

Salinity Gradient Energy is Not a Competitive Technology for Renewable Energy

Shihong Lin^{a,b,*}, Zhangxin Wang^c, Li Wang^d, and Menachem Elimelech^e

^a Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, Tennessee 37235-1831, USA

^b Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235-1831, USA

^c School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, Guangdong 510006, China

^d State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji Advanced Membrane Technology Center, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China

^e Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, 06520-8286, USA

Corresponding author email: Shihong.lin@vanderbilt.edu

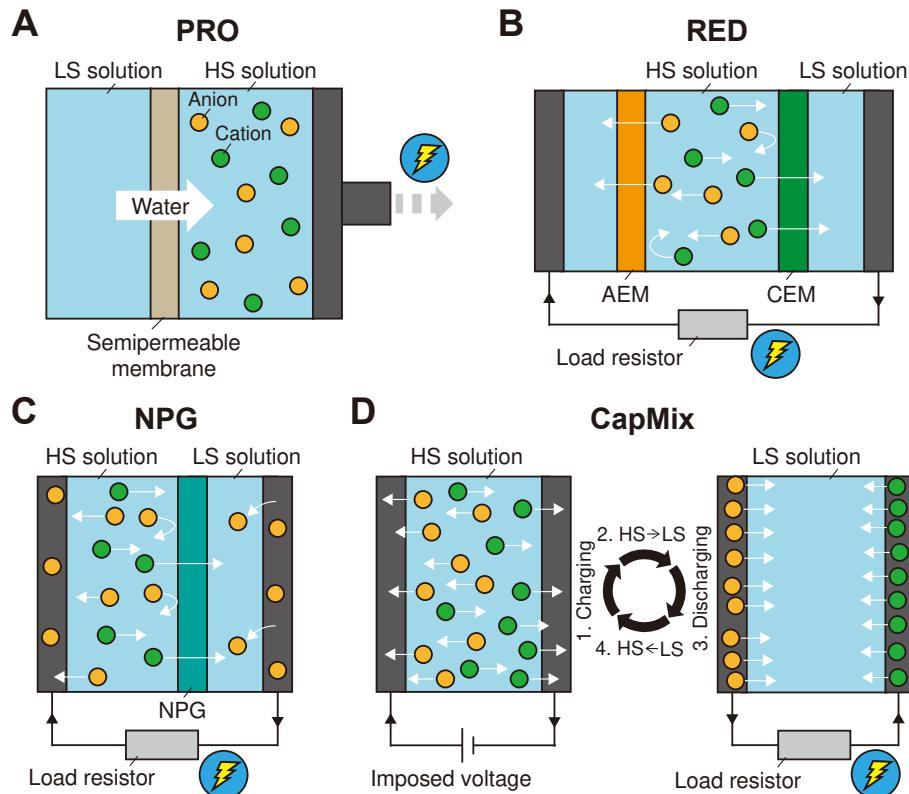
Introduction

Salinity gradient energy (SGE) refers to the energy released when two solutions of different salinities mix.¹⁻³ For example, the SGE released when freshwater in a river enters the ocean is estimated to be equivalent to installing, at the river mouth, a hydraulic dam of ~280 m in height.⁴ Such an equivalence makes SGE appear to be attractive as a new type of sustainable energy, especially considering that even the tallest dams in the world have similar heights as these virtual “SGE dams”. The theoretical global potential of SGE was evaluated to be more than 15,000 TWh/year, whereas the practical potential was estimated to 625 TWh/year.⁵

The idea of using engineered system to extract SGE was proposed more than half a century ago,^{6,7} and has gained significant momentum in the past 15 years. Academic research in SGE has focused mostly on material development and to a lesser extent on process development, optimization, and analysis. A small SGE-based power plant prototype (2-4 kW) was operated by Startkraft, a Norwegian power company, from 2009 to 2014, proving SGE's technical feasibility at the pilot scale.⁸ The Startkraft experiment

37 was terminated due to the challenge of developing the technology to be economically
38 competitive “within the foreseeable future”.⁹

39
40 Some argue that SGE was not sufficiently competitive because it was in its early stage of
41 development, and that with better material and system design it could eventually become
42 a viable source of sustainable energy. We believe that SGE has intrinsic limitations that
43 make it very challenging, if not impossible, to become economically competitive against
44 alternative forms of sustainable energy.³ Such limitations are fundamental and cannot be
45 addressed by engineering better materials or systems. In this Commentary, we will
46 present the rationales to show why SGE is not a viable technology for sustainable energy
47 generation. We mainly focus on the science and engineering aspects of SGE limitations
48 but will also briefly discuss economics which eventually dictates the technology adoption
49 or its lack thereof.

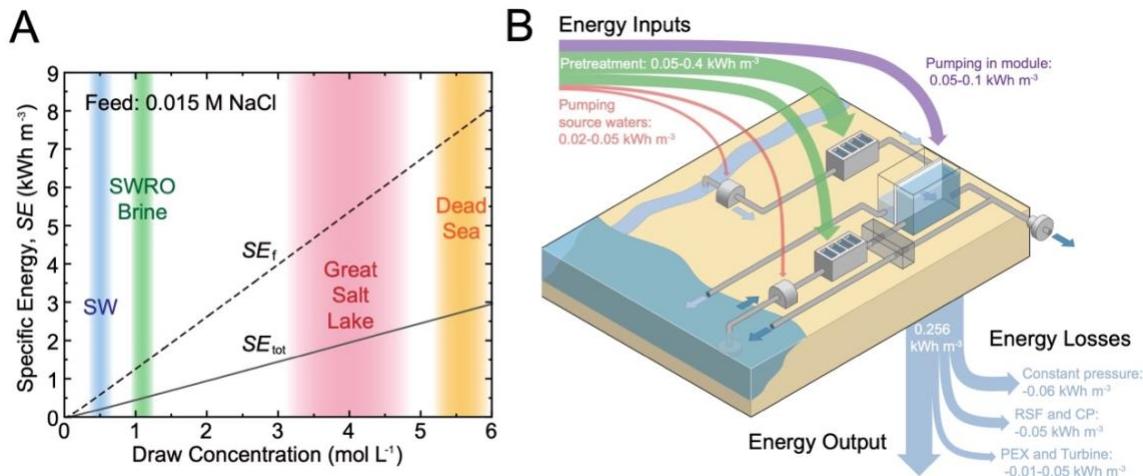

50

51 **Technologies**

52 Three major categories of engineered systems have been developed for extracting SGE
53 (**Fig. 1**): pressure retarded osmosis (PRO), reverse electrodialysis (RED) or its variants,
54 and capacitive mixing (CapMix). These three processes strongly relate to their
55 counterparts in desalination, with PRO corresponding to reverse osmosis (RO), RED to
56 electrodialysis (ED), and CapMix to capacitive deionization (CDI). After all, SGE is a
57 controlled mixing process whereas desalination is essentially a separation (i.e., de-mixing)
58 process. The three categories of engineered systems are described briefly below. More
59 detailed description of these processes can be found elsewhere.

60
61 Energy is extracted in PRO by the expansion (or increase in flow rate) of a pressurized,
62 high salinity draw solution to drive a turbine (**Fig. 1A**).^{10,11} This expansion is caused by
63 spontaneous water transport, through a salt-rejecting membrane, as driven by trans-
64 membrane osmotic pressure difference. In RED, the concentration gradient-driven
65 diffusion of ions through ion exchange membranes (IEM) generates an electric current,
66 thereby producing electric power. In conventional RED, both cation and anion exchange
67 membranes are used (**Fig. 1B**), and the system operates in a way opposite to

68 electrodialysis (hence “reverse electrodialysis”).¹²⁻¹⁴ The more recently developed RED
69 variant, named nanopore power generation (NPG), can generate current with only one
70 type of IEM (Fig. 1C).^{15,16}



71
72 **Figure 1. Illustration of four processes for SGE extraction.** (A) pressure retarded osmosis (PRO), which
73 relies on transmembrane water transport; (B) reverse electrodialysis (RED); (C) nanopore power generation
74 (NPG); and (D) Capacitive mixing (CapMix). The three electrochemical SGE technologies (RED, NPG,
75 CapMix) rely on ion transport through cation exchange membranes (CEM), anion exchange membranes
76 (AEM), nanopore membranes (typically cation exchange) and/or ion transport into ion-storage electrodes.
77 High salinity and low salinity solutions are denoted as HS and LS solutions, respectively.
78

79 CapMix leverages the principle that the equilibrium potential of an electrode (e.g.,
80 activated carbon, ion intercalation materials) depends on the ion concentration of the
81 solution the electrode is in contact with (Fig. 1D).^{17,18} By alternately exposing the
82 electrodes to a high salinity solution (charging stage) and then a low salinity solution
83 (discharge stage), net energy can be extracted in CapMix because the energy generated
84 in the discharge step exceeds the energy consumed in the charging step. CapMix is less
85 extensively investigated as compared to PRO and RED.
86

87 **Key Technical Performance Metrics**

88 Although each SGE technology may have its process-specific performance metrics, three
 89 general metrics are universally important due to their impacts on the process economics:
 90 (volumetric) energy density, energy conversion efficiency (or thermodynamic efficiency),
 91 and power density. The energy density is defined as the energy extracted per volume of
 92 solution, which has also been called specific energy (SE). When we say the SGE from
 93 seawater/river water mixing is equivalent to a 280 m dam, the energy density (0.75
 94 kWh/m³, equivalent to the seawater osmotic pressure, see sidenote¹) is defined based on
 95 the volume of the river water.⁴ Early SGE studies focused on SE defined based on the
 96 volume of the feed solution, which is convenient for estimating the overall availability of
 97 SGE. Later studies found that defining the SE based on the combined volume of feed
 98 solution (e.g., river water) and draw solution (e.g., seawater) could be convenient to
 99 simplify system optimization.^{19,20} Herein, we denote the SE defined based on feed
 100 solution volume as SE_f and that defined based on combined feed and draw solution
 101 volume as SE_{tot} . Previous analysis has revealed that the thermodynamic limit of SE_{tot} for
 102 seawater/river water SGE is ~0.25 kWh/m³ — roughly one third of the thermodynamic
 103 limit of SE_f (Fig. 2A).¹⁸ The SE of real SGE systems is lower than these thermodynamic
 104 limits.

105

¹ In the water dam equivalence, a 280 m water column generates hydraulic pressure of ~27 bar which corresponds to the osmotic pressure difference between seawater and river water. If we simplify river water as salt-free with zero osmotic pressure, then 27 bar is the osmotic pressure of seawater. Having the same dimension, an osmotic pressure of 27 bar can also be converted to an energy density of 0.75 kWh m⁻³. Therefore, the theoretical maximum of energy density for seawater/river water SGE is 0.75 kWh per volume of the river water.

106 **Figure 2. Theoretical and practical specific energy (SE).** (A) theoretical SE normalized by feed volume
107 (SE_f , dash line) vs that normalized by total volume (SE_{tot} , solid line) for a given feed solution (salinity
108 equivalent to 0.015M NaCl) and draw solutions of different salinity. SE_{tot} is maximized by choosing an
109 optimal ratio between the feed and draw volumes according to Ref. 18. (B) Estimated ranges of specific
110 energy outputs and inputs for a practical seawater/river water PRO plant. The specific energy is normalized
111 by the total volume. In panel (A), SW and SWRO represent seawater and seawater reverse osmosis brine,
112 respectively. Figure 2B is adapted from Ref. 26 with permission.

113

114 For a given pair of feed and draw solutions with known volume (or flow rate) ratio and
115 osmotic pressures, the theoretical thermodynamic limit of SE can be calculated using the
116 Gibbs free energy of mixing.^{4,19} SE of real systems depends on both the theoretical limit
117 of SE and the energy conversion efficiency, with the latter defined as the ratio between
118 extracted energy and the Gibbs free energy of mixing. Energy conversion efficiency
119 quantifies the extent to which an SGE system can extract the theoretically available
120 energy. An SGE system has a higher energy conversion efficiency if parasitic energy
121 losses (due to inefficiency of ancillary equipment, energy need for pretreatment, and
122 pressure drop in flow channels) and the unextracted SGE at the end of the process are
123 minimized. In addition, energy conversion efficiency is also inversely correlated to the
124 process kinetics which is quantified by power density.

125

126 Power density is the metric that quantifies SGE process kinetics, and its definition can be
127 process dependent. In general, power density can be defined as the power generated per
128 area of the functional materials which are semi-permeable membrane in PRO, IEM in
129 RED (or NPG), and ion storage electrodes in CapMix. Direct comparison of power density
130 between different SGE technologies is unmeaningful because the costs of the functional
131 materials vary significantly between technologies. In early SGE literature, there was a
132 mythical argument, not substantiated by rigorous theoretical analysis, that PRO will
133 become economically competitive when its membrane power density exceeds 5
134 W/m².^{21,22}

135

136 Focusing on power density as the performance metric is erroneous as it ignores energy
137 conversion efficiency as an important metric. There is an intrinsic tradeoff between power
138 density and energy conversion efficiency, regardless of the technological choice.
139 Operationally, if only a small portion of the available energy is extracted, the system can

140 maintain a large driving force and yield a high power density.²³⁻²⁵ Many bench-scale
141 studies, especially those performed to characterize novel materials, used the maximum
142 driving force in their experiments. In scaled-up SGE systems, however, the average
143 driving force will be substantially lower, yielding an average “module power density” much
144 lower than what most bench-scale studies reported.

145

146 Using PRO for example, in cases where a relatively high power density is achieved at the
147 cost of energy conversion efficiency, the input energy for operating the SGE system can
148 exceed the extracted energy(**Fig.2B**).²⁶ Therefore, the system size (i.e., membrane area)
149 is a critical parameter for optimizing a PRO process to find the right balance between
150 energy conversion efficiency and power density.²⁷ A more advanced metric called *net*
151 *power density* has been recently proposed for PRO to account for the energy losses
152 associated with pumping, pretreatment, and other components.²⁷ Regardless of the
153 definition, a process-relevant power density must be evaluated at the system level instead
154 measured using a small membrane coupon as a reported in studies developing materials
155 for SGE.

156

157

158 **PRO is the Most Promising SGE Technology**

159 By analyzing how driving force breaks down into useful work and other losses and how it
160 diminishes as SGE is extracted, Yip and Elimelech presented a convincing comparison
161 between PRO and RED.²⁸ The major conclusion from the comparative analysis was that
162 PRO has the theoretical characteristics to outperform RED in both energy conversion
163 efficiency and membrane power density, let alone the fact that IEMs used in RED are
164 substantially more costly than semi-permeable membrane used in PRO. By analyzing
165 multiple scenarios with different combinations of feed and draw solution concentrations,
166 the authors also showed that the comparative advantages of PRO over RED are even
167 greater when the salinity difference between the feed and draw solutions is larger.

168

169 As an RED variant, NPG has been reported to be able to extract SGE with an
170 extraordinarily high power density (at the order of 10^3 kW/m²).^{29,30} However, more careful

171 analysis revealed that such a power density is attainable only at a single pore level. More
172 practical (areal) power density of NPG using membranes with many nanopores should
173 approach that of RED using commercial IEMs.³¹ Additionally, because current NPG
174 systems use only cation exchange membranes, its theoretically extractable energy is only
175 half of that for the conventional RED.^{31,32} Therefore, NPG cannot bring any paradigm shift
176 that will change the systematic advantages of PRO over RED.

177

178 In the absence of comprehensive comparison between CapMix and RED or PRO, we
179 believe that CapMix is unlikely a competitive SGE extraction technology. Based on
180 theoretical analyses and evaluation of literature data of the desalination counterparts of
181 SGE technologies, RO outcompetes ED which outcompetes CDI in the salinity range
182 relevant to SGE.³³⁻³⁵ The same technical reasons that make RO superior to ED and CDI
183 also explain the competitive edges of PRO over RED and CapMix. Moreover, the finite
184 electrode capacity and the consequent operational intermittence increase the operational
185 complexity of CapMix, rendering it even more unattractive vs. PRO and ED. The
186 limitations of CapMix are supported by its performance data reported in literature.^{18,36,37}

187

188 The comparison between different SGE technologies leads to the conclusion that PRO is
189 the superior process for extracting SGE. If PRO, the most competitive SGE extraction
190 process, is proven practically non-viable, then SGE is practically non-viable. The viability
191 of PRO is thus the focus of the discussion in the next two sections.

192

193 **PRO has Major Technical Limitations in Most Scenarios**

194 We previously showed that the maximum energy density of PRO using seawater and river
195 water is $\sim 0.25 \text{ kWh/m}^3$ (i.e., the limit of SE_{tot}). Such a theoretical limit can only be obtained
196 using an unrealistic, thermodynamically reversible PRO process. In an optimized,
197 counter-current, constant pressure PRO process, SE_{tot} is reduced to $\sim 0.19 \text{ kWh m}^{-3}$ even
198 without considering important practical factors such as concentration polarization,
199 parasitic losses, and pretreatment cost.¹⁹ More detailed modeling studies considering
200 those practical factors reported SE_f in the range of 0.1 to 0.15 kWh/m^3 with a membrane
201 power density $< 2 \text{ W/m}^2$, depending on the choices of system and operational

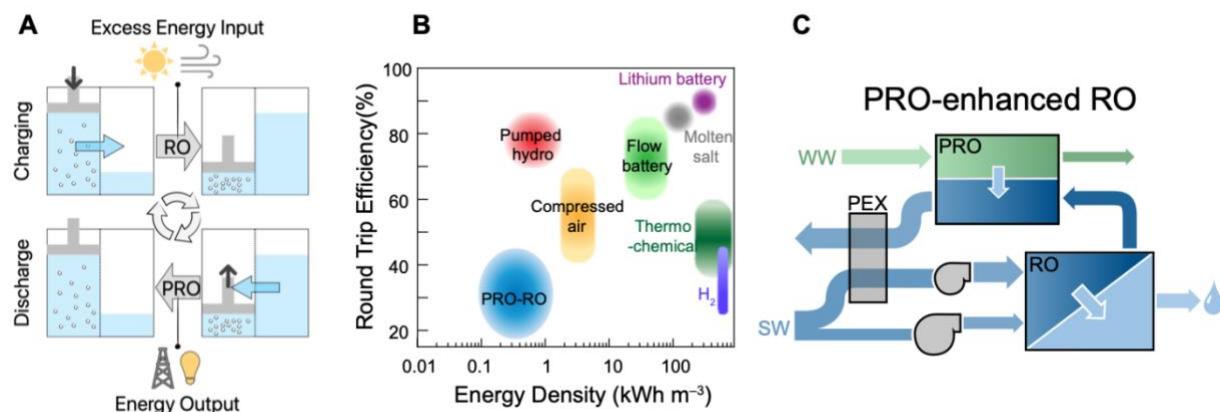
202 parameters.^{38,39} Such an SE_f correspond to an SE_{tot} of ~0.03 to ~0.05 kWh/m³ (as the
203 optimal ratio between draw and feed solution flowrates was found to be ~2). A more
204 conservative analysis that assumed a higher cost of pretreatment (in SE equivalent) even
205 suggested that no net energy can be generated in a realistic seawater/river water PRO
206 plant.²⁶

207

208 Comparing the optimistic estimates of realistic SE_f (~0.03 to ~0.05 kWh/m³) to its
209 theoretical limit as equivalent to a 280 m water dam (0.75 kWh/m³) clearly shows that
210 seawater/river water PRO is not as promising as it appeared. Applying PRO with a draw
211 solution with much higher salinity, such as hypersaline brine from Dead Sea or Great Salt
212 Lake, will increase the power density by roughly an order of magnitude.^{19,26} Working with
213 such high salinities requires new PRO membranes and modules capable of operation at
214 ultrahigh pressure.⁴⁰ Additionally, the available pairings of such hypersaline draw solution
215 and low salinity feed solution are very limited globally and they exclusively exist in areas
216 where solar energy is abundant, which leads to the discussion of next section regarding
217 the economics of PRO as compared to other mainstream renewable.

218

219 **The Economics of PRO is Unfavorable**


220 The above discussion focusing on the technical performance metrics aims to provide
221 technical rationales regarding why PRO is unlikely economically competitive. However,
222 achieving a definitive conclusion still requires technoeconomic analysis that informs us
223 the cost of PRO for energy generation. To this end, the leveledized cost of energy (LCOE),
224 which accounts for capital and operating costs, has been evaluated by different research
225 groups.^{26,41} Even with the most optimistic estimates, the LCOE of PRO with seawater and
226 river water was assessed to be consistently >\$1/kWh (as high as \$3/kWh with more
227 realistic estimates), which is at least an order of magnitude higher than other forms of
228 renewable energy such as solar, wind, geothermal, and hydroelectric.³ We note that these
229 estimates were based on optimized PRO system considering both energy conversion
230 efficiency and membrane power density. Only when using a highly saline brine (>18%) as
231 the draw solution and with an optimistic estimate would PRO possibly become cost-
232 competitive vs. the other forms of renewable energy.⁴² However, natural sources of such

233 high salinity brine are rare, and they exist in areas where freshwater resource is extremely
234 scarce (e.g., Dead Sea and Great Salt Lake). For industries that generate such high
235 salinity brines, dilution of such brines is unlikely an option regardless of whether SGE is
236 performed. Such industrial brines typically require proper management approaches such
237 as deep well injection or zero liquid discharge.⁴³

238

239 **Other Applications of SGE also Face Practical Challenges**

240 Although PRO (and thus SGE in general) is economically not viable in the face of other
241 forms of renewable energy that are cheaper and more abundant, it has been explored for
242 sustainable energy storage and enhancing the efficiency of desalination. For example, it
243 has been proposed that RO can be applied to generate a feed solution (fresh water) and
244 a draw solution (RO brine) as a means of energy storage when renewable energy is in
245 excess. When energy is needed in peak hours, PRO or other types of SGE processes
246 could be used to extract the energy stored in salinity difference (**Fig. 3A**).⁴⁴⁻⁴⁶

247

248 **Figure 3. PRO for renewable energy storage and enhancing RO** (A) Illustration of an integrated PRO-
249 RO system for storing renewable energy. When there is an excess of renewable energy, the system will
250 operate in the “charging mode” in which RO is used to produce freshwater and create a concentrated draw
251 solution. When energy needs to be extracted from the system, the system will operate in the “discharge
252 mode” in which PRO is used to generate useful work. (B) Round trip efficiency and energy density of PRO-
253 RO energy storage as compared to other existing means of the energy storage. Each cloud represents an
254 estimate of the ranges for both performance metrics (from Ref.46). (C) Integration of PRO into a seawater
255 RO system to recoup the energy embedded in the high salinity of the concentrated brine. SW, WW, and
256 PEX represent seawater, wastewater, and pressure exchanger, respectively. Figure 3B is adapted from Ref.
257 26 with permission.

258

259

260 The main challenge for SGE-based energy storage is the low energy density. As
261 mentioned, the SE_{tot} with a draw solution of seawater salinity is capped at ~0.25 kWh/m³.

262 Even if we increase SE_{tot} by a factor of 10 via increasing the draw solution salinity, the
263 energy density (2.5 kWh/m³) is still minuscule compared to most other means of energy
264 storage. An energy density of 2.5 kWh/m³ is only comparable to that of pumped hydro
265 and compressed air,⁴⁷ which have lower capital cost, simpler system, more reliable
266 operation, and much longer lifetime. We note that the SE_{tot} here is the theoretical limit
267 (based on Gibbs free energy of mixing) and real PRO systems can only extract a fraction
268 of SE_{tot} , making the comparison even more unfavorable for RO-PRO as a means of
269 energy storage.

270

271 Additionally, SGE-based energy storage may also suffer from a low-to-moderate round-
272 trip efficiency. In RO-PRO energy storage, the round-trip efficiency is the product of
273 energy utilization efficiency of RO and the energy conversion efficiency of PRO. Both
274 efficiencies depend on multiple factors such as system configuration, salinity of the draw
275 and feed solutions, water flux, and water recovery in RO (or volume fraction in PRO).
276 Even if we optimistically assume both utilization efficiency and conversion efficiency to be
277 60%, the round-trip efficiency is below 40% which is substantially lower than that of
278 existing utility-scale energy storage technologies (~80%).⁴⁸ Considering both the energy
279 density and roundtrip efficiency, RO-PRO based SGE is intrinsically unattractive as a
280 utility-scale energy storage technology (**Fig. 3B**).

281

282 In another proposed application, PRO is combined with seawater RO to use the RO brine
283 as the draw solution and a low salinity, impaired wastewater stream as the feed solution
284 (**Fig 3C**).⁴⁹⁻⁵³ The use of PRO in this context is to recoup the osmotic energy embedded
285 in the RO brine to reduce the overall energy consumption of RO, which is theoretically
286 sensible. However, the advantage of this proposed use of PRO is questionable in two
287 ways even without considering practical factors such as fouling. First, if we treat the
288 additional PRO component as a source of energy, doubling the draw solution salinity from
289 seawater to RO brine is still insufficient to make PRO economically competitive vs. other
290 forms of renewable or conventional energy. Second, if impaired wastewater is indeed
291 available where seawater RO is needed, the more energetically and economically
292 sensible approach is to perform wastewater reclamation for non-portable or even portable

293 reuse to reduce the demand for seawater RO, instead of using the wastewater to improve
294 the energy efficiency of seawater RO via generating SGE with RO brine.^{54,55} Alternatively,
295 we can use treated wastewater to indirectly dilute seawater using either forward
296 osmosis⁵⁶ or salinity exchange electrodialysis⁵⁷, which reduces the energy consumption
297 of SWRO but also overcomes the psychological barrier of direct portable reuse of
298 wastewater. These approaches of “indirect dilution” are likely more effective use of salinity
299 gradient than using PRO to augment RO.

300

301 **Concluding Remarks**

302 We hope that the analysis and discussion presented in this Commentary can convince
303 the readers that SGE will not become a mainstream, cost-competitive form of renewable
304 energy, even with substantial system and material improvements. Such a conclusion is
305 arrived with the logic that, if the most promising SGE technology, PRO, cannot
306 economically compete with other forms of renewable energy, then SGE as a category of
307 renewable energy is not economically viable. While the final verdict must rely on LCOE
308 from technoeconomic analysis, this Commentary focuses mainly on the technical
309 performance metrics to help the readers understand the technical rationales behind the
310 high LCOE of PRO. The main limitations are the intrinsically low energy density of
311 seawater/river water SGE and the low energy conversion efficiency of PRO (and other
312 SGE technologies), which cannot be overcome with better membrane materials or system
313 designs.

314

315 While SGE has been proven technically feasible, the analyses presented in this
316 Commentary show that SGE is not economically competitive vs. other forms of renewable
317 energy. We further emphasize that developing better membranes, electrodes, or systems
318 will not improve SGE to become sufficiently competitive. While fundamental research
319 inspired by, or related to, the concept of SGE remains scientifically interesting, it is
320 misleading to claim that SGE is highly promising and that developing novel materials is
321 critical to bringing SGE to large-scale applications.

322

323 In fact, we should even feel fortunate that SGE is not practically viable. As SGE is a
324 reverse process of desalination, if the energy density of seawater were high enough for
325 SGE to be competitive, then seawater desalination would become much less viable (for
326 instance, we will never desalinate brines from Dead Sea or Great Salt Lake to obtain
327 freshwater). Seawater desalination is critical to water security in many regions of the world
328 where alternative ways of obtaining freshwater are very limited or virtually non-existent.⁵⁸
329 In contrast, SGE is just one candidate in the diverse portfolio of clean energy with
330 alternatives (e.g., solar and wind) that are more abundant, universally accessible, and
331 economically competitive.

332

333 **Acknowledgement**

334 S. L. acknowledges the funding support from the US National Science Foundation (Grant
335 No. 1903685 and 2017998). Z. W. acknowledges the National Natural Science
336 Foundation of China (Grant No. 52100079). L. W. acknowledges the Fundamental
337 Research Funds for the Central Universities (Tongji University, Grant No. 22120230244).
338 M. E. acknowledges the Israel-US Collaborative Water-Energy Research Center (Israel-
339 US CoWERC) via Binational Industrial Research and Development Foundation (BIRD)
340 Energy Center Grant EC-15.

341

342 **References**

- 343 1. Yip, N.Y., Brogioli, D., Hamelers, H.V.M., and Nijmeijer, K. (2016). Salinity Gradients for
344 Sustainable Energy: Primer, Progress, and Prospects. *Environ Sci Technol* **50**, 12072-12094.
345 10.1021/acs.est.6b03448.
- 346 2. Logan, B.E., and Elimelech, M. (2012). Membrane-based processes for sustainable power
347 generation using water. *Nature* **488**, 313-319. 10.1038/nature11477.
- 348 3. Lee, B., Wang, L., Wang, Z., Cooper, N.J., and Elimelech, M. (2023). Directing the research
349 agenda on water and energy technologies with process and economic analysis. *Energ
350 Environ Sci.* 10.1039/D2EE03271F.
- 351 4. Yip, N.Y., and Elimelech, M. (2012). Thermodynamic and Energy Efficiency Analysis of
352 Power Generation from Natural Salinity Gradients by Pressure Retarded Osmosis. *Environ
353 Sci Technol* **46**, 5230-5239. 10.1021/es300060m.
- 354 5. Alvarez-Silva, O.A., Osorio, A.F., and Winter, C. (2016). Practical global salinity gradient
355 energy potential. *Renewable and Sustainable Energy Reviews* **60**, 1387-1395.
356 <https://doi.org/10.1016/j.rser.2016.03.021>.

357 6. Pattle, R.E. (1954). Production of Electric Power by mixing Fresh and Salt Water in the
358 Hydroelectric Pile. *Nature* 174, 660-660. 10.1038/174660a0.

359 7. Norman, R.S. (1974). Water Salination: A Source of Energy. *Science* 186, 350-352.
360 doi:10.1126/science.186.4161.350.

361 8. Helfer, F., Lemckert, C., and Anissimov, Y.G. (2014). Osmotic power with Pressure Retarded
362 Osmosis: Theory, performance and trends – A review. *J Membrane Sci* 453, 337-358.
363 <https://doi.org/10.1016/j.memsci.2013.10.053>.

364 9. Statkraft Shelves Osmotic Power Project. (2014). <https://www.powermag.com/statkraft-shelves-osmotic-power-project/>.

365 10. Achilli, A., and Childress, A.E. (2010). Pressure retarded osmosis: From the vision of Sidney
366 Loeb to the first prototype installation — Review. *Desalination* 261, 205-211.
367 <https://doi.org/10.1016/j.desal.2010.06.017>.

368 11. Sarp, S., Li, Z., and Saththasivam, J. (2016). Pressure Retarded Osmosis (PRO): Past
369 experiences, current developments, and future prospects. *Desalination* 389, 2-14.
370 <https://doi.org/10.1016/j.desal.2015.12.008>.

371 12. Lacey, R.E. (1980). Energy by reverse electrodialysis. *Ocean Engineering* 7, 1-47.
372 [https://doi.org/10.1016/0029-8018\(80\)90030-X](https://doi.org/10.1016/0029-8018(80)90030-X).

373 13. Turek, M., and Bandura, B. (2007). Renewable energy by reverse electrodialysis.
374 *Desalination* 205, 67-74. <https://doi.org/10.1016/j.desal.2006.04.041>.

375 14. Mei, Y., and Tang, C.Y. (2018). Recent developments and future perspectives of reverse
376 electrodialysis technology: A review. *Desalination* 425, 156-174.
377 <https://doi.org/10.1016/j.desal.2017.10.021>.

378 15. Macha, M., Marion, S., Nandigana, V.V.R., and Radenovic, A. (2019). 2D materials as an
379 emerging platform for nanopore-based power generation. *Nat Rev Mater* 4, 588-605.
380 10.1038/s41578-019-0126-z.

381 16. Siria, A., Bocquet, M.L., and Bocquet, L. (2017). New avenues for the large-scale harvesting
382 of blue energy. *Nat Rev Chem* 1. UNSP 0091, 10.1038/s41570-017-0091.

383 17. Rica, R.A., Ziano, R., Salerno, D., Mantegazza, F., Van Roij, R., and Brogioli, D. (2013).
384 Capacitive Mixing for Harvesting the Free Energy of Solutions at Different
385 Concentrations. *Entropy-Switz* 15, 1388-1407.

386 18. Hatzell, M.C., Cusick, R.D., and Logan, B.E. (2014). Capacitive mixing power production
387 from salinity gradient energy enhanced through exoelectrogen-generated ionic currents.
388 *Energ Environ Sci* 7, 1159-1165. 10.1039/C3EE43823F.

389 19. Lin, S.H., Straub, A.P., and Elimelech, M. (2014). Thermodynamic limits of extractable
390 energy by pressure retarded osmosis. *Energ Environ Sci* 7, 2706-2714.
391 10.1039/c4ee01020e.

392 20. Straub, A.P., Lin, S.H., and Elimelech, M. (2014). Module-Scale Analysis of Pressure
393 Retarded Osmosis: Performance Limitations and Implications for Full-Scale Operation.
394 *Environ Sci Technol* 48, 12435-12444. 10.1021/es503790k.

395 21. Skilhagen, S.E., Dugstad, J.E., and Aaberg, R.J. (2008). Osmotic power — power production
396 based on the osmotic pressure difference between waters with varying salt gradients.
397 *Desalination* 220, 476-482. <https://doi.org/10.1016/j.desal.2007.02.045>.

398 22. Skilhagen, S.E. (2010). Osmotic power — a new, renewable energy source. *Desalin Water
399 Treat* 15, 271-278. 10.5004/dwt.2010.1759.

400

401 23. Straub, A.P., Lin, S., and Elimelech, M. (2014). Module-Scale Analysis of Pressure Retarded
402 Osmosis: Performance Limitations and Implications for Full-Scale Operation. *Environ Sci
403 Technol* 48, 12435-12444. 10.1021/es503790k.

404 24. Banchik, L.D., Sharqawy, M.H., and Lienhard, J.H. (2014). Limits of power production due
405 to finite membrane area in pressure retarded osmosis. *J Membrane Sci* 468, 81-89.
<https://doi.org/10.1016/j.memsci.2014.05.021>.

406 25. Wang, Z., Wang, L., and Elimelech, M. (2022). Viability of Harvesting Salinity Gradient (Blue)
407 Energy by Nanopore-Based Osmotic Power Generation. *Engineering-Prc* 9, 51-60.
<https://doi.org/10.1016/j.eng.2021.02.016>.

408 26. Straub, A.P., Deshmukh, A., and Elimelech, M. (2016). Pressure-retarded osmosis for
409 power generation from salinity gradients: is it viable? *Energ Environ Sci* 9, 31-48.
10.1039/c5ee02985f.

410 27. Chung, H.W., Swaminathan, J., Banchik, L.D., and Lienhard, J.H. (2018). Economic
411 framework for net power density and levelized cost of electricity in pressure-retarded
412 osmosis. *Desalination* 448, 13-20. <https://doi.org/10.1016/j.desal.2018.09.007>.

413 28. Yip, N.Y., and Elimelech, M. (2014). Comparison of Energy Efficiency and Power Density in
414 Pressure Retarded Osmosis and Reverse Electrodialysis. *Environ Sci Technol* 48, 11002-
415 11012. 10.1021/es5029316.

416 29. Feng, J.D., Graf, M., Liu, K., Ovchinnikov, D., Dumcenco, D., Heiranian, M., Nandigana, V.,
417 Aluru, N.R., Kis, A., and Radenovic, A. (2016). Single-layer MoS₂ nanopores as nanopower
418 generators. *Nature* 536, 197-+. 10.1038/nature18593.

419 30. Zhang, Z., Wen, L., and Jiang, L. (2021). Nanofluidics for osmotic energy conversion. *Nat
420 Rev Mater* 6, 622-639. 10.1038/s41578-021-00300-4.

421 31. Wang, L., Wang, Z., Patel, S.K., Lin, S., and Elimelech, M. (2021). Nanopore-Based Power
422 Generation from Salinity Gradient: Why It Is Not Viable. *Acs Nano*.
10.1021/acsnano.0c08628.

423 32. Kim, D.K., Duan, C.H., Chen, Y.F., and Majumdar, A. (2010). Power generation from
424 concentration gradient by reverse electrodialysis in ion-selective nanochannels.
425 *Microfluid Nanofluid* 9, 1215-1224. 10.1007/s10404-010-0641-0.

426 33. Lin, S.H. (2020). Energy Efficiency of Desalination: Fundamental Insights from Intuitive
427 Interpretation. *Environ Sci Technol* 54, 76-84. 10.1021/acs.est.9b04788.

428 34. Qin, M., Deshmukh, A., Epsztein, R., Patel, S.K., Owoseni, O.M., Walker, W.S., and
429 Elimelech, M. (2019). Comparison of energy consumption in desalination by capacitive
430 deionization and reverse osmosis. *Desalination* 455, 100-114.
<https://doi.org/10.1016/j.desal.2019.01.003>.

431 35. Patel, S.K., Biesheuvel, P.M., and Elimelech, M. (2021). Energy Consumption of Brackish
432 Water Desalination: Identifying the Sweet Spots for Electrodialysis and Reverse Osmosis.
433 *ACS ES&T Engineering*. 10.1021/acsestengg.0c00192.

434 36. Brogioli, D. (2009). Extracting Renewable Energy from a Salinity Difference Using a
435 Capacitor. *Phys Rev Lett* 103. Artn 058501
10.1103/Physrevlett.103.058501.

436 37. Sales, B.B., Saakes, M., Post, J.W., Buisman, C.J.N., Biesheuvel, P.M., and Hamelers, H.V.M.
437 (2010). Direct Power Production from a Water Salinity Difference in a Membrane-

444 Modified Supercapacitor Flow Cell. Environ Sci Technol 44, 5661-5665.
445 10.1021/es100852a.

446 38. Wang, Z., Hou, D., and Lin, S. (2016). Gross vs. net energy: Towards a rational framework
447 for assessing the practical viability of pressure retarded osmosis. J Membrane Sci 503, 132-
448 147. <https://doi.org/10.1016/j.memsci.2015.11.035>.

449 39. O'Toole, G., Jones, L., Coutinho, C., Hayes, C., Napolis, M., and Achilli, A. (2016). River-to-
450 sea pressure retarded osmosis: Resource utilization in a full-scale facility. Desalination 389,
451 39-51. <https://doi.org/10.1016/j.desal.2016.01.012>.

452 40. Straub, A.P., Yip, N.Y., and Elimelech, M. (2014). Raising the Bar: Increased Hydraulic
453 Pressure Allows Unprecedented High Power Densities in Pressure-Retarded Osmosis.
454 Environ Sci Tech Let 1, 55-59. 10.1021/ez400117d.

455 41. Newby, A.N., Bartholomew, T.V., and Mauter, M.S. (2021). The Economic Infeasibility of
456 Salinity Gradient Energy via Pressure Retarded Osmosis. Acs Es&T Engineering 1, 1113-
457 1121. 10.1021/acsestengg.1c00078.

458 42. Chung, H.W., Banchik, L.D., Swaminathan, J., and Lienhard V, J.H. (2017). On the present
459 and future economic viability of stand-alone pressure-retarded osmosis. Desalination 408,
460 133-144. <https://doi.org/10.1016/j.desal.2017.01.001>.

461 43. Tong, T.Z., and Elimelech, M. (2016). The Global Rise of Zero Liquid Discharge for
462 Wastewater Management: Drivers, Technologies, and Future Directions. Environ Sci
463 Technol 50, 6846-6855. 10.1021/acs.est.6b01000.

464 44. Bharadwaj, D., and Struchtrup, H. (2017). Large scale energy storage using multistage
465 osmotic processes: approaching high efficiency and energy density. Sustain Energ Fuels 1,
466 599-614. 10.1039/C6SE00013D.

467 45. He, W., and Wang, J. (2017). Feasibility study of energy storage by
468 concentrating/desalinating water: Concentrated Water Energy Storage. Appl Energ 185,
469 872-884. <https://doi.org/10.1016/j.apenergy.2016.10.077>.

470 46. Rao, A.K., Li, O.R., Wrede, L., Coan, S.M., Elias, G., Cordoba, S., Roggenberg, M., Castillo,
471 L., and Warsinger, D.M. (2021). A framework for blue energy enabled energy storage in
472 reverse osmosis processes. Desalination 511, 115088.
473 <https://doi.org/10.1016/j.desal.2021.115088>.

474 47. Fact Sheet | Energy Storage. (2019). <https://www.eesi.org/papers/view/energy-storage-2019>.

475 48. Utility-scale batteries and pumped storage return about 80% of the electricity they store.
476 (2021). <https://www.eia.gov/todayinenergy/detail.php?id=46756>.

477 49. Sharqawy, M.H., Zubair, S.M., and Lienhard, J.H. (2011). Second law analysis of reverse
478 osmosis desalination plants: An alternative design using pressure retarded osmosis.
479 Energy 36, 6617-6626. <https://doi.org/10.1016/j.energy.2011.08.056>.

480 50. Wan, C.F., and Chung, T.S. (2016). Energy recovery by pressure retarded osmosis (PRO) in
481 SWRO-PRO integrated processes. Appl Energ 162, 687-698.
482 <https://doi.org/10.1016/j.apenergy.2015.10.067>.

483 51. Li, M. (2017). Reducing specific energy consumption of seawater desalination: Staged RO
484 or RO-PRO? Desalination 422, 124-133. <https://doi.org/10.1016/j.desal.2017.08.023>.

486 52. Altaee, A., Millar, G.J., and Zaragoza, G. (2016). Integration and optimization of pressure
487 retarded osmosis with reverse osmosis for power generation and high efficiency
488 desalination. *Energy* 103, 110-118. <https://doi.org/10.1016/j.energy.2016.02.116>.

489 53. Lee, S., Park, T.-s., Park, Y.-G., Lee, W.-i., and Kim, S.-H. (2020). Toward scale-up of seawater
490 reverse osmosis (SWRO) – pressure retarded osmosis (PRO) hybrid system: A case study
491 of a 240 m3/day pilot plant. *Desalination* 491, 114429.
<https://doi.org/10.1016/j.desal.2020.114429>.

493 54. Mo, W., Wang, R., and Zimmerman, J.B. (2014). Energy–Water Nexus Analysis of Enhanced
494 Water Supply Scenarios: A Regional Comparison of Tampa Bay, Florida, and San Diego,
495 California. *Environ Sci Technol* 48, 5883-5891. 10.1021/es405648x.

496 55. Muñoz, I., Milà-i-Canals, L., and Fernández-Alba, A.R. (2010). Life Cycle Assessment of
497 Water Supply Plans in Mediterranean Spain. *Journal of Industrial Ecology* 14, 902-918.
<https://doi.org/10.1111/j.1530-9290.2010.00271.x>.

499 56. Seo, J., Kim, Y.M., Chae, S.H., Lim, S.J., Park, H., and Kim, J.H. (2019). An optimization
500 strategy for a forward osmosis-reverse osmosis hybrid process for wastewater reuse and
501 seawater desalination: A modeling study. *Desalination* 463, 40-49.
<https://doi.org/10.1016/j.desal.2019.03.012>.

503 57. Jarin, M., Dou, Z., Gao, H., Chen, Y., and Xie, X. (2022). Salinity exchange between
504 seawater/brackish water and domestic wastewater through electrodialysis for potable
505 water. *Frontiers of Environmental Science & Engineering* 17, 16. 10.1007/s11783-023-
506 1616-1.

507 58. Elimelech, M., and Phillip, W.A. (2011). The Future of Seawater Desalination: Energy,
508 Technology, and the Environment. *Science* 333, 712-717. 10.1126/science.1200488.

509