmosis: Energy and Operating Pressure Analysis. *Environ Sci Technol*
1421 **52**, 2242–2250 (2018).

1422 166. Bartholomew, T. V., Mey, L., Arena, J. T., Siefert, N. S. & Mauter, M. S. Osmotically
1423 assisted reverse osmosis for high salinity brine treatment. *Desalination* **421**, 3–11 (2017).

1424 167. Wang, Z., Deshmukh, A., Du, Y. & Elimelech, M. Minimal and zero liquid discharge with
1425 reverse osmosis using low-salt-rejection membranes. *Water Res* **170**, 115317 (2020).

1426 168. Bartholomew, T. V., S. Siefert, N. & S. Mauter, M. Cost Optimization of Osmotically
1427 Assisted Reverse Osmosis. *Environ Sci Technol* **52**, 11813–11821 (2018).

1428 169. Wang, Z., Feng, D., Chen, Y., He, D. & Elimelech, M. Comparison of Energy Consumption
1429 of Osmotically Assisted Reverse Osmosis and Low-Salt-Rejection Reverse Osmosis for
1430 Brine Management. *Environ Sci Technol* **55**, 10714–10723 (2021).

1431 170. Jiang, C. *et al.* Thin-film composite membranes with aqueous template-induced surface
1432 nanostructures for enhanced nanofiltration. *J Memb Sci* **589**, (2019).

1433 171. Pranić, M., M. Kimani, E., M. Biesheuvel, P. & Porada, S. Desalination of Complex Multi-
1434 Ionic Solutions by Reverse Osmosis at Different pH Values, Temperatures, and
1435 Compositions. *ACS Omega* **6**, 19946–19955 (2021).

1436 172. Kimani, E. M. *et al.* The influence of feedwater pH on membrane charge ionization and ion
1437 rejection by reverse osmosis: An experimental and theoretical study. *J Memb Sci* **660**,
1438 (2022).

1439 173. Applied Membranes Inc. Membrane Performance Factors Temperature Correction.
1440 https://appliedmembranes.com/media/wysiwyg/pdf/membranes/temperature_correction_c
1441 *hart_for_ro_membranes.pdf*.

1442 174. DuPont Water Solutions. FilmTec™ Temperature Correction Factor Technical Manual
1443 Excerpt. <https://www.dupont.com/content/dam/dupont/amer/us/en/water-solutions/public/documents/en/RO-NF-FilmTec-Temperature-Correction-Factor-Manual-Exc-45-D01658-en.pdf>.

1446 175. Jamaly, S., Darwish, N. N., Ahmed, I. & Hasan, S. W. A short review on reverse osmosis
1447 pretreatment technologies. *Desalination* **354**, 30–38 (2014).

1448 176. Henthorne, L. & Boysen, B. State-of-the-art of reverse osmosis desalination pretreatment.
1449 *Desalination* **356**, 129–139 (2015).

1450 177. Kang, G. D. *et al.* Study on hypochlorite degradation of aromatic polyamide reverse osmosis
1451 membrane. *J Memb Sci* **300**, 165–171 (2007).

1452 178. Gohil, J. M. & Suresh, A. K. Chlorine attack on reverse osmosis membranes: Mechanisms
1453 and mitigation strategies. *J Memb Sci* **541**, 108–126 (2017).

1454 179. Glater, J., Hong, S. kwan & Elimelech, M. The search for a chlorine-resistant reverse
1455 osmosis membrane. *Desalination* **95**, 325–345 (1994).

1456 180. Xue, J. *et al.* Chlorine-resistant polyester thin film composite nanofiltration membranes
1457 prepared with β -cyclodextrin. *J Memb Sci* **584**, 282–289 (2019).

1458 181. Paul, M. *et al.* Synthesis and crosslinking of partially disulfonated poly(arylene
1459 ether sulfone) random copolymers as candidates for chlorine resistant reverse osmosis
1460 membranes. *Polymer (Guildf)* **49**, 2243–2252 (2008).

1461 182. Ni, L., Meng, J., Li, X. & Zhang, Y. Surface coating on the polyamide TFC RO membrane
1462 for chlorine resistance and antifouling performance improvement. *J Memb Sci* **451**, 205–
1463 215 (2014).

1464 183. Du, R. & Zhao, J. Properties of poly (N,N-dimethylaminoethyl methacrylate)/polysulfone
1465 positively charged composite nanofiltration membrane. *J Memb Sci* **239**, 183–188 (2004).

1466 184. Hu, Y. *et al.* Enhancing the performance of aromatic polyamide reverse osmosis membrane
1467 by surface modification via covalent attachment of polyvinyl alcohol (PVA). *J Memb Sci*
1468 **501**, 209–219 (2016).

1469 185. Liu, M., Chen, Q., Wang, L., Yu, S. & Gao, C. Improving fouling resistance and chlorine
1470 stability of aromatic polyamide thin-film composite RO membrane by surface grafting of
1471 polyvinyl alcohol (PVA). *Desalination* **367**, 11–20 (2015).

1472 186. Jun, B. M. *et al.* Applications of metal-organic framework based membranes in water
1473 purification: A review. *Sep Purif Technol* **247**, 116947 (2020).

1474 187. Zhao, H. *et al.* Improving the performance of polyamide reverse osmosis membrane by
1475 incorporation of modified multi-walled carbon nanotubes. *J Memb Sci* **450**, 249–256 (2014).

1476 188. Chae, H. R., Lee, J., Lee, C. H., Kim, I. C. & Park, P. K. Graphene oxide-embedded thin-
1477 film composite reverse osmosis membrane with high flux, anti-biofouling, and chlorine
1478 resistance. *J Memb Sci* **483**, 128–135 (2015).

1479 189. World Health Organization. *Guidelines for drinking-water quality*. WHO chronicle vol. 38
1480 (2011).

1481 190. Shaffer, D. L., Yip, N. Y., Gilron, J. & Elimelech, M. Seawater desalination for agriculture
1482 by integrated forward and reverse osmosis: Improved product water quality for potentially
1483 less energy. *J Memb Sci* **415–416**, 1–8 (2012).

1484 191. Tu, K. L., Nghiem, L. D. & Chivas, A. R. Boron removal by reverse osmosis membranes
1485 in seawater desalination applications. *Separation and Purification Technology* vol. 75
1486 Preprint at <https://doi.org/10.1016/j.seppur.2010.07.021> (2010).

1487 192. Hyung, H. & Kim, J.-H. A mechanistic study on boron rejection by sea water reverse
1488 osmosis membranes. *J Memb Sci* **286**, 269–278 (2006).

1489 193. Bernstein, R., Belfer, S. & Freger, V. Toward Improved Boron Removal in RO by
1490 Membrane Modification: Feasibility and Challenges. *Environ Sci Technol* **45**, 3613–3620
1491 (2011).

1492 194. Linge, K. L. *et al.* Formation of halogenated disinfection by-products during microfiltration
1493 and reverse osmosis treatment: Implications for water recycling. *Sep Purif Technol* **104**,
1494 (2013).

1495 195. Fujioka, T. *et al.* N-nitrosamine rejection by nanofiltration and reverse osmosis membranes:
1496 The importance of membrane characteristics. *Desalination* **316**, 67–75 (2013).

1497 196. Malaebe, L. & Ayoub, G. M. Reverse osmosis technology for water treatment: State of the
1498 art review. *Desalination* **267**, 1–8 (2011).

1499 197. Jiang, S., Li, Y. & Ladewig, B. P. A review of reverse osmosis membrane fouling and
1500 control strategies. *Science of The Total Environment* **595**, 567–583 (2017).

1501 198. Creber, S. A. *et al.* Magnetic resonance imaging and 3D simulation studies of biofilm
1502 accumulation and cleaning on reverse osmosis membranes. *Food and Bioproducts
1503 Processing* **88**, 401–408 (2010).

1504 199. Leterme, S. C., Le Lan, C., Hemraj, D. A. & Ellis, A. V. The impact of diatoms on the
1505 biofouling of seawater reverse osmosis membranes in a model cross-flow system.
1506 *Desalination* **392**, 8–13 (2016).

1507 200. Karkhanechi, H., Takagi, R. & Matsuyama, H. Biofouling resistance of reverse osmosis
1508 membrane modified with polydopamine. *Desalination* **336**, 87–96 (2014).

1509 201. Yu, W., Yang, Y. & Graham, N. Evaluation of ferrate as a coagulant aid/oxidant
1510 pretreatment for mitigating submerged ultrafiltration membrane fouling in drinking water
1511 treatment. *Chemical Engineering Journal* **298**, 234–242 (2016).

1512 202. Cho, J., Amy, G. & Pellegrino, J. Membrane filtration of natural organic matter: initial
1513 comparison of rejection and flux decline characteristics with ultrafiltration and
1514 nanofiltration membranes. *Water Res* **33**, 2517–2526 (1999).

1515 203. Jeong, S., Naidu, G., Vollprecht, R., Leiknes, T. O. & Vigneswaran, S. In-depth analyses
1516 of organic matters in a full-scale seawater desalination plant and an autopsy of reverse
1517 osmosis membrane. *Sep Purif Technol* **162**, 171–179 (2016).

1518 204. Zhu, X. & Elimelech, M. Colloidal Fouling of Reverse Osmosis
1519 Membranes: Measurements and Fouling Mechanisms. *Environ Sci Technol* **31**, 3654–3662
1520 (1997).

1521 205. Goh, P. S., Lau, W. J., Othman, M. H. D. & Ismail, A. F. Membrane fouling in desalination
1522 and its mitigation strategies. *Desalination* **425**, 130–155 (2018).

1523 206. Alizadeh Tabatabai, S. A., Schippers, J. C. & Kennedy, M. D. Effect of coagulation on
1524 fouling potential and removal of algal organic matter in ultrafiltration pretreatment to
1525 seawater reverse osmosis. *Water Res* **59**, 283–294 (2014).

1526 207. Varin, K. J., Lin, N. H. & Cohen, Y. Biofouling and cleaning effectiveness of surface
1527 nanostructured reverse osmosis membranes. *J Memb Sci* **446**, 472–481 (2013).

1528 208. Qin, J. J., Oo, M. H., Kekre, K. A. & Liberman, B. Development of novel backwash
1529 cleaning technique for reverse osmosis in reclamation of secondary effluent. *J Memb Sci*
1530 **346**, 8–14 (2010).

1531 209. Jee, K. Y., Shin, D. H. & Lee, Y. T. Surface modification of polyamide RO membrane for
1532 improved fouling resistance. *Desalination* **394**, 131–137 (2016).

1533 210. Gekas, V. & Hallström, B. Mass transfer in the membrane concentration polarization layer
1534 under turbulent cross flow : I. Critical literature review and adaptation of existing sherwood
1535 correlations to membrane operations. *J Memb Sci* **30**, 153–170 (1987).

1536 211. Hoek, E. M. V., Kim, A. S. & Elimelech, M. Influence of Crossflow Membrane Filter
1537 Geometry and Shear Rate on Colloidal Fouling in Reverse Osmosis and Nanofiltration
1538 Separations. *Environ Eng Sci* **19**, 357–372 (2002).

1539 212. Gao, Y., Wang, Y. N., Li, W. & Tang, C. Y. Characterization of internal and external
1540 concentration polarizations during forward osmosis processes. *Desalination* **338**, 65–73
1541 (2014).

1542