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Abstract

Pressure-driven membrane desalination (PMD), such as reverse osmosis (RO) or nanofiltration
(NF), has become an energy-efficient technology to address water shortage by tapping into saline
waters to augment freshwater supply. This Primer describes several key methodological aspects
of PMD, including membrane fabrication, characterization, and performance evaluation, system
modeling, as well as process configurations and applications. State-of-the-art RO and NF
membranes are thin-film composite polyamide (TFC-PA) membranes, which is the focus of our
discussion on membrane development. We first describe the fabrication of TFC-PA membranes
using interfacial polymerization and alternative methods. We then discuss the techniques for
characterizing the morphological, structural, and interfacial properties of TFC-PA membranes,
followed by a discussion on the experimental procedures and model frameworks for evaluating
membrane performance. Certain caveats in data collection, interpretation, and reproducibility are
discussed with best practices recommended. Additionally, we also introduce the general method
for modeling module-scale behavior of PMD processes and discuss the process configurations
along with existing and emerging applications of PMD. Finally, we provide an outlook for the
development of PMD, highlighting the most meaningful directions for future research to further
advance PMD beyond the state of the art.
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[H1] Introduction

Pressure-driven membrane desalination (PMD) with reverse osmosis [G] (RO) has been at the
cutting edge of freshwater production from saline waters for decades'. The breakthrough of this
process occurred in the early 1960s with the invention of the first asymmetric cellulose acetate RO
membrane by Loeb and Sourirajan®. The semi-permeable membrane with a thin active layer
enabled the production of desalted water at high water flux under practical pressures, leading to
successful implementation of RO at scale. The introduction of the thin-film composite polyamide
(TFC-PA) membrane in the late 1970s** and the continuous improvements in the process
engineering over the following decades (e.g., installation of energy recovery devices, EDR, and
high-efficiency pumps) have further boosted the preeminence of RO over other seawater
desalination technologies'. Beyond seawater RO (SWRO), the desalination of brackish water and
municipal wastewater with lower salinity has also become practical using brackish water RO
(BWRO) or nanofiltration [G] (NF), which utilize similar salt-rejecting membranes with looser

structure that enables higher water flux at the cost of lower salt rejection”.

The fundamental principle of PMD can be described as follows. To induce water flow from
the high-salinity feed water to the low-salinity product water against the natural direction of water
osmosis, the hydraulic pressure difference applied over the membrane must exceed osmotic
pressure difference across the membrane®. Excess pressure beyond the osmotic pressure difference
is applied to provide driving force for finite water flux and to overcome resistances to water flow
through the membrane pores, which induces irreversible loses or generates entropy'. The applied
hydraulic pressure (up to 80 bar for SWRO but lower for BWRO and NF) depends on feed salinity,
the water recovery (WR) ratio, membrane permeability, and other operating and system design
parameters’. Notably, the irreversible losses or entropy generation in RO are substantially lower
than that in traditional thermal desalination techniques based on evaporation, rendering RO a
highly energy-efficient approach for seawater desalination with a total energy consumption much
closer to the thermodynamic limit (i.e., Gibbs free energy of separation) than thermal

desalination®”.

Accounting for the largest share of globally desalinated water, state-of-the-art RO
desalination still faces challenges that limit broader applications and stimulate extensive research.

One noticeable example is the low rejection of neutral solutes (e.g., boron and specific
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micropollutants) by current RO membranes, which requires the introduction of an additional RO
pass in some applications, thus increasing the capital and operational cost'®. Other examples
include the detrimental sensitivity of PA RO membranes to chlorine'!, decline of water flux over
time due to membrane fouling and scaling'?, and brine management'®>. Ongoing research is
therefore directed to address these shortcomings by exploring new membrane materials'*!®> and

process designs!®!7.

In addition to the applied research to improve the performance of current PMD systems,
fundamental studies to elucidate molecular transport phenomena in RO/NF membranes have been
a major scientific pillar of the membrane research field'®. Water and solute transport in RO/NF
membranes have remained the center of theoretical study over the years, promoting the
development of several mathematical models to describe mass transfer [G] in these membranes'®.
Most notably, the solution-diffusion model, describing water and solute transport as a two-step
process of molecular partition into the membrane and the subsequent diffusion through the
membrane, has prevailed in the membrane community for many years due to its simplicity and
ability to explain certain major trends in membrane performance®’. More recently, with additional
experimental evidence, progress in molecular simulations, and development of experimental
techniques with higher spatial and temporal resolution to study the kinetics of molecular transport

through the membrane pore?!23

, updated models and theories for mass transport in RO membranes
have been proposed?*2°. Such exploration of fundamental transport phenomena in RO has

promoted the collaboration between membrane scientists and researchers from other fields?227-28,

Observing the success of RO over the past 60 years for revolutionizing water desalination,
this Primer overviews state-of-the-art methodologies and applications of PMD with RO and NF.
We first introduce standard methods to fabricate, characterize, and test RO/NF membranes. Next,
we discuss established approaches to analyze results from membrane characterization and interpret
data from membrane performance tests using existing and recent transport models applied to both
coupon and module scale systems. We also introduce and discuss traditional and emerging
applications of PMD, highlighting current limitations of the method and challenges associated with
reproducibility and data deposition. We conclude with an outlook to summarize the challenges and

opportunities of PMD that require future research to address.
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[H1] Experimentation
[H2] Membrane fabrication

State-of-the-art RO or NF membranes are TFC-PA membranes comprising an ultrathin, salt-
rejecting PA active layer prepared atop a microporous support that provides mechanical integrity
against applied pressure (Fig. 1a)?°. The standard approach to fabricate TFC-PA membranes in
industry is based on a process called interfacial polymerization [G] (IP), where a PA layer form
via a self-inhibiting polycondensation reaction occurring at a water-organic solvent interface (Fig.
1b)*3932 Specifically, a microporous polysulfone (PS) or polyethersulfone (PES) support
impregnated with an aqueous solution of amine monomers is exposed to an organic solvent
solution of acyl chloride. The amine monomer is typically m-phenylenediamine (MPD) for making
SWRO membranes and piperazine (PIP) for making NF membranes, whereas trimesoyl chloride
(TMC) is often used as the acyl chloride with hexane as the organic solvent (Fig. 1¢)'. It is
believed that the amine monomers diffuse across the water-hexane interface to react with TMC in
the hexane phase near the interface, forming a thin and crosslinked PA layer anchored to the
microporous support®>. The PA layer is typically less than 100 nm because its formation creates a
barrier for the further encounter of amine and acyl chloride molecules for continuous

polycondensation reaction, thus rendering the IP process “self-inhibiting”30-34,

The morphology and performance of the TFC-PA is influenced by multiple factors in the IP
process, including but not limited to, monomer species and solvent type (note that mixture of
monomers or solvents can also be used)?>—8, the introduction of various additives (e.g., surfactants,
organic molecules, salts, and nanoparticles)**2, the support layer structure**, water chemistry

4446 and the environmental conditions in the IP and/or

of the amine solution®, the use of interlayers
post-treatment (annealing) process®®. Detailed impacts of these factors on the morphology and
performance of TFC-PA can be found in several recent reviews>"#’-%, Despite decades of research
that generates a large body of knowledge on practical ways to improve performance of TFC-PA

membranes, mechanistic understanding of the details of PA layer formation remains insufficient.
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Fig. 1 | Membrane fabrication methods. a. Structure of the thin-film composite polyamide (TFC-
PA) membrane. b. Interfacial polymerization occurring at the interface between an organic solvent
solution of acid chlorides and an aqueous solution of amines. ¢. The polycondensation reaction
of trimesoyl chloride (TMC) with m-phenylenediamine (MPD, for making reverse osmosis (RO)
membranes) or piperazine (PIP, for making nanofiltration (NF) membranes). d. Schematic of TFC-
PA membrane fabrication using electrospray-based additive manufacturing. e. Layer-by-layer
deposition of reactive monomers to form TFC membranes. Figure d and figure e are adapted with
permission from ref. 51 and ref. 58, respectively.

Beyond TFC-PA fabricated using the IP process, recent studies have explored the approach
of additive manufacturing to make TFC-PA membrane by sequential deposition of amines and
acyl chlorides using electrospray (Fig. 1d)°'"2. Advantages of this additive approach for
membrane fabrication include the formation of smooth PA layers with controllable film thickness,
possibly more controllable microstructure®’, more efficient utilization of monomers, saving in

solvents, and the possibility of adopting new polymer chemistries alternative to polyamide®'*. As

a relatively new approach, however, electrospray method has not produced TFC-PA membranes
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with better performance than those fabricated using the state-of-the-art IP processes. Another
extensively investigated method of fabricating RO and NF membranes is layer-by-layer deposition
of molecules (polyelectrolytes or reactive monomers) on a substrate to form TFC membranes (Fig.
1e)>>8, Despite the advantage of having a rich selection of polymer chemistry to control
membrane properties, membranes made via layer-by-layer deposition have not been applied for
desalination at an industrial scale due to the inability to achieve ultrahigh salt rejection and slow
speed of the layer-by-layer deposition approach as compared to the very fast IP process®. Due to
the dominance of TFC-PA membranes in practical desalination applications, the following
discussion will focus on TFC-PA membranes formed via IP, although most of the methods for
characterization, performance testing, and modeling apply regardless of the specific material

chemistry and fabrication method.

[H2] Membrane characterization

The physicochemical properties of a TFC-PA membrane have strong impacts on its desalination
performance and are thus extensively characterized in many studies focusing on membrane
fabrication. In general, a TFC-PA membrane is characterized for its morphology and structure,
chemical composition, and interfacial properties, which will be discussed below.

[H3] Morphology and structure.

Three types of microscopic techniques are commonly used to characterize the morphology of TFC-
PA membranes (Fig. 2), including scanning electron microscopy (SEM), transmission electron
microscopy (TEM), and atomic force microscopy (AFM). SEM micrographs provide direct
visualization of the surface (top-view) and cross-sectional morphology®. For example, TFC-PA
membranes made using MPD amine monomers (for SWRO) have been shown to have ridge-and-
valley morphology for the PA layer®®$!, whereas those fabricated using PIP amine monomers (for
NF) typically have nodular morphology®>%*(Fig. 2a). Other interesting morphologies, such as
stripes®®62, craters®*%, and 2D fractals*®, can also emerge with IP processes modified with
additives or post-treatment. TEM is mostly performed to image the cross-section of TFC-PA
membranes for evaluating the PA layer thickness and identifying voids in the PA layer by
distinguishing different parts (the PA layer, the PS/PES support, and voids) based on their
difference in electron transmittance (Fig. 2a). The interface of the PA layer and the PS/PES support
can be more clearly discerned by increasing their contrast in electron transmission via staining the

PA layer with heavy metals®, or using elemental mapping based on energy dispersive X-ray

7
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spectroscopy (EDS) in scanning transmission electron microscopy (STEM)>°. With metal staining
or elemental mapping, the cross-sectional TEM micrographs can provide clear distinction between
the PA and the microporous support layer (Fig. 2b, 2¢) 6967,

a §EM &TEM o

3

Membrane NF Membrane b HAADF-STEM c STEM-EDX

200 nm

e TEM 3D tomography
SWRO

J BWRO
a4 2 Wt adh

electron microscopy (SEM, top) and Transmission electron microscopy (TEM, bottom) images for
RO and NF membranes. RO PA membrane has the clear “ridge and valley” structure. b. High-
angle annular dark-field scanning transmission electron microscopy ((HAADF-STEM) of a stained
membrane present a clear interfacial structure of TFC-PA membrane compared to the non-
stained membrane (inset). ¢. Elemental mapping of the PA-PS interface by STEM coupled with
energy-dispersive X-ray spectroscopy (STEM-EDS) shows that the PA layer (in magenta) is
abundant in nitrogen where PS support (in green) is abundant in sulfur. d. Atomic force
microscopy (AFM) micrographs for RO and NF membranes show that RO membrane has a higher
surface roughness than NF membrane. e. 3D visualization of the PA polymer network by HAADF-
STEM. The distribution of solid (polymer) density is presented as a heat map (red for high density).
The images are adapted with permission from ref. 61 and 63 (a), 66 (b), 67 (c), 54 (d), and 71 (e).

Micrographs from SEM and TEM can also be complemented by surface topographical
analysis of AFM images (Fig. 2d)**. In AFM, the root-mean-square roughness, R, defined as

§V=1(Zi — z)?

Ryms = N —1 )

where z; is the altitude of pixel i, Z is the average of z; throughout the surveyed area, and N is the
total number of pixels in the surveyed area. R,.,,; based on AFM topography is often used to
facilitate quantitative evaluation and comparison of TFC-PA membrane surface roughness®®%. For
example, TFC-PA membranes fabricated using MPD are rougher than those fabricated using PIP
based on the comparison of their root-mean-square roughness®®. Because AFM relies on the force

interaction between the cantilever tip and the membrane surface, it cannot capture morphological

8
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features such as voids and lateral concavities. AFM with line profile analysis has also been used
in obtaining the size distribution of surface pores in NF membranes®. Recently, 3D tomography
based on TEM or STEM has emerged as a powerful imagining technique that can provide valuable
information regarding surface morphology and internal pore structure of the PA layer’®72. The
general idea of 3D tomography is the reconstruction of 3D structure from a series of 2D projection
images obtained using different angles. In high-angle annular dark-field (HAADF) mode, STEM-
based 3D tomography can also reveal the thickness and density distribution in the polymer
film’%7!, For example, HAADF-STEM can map the nanoscale distribution of polymer density
from measured nanoscale intensity distribution (Fig. 2e)’! and yield fractional free volume
distribution from which water transport characteristics can be inferred’%72,

[Au: I suggest adding a H3 heading here of “pore size and structure”]

[H3] Pore size and structure

The internal pore structure of the PA layer can also be probed using non-imaging techniques, most
notably positron annihilation spectroscopy (PAS) and X-ray or neutron scattering. Specifically,
positron annihilation lifetime spectroscopy (PALS) and Doppler broadening energy spectroscopy
(DBES) can be obtained from PAS measurements. In PALS, low-energy positrons are injected
into the PA film to form electron-positronium ions that would undergo rapid self-annihilation in
polymer rich regions but slow self-annihilation in polymer-deficient regions (pores or free
volumes)’®. The distribution of electron-positronium ion lifetime can thus be translated to the
distribution of free volume size. DBES records the momentum densities of y-ray radiation released
during the annihilation from which parameters dependent on the microstructure of the polymer are
extracted’®. DBES has be used to obtain the depth profile of the free volume by varying the positron
beam energy in the PA layer®>74. One typical way to present the PALS data is to plot the probability
density function of the triplet state ortho-positronium (o-Ps) lifetime which also corresponds to
free-volume radius (Fig. 3a)*°. The S parameter in DBES data as a function of positron incident

energy can also be used to reveal depth profile of the free volume in PA layer (Fig. 3b)*°.
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Fig. 3 | Representative results of non-microscopic characterization of structural, chemical,
and interfacial properties of TFC-PA membranes. a. Pore size distributions of the PA layer
derived from of positron annihilation lifetime spectroscopy (PALS). b. Evolution of S parameters
as a function of film mean depth obtained from Doppler broadening energy spectroscopy (DBES).
c. Representative pattern from wide-angle X-ray scattering (WAXS) of a PA fiim. d.
Representative results from small-angle X-ray scattering (SAXS) of PA bulk dispersion. e.
Rejections of neutral solutes of different molecular weight. The MWCO corresponds to the
molecular weight of the solute rejected by 90%. Inset: pore size distribution of PA active layers
fitted log-normal distribution with “sieving assumption”. f. Zeta potential of the more positively
charged TFC-PA membrane made using PEI as the amine vs. that of the more negatively charged
TFC-PA membrane made using PIP as the amine. g. Comparison of ATR-FTIR spectra between
a pristine (uncoated) TFC-PA membrane and a polyvinyl alcohol (PVA) coated TFC-PA
membrane. The uncoated TFC-PA membrane shows characteristic peaks (noted with star) of PA
bonds and the PS support while the PVA coated membranes reveals additional peaks related to
hydroxyl and acetate groups of the PVA coating. h. Representative results from XPS
measurements and illustration of how it can be used to determine the degree of crosslinking (D,).
The images are adapted with permission from ref. 39 (a, b, e, h), 77 (c), 78 (d), 96 and 104 (f),
and 93 (g).
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Scattering techniques, such as wide-angle X-ray scattering (WAXS), small-angle X-ray
scattering (SAXS), and small-angle neutron scattering (SANS), provide information regarding the
polymer structure at different scales depending on the scattering vector g (defined as q =
4mrsin @ /A with 8 and A being the scattering angle and the wavelength of incident radiation,
respectively). Specifically, WAXS can provide structural insights at the molecular or atomic scale
(0.1-10 A), whereas SAXS and SANS can unveil mesoscale structural insights (10-1,000 A).47576
Representative patterns from WAXS”” (for polymer film) and SAXS" (for bulk polymer) are
shown in Fig. 3¢ and 3d, respectively. The data processing and accurate interpretation of results
from PALS, WAXS, and SAXS requires expert knowledge from the respective fields and is
beyond the scope of this Primer. More detailed explanation of interpreting results from PALS747°,
DBES™, WAXS’6, and SAXS340 can be found in the literature.

Although the microscopic, spectroscopic, and scattering techniques discussed above are
powerful, some of these instruments are not widely accessible and they do not provide direct
information about membrane pore size in the context of solute rejection. One widely practiced
method to assess pore size distribution is to measure the rejection of neutral organic solutes of
different size (or molecular weight, MW) (Fig. 3e). Alcohols®!, sugars®®, poly (ethylene glycols)
(PEG)®83, poly (ethylene oxide) (PEO)® of different molecular weights have been used as the
probing solutes. Empirical correlations have been proposed to relate the MW of a solute to its
Stokes radius (7;) using the general form of r, = aMW? with a and b being the correlation
coefficients that depend on the chemical species®®°. The rejections of different organic
compounds (concentrations quantified by total organic carbon, TOC) by the sample membranes
are measured using filtration experiments and typically plotted against the Stokes radii of the
respective compounds. The data points are usually fitted using log-normal distribution as described

by the following probability density function (PDF)3°:

B (lnrp —In ,up)zl
2(Ing,)”

ar(r,) 1
dr, 1, In o,V/2m

2

where F (1) is the cumulative probability of finding pores with radius smaller than 7,, u, is the
mean pore size, and gy, is the geometric standard deviation of pore size. Under the assumption that
solutes with a Stokes radius smaller than a specific pore size can all permeate through the
membrane (which we herein refer to as “sieving assumption” for its similarity to sand sieving),

F(r,) is equivalent to the measured rejection of solutes with a Stokes radius equal to or larger than

11
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7. Under this framework, p,, corresponds to the 7 of a solute with a measured rejection of 50%
and g, correspond to the ratio between 7y of a solute with a rejection of 84.1% and p,,. In addition,
the molecular weight cutoff (MWCO) of a membrane is defined as the molecular weight of a
neutral organic solute with a rejection of 90%. Although not as comprehensive as the PDF, MWCO
is widely reported as an intuitive parameter quantifying the pore size of commercial membranes
and membranes fabricated in laboratory studies.

The inference of pore size distribution from solute size-dependent rejection based on
Equation 2 relies on the “sieving assumption” which is reasonable for microfiltration or
ultrafiltration where convection is the dominant transport mechanism. In NF and RO where
diffusion dominates solute transport, due to steric and hydrodynamic effects, rejection of solutes
smaller than pore size is finite (i.e., non-zero) and dependent on solute size®6. Despite the wide
adoption of Equation 2 in many studies of TFC-PA membrane development, the validity of
“sieving assumption” is questionable. Alternatively, we can apply the hindered transport model
that considers the effects of pore and solute size on partition and transport. Based on the hindered
transport model, the intrinsic rejection (or real rejection, to be discussed later when introducing

concentration polarization) of a neutral solute is given by®’
K-

Rine =1 =T K )exp (—Pe) 3)

where @ is the partition coefficient of the solute, Pe is the Peclet number, and K is convection
hindrance factor (details for calculating of Pe and K. can be found in S1 in Supporting
Information (SI)). The partition coefficient of a neutral solute smaller than pore size, assuming

only steric interactions, is given by®’:

r 2
¢=<1—i> 4)
p

The partition coefficient is zero for solute larger than pore size. The membrane pore size can be

estimated using Equations 3 and 4 with solute rejection data obtained using a series of water fluxes.
[H3] Chemical composition

The chemical composition of TFC-PA membranes can be obtained using spectroscopic techniques
such as X-ray photoelectron spectroscopy (XPS) and attenuated total reflection Fourier-transform

infrared (ATR-FTIR) spectroscopy®. XPS provides the elemental composition of a film with a
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sample depth < 5 nm and is thus ideal for analyzing a PA layer in a TFC-PA membrane without
interference from the PS/PES support®®. In contrast, ATR-FTR provides information about
chemical bonds with a sampling depth of hundreds to thousands of nanometers (depending on the
incident radiation wavelength), capturing information from the support layer in a TFC-PA
membrane®®, ATR-FTIR and XPS are often used in conjunction to provide information on the

composition of a TFC-PA across multiple length-scale®®°.

Analysis of ATR-FTIR spectra can help identify important functional groups of the PA layer
and unreacted monomers (e.g., fingerprint peak assignment of MPD/TMC PA system in Table
S1) to evaluate the impact of fabrication conditions on the chemical composition of the PA film.
Without interference from the microporous polymer support, it can even be employed to quantify
the concentration of functional groups (e.g., carboxylic acid groups) to reveal insights of PA film
formation®>®!. ATR-FTIR is also often used to characterize TFC-PA membranes with incorporated
additives or surface coatings®*°>%. For example, the ATR-FTIR spectrum of uncoated PA layer
made from MPD/TMC shows the characteristic peaks of fully aromatic PA at 1608 cm™'(amide I
band from C=0 stretching), 1540 cm™! (amide II band from N-H bending), and 1590 cm™! (C=C
stretching of the aromatic ring)®3, whereas the spectrum of PVA coated membranes reveals all the
characteristic peaks related to hydroxyl and acetate groups of the PVA precursor in addition to the

peaks from the PA layer (Fig. 31)%.

XPS, which provides the sample’s elemental composition and the relative abundance of each
element, plays an important role in TFC-PA membrane characterization because it helps to
quantify the degree of crosslinking, an important property of PA layer. To evaluate the degree of
crosslinking, the ratio between oxygen (O) and nitrogen (N), or the O/N ratio, is evaluated from
the XPS spectrum®®%°, For PA without additives, the O/N ratio should be 1:1 for a completely
crosslinked PA film and 2:1 if the PA is fully linear, i.e., without inter-chain amide bonds (Fig.
Sl1a in SI)**. Therefore, an O/N ratio closer to 1:1 suggests a higher degree of crosslinking. With
the O/N ratio, 1y, the degree of crosslinking (D) can be quantified by

_ 4 — 27"0/1\/ (5)

Cc

B 1+ 7"0/N
We note that Equation 5 applies only if the polymer chemistry is purely PA. In cases where
the PA layer is modified with additive, D, may not be assessed using Equation 3 and the O/N ratio
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may even fall outside the range of 1 and 2. The comparison of the peaks for oxygen (Ols) and
nitrogen (N1s) peaks yield the abundance ratio between the two elements (7, Fig. 3g) from
which the degree of crosslinking can be estimated using Equation 5. This XPS-based technique to
quantify the degree of crosslinking is valid because probing depth of XPS is only several

nanometers which is substantially lower than the thickness of the PA layer.
[H3] Interfacial properties

There are two major categories of interfacial properties for TFC-PA membranes: surface charge
density/potential and wettability. Surface charge density is important because it dictates Donnan
exclusion, which is an important mechanism of salt rejection, and the interaction with charged
foulants. A method based on ion adsorption has been developed to quantify the areal density of
ionized carboxyl and amine groups from which the areal charge density may be calculated (Fig.
S1b)%. This method is based on the specific adsorption of the probing ions to the target functional
groups (e.g., Ag" for carboxyl groups and Br for amine groups) and the quantification of the
probing ion concentration in the eluate using inductively coupled plasma mass spectrometry (ICP-
MS)%3%, Another method to quantify the carboxyl group density involves the use of uranyl acetate
as the probing ion and quantifying the amount of bound uranyl acetate to carboxyl groups using
liquid scintillation counting for uranium atoms®’. In addition, quartz crystal microbalance (QCM)
has also been used to determine charge density of TFC-PA membrane via measuring the
partitioning of carboxyl group-binding ion (e.g., Cs") from the solution into PA layer (Fig.
S1c)%%,

Compared to surface charge density, the zeta potential of the TFC-PA membrane can be
measured directly using commercially available streaming potential instrument (Fig. S1d)8-190,
and is thus much more widely reported in the literature. Zeta potential and surface charge density
are semi-quantitatively related based on double layer theory!?!, but the conversion between these
two parameters for membranes requires questionable simplifying assumptions. Notably, the zeta
potential provides the electrokinetic potential (i.e., the potential at the electrokinetic plane of
shear), not the fixed charged density of the membrane, which can lead to erroneous conclusions
about the membrane charge characteristics. For example, the measured zeta potential can be
negative even for neutrally charged membranes, such as cellulose acetate, likely due to the

adsorption of anions to the membrane!?>19, Hence, quantifying the charge density is more useful
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than zeta potential for mechanistic studies on the role of membrane charge in salt transport through
TFC-PA membranes. Zeta potential, however, can be used for semi-quantitative analyses, such as

88,103

determining the iso-electric point of the membrane , or assessing the impacts of surface

modification on the electrokinetic properties of the membrane.

The zeta potentials measured using streaming potential technique are reported over a range
of pH and can be used to compare the surface charge property of different TFC-PA membranes
(Fig. 41’5194 The zeta potential is expected to become more negative at higher pH due to
deprotonation of carboxyl and amine groups®®, and is also dependent on ionic strength and possibly

102" especially when specific adsorption is possible (e.g., with Ca®*). As

the background electrolyte
an example to demonstrate the utility of zeta potential measurements, TFC-PA NF membranes
made using polyethyleneimine (PEI) as the amine have been shown to be consistently more
positively charged than those fabricated using PIP (commercial NF270) (Fig. 4h)6104,

The wetting property of a membrane is mostly quantified by measuring water contact angle
(WCA) which is relevant in the following aspects. Typically, a PA membrane with more ionized
functional groups is more hydrophilic and thus yields a lower WCA 01105 Additionally, surface
modification is often performed to TFC-PA membranes to improve hydrophilicity, which is
believed to be beneficial to water transport and fouling resistance, and WCA is a critical metric to

quantify the effect of hydrophilic modification!06-108

. While WCA measurement is relatively
simple, its interpretation requires caution for fair comparison. Notably, WCA depends not only on
the surface energy of the polymer but also on the surface roughness, following the Wenzel’s
theory!?. This caveat is particularly important when comparing WCA between two TFC-PA

membranes with dramatically different morphologies.

[H1] Results

[H2] Membrane performance testing

Most membrane performance tests in literature are conducted at the coupon-scale (see Box 1 for
coupon-, module-, and pseudo-module-scale experiments) using either crossflow cells with or
without spacer or dead-end stirred cells (typically Amicon®)!''%!! With a crossflow cell, the feed
stream is pressurized using a high-pressure pump and driven through the feed channel filled with
a spacer with the feed flow tangent to the membrane. The spacer is important for creating a

hydrodynamic condition similar to that in full-scale modules so that a similar degree of
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400  concentration polarization (CP) can be achieved at the same crossflow velocity and water flux.

401  The stirring speed in an dead-end cell also needs to be controlled as it also affects the degree of

402 Box. 1 Coupon-, module- and pseudo-module-scale experiments e
403 For desalination, the primary performance metric of an RO/NF process at the coupon-scale experiment

is water flux and salt rejection. Coupon experiments are performed using a small membrane area with

a relatively large feed flowrate and with the permeate sent back to the feed tank (except for a small
404 volume sampled for analysis) to maintain a constant feed composition. With coupon experiments, we
405 can assume that the feed channel composition and water flux in the test cell are spatiotemporally

constant (assuming no fouling occurs). In contrast to coupon experiments, module-scale experiments
are performed with a large membrane area (as in practical desalination plants). Using a module with a
large membrane area induces spatial distribution of composition in the feed channel and water flux.

In labs without access to pilot-scale RO/NF systems, we can also perform pseudo-module-scale
experiments to extract module-scale information by using a coupon-scale experimental systems without
sending the permeate back to the feed tank. Although spatial distribution of feed channel concentration
and water flux are absent in pseudo-module experiment, not sending the permeate back to the feed tank
induces a temporal variation of water flux and solute concentration in the feed tank that are equivalent
to the spatial distributions of the water flux and feed channel concentration in module-scale
experiments. The equivalence can be shown if we plot these parameters against water recovery (WR)
converted from time (in pseudo-module-scale experiments) and position (in module-scale
experiments). In fact, performing pseudo-module experiment is a convenient way to extract equivalent
distributions of concentration and flux in a module. Such distributions cannot be obtained readily in
module experiments without a distributed sensor network in the module.

In the literature, most membrane performance tests were performed using coupon-scale
experiments to understand material performance of membranes at certain feed compositions and
applied pressures. Module-scale or pseudo-module-scale experiments are more relevant to elucidating
the system-level behavior of membrane modules in practical desalination plants. The simplified
experimental setups of the three modes are illustrated in the schematics below.

Coupon Experiment Module Experiment Pseudo-Module Experiemen
Feed Brine

e

Permeate

Brine

Permeate

Permeate =

= 2
C 7 = :
IS i § Caaiai & FORCHR, c  §_Feed Conc.
8 | Water flux - —— ; .| Water flux
& E Water flux é s
Position Position Position
_ConC.
Conc. Conc. ‘Qfﬁfﬁgg
—_—— =
Time Time Time
Features Coupon Exp. Module Exp. Pseudo-Module
Exp.
Membrane area relative to feed flow rate small large small
Permeate back to feed tank yes no no
Spatial distribution of feed channel aaliaine - ealicible
concentration and water flux 9'9 y eglg
Temporal change of feed tank concentration
no no yes

and water flux
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Before collecting membrane performance data, membranes are pre-compacted by being
subject to the operating pressure over a certain duration to minimize the performance artifacts due
to membrane compaction'!?, Membrane compaction refers to the compression of the PS/PES
support layer and perhaps the PA selective layer of the TFC-PA membrane when operated under
high pressure, which is a widely reported, unavoidable phenomenon that affects membrane
performance for water permeation and salt retention. For measuring water flux, the membrane is
compacted under the testing pressure using deionized (DI) water for several to tens of hours until
the flux is stable. For testing salt rejection, the membrane should be equilibrated with the salt
solution before collecting the permeate samples. For commercial membranes, the manufacturers
often provide pre-conditioning protocols (including pre-compaction and chemical conditioning)

that should be followed to attain the manufacturer-specified performance.
[H3] Data collection and preliminary processing.

Water flux can be measured by digital flowmeter or be evaluated based on the temporal evolution
of cumulative mass of permeate (m,) which is typically converted to cumulative permeate volume
(V), because volumetric flux (commonly expressed in L m h™!, or LMH) is universally reported.

For a membrane coupon, the differential (real time) volumetric water flux, J,, is given by

1dv
WSS ar (6)
where S, is the effective area of the membrane. In coupon-scale experiments without fouling, /,,
should be constant. The decline in J,, is due to either fouling, compaction, or increase in salt
concentration (and thus osmotic pressure) in the feed solution in pseudo-module-scale
experiments. While Jy;; is often reported in literature for experiments with saline feed solutions,

we recommend also measuring J, with pure water at different pressures to simplify the data

interpretation.

Quantifying salt rejection requires measuring the salt concentration in the permeate (with
known feed concentration). For desalination, electrical conductivity of the solutions can be
conveniently measured and used as a proxy of salt concentration with a calibration curve for dilute
solutions. However, if the solutions are highly concentrated or more detailed compositional
information on the salt solutions is required, samples can be collected and analyzed for solute

concentrations ex situ using techniques proper to the analytes. In general, with the feed
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concentration (Cr) and permeate concentration (Cp), the observed solute rejection (R,s, also

called apparent rejection or measured rejection) is calculated using the following equation:

Rops =1 —— (7

The observed solute rejection, which is to be distinguished from intrinsic rejection (to be
discussed), is calculated based on bulk concentrations and is the most widely reported in literature
and directly relevant to practical applications. The observed solute rejection is not an intrinsic
property of the membrane as it depends on operational conditions, most notably the permeate flux

(or applied pressure) employed during the experiments.

[H2] Membrane performance quantification

[H3] Water Permeability

Water flux and salt rejection, experimentally measured to quantify membrane performance, are
not intrinsic performance metric of the membrane. For water transport, the intrinsic performance
metric is the water permeability coefficient (or permeance) which is typically denoted as A and

defined as ratio of pure water flux (as given in Equation 6) and applied pressure (AP):

_Jw
A=35 (8)

The most typical unit of A is L m h™! bar"! (or LMH/bar). Equation 8 suggests that plotting J,, for
pure water vs. AP should yield a linear curve with a slope of A. This is generally true for water
except in the case when membrane compaction occurs (at high pressure), which again highlights
the importance of pre-compacting the membrane to working pressure range for accurate
performance evaluation. While the mechanistic interpretation of Equation 8 and A value may differ
depending on model framework (i.e., pore flow vs. solution diffusion) chosen to describe water
transport in PA membrane, Equation 8 always holds.

In principle, A can also be evaluated from results of PMD experiments with a salt solution,

using the following equation:

Jw

A= ——7—
AP — Amy,

)

where Am,, is the osmotic pressure difference across the PA active layer. For a low-salinity single-

salt solution that can be approximated as an ideal solution, Am,,, can be estimated as

Am,, ~ VRTACy, ~ nRT(Cpm — Cp) (10)
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where n is the van’t Hoff factor (i.e., 2 for NaCl), R is the ideal gas constant, T is absolute
temperature, Cp ., is the salt concentration at the membrane-solution interface on the feed side, and
Cp 1s the salt concentration of the permeate.

Due to concentration polarization [G] (CP), Cp,, is always higher than the bulk salt
concentration of the feed solution, Cr in RO and NF. CP is influenced by the mass transfer
coefficient in the boundary layer that depends on the hydrodynamic conditions in the flow channel.
Furthermore, the degree of CP is highly dependent on J,,,, which renders Am,, also dependent on
Jw. Although determining A value by filtration of salt solution and equation 9 is theoretically
possible, it is more complicated and less reliable than using filtration of pure water and equation
8. We therefore recommend measuring the pure water flux to determine A value.

[H3] Concentration polarization and intrinsic rejection.

Concentration polarization (CP) is an important and universal phenomenon in membrane
processes. The occurrence of CP in PMD is caused by the finite kinetics of back diffusion of solutes
concentrated near the membrane surface due to convective transport driven by transmembrane
water flux!'!3!4 With CP, water flux is related to three salt concentrations — C, Cp (bulk), and

Crm (interface) — via the CP factor (f¢p, also called CP modulus):

W) _ Crm — Cp

for = exp () = £ (n

where k is the mass transfer coefficient in the boundary layer (unit: L m h''). For RO membranes
with high solute rejection, Cp is negligible compared to Cr and Cr,,, and Equation 11 can be
reduced to fcp = Cp,/Cp. Equation 11 is derived based on film theory and k can be estimated

using correlations (Box 2).
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Box. 2 Film model and determination of mass transfer coefficients

In the film model for concentration polarization, a concentration profile of the rejected solutes
develops in a hydrodynamically stagnant boundary layer (i.e., the “film”) due to the convective
transport of the solutes toward the solute-rejecting membrane and the diffusive transport of the
solutes from the membrane surface to the bulk due to concentration gradient!'* ''> 210 Such a
concentration profile is exponential within the boundary layer and renders the interfacial
concentration, Cg ,, to be higher than the bulk concentration, Cr.

Based on film model, k = Ds/& where Dg is the diffusion coefficient of the solute in the
solution and § is the thickness of the film layer''*. The meaning of Dy is relatively clear for neutral
solute, more nuanced for a single-salt solution (i.e., binary electrolyte), and intractable for complex
solution (e.g., seawater or brackish water). Therefore, the relation k = Ds /6§ is mostly useful for
understanding the effect of operational parameters on CP (e.g., to see how hydrodynamics affect &,
and in turn, k). In practical applications, however, k should be evaluated or measured directly. The
dependence of k on D; also suggests that k is dependent on the feed composition.

The boundary layer thickness depends on the hydrodynamic conditions which in turn
depends on several factors such as flow channel geometry, flow velocity, and when spacer is used,
also the geometry of the spacer. For relatively simple flow channel geometries, correlation equations
have been proposed for evaluating the mass transfer coefficient. These equations take the following
general form?'%2!1;

kdp,
Sh = — = aRePSc®
Ds
where Sh is the Sherwood number, Re is the Reynold number (Re = udy, /v, with u and v being the
flow velocity and kinematic viscosity, respectively, and dj, is the hydraulic diameter for the channel),
Sc is the Schmidt number (Sc = v/Ds), a, b and c are the correlation coefficients depending on flow
conditions. Correlations for typical channel geometries are summarized in Table S1.

The correlation method is less reliable or useful when the feed channel contains a spacer, especially
when the spacer can have different mesh geometries. An alternative way to evaluate k is based on a
combination of Equations 9-1122;
Jw _ AP — [, /A
k" nRT(Cr = Cp)

Experimentally, we can use a single-salt feed solution with a concentration Cr, increase AP and
measure Jy; and Cp (Cp may be dropped for RO membranes). We then can plot the right-hand-side
of the above Equation vs. Ji;; and find the slope which equals 1/k. This method allows experimental
determination of k.
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Because CP renders Cr ,,, > Cp, the observed solute rejection evaluated using Equation 5 is
an underestimation of the intrinsic (or real) rejection defined as
Cp

Rint = 1 - CF’m

(12)

When k is known, the intrinsic rejection, R;,;, and the observed rejection, R,,s;, can be

interconverted using the following relation*:

fCPRobs
1- Robs + fCPRobs

(13)

Ripe =

[H2] Models and performance metrics for salt transport

While R, reflects inherent characteristics of the membrane to a greater extent than R, it is still
not an intrinsic parameter of the membrane (for a given salt species). In this section, we present
several models to extract more intrinsic membrane parameter for salt transport from experimental
measurements.

[H3] Solution-diffusion model

The most widely used model for mass transport is the solution-diffusion (SD) model, which
assumes that water and solute species transport independently via first dissolving (or partitioning)
into the PA layer, then diffusing across the layer under respective concentration gradients, and
finally partitioning out of the layer into the permeate (Fig. 4a)!*2°, The SD model is convenient
because it enables a description of the transport characteristics of a TFC-PA membrane using two
parameters: the water permeability coefficient as defined in Equation 8 (or 9) and the solute
permeability coefficient, B (unit: LMH), defined as

s _ s
ACm Cp,m - CP

B= (14)

where AC,, is the solute concentration difference across the PA active layer, considering CP that
brings Cp in the bulk to Cp ,, at the membrane surface. Both Equations 8 (or 9) and 14 are based
on the principle that, for each species, the flux equals the product of the respective driving force
and the permeability coefficient. With further derivations (S2), it has been shown that the B value

can be calculated using Ji,, R,ps, and k using the following equation®:
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Jw _
g = Rops ™" (15)

fep

Since Jiy and R, ;¢ can be directly measured and there is an independent way of evaluating k using

Equation 11, B can be experimentally determined.
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Fig. 4 | RO/NF models at the coupon and module scale. a. Solution-diffusion (SD) model with
water permeability coefficient (A) and solute permeability coefficient (B) as the extracted
parameters. b. Solution-friction (SF) model with A, transport factor (P), and charge factor (C) as
the extracted parameters. c. Dependence of equivalent salt permeability coefficients (B,,) on feed
concentration (Cr) for different RO membranes base on SF model (adapted from ref. 118 with
permission). d. Solution-diffusion electro-migration (SDEM) model which considers
electromigration in addition to diffusion. The extracted parameters are A and ion permeabilities,
P;. One permeability will be extracted for each ion. The SDEM model has been commonly used
for modeling ion transport in NF with mixed salt feed solution. e. Donnan Steric Pore Model with
Dielectric Exclusion (DSPM-DE). The four major parameters to be extracted from the DSPM-DE
is pore size (1), effective thickness (L. ), effective charge density (X) and dielectric constant within
the pore (g,). These parameters can be extracted by either a multi-step experimental procedure’
or the global optimization technique'?. f. lllustration of module-scale model based on finite
difference. The equations in the box describe the mass balance of water and solutes (ions)
between adjacent cells, considering local water and solute fluxes. Local water flux (J,, ;) and solute
flux (Js;) are determined based on local solution composition and operating conditions using a
selected coupon-scale model (chosen from SD, SF, SDEM, DSPM-DE, or others).
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With this framework based on SD model, the separation performance of each TFC-PA
membrane is summarized as a pair of value, A and B, evaluated using Equations 8 (or 9) and 15,
respectively. The ratio A/B is also widely reported in literature to quantify the water/solute

selectivity**-113

(See Section S3 where we discuss why the widely claimed “intrinsic perm-
selectivity tradeoff” may not be necessarily intrinsic). A large A/B ratio represents a membrane
that favors water permeation but not solute permeation, which facilitates high solute rejection. In

fact, R,ps has been expressed as a function of A/B using the following equation®:

£ (AP — fopim)
Rops = A (16)
B (AP — fepAm) + fep

where Am is the bulk osmotic pressure difference that equals nRT (Cr — Cp) for an ideal

solution. Equation 16 reveals that a large A/B ratio and a small f,p are both beneficial to achieving
a higher observed solute rejection. The values of A and B are reported in an Open Membrane
Database (OMD) which is a web-based database with calculation and analysis tools!'®. It is,
however, important to recognize that most studies (>95%) did not report k or f.p, and a k value
of 100 LMH was arbitrarily assumed in OMD for calculating the A and B values for membranes
from those studies. The OMD team also proposed a set of standard testing conditions for SWRO
and BWRO (Table S3)!'6. Regardless of the mechanistic correctness (which belongs to another
discussion beyond the scope of this paper), the SD framework for characterizing membrane
performance has at least two major limitations. First, it is widely recognized that the B coefficient,
even for a given salt, is not a constant but rather depends on the salt concentration near the
membrane surface (i.e., after considering the CP)?>!'!7, which makes the comparison of B values
between different TFC-PA membranes only meaningful at the same interfacial salt concentration.
For PMD operations, both feed salt concentration and permeate water flux vary over a wide range,
casting doubts on the comparison of B between different experiments®. Second, the SD
framework cannot explain negative rejection (i.e., Cp > Cr) commonly observed in many NF
experiments with mixed electrolytes.

[H3] Solution-friction model

The solution-friction (SF) describes the coupled transport of water and salt in RO membranes. The
model combines ion partitioning between the solution and membrane phase (like that in the SD

model) and microscopic description of ion transport within the PA layer considering the
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interactions between the species (i.e., salt ions, water molecules, and the membrane) (Fig. 4b)?>!18,
The SF model is derived based on force balances for water and salt ions transport through the
membrane. Specifically, the frictional force acting on the salt ions is balanced by the driving force,
i.e., the gradient of chemical potential of salt ions. Similarly, as water transport through the
membrane, the hydrostatic pressure is balanced by the friction between water molecules and the
membrane as well as water molecules and salt ions'!?,

Based on the SF model, Biesheuvel, Elimelech, and colleagues proposed a new framework
to characterize PMD membranes to extract concentration-independent parameters to quantify

membrane performance!'8. Under this new framework, the observed rejection is given by

o =1 (S v (20) - £ o

where P is called the transport factor that quantifies the “conductance” of the membrane to salt

transport considering partitioning, diffusion, and frictions; and C is called the charge factor
integrating charge density and non-Donnan partition coefficient'?’. Detailed derivation of
Equation 17 and definitions of P and C can be found in the work by Biesheuvel et. al!!8:120,
Recognizing that B is not an intrinsic parameter, the concentration-dependent equivalent salt
permeability coefficients, B, (defined based on Equation 14), can still be evaluated under the SF

framework:

2
B, =P <—> +1-— (18)

We use “equivalent” instead of “observed” (as in the original manuscript) to reserve “observed”
for values that are measured or evaluated without considering CP (whereas Equation 18 already
considers CP). Equation 18 shows the dependence of B, on Cf, which is summarized in Fig. 4c

for several commercial membranes!!®

. In general, B, increases with increasing interfacial feed
concentration, Cr ,,,, and approaches a limit at high Cr,,,, which suppresses Donnan exclusion. The
dependence of B, on interfacial concentration was found to be stronger for some membranes
(e.g., SW30 series) and almost absent for other membranes (e.g., XLE)!'3.

With this SF-based framework, we can vary ], by changing the applied pressure at a given

Cr to measure R, and fit the data of (J},, R,ps) using Equation 17 to extract P and C, assuming
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that k can be independently determined using a correlation or an experimental method based on
Equation 11. Both Equations 17 and 18 reveal that a lower P and a larger C are beneficial to solute
rejection (i.e., a higher R,;,s and a lower B,g).

Comparing the SD framework?® and this new SF-based framework by Biesheuvel et. al.?>!18,
the SD framework quantifies the membrane performance (for removing a specific salt) using two
parameters, A and B; whereas the SF-based framework quantifies the membrane performance
using three parameters, A, P and C. For modeling module-scale behavior where feed concentration
varies spatially along the feed channel, the SF-based framework based on Equation 17 provides an
elegant model to account for concentration dependence and is thus superior to the SD framework.
For comparing performance of different membranes under similar operating conditions, however,
because of the difficulty of visualizing (4, P, C) data with clarity and giving simple interpretations
of P and C to non-experts in membrane transport theory, the SD framework based on (4, B) may
still be preferred, despite its lack of rigor and mechanistic insights. An additional practical
advantage of the SD framework is that evaluation of B in principle only requires one measurement
(based on Equation 15, assuming k has been determined), whereas the determination of P and C
requires fitting Equation 17 using multiple data points collected from a series of experiments.
[H3] Other models and global parameter determination
Other models have been used, mostly in NF (but in principle extendable to RO), for fundamental
understanding, modeling module-scale behavior, and occasionally for comparing membrane
performance. One example is the solution-diffusion electro-migration (SDEM) model, which
keeps the diffusion and electro-migration terms in the extended Nernst-Planck equation but drops
the convection term (Fig. 4d)'?!. SDEM model still uses the concept of permeability, but the
permeability is defined for an ion species instead as for a salt species as in the SD model. With
permeability for ions and the inclusion of the electro-migration term, the SDEM model allows the
prediction of negative rejection of ions in NF with mixed salt feed solutions'?!1?2, which is
impossible with the simplistic SD model. Sharing the same weakness of the SD model, however,
the SDEM model provides no mechanistic description of the dependence of the ion permeability
on feed composition. An imperfect but practical solution to address this challenge is to develop
empirical correlations between ion permeabilities and (interfacial) feed composition from

experimental data'?.
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Another widely used model is the pore flow model, or the so called Donnan Steric Pore Model
with Dielectric Exclusion (DSPM-DE)87:124, The DSPM-DE considers water and ion transport
through tortuous cylindrical pores with charge and accounts for steric, Donnan, and dielectric
exclusions and hindered transport of solutes within pores (Fig. 4¢)!?*. Although the DSPM-DE has
many simplified assumptions and mechanisms that might be questionable (e.g., the inclusion of
dielectric exclusion), it can provide some mechanistic insights of how the change in certain
membrane properties (e.g., pore size, charge density) would affect membrane separation
performance in a way that the other more phenomenological models cannot provide (e.g., pore size
is not a parameter in the SD, SDEM, or SF model). A detailed review of the DSPM-DE with a
step-by-step instruction of how to extract parameters for the model was provided by Wang and
Lin®. The DSPM-DE has been used for modeling module-scale behavior for desalination and
selective solute separation.

For all these models discussed above, from the simplest SD model to the more complicated
DSPM-DE, methodologies have been developed to extract each parameter in the model via multi-
step procedures. Depending on the model complexity and structure, stepwise (or sequential)
determination of model parameters typically involves different types of experiments and may face
intrinsic challenges in uncertainty propagation®®. Alternatively, a global optimization approach can
be used for parameter determination'?>!2%, Briefly, a series of data (water flux and salt rejection)
is collected under different combinations of feed concentration and applied pressure. With a
chosen model framework, a set of model parameters that best fit the collected data series can be
found using non-linear regression.
Module-scale modeling and system performance evaluation
With an experimentally validated coupon-scale model, we can model the module-scale mass
transfer for PMD'?’. While real PMD modules are typically of spiral-wound configuration with a
relatively complex flow pattern, a simplified 2D model based on finite difference method is
sufficient for most applications!?®!?°. The 2D model considers both the mass transfer normal to
the membrane (i.e., local water and solute fluxes) and the mass balance in the crossflow direction
(Fig. 4f, details in module-scale modeling can be found in Section S4).

The solution to the model contains distribution of local water and solute fluxes, flowrates and

concentrations in the feed and permeate streams, among other parameters. From the model solution
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we can evaluate, in addition to WR, important module-scale performance parameters such as

average water flux, J;,, , and module-scale solute rejection, R,,o4:

— WR
=2 (19)

R —1- CpéWR) (20)
F,0

With the solution to the module-scale model, the specific energy consumption (SEC, i.e., energy

consumed per volume of permeate) of the desalination processes can also be evaluated. Besides

parameters used in module-scale modeling, SEC is also dependent on system configuration (e.g.,

multi-stage, multi-pass, closed-circuit) and the efficiencies of pumps and energy recovery devices

(ERDs)!3°. Analyses of SEC with different configurations and levels of complexity are available

in literature!'31:132,
[H1] Applications

[H2] Seawater desalination

RO is the dominant technology for seawater desalination with a global capacity of ~ 36 million m?
day! 1337135 A single-pass SWRO treatment train consists of seawater intake, pre-treatment, RO
unit process, post-treatment, and brine discharge (Fig. 5a). A typical SWRO system treats water
with salinities ranging from 30 to 45 g L', and operates at around 50% WR to minimize energy
consumption and fouling'3* . Two-pass RO is typically employed to further enhance permeate
water quality and reduce the concentrations of certain species, such as boron and chloride 3138
(Fig. 5b). The working pressure of SWRO ranges from 50 to 80 bar'3® and the typical average
water flux is controlled to below 20 LMH for both fouling prevention and energy consumption
considerations!4%14! The SEC of the entire treatment train, including intake, pre-treatment, and
post-treatment, ranges from 2.5 to 4.0 kWh m™ for modern SWRO plants'4!142 and is below 2.8
kWh m? for the state-of-the-art facilities'3®!42. Typically, 60% or more of the total SEC is
contributed by the RO unit process'*¢. The relatively low SEC can is achieved partially due to the

implementation of energy recovery devices that can recover up more than 95% of the energy

embedded in the pressurized brine (retentate) stream!'3°,
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Fig. 5 | RO treatment train and configurations. a. lllustration of an SWRO desalination plant
showing the various unit processes including intake, pre-treatment, RO, post-treatment, and brine
discharge. b. Two-pass RO operation where the permeate of the first pass is sent to the second
pass as feed solution to further improve the permeate quality. ¢. Two-stage RO operation where
the retentate from the first stage (lower operating pressure) is further pressurized and sent to the
second stage (higher operating pressure). The permeate from both stages are collected as the
product water. d. Closed-circuit RO (semi-batch RO) operation where the retentate is recirculated
and mixed with the feed solution before entering RO module again. The operating pressure is
increased over time to overcome the increasing osmotic pressure due to accumulation of salt in
the closed-circuit. ERD, energy recovery device.

The levelized cost of water (LCOW) varies widely due to numerous factors, including local
prices of electricity and indirect capital expenses. Economy of scale effects have played a major
role in recent years in driving down the costs of desalinated water. For example, the plant at Al
Taweelah, United Arab Emirates, produces water at 0.49 $ m™ with an installed capacity of 331.8

135

million m? per year'?3, while the soon operational Sorek II plant in Israel is expected to produce

200 million m? per year at 0.41 $ m 43,

[H2] Brackish water desalination

Brackish water refers to water with a salinity or total dissolved solids (TDS) beyond 0.5 g L
(typically below 10 g L)' and is usually groundwater and wastewater but can also be surface
water with elevated TDS. Brackish water desalination is critical to augmenting freshwater supply
145

in dry inland regions, comprising over 21% of the total worldwide desalination capacity

Brackish water desalination has been practiced at large scales for decades in many countries, such
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as Israel, Spain, Tunisia, the US, and the UK!#+146.147 Tp the US, RO dominates brackish water
desalination applications, accounting for more than 85% of the installed systems to date!43.

Typical operating pressure for BWRO ranges from 5 to 30 bar, with a WR of 75-85%'%.
Though BWRO has a higher WR and a lower brine ratio compared to SWRO, brine management
remains a major challenge in inland BWRO. BWRO usually uses multiple stages (two stages
illustrated in Fig. 5¢) to improve WR and reduce energy consumption'#>-13°, More recently, a new
system configuration called closed-circuit RO (CCRO) has been developed. In CCRO, the
retentate is recirculated in the closed-circuit and blended with the feed water before entering the
RO module as the feed solution (Fig. Sd). As salt concentration and osmotic pressure in the closed-
circuit increase over time, the applied pressure is ramped up accordingly. CCRO has the benefit
of reducing SEC compared to single-stage RO and possibly reduced capital cost compared to
multi-stage RO. CCRO has also been shown to be capable of reducing fouling/scaling due to flow
circulation and its ability to maintain a relatively low water flux everywhere in the module at all
time.

SEC of BWRO processes is approximately 0.8-2.5 kWh m™, depending on the feed salinity,
permeate quality requirement, and WR46:15L152 Compared to SWRO, BWRO typically operates
at a lower pressure and recovers more water which results in smaller brine volumes. Installing an
ERD is thus not always beneficial because the energy saving may be eclipsed by the additional
capital and maintenance costs!4+133, The LCOW for BWRO is typically lower than that of SWRO

(at the same scale) but highly dependent on scale and site-specific conditions'#*,

[H2] Water Reuse

Water reuse has grown dramatically in the past decades'>*

. End uses for municipal wastewater
reuse projects can be classified into non-potable and potable!>®, and range from agricultural and
industrial to domestic consumption, with domestic consumption experiencing considerable growth
over the past few years'>*. Depending on the application, requirements on the product water vary,
resulting in different process configurations and levels of treatment. Multiple barrier treatment
trains are characteristic of potable reuse systems to guarantee maximum safety of the product
water'>®, Typical barriers consist of full advanced water treatment, comprising filtration and
advanced oxidation, blending with natural waters, and efficient source control programs!6:157,

Membrane based approaches have gained predominance in potable reuse applications'®, and this
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trend is likely to continue, prompted by the increasing implementation of multiple barrier
systems'>4,

Potable reuse systems are categorized into direct (DPR) and indirect (IPR), depending on
whether the produced water is sent through an environmental buffer before entering drinking water
plant'>. In these processes, feed TDS is typically around 1 g L' and up to 85% of water is
recovered'®®. Owing to the low feed TDS, typical operating pressures do not exceed 15 bar'>,
Energy consumption for potable reuse systems is generally between 1 and 2 kWh m™ !>, although
slightly wider ranges have been reported'®°, with the variability attributed to process configurations,
economies of scale aspects, and if the system is for DPR or IPR. Due to the lower feed osmotic
pressure and thus higher attainable WR, water reuse processes are typically configured in multi-
stage trains with inter-stage pumping to minimize energy consumption'>%1%° Like BWRO,
incorporation of ERD is not necessarily favorable in economics (as in SWRO) and must be

evaluated wholistically. The LCOW for water reuse varies with location, technology, and plant

capacity but is generally lower than that for SWRO at the same scale'.

[H2] Brine concentration or brine volume reduction

Hypersaline wastewater treatment is an important frontier where pressure-driven membrane
processes can be disruptive!®!. Due to its superb energy efficiency, conventional RO has already
been incorporated in most treatment trains for zero liquid discharge (ZLD) and minimal liquid
discharge (MLD), typically concentrating the brine to a TDS of 70 g L' (Fig. 6a)'4>14, Beyond
this TDS, a thermal evaporative process, most commonly mechanical vapor compression (MVC),
is used to further concentrate brine or even achieve crystallization'®>2. However, MVC as well as
other thermal technologies are energy intensive, lack modularity, and have a high capital cost due
to the use of expensive corrosion-resistant alloys. Recent analysis has shown that replacing MVC
with pressure-driven membrane processes for concentrating brine at the very high TDS range
(70~250 g L'!) has the potential to dramatically reduce the cost of MLD or ZLD!®2, There are two
main strategies to enable pressure-driven membrane process to concentrate hypersaline brine: (1)
developing membranes and modules for high-pressure RO (HPRO) with much higher working
pressure (> 100 bar)!'®*1% and (2) developing RO variants that can handle hypersaline brines with

an osmotic pressure that is much higher than the applied pressure!9-167,
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Fig. 6 | The use of RO and its variants in brine management. a. A representative treatment
train for minimal liquid discharge (MLD) and zero liquid discharge (ZLD) where the brine is, after
pre-treatment, concentrated by conventional RO to a relatively high TDS and then treated by an
MVC-based brine concentrator and/or brine crystallizer. b. Osmotically assisted RO (OARO). c.
Cascading osmotically mediated reverse osmosis (COMRO). Both OARO and COMRO utilize
counter-flow RO (CFRO) modules with moderate TDS water in the permeate channel to render
the trans-membrane osmotic pressure difference lower than the osmotic pressure of the solution
in the feed channel. d. Low-salt-rejection RO (LSRRO) where salt-leaking NF membranes are
used to render the trans-membrane osmotic pressure difference lower than the osmotic pressure
of the solution in the feed channel. LSRRO modules resemble conventional RO modules in design
and do not require a counter-flow configuration. All the RO variants, including OARO, COMRO,
and LSRRO, will adopt multi-stage with one conventional RO stage to achieve a high water
recovery.

Except for the elevated operating pressure, the working principle of HPRO is the same as

LSRRO Module

that of conventional RO. In theory, raising the operating pressure to 300 bar can enable HPRO to
concentrate brine to a TDS over 250 g ! with an estimated energy consumption an order of
magnitude lower than that of MVC!9, However, existing RO membranes and modules are not

designed to work in this ultrahigh pressure range and will suffer from problems such as membrane
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compaction, bulging of membranes into spacer opening, and module failure!!?

. Thus, designing
membranes and modules that can sustain high operating pressure is key to advance HPRO.

To handle high TDS brine without very high operating pressure, variants of RO with counter-
current flow modules, such as osmotically assisted RO'® (OARO, Fig. 6b) and
cascading osmotically mediated reverse osmosis'® (COMRO, Fig. 6¢), are being actively
developed. Unlike conventional RO, these RO variants use counter-current flow modules and
introduce a saline stream with a moderate TDS in the permeate channel to reduce the osmotic
pressure difference across the RO membrane. Water permeation from the high TDS feed stream
to the moderate TDS permeate stream occurs because the applied pressure, although lower than
the feed osmotic pressure, exceeds the transmembrane osmotic pressure difference. For OARO
with three stages, the brine can be concentrated to a TDS beyond 200 g L' with an energy
consumption substantially lower than MV C!68.169,

Recently, another RO variant called low-salt-rejection RO (LSRRO) was developed using
conventional spiral-wound modules but with low-salt-rejection membranes (Fig. 6d)'®’. The
“leakage” of salt in LSRRO reduces the transmembrane osmotic pressure difference and enables
concentrating a high TDS feed stream using an operating pressure lower than the feed osmotic
pressure. Theoretical analysis showed that a 3-stage LSRRO process can concentrate the brine to
a TDS beyond 200 g L! with an energy efficiency potentially even higher than that of OARO!®.
LSSRO is also more practical than counter-current flow RO variants because LSSRO can use
existing spiral-wound module design and does not have the challenge of internal concentration

polarization'®”. Therefore, LSRRO is a highly promising technology for brine concentration.
[H1] Reproducibility and data deposition

The main challenges of reproducibility are in membrane fabrication and performance evaluation.
Common to many areas of material synthesis research, results from some studies on TFC-PA
membrane fabrication have been anecdotally reported to be poorly reproducible. Notably, IP is a
complex process with many influencing factors and our understanding of the IP process is still far
from thorough. While many researchers try to report, with goodwill, as many experimental details
as they consider important, they may still miss to report subtle parameters that turn out to be

pertinent in ways that most people are not aware of.
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For instance, the wetting state of the PS/PES support by the aqueous amine solution is
believed to have strong impacts on the morphology and performance of a TFC-PA membrane'”°.
In addition to additive species and concentration, which are relatively easy to control, the wetting
state is also influenced by other factors such as temperature, humidity, removal of excess aqueous
solution using blotting or rolling, and when and how to initiate the IP process after the support is
wetted. Some of these factors are difficult to quantify, and none of these factors is commonly
reported in the literature. Other information that may be critically important but rarely reported
includes when and how to terminate the IP process, as well as how to perform post-treatment
(annealing) and store the fabricated membrane samples. Better controlling these factors may
significantly enhance the replicability of the properties and performance of TFC-PA membranes
fabricated in academic labs. But it would require accurate quantification and comprehensive
reporting in publications, which is both non-existing and expectedly challenging.

Another key challenge for reproducing results from the same commercial membranes, or
more commonly, fairly comparing the performance between different lab-fabricated membranes,
stems from the inconsistency in performance testing method which has been discussed in detail in
Section 3. It is important to recognize that measured salt rejection (R,,s) 1S not an intrinsic
performance parameter of a membrane but depends on water flux, salt concentration, and the
degree of CP. A better understanding of the basic transport theory in PMD as summarized in this
Primer will help “membrane material scientists” to conduct more meaningful performance testing
and report data that is relevant and useful for cross-experiment comparison.

Additionally, the solution pH and temperature can also have substantial influence on the
performance of PMD membranes!”"!72, Their impacts are known but have not received sufficient
attention from the broader membrane community. The solution pH influences the ionization of
functional groups in PA layer and thus the membrane charge, which in turn affects the salt flux
through the TFC-PA membrane'’?. In addition, the feed temperature has been shown to have
significant impact on water permeability mainly via its impact on liquid viscosity, which renders
water and solute fluxes sensitive to temperature'”!. Therefore, we recommend documentation of
solution pH and temperature in the data deposition. For commercial membranes, temperature
corrections factors to account for the impact of temperature on water flux are often provided by
the membrane manufacturers and water fluxes measured at different temperatures can be converted

to flux value at a standardized temperature of 25 °C!73:174,
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The open membrane database (OMD) provides an excellent platform to improve data
reproducibility and comparability by recommending best practices and standardized experimental
conditions for data acquisition!!®. The OMD is also the ideal repository for data deposition with
its standardized entry forms. The data analysis tools (“calculators” on the OMD website) are also
highly instrumental to membrane material scientists who are not well familiar with the transport

theory.
[H1] Limitations and optimizations

[H2] Susceptibility to chlorine oxidation

In modern desalination plants, chlorine is added to feedwater in the pretreatment stage to prevent
membrane biofouling!”>!7%, However, aromatic PA membranes suffer from oxidative damage due
to the susceptibility of the amide links to chlorine!!»!77-178, The lack of chlorine resistance requires
a de-chlorination step before water entering the RO modules to protect the PA membrane from
biofouling, followed by a re-chlorination step to control microorganisms in the distribution

system!”>,

Developing membrane with higher chlorine tolerance and similar desalination
performance to existing TFC-PA RO membranes is a strategic priority as it would eliminate the
need for de-chlorination and re-chlorination, and thus simplify the process scheme, reduce

chemical dosage, improve process reliability, and reduce the overall levelized cost!”.

Several approaches have been explored to fabricate chlorine-resistant RO membranes'!. The
first and the most promising approach is to use alternative chemistry to fabricate polyester, sulfone,
and epoxide-based membranes that are less susceptible to chlorine attack!'>-37-180:181 However, the
separation performance (i.e., water flux and salt rejection) and long-term stability of these
membranes based on alternative chemistries still need to be improved to match that of TFC-PA
membranes. The second approach is to apply on the TFC-PA membrane a protective coating such
as polyvinyl alcohol (PVA) and poly (N,N-dimethylaminoethyl methacrylate) (PDMAEMA),
which often compromises water flux!32-185, The third approach turns to nonpolymeric materials
such as carbon molecular sieves, graphene, and graphene oxide, but poor scalability of these

186—

materials hinders mass manufacture and practical applications'®¢-188, It is important to note that

these emerging membranes exhibit poor salt rejection compared to TFC-PA membranes even for

very small area membrane coupons!3-37:182,184,187

[H2] Insufficient removal of small neutral solutes
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Compared to salt rejection, RO’s performance in rejecting small neutral solutes of concern is
insufficient in some scenarios. The first problematic small neutral solute is boron, which is
dominantly present as neutral boric acid at seawater pH. Seawater contains 5-7 mg L' boron.
While the updated WHO guideline for boron concentration in drinking water is 2.4 mg L 1% (it
used to 0.5 mg L! before 2009), the recommended boron level for irrigation water is 0.3-0.5 mg
L' 1% requiring 90-95% rejection of boron (vs. 80-93% for most commercial SWRO
membranes!®!192). Two-pass RO has been adopted to further remove boron, where a low-pressure,
high-flux RO is employed to further polish the 1% pass SWRO permeate, adding capital cost to the
desalination process!?!193, The second category of small neutral solutes of concern are disinfection
byproducts (DBPs)!**, with a famous example being N-nitrosodimethylamine (NDMA)'®>. The
rejection of small and neutral DBPs by RO membranes varies over a wide range depending on the
solution chemistry and operating conditions but is often insufficient for portable reuse!®. Thus,
extra pre- or post- treatments are required to further remove small and neutral DBPs until RO

membranes with better performance are available.

[H2] Membrane fouling

Like other membrane processes, PMD faces the challenge of membrane fouling. Membrane
fouling refers to the deposition of undesirable substances on the membrane surface, which
compromises water permeation and permeate quality'®. Based on the foulant type, fouling on
PMD membranes can be classified into biofouling, organic fouling, inorganic fouling (or mineral

scaling), and colloidal fouling'®’

. Biofouling is a complex process involving microorganism
adhesion and biofilm formation on membrane surfaces!®. The biofilm consists of bacteria and
extracellular polymeric substances (EPS) with diverse compositions and is dependent on the
environment and bacterial community!®*2°!, Organic fouling is caused by natural and effluent
organic matter such as humic substances and proteins?°22%3, Mineral scaling occurs when sparsely
soluble salts precipitate out of the solution and subsequently deposit and grow on the membrane
surface. Depending on the source of water, typical scalants include gypsum (CaSOs4), calcite
(CaCO3), and silica (Si02)!7¢. Colloidal fouling is caused primarily by the deposition of naturally
colloidal particles which are primarily minerals***. The primary indicator of fouling in most bench-

204 However, real desalination

scale experiments performed at constant pressure is flux decline
plants are typically operated at constant water flux, and the practical indicator of fouling is thus

increase in applied pressure.
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Extensive research has been performed to better understand and mitigate the various types of
membrane fouling in PMD and other membrane processes. Effective fouling mitigation strategies
include pretreatment, membrane cleaning, and membrane surface modification!*’?%. Typical
pretreatment processes include coagulation/flocculation followed by media or membrane filtration
to mitigate colloidal, organic, and biofouling, chlorination to reduce biofouling, and softening or
adding antiscalant to inhibit mineral scale formation'’62%, These pretreatment processes can slow
down, but not eliminate, fouling. Thus, periodic membrane cleaning with chemicals (e.g., acids,
bases, surfactants, chelating agents) remains critical to maintaining the long-term membrane

performance??7-2%8

. Lastly, surface modifications have also been widely investigated for membrane
fouling mitigation. The two general strategies for surface modifications are (1) to make the
membrane surface more hydrophilic which is believed to reduce the adhesion of substances

(especially organics and microbes) to the membrane surface?®

, or (2) to incorporate microbicidal
substances to the membrane surface for biofouling control?”°, Membranes with stronger fouling
resistance may reduce the level of pretreatment and frequency of membrane cleaning. Despite a
large volume of literature, it is unclear if surface modification is widely adopted in commercial

TFC-PA membrane fabrication.

[H1] Outlook

PMD has transformed desalination in the last several decades to become an economically viable
process for augmenting freshwater supply and is expected to play an increasingly important role
in the 21% century in the face of growing regional water scarcity due to climate change. For
municipal-scale desalination of seawater, brackish water, and treated wastewater (for portable
reuse), PMD has intrinsic advantages in energy efficiency, operational simplicity, and process
reliability. In fact, the energy consumption of SWRO is not too far from the thermodynamic limit
so that dramatic energy efficiency improvements as once enabled by the advent of TFC-PA
membrane and ERD are no longer possible. So, the question arises: What are (and are not) the next
steps for pressure-driven membrane desalination?

Developing membranes with high water permeability, despite being the motivation of many
studies on membrane fabrication, will only have marginal contribution to further reducing the
energy consumption and LCOW for SWRO. The diminishing return of increasing water
permeability for SWRO is attributable to (1) limited saving in applied pressure due to the
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dominance of osmotic pressure difference over membrane resistance in their contributions to the
required pressure, (2) limited flux enhancement due to CP, and (3) membrane cost being a small
contribution to the LCOW for SWRO. For low-pressure PMD applications, the benefits of
developing highly permeable membranes may be more pronounced but must be justified based on
LCOW analysis. Rather than focusing on water permeability, practical RO processes can benefit
from developing membranes with higher selectivity toward the removal of small neutral solutes
(e.g., boron, 1,4-dioxane, DBPs) and with higher resistances against chlorination and different
types of fouling. These improvements will lead to a higher performance stability and/or simplified
treatment train which in turn result in a lower LCOW.

Innovations in system configuration play an important role in further improving the
efficiency, reliability, and applicability of PMD. One recent example of such innovation is CCRO
which has demonstrated advantages for achieving higher WR in BWRO with substantially reduced
fouling. Innovations in system configuration are particularly promising when it comes to pushing
RO for concentrating high TDS brines. We expect that HPRP and RO variants (LSSRO, OARO,
COMRO) will continue to be developed in the next decade to advance RO technology for brine
treatment to the next level.

Beyond improving membrane performance and designing new system configurations, future
work on PMD should continue to advance our fundamental understanding of mass transport
through membranes. Better mass transport theories can help us extract intrinsic parameters for
membrane performance evaluation and comparison. It will also help us perform more accurate

module-scale modeling for process development and optimization.
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Glossary
Reverse osmosis
A membrane-based separation process where a hydraulic pressure is applied to push water through

a semipermeable membrane that rejects the solutes.
Nanofiltration
A membrane-based separation process similar to RO but with larger membrane pores, higher

water flux, and lower solute rejection.

Interfacial polymerization

A polymerization reaction to form a thin film at the interface between two immiscible liquids.
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Concentration polarization

A build-up in concentration near membrane surface due to convective transport of solute rejected

by the membrane.
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