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We study a nonlinear inverse problem for fractional
elasticity. In analogy to the classical problem of linear
elasticity, we consider the unique recovery of the
Lamé parameters associated with a linear, isotropic
fractional elasticity operator from fractional Dirichlet-
to-Neumann data. In our analysis, we make use
of a fractional matrix Schrodinger equation via a
generalization of the so-called Liouville reduction to
the case of fractional elasticity. We conclude that
unique recovery is possible if the Lamé parameters
agree and are constant in the exterior, and their
Poisson ratios agree everywhere. Our study is
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motivated by the significant recent activity in the field

nonlocal operators -
of nonlocal elasticity.

Author for correspondence:
Giovanni Covi

1. Introduction

e-mail: giovanni.covi@uni-bonn.de

(@) Theinverse problem for isotropic fractional
elasticity

Inspired by the recent special issue on nonlocal elasticity
of the Philosophical Transactions of the Royal Society
[1], in this paper, we consider an inverse problem for a
fractional elasticity operator of the form

E'u:=(V-)*(C(x,y)V’u)

for a fixed s € (0,1). The fractional gradient V* and the
fractional divergence (V - )° appearing in the definition of
E° go back to [2] and they will be defined in detail in
§2. They can be thought of as nonlocal counterparts of
the classical gradient and divergence operators, with the
expected properties (V°)*=(V-)° and (V- )°V®=(—A).
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The tensor C(x,y) is itself a nonlocal counterpart of the classical stiffness tensor C. Section 3 is

dedicated to the detailed definition of E°.

Q

We make the assumption that C is isotropic, that is, its properties are completely described by two
Lamé parameters L, M (see §2e). The scalar functions L, M are assumed to be constant outside a
domain of interest 2, and unknown within it. The goal of the inverse problem we wish to study is
to recover L, M (and thus C) within §2 from measurements performed on its exterior £, := R" \ £2.
To this end, we start by considering the direct problem

E'u=0 in
and

u=f in £,

for which we prove well-posedness in a weak sense for any sufficiently regular exterior datum
f. This means that given any f defined on £2, (e.g. we might have f € C2°(£§2,)) there is one and
only one solution ur € H*(R") to the direct problem. Building on this, we define the exterior
measurements as a nonlocal Dirichlet-to-Neumann (DN) map Ap, y1, associating each exterior
datum f to the corresponding nonlocal Neumann data Esuf| @, It is clear that Aj p; carries
information about the Lamé parameters L, M, as these are involved in the definition of the unique
solution uy. More specifically, we would like to recover L, M within £ from partial data, that
is, from the knowledge of A ymflw, for all f € C2°(Wy), where W1, W5 are non-empty, open and
disjoint subsets of £2.. This means that the exterior data f will be supported in Wy, while the
measurements will be performed on W, only. These restrictions represent the physical situation
in which not all of the exterior is accessible for measurement. We thus ask the following inverse
problem:

Q: Does Ap, m,flw, = AL, Mmflw, for all f € C2°(Wq) imply that Ly = Ly and My = My within £27?

Note that this inverse problem is strongly nonlinear, because the measurements depend in a
nonlinear way on the coefficients of the equation.

(b) Related Calderdn problems

Before entering in the details of the discussion of the problem at hand, in this subsection,
we briefly describe the inverse problems of classical and fractional conductivity, as well as
that of classical elasticity. These are related to the problem we consider and share interesting
common features. We leave an accurate literature discussion of fractional gradient elasticity to
the coming §2d.

The objective of the inverse problem for the classical conductivity equation, which is also
known as the Calderén problem, consists of finding an unknown conductivity y within a bounded
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domain £2 using measurements performed on the boundary 92. Here, the potential u is a scalar
function solving the direct problem

V.- (yVu)=0 in £

and
u=f onas,

and the measurements take the form of the (local) DN map
Ay HY2(02) s ulyg > yVulye e H2(392).

One can consider this problem in both the isotropic and anisotropic cases, which correspond to
scalar and matrix valued conductivities. We refer to the survey [3] and to the references therein
for a detailed discussion of the main results and techniques involved in the study of the classical
Calderén problem.

The fractional Calderén problem has been introduced in the seminal paper [4, preprint published
in 2016] as the inverse problem related to the fractional Schrédinger operator (—A)° + 4. It was
later shown [5] that one can define a fractional conductivity operator related to the fractional
Schrodinger one via a nonlocal Liouville reduction. The fractional conductivity equation is

Cu:=(V-)(@ - V'u)=0 ing

and
u=f in £,

where (V -)%, V*° are the fractional divergence and gradient (see §2), and the potential u is a scalar
function. When the conductivity matrix verifies ®(x,y) = y12(x)yV/ 2(y)Id, i.e. it is a separable,
symmetric function and a multiple of the identity matrix, we say that the problem is isotropic. The
anisotropic problem results from considering a matrix ® of general form. The inverse problem in
this case consists in recovering @ from the (nonlocal) DN-map

A CHY(W) 3 ulw = Culw € H (W),

where W C §2; is open, bounded and such that 2NW=0¢.In light of the cited fractional Liouville
reduction, the results available for the inverse problem related to the fractional conductivity
operator are strongly linked to the ones for the fractional Calderén problem. We refer to the survey
paper [6] and §2d for many references on the topic.

Finally, the aim of the inverse problem for classical elasticity is to determine the stiffness tensor
C within a bounded domain §2 from boundary measurements of stresses and deformations.
In the special case of isotropic elasticity, the stiffness tensor is completely determined by two
scalar functions A, u called Lamé parameters, which are thus to be recovered from measurements.
The direct problem takes the form

V.- (C:Vu)=0 in £

and
u=f onas2,

while the DN-map is defined as
Ac:HY?(02) 5 ulye > (C: Vu)|go € H/2(082).

We observe that in this case the function u represents a deformation, and is thus of vectorial
nature. Accordingly, the vector equation above can rather be seen as a system of scalar equations.
For a concise exposition of the main concepts of the theory of classical elasticity which will be
needed in our arguments, we refer to §2e. Section 2d contains many references on the inverse
problem for classical isotropic elasticity.

After this brief discussion, it is clear that the inverse problem we are interested in is at once a
fractional counterpart of the inverse problem of classical elasticity (in much the same way as the

PIY0ET0 6L Y 205§ 204g edsyjeuol/BioBulysiigndiaaposiefos



Downloaded from https://royalsocietypublishing.org/ on 15 November 2024

fractional Calderén problem is related to the classical one), and a generalization of the fractional
Calderén problem to a specific vectorial case (as for the local inverse problems for conductivity
and elasticity).

(c) Main results and techniques

We build on the work of [4]. We will first use the assumption on the DN maps in order to obtain
an integral identity, the so-called Alessandrini identity, relating the difference of the DN maps to
the differences of the Lamé parameters via some special solutions to the direct problem. Then,
we shall test the Alessandrini identity with aptly chosen solutions in order to deduce the desired
result. Such solutions will be produced by means of a Runge approximation property, which we
will prove for our equation. The proof of the Runge approximation property will itself rely on a
unique continuation property (UCP), which is the key point of the technique.

However, the approach described above does not directly lead to the desired result. It is instead
necessary to first reduce the given problem to a more manageable one of Schrodinger type. We do
so by means of the so-called fractional Liouville reduction, which is reminiscent of the techniques
used for both the classical and fractional conductivity equations (see [5] for the latter), but has
so far not been used in the context of elasticity. One of the principal contributions of this work
is precisely the introduction of a new, sophisticated vectorial Liouville reduction adapted to the
problem of fractional elasticity. After the reduction, the direct problem reads

(-A 'Dw—w-Q=0 inf

and
w=g in$2,

where D is a fixed differential operator of second order, Q is a new potential containing
information relative to the Lamé parameters L, M, the new exterior datum g is computed from
f, and the new solution w is computed from u (see §5 for the details).

The reduction from the fractional elasticity equation to matrix Schrédinger equation is possible
for arbitrary Lamé coefficients. However, in order to make a reduction on the level of exterior
measurements and to derive a suitable integral identity, we need to assume that the Poisson ratio
is a fixed (unknown) function:

Definition 1.1. If (L1, M1), (L2, Mp) are two couples of Lamé parameters, we write (L1, M) ~
(L, M) if and only if they coincide on £2, and v; = v» on R”, where the Poisson ratio v relative to
a couple of Lamé parameters (L, M) is v :=L/((n — 1)L + 2M) (see §2e for the precise definition).

As it turns out, if the Poisson ratio is a fixed function, then the technique described above will
work for the transformed problem and will allow us to determine the matrix potential Q from
the nonlocal DN map. We can then recover the Lamé parameters (L, M) from Q and prove the
following uniqueness result.

Theorem 1.2. Let 2, Wy, Wy C R" be bounded open sets such that W1, Wy C §2, and assume s € (0, 1).
Let (L1,My) and (L, Mp) be two couples of Lamé parameters satisfying assumptions (A1)-(A3). If
(L1, My) ~ (L2, My) and

A mflw, = A moflw,  forall f € C2°(Wy),
then (L1, M) = (L2, Mp).
Here assumptions (A 1)—(A 3) state that L, M are (2s + ¢)-Holder regular, constant outside of §2
and enjoy a certain positivity condition (see §3).
(d) Background in fractional gradient elasticity

We consider nonlocal elasticity, that is, space-nonlocality, when nonlocal stress is defined as the
Riesz fractional integral of the strain field in space. There exist several complex phenomena,
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occurring possibly in damage zones [7], that cannot be addressed by classical local continua. For
a recent overview, we refer to [8]. While the notion of nonlocal elasticity dates back to the work
of Mindlin [9,10] (who considered a variational formulation resulting in stable and well-posed
solutions of boundary value problems, enabling the removal of singularities from dislocations
and cracks), we focus on a fractional generalization of the classical Eringen integral model
[11,12] of nonlocality. That is, we consider nonlocal elasticity based on the so-called fractional
(or generalized) linear ‘gradient’-elasticity model [13,14]

0 =C:[e+as(—A)Ye], as=1¢2,

where (—A)°® is a fractional Laplacian in the Riesz form, s e R* \ Z, {; is a material parameter
signifying an internal length scale, o is the stress tensor, and € is the strain tensor. Assuming that
the stiffness tensor C is isotropic and has constant coefficients results in the following fractional
elasticity operator T° from [14]:

Tu:=V - (CA+as(—A)Vu)=V - (CVu) +asV - (C(=A)°Vu).

The operator E° which we study in the present paper generalizes T° to the case of variable
coefficients (see §2c for the precise definitions of the fractional operators used here). In order
to see this, compute

B = (VP H(C20): CRp v = v - (77 CH2 () : CV2 () VP va),

where the relations V5*! = V*V and the corresponding one for the fractional divergence are
definitions, in accordance to [15]. If the coefficients are assumed to be constant, a straightforward
computation shows that

Etlu=v . (V- PCVVu)=V - (C(V- )V Vu) =V - (C(—A)Vu),

and thus
Tu=aE"u+V . (CVu).

In an alternative introduction of a model for fractional elasticity directly through a kernel, one
develops a fractional Taylor series using the Caputo fractional derivative (involving a left-sided
Riemann-Liouville fractional integral) of its Fourier transform [16,17]. The physical basis of such
an introduction is an assumption pertaining to fractional spatial dispersion for a nonlocal elastic
continuum.

Zorica & Oparnica [18] presented time-fractional wave equations that model hereditary
viscoelastic behaviour and space-fractional wave equations associated with certain nonlocal
elasticity models. For a number of fractional wave equations, the authors provided mathematical
evidence of energy dissipation and conservation.

An inverse problem with nonlocal elasticity was considered by Askes & Aifantis [19]. For
an important overview of general fractional derivative equations, containing fractional time and
space derivatives, and inverse problems examining ill-posedness in space dimension 1, we refer
to Jin & Rundell [20].

The theory of linear elasticity has given rise to classical inverse problems which are related to
our question, and can rather be considered the main inspiration of our study. We briefly present
the main concepts of the classical theory of linear elasticity in §2e (see also [21]). The operator of
classical elasticity is

Eu:=V - (CVu),

where C is the stiffness tensor. Since E is a local operator, the measurements involved in the
inverse problems are performed on the boundary 052 of the domain §2 rather than in its
exterior £2,. Most of the results concern the isotropic case where C depends on two scalar Lamé
parameters L and M. The main uniqueness results for this inverse problem in three dimensions
are in [22-25]. They state that if M is sufficiently close to a constant, or if either L or M is a
fixed (unknown) function, then the Lamé parameters are uniquely determined by the boundary
measurements. In [25], one also finds the classical analogue of theorem 1.2 stating that the Lamé
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parameters are determined if the Poisson ratio is a fixed function. The two-dimensional case is
considered in [26]. Many other different aspects of this inverse problem have been considered,
such as inclusion detection [27,28], identification of the elastic moduli in beams, plates and other
geometric configurations [24,29-31], the linearized problem [32-34], uniqueness [22,23,35,36] and
identification of residual stresses [37-40], among others. We refer to the survey [41] for many more
results.

The inverse problem we study is related to the space-fractional Calderén problem, which was
introduced in the seminal paper [4] as a nonlocal counterpart to the classical Calderén problem
arising in electric impedance tomography. Uniqueness was achieved in the case of bounded
potentials and fractional exponent s € (0,1) [4] also with a single measurement [42], and later
extended to rough potentials [43] and all positive fractional exponents s € Rt \ Z [15]. Perturbed
versions of the same problem were studied e.g. in [44] for s € (1/2,1) and first order perturbations
and [45] for s e RT \ Z and general high order local perturbations. Nonlocal perturbations were
studied in some specific cases in [46—48]. Uniqueness has also been studied in numerous other
settings, including the fractional magnetic Schrédinger equation [15,49-52] and the fractional heat
equation [53,54]. A very recent fractional elasticity equation with constant principal coefficients
[55] and the fractional conductivity equation [5] bear a strong connection with the present study.
Moreover, the fractional Schrédinger equation was studied in the semilinear setting [50-52,56].
We refer to the surveys [6,57] for more information about the fractional Calderén problem.

(e) Organization of the rest of the article

The remaining part of the paper is organized as follows. Section 2 contains preliminaries
from functional analysis, classical elasticity theory and nonlocal vector calculus, as well as the
definitions of the notations used in the article. Section 3 defines and describes the main object
of study of the paper, the fractional elasticity operator E°. The Dirichlet problem related to such
operator is studied in §4, and in 85, it is shown to be equivalent to a Dirichlet problem for the
fractional Schrodinger equation. An integral identity relating coefficients and measured data, the
so-called Alessandrini identity, is shown to hold in §6. In §7, we prove the Runge approximation
property and eventually the main theorem 1.2.

2. Preliminaries

In this section, we recall the definitions of relevant function spaces, define some concepts from
mathematical physics related to the problem of elasticity, and establish some useful notations.

(@) Tensor products and contractions

We will make wide use of the concepts of tensor product and contraction, mainly with respect to
vectors. This will let us write our equations in a more understandable way. We let N be the set of
strictly positive integers.

Definition 2.1 (Tensor product). Let m,n € N, and assume 4, b are multi-indices belonging to
N, N", respectively. Consider two tensors Ay, ..., and Bg, . g,, witha; € {1,...,a;} fori=1,...,m
and Bi€ {1,...,bj} for j=1,...,n, respectively. The tensor product A ® B is the new tensor of
elements

(A ® B)all"'/amlﬂlr"'/ﬁﬂ = A0l1,...,Dthﬁ1,...,ﬂn N

In particular, if m = n =1 (and thus A € R?, B € R? are vectors) the tensor product A ® B is just the
a x b matrix of elements

(A®B)gp=AaBg, fora=1,...,aand p=1,...,b.

Definition 2.2 (Tensor contraction of order k). Letm,n,a,b, A, B be as in definition 2.1. Assume
that ke N is such that k <min{m, n}, with a,,,,_=b, for all £€{1,...,k}. We define the k-th
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contraction of tensors A and B as the new tensor given by

(A : kB)Ol],...,Otm_k,/sk+1,...,[3,, :Aal:---/am—k:}’l/---rVkBylr---zykrﬂk-Hr---:/sn’

where we assume the Einstein summation convention on repeated indices. The ranges of the «, 8
indices appearing in the above formula are the same as in the definitions of A, B, while the y,
index has rangein (1,...,b¢} for£=1,... k.

In the present work, we apply the above definition only with k=1 and k=2, so we use the
standard symbols - and : in place of the more general -1 and -. It is useful to observe that
when A, B are vectors or matrices the above contraction operator - coincides with the usual scalar
product and matrix multiplication.

The definitions are immediately extended to functions. If A, B are tensor-valued functions
defined on some set §2, then we let

A®B:x+—> A(x) ® B(x), forallxe 2
and
A - B:x— A(x) - (B(x), forallxe £.

Accordingly, if V, W are sets of tensor-valued functions defined on some set £2, then we let V ® W
be the new set of functions on £2 given by

VeW:=={vwveV,we W}

Remark 2.3. This should not be confused with the familiar Cartesian product V x W. For
example, if a,beN and V,W are sets of vector-valued functions v: 2+ R* and w: 2 — R?,
respectively, then the elements of V x W map £2 to R while the ones of V @ W map 2 to Rxb,
In the present work, we shall often have a =2 and V = {v} for some fixed function v: 2 — R2.

The following Lemma collects some elementary properties of tensor products and
contractions, which can be easily proved using the index notation:

Lemma 2.4. Let m,n,peN, and assume that a,b,c are multi-indices belonging to N™ N" NP,
respectively. Consider three tensors

Agy,yr  Withajef{l,... a5} fori=1,...,m,
Bp,, .p,,  withpjef{l,... b} forj=1,...,n
and Cyr,ypr Withyeef{l,..., ) fork=1,...,p.
The following equalities hold whenever the tensor contractions are well-defined:
() (A®B) - y'C=(AQ®C) - 4B forn=p,
(i) A k(B®C)=(A - (B)®C forallkeN,

(ii)) (A - kB) - qC=A - (B - ;C) forallk,geNuwithn=>k+gq,
(i) A - wip(B&C)=(A - yC) - 4B

If A, B are tensor-valued functions of x € §2, then the equalities
(v) VA®B)=VA®RB+AR®VB form=a=1,
(vi) VA - wB)=VA - yB+ VB - A form=mn,

(i) V- (A®B)=A®V - B+BT . VA form=a=1,n=2

also hold whenever the tensor contractions are well-defined.

Remark 2.5. For all vectors v, we use the convention (Vv);; := 0;v;.
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(b) Fractional Sobolev spaces

Let r € R, and assume that £2, F C R", respectively, are an open and a closed set. We indicate by
H'(R") the usual L2-based Bessel potential spaces. These are endowed with the norm

ullgr = 111 + 112720 2 (ge)-

Here by ii(¢) = Fu(§):= [, e fu(x)dx we indicate the Fourier transform. Using the same
notation as in [58] and [4], we also define the following fractional Sobolev spaces:

H'(2):={ule,uc H'(R")},
H'(£2) := closure of C*(£2) in H'(R")
and Hp(R"):={u e H'(R"): supp(u) C F}.

In particular, H'(£2) is endowed with the quotient norm ||u||yr (@) :=inf{||w||p : w € H"(R"),
w|o =u}. One sees that the following inclusions and identities

H(@)cH(2), H(2)CHS and HLCH,

and B B
(H'(2))"=H"(£2) and (H'(2))"=H"(£2)

hold. If in addition §2 is known to be Lipschitz, then Flr(Q) = H% for all € R, as shown in [45,58].
We shall also use products of Sobolev spaces. If r € R, the space H'(R") x H"(R") consists of all
the vectors u = (11, up) with uq, up € H'(R"), endowed with the norm

e By oy e ey = 102 By + 111821 By -

(c) The fractional Laplacian and other nonlocal operators

Letse Rt \ Zand u € S, the set of Schwartz functions. The fractional Laplacian of u can be defined
as

(—AYu:=FH(E¥ ),

which makes (—A)® a continuous map from S to L™ (see [4]). The definition above can be uniquely
extended in such a way that (—A)® acts as a continuous operator (—A)* : H'(R") — H'~2(R") for
all r € R. Further extensions are possible to Sobolev spaces of negative exponent and to L/-based
Sobolev spaces [4,15]. It is possible to give many other definitions of the fractional Laplacian,
which at least in the case s € (0,1) can be shown to be equivalent to ours [59]. In particular, the
fractional Laplacian can be defined as a singular integral by

) u(x) — u(y)
(=A)u(x) := Cns PV /R" =y dy,
where Cy, s := 45T (n/2 4 5)/m"/?|"(—s)|.
The fractional Laplacian presents a nonlocal behaviour, as made evident by the following
property it enjoys:

Theorem 2.6 (UCP for the fractional Laplacian). Let s € R* \ Z, and assume u € H'(R") for some
reR. Ifu=(—A)’u=0inanon-empty open set V, then u=0 in R".

The proof of this theorem can be found in [15], where the authors explore also the case of
negative exponent s. The main case s € (0, 1) upon which the proof is based was proved in [4].
One more property of the fractional Laplacian we shall use is the following fractional Poincaré
inequality.

Theorem 2.7. Let n>1,s>t>0, KCR" a compact set and u € Hy(R"). There exists a constant
¢ =7(n,K,s) > 0 such that
1(=2)""2ull 2y < TN(=A)" 1l 2.
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Many variously flavoured proofs of the above statement can be found in [15].

Next, we shall define nonlocal counterparts to the gradient and divergence operators as in
[5,15]. These are special instances of the general nonlocal vector calculus operators introduced in
[2,60]. For u € C2°(R",R") and s € (0, 1), the fractional gradient is

1/2
Cn{ s xX—y
ﬁ |x — y|n/2+s+1
and since one sees that ||Vul|j2many < ||u]|gs(rn), the definition is extended to act as H*(R") —

L2(R?") by density. Many more properties of the fractional gradient can be found in [49]. The
fractional divergence (V - )° is defined as the adjoint of V*, that is

Vou(x,y) := (u(y) — u(x)) ® ¢(x,y), where ¢(x,y):=

((V : )Svr M) = <U/ vsu)
for all v € L2(R?"), u € H*(R"). Thus (V - )° : L2 (R?") — H—$(R"). It is useful to keep in mind that for
more regular functions one has

1/2

C v(x, ) + vy, )
S _ ns S\ d) NI _
(V) vlx) = V2 Jre |x — yp/2stl (x—y)dy.

More generally, we define the fractional gradient of order s € R \ Z as V®:= V5~18)vls! and
a corresponding relation holds by definition for the fractional divergence. Most importantly, one
sees that the property
(V)Y Viu=(—A)u
holds in H*(R"). Finally, we define the j-th fractional derivative as
2

. ns  uly) —u(x)
fuly):=Viulny) - o=t oo

In particular, this definition implies that 8u - 9;v =3}u - 37v holds for all vectors u,v and all
i,je{l,...,n}. This property, which of course does not hold in the classical case s =1, will be
fundamental for our arguments.

(x5 = ))-

(d) Holder spaces

Let r € (0,1). Following [61], we define the Holder space C"(R") as the set of bounded functions u
such that

lu(x) — u(y)l < Clx — yI"

for all x,y e R". If ke N, we let Ck(R”) be the set of all bounded continuous functions u such
that DAy is bounded and continuous for all multi-indexes |B] <k. Finally, if re RT \ ZT we
define C"(R") to be the set of all functions u € CU1(R") with Dfu e C"~"J(R") for all multi-indexes
1Bl =Lr].

Next, we shall list some properties of Holder spaces which will be useful in our arguments. It
follows immediately from the definition that for all 7,7 € RT one has the embedding

r<r =C (R") < C'R". 2.1)
The Holder space C"(R") is clearly closed under composition with smooth functions, that is
ueC'(R"), Fe C*(R) = F(u) e C"(R"). (2.2)
It is also known that C"(R") is an algebra for all r € R* \ Z", which means
u,v e C'(R") = uv e C"(R"). (2.3)

Let m e R and assume ¥ € OPSY, i.e. ¥ is a pseudodifferential operator with symbol in the
Hérmander class 5. If both 7,7 — m € RT \ Z7, then

W C'(R") — CT™(RM). (2.4)
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For later purposes, we also show that the operator (—A)S_laiaj maps C"(R") to C'=2(R"). We
write the symbol as

6177268 = W (E)IE 268 + (1 — w(E)IEP g

where ¢ € C2°(R") satisfies ¢/ =1 near 0, and note that the second symbol has the right mapping
properties by (2.4). The first symbol gives rise to a convolution operator u — k % 1, where

k=F71) « F (6P %65).

Now the first function in the convolution is Schwartz and the second one is homogeneous of
order —n — 2s and smooth outside of 0 [62], which proves that k € LY(R™). Since v (&) is compactly
supported, the Fourier characterization of Holder spaces [63] implies that u +— k * u is bounded
between any two Holder spaces. This proves that whenever 7,7 — 2s € RT \ Z™, one has

(=AY 719;9;: C"(R™) — CT72(R™). (2.5)

(e) Fundamentals of the classical theory of linear elasticity

This section is a brief introduction to some of the fundamental concepts in the theory of linear
elasticity. Our main reference in this respect is Landau’s book [21]; however, we do not necessarily
restrict our discussion to the case n = 3.

The theory of elasticity studies the mechanics of the deformations of continuous media. Let
£2 C R" be an open, bounded set representing a physical body. When forces are applied to £2, the
body answers to that by changing shape and volume, i.e. each point x € §2 is transferred to a new
location x” € R". Thus it is possible to define a displacement vector field u such that u(x) = x" — x for
allx e 2.

By computing the change in distance between two points which were originally close to each
other, one sees that the new infinitesimal distance d!’ is related to the original one d! by

dI’? — A1 = 2uy, dx; dx,

where
1 /0u; Jug  Juy oy

Ui = —
ik 2 \oxx  0x; dx; 0xk

is called the strain tensor. It is customary in the case of small deformations to neglect the second
order terms of the strain tensor and use instead what is known as Cauchy’s strain tensor, linear

strain tensor or small strain tensor:
1 [/ ou; + ouy
gpi==| — + — )~ uy.
k=2 \oxe " oy ik

One immediately sees that the tensor ¢ is symmetric.

When deformed, the body leaves its equilibrium state and some internal forces (or stresses) F
are generated, which attempt to return the body to its original undeformed state. The resultant of
such forces acting on a region £2’ C £2 can be computed as [, F dV. Assuming that such forces do
not act on a distance, one should be able to express their resultant as an integral over 9£2’. This
suggests that F should be of the form V - o, where the new tensor o is called stress tensor. Further
investigation of the total moment of the forces acting on §2’ reveals that the stress tensor g should
also be symmetric.

Because we are interested in a theory of linear elasticity, we shall assume a linear relationship
between the stress tensor o, representing the forces acting on £2, and the strain tensor ¢, which
represents the resulting deformation of the body. This gives rise to the following Hooke’s Law (or
constitutive equation of linear elasticity)

0ij = Cijlm€im,

where the new fourth-order tensor C, which completely describes the elastic behaviour of the
body, is called elasticity or stiffness tensor. Using Newton’s second law, we can eventually define the
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operator of classical elasticity E as
Eu:=V - (C(Vu + vul)). (2.6)

One can also associate a potential energy U to E

1
)= [ Comey e (x)

This quantity is often assumed to be non-negative, with U(u) = 0 holding if and only if # =0.
Let us now assume that the material is isofropic, i.e. it is completely characterized by properties
which are independent of direction. In this case, the elasticity tensor can be expressed as

Cijim = 28ii8im + 11(8idjm + Simbjn),

where A, u are called Lamé parameters. Consequently, Hooke’s Law becomes
2 tr(e
ojj = M tr(e)di; + 2pej; = <)» + i) tr(e)dij + 21 (81‘]‘ — L)5,']‘) .
n n

The quantities k:=A +2u/n and p (this last one sometimes indicated by G) are, respectively,
called bulk and shear moduli. Thermodynamic considerations ensure the positivity of both k and .

The corresponding tensors tr(¢)ld and & — (tr(e)/n)Id are called dilational and deviatoric strain
tensors. The first one of them represents the hydrostatic compression of the body, i.e. a deformation
in scale but not in shape, and it is independent of the coordinate system. On the other hand, the
second tensor represents a pure shear, i.e. a deformation in which the volume is unchanged, and it
is trace-free.

It is also possible to compute the strain tensor given the stress tensor. By Hooke’s Law, we have

tr(o) = (nA + 2u) tr(e) = nk tr(e),
and since k > 0, we can write oj; = (A tr(0')/nK)8;; + 2jue;;. This eventually gives

1 Atr(o) 5.) =
=5, ( R ij) = SijlmOln,
where the new tensor sjji, = (816 /211) — (A8j81/2n11k) is the isotropic compliance tensor.

The Poisson effect indicates the physical phenomenon observed in the study of elastic
materials in which a body reacts to a compression (resp. extension) along one axis with an
extension (resp. compression) in the perpendicular directions. The Poisson ratio v is defined as the
amount of transverse extension divided by the amount of axial compression. It is easily computed
in the case of a homogeneous deformation of a thin rod along its axis. If such axis is oriented in the
e, direction and the applied pressure is p, then o;; = pé;, for alli e {1, ..., n}. Therefore,

1 Atr(o) A .
gii:ﬂ<6ii_ ik ):%(5,},—%), fOI'aHlE{l,...,I’l},

which gives

ein _ Sww—@/mk) A k—Q2u/n) (k/p) — (2/m)

enn S — (A/nk)  mk—d (n—Dk+@u/n) (= 1)k/p) +2/n)

Given the positivity of k and u, it is always true that v e (—1,1/(n — 1)). It is also clear that v
depends only on the ratio k/u rather than on the two moduli taken separately.

3. Theisotropic fractional elasticity operator

In this section, we introduce a model for linear fractional elasticity derived from the classical one,
which is related to the model proposed by Tarasov and Aifantis in [14]. To this end, we use the
fractional divergence and gradient, and the result will be a new self-adjoint operator E°. We also
assume throughout the paper the stiffness tensor C to be isotropic and such that the associated
Lamé parameters L, M satisfy
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(A1) there exists ¢ > 0 such that L, M € C25t¢(R"),
(A 2) there exist Ly, My € R such that L — Lo =M — My =0 in £, and
(A 3) the functions M and K := L + (2M/n) are positive and bounded away from 0.

Given that our nonlocal operators act on two-point functions, we need a preparatory lemma.

Lemma 3.1 (Square root of stiffness tensor). Let the Lamé parameters L, M of the isotropic stiffness
tensor C be as in assumptions (A 1)-(A 3). There exists a unique pair of real valued functions A, u verifying
(A1)-(A3)and

c'?2:.c'r=c,

where the new tensor C'/2 is defined as

clz.

ijlm *

= )»51‘]‘5]"4 + M((Sil‘sjm + (Sim(sjl)'
Moreover, we have
CL2WCL2 (1) = (A (M) + 27 ) + 223581

+ 20 () (y)3idjm + 2 () (Y)Simdjt, 3.1)

and therefore

cl2

H () Caln (1) = Cpre s (i)

Imap apij
Proof. Note that

1/2 ~1/2
Ci]’z/xﬂ Ca;ﬂlm = ()\‘Sijsaﬂ + :Uvsiasjﬂ + Msiﬁaja)(ksaﬂslm + uq18pm + Msamsﬂl)

= (127 + 4A10)8ii81m + 212 8i8im + 214781
and

C,’ﬂm = L(Sijfslm + Msilfsjm + M‘Sim‘sjb

We look for A, u such that Cllji éci,/szlm = Cjji- Since p must be positive, we have w:=/M/2,

which also ensures that i is bounded away from 0. This gives two possible choices for 1, namely
rr=1/n (j:\/ 2M +nL — «/ ZM) However, the required positivity of the coefficient k:=A +2u/n

ensures that A =1/n («/m - «/m) Now k= /K/n, and thus it is bounded away from
0. This proves that A, u satisfy condition (A 3). Given that the square root is a smooth function
when considered far from 0, by formula (2.2), we deduce u, k € CZ+e(R™), which in turn implies
) e CBH(R") as well and proves (A1). Since L, M are constant outside of £2, so must be A,
too, which proves (A 2). The last equalities in the statement of the lemma follow easily from the
computations above. |

Similarly to what was done in [5], we can define the new fractional elasticity operator
E'u:= (V) (CY2(x): CV2(y)(Vu + Voul)(x, ). (3.2)

Observe that this corresponds to taking as fractional Cauchy’s strain tensor
s 1 s s : s 1 s s, T
£ 1= 5(3k”i +0uy), ie &= E(V u+ Veu'), (3.3)

and then as a fractional, ‘symmetrized” version of Hooke’s Law

05(%,y) = Cil s () S, (5, ).

We next prove the following lemma about E°, which motivates definition (3.2):

Lemma 3.2 (Properties of E°). Let L, M satisfy assumptions (A1), (A2), and let s €(0,1). The
operator E° is self-adjoint, and it maps H*(R") to H—*(R").
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Proof. We start from the proof of the mapping property. By lemma 3.1 both A and u belong to
C?5Fe(R") € L*(R™), which implies that the two-point functions A(x)A(y), 1¢(x)u(y) and A(x)u(y) all
belong to L>®(R?"). The result then follows by the mapping properties of V* and (V -)° from §2c
and equation (3.1).

In order to see the self-adjointness, recall the minor and major symmetries of the stiffness
& Y2 _cl2 o2 _ 2
ensor ijaf jiaB” “ijap apij’
for ¢ € H°(R")

as well as the last equality from lemma 3.1. Then we compute

(B, ¢) = (V- ) (C2(x) : CY2(y)(Vou + VouT)), §)
= (CY2(x): CV2(y)(Vou + VouT), V)

= [, CHAICH 05+ )i, dxdy

=2 / c}]{js( )Ciﬁm(y)a;u,a]?(pi dxdy

= [, B Y ICL, 0701+ 850y dxy

= (V*u, C'2(x): CY2(y) (V9 + Vo9 T))
= (u, (V) (CY2(x): C2(y) (V¢ + Vo)) = (u, ESp).
| ]

Remark 3.3. For n =1, E° reduces to the fractional conductivity operator. In fact, in that case C
is a positive scalar function y : R — R, and V*°u can be written as

¢ uy) - u()

Vou(x,y) = Voul (x,y) = i m sgn(x — y).

We also define the fractional potential energy U° as

1/2 1/2
=3 L CHAWIC e 17 5, 9) dy i,
and prove the following lemma:

Lemma 3.4 (Positive definiteness of U®). Let K C R" be a compact set. There exist two constants
¢, C > 0 such that the inequality c||u||gs < U°(u) < C||u||12{5 holds for all u € Hy (R"). As a consequence,
U*(u) =0 if and only if u = 0.

Proof. We first claim that

cl2

Citap @i WVVit07 VI 2 vicojv0) = 0] 0] (3:4)

holds for all vectors v =v(x,y), w =w(x,y) in R". In fact, if (3.4) holds, then the definition of the
fractional strain tensor (3.3), the symmetries of C1/2 and the definition of V°u imply that
1/2 1/2
Fw=2 [ CYAWC (T (V i), dxdy
2V, Vou) paggeny = (=8, 1) 2y = (= A2l 5 -
Using the fractional Poincaré inequality from theorem 2.7 for u € Hy(R"), we finally get
al gy < Nl 2y + 11(=2) 20l F2 gy S (=) 2ul 5y S U ().
Thus for the lower bound it suffices to show (3.4). Using lemma 3.1, we see that the left-hand side
of (3.4) can be written as

2(n—-2)

(nk(x)k(y) + u(x)u(y)) (v - 0 + 2u@u@) oIl
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where we recall our previous definition k:=2x 4 2u/n. Since k(x), u(x) are known to be larger
than a positive constant for all x € R" and also n > 2, the lower bound is proved. The reverse
inequality U*(u) < ||u| |%15 follows immediately from the boundedness of the coefficients L, M (see
also formula (4.2)). This completes the proof of the lemma. |

While the definition of the fractional elasticity operator E° is very useful in order to prove its
self-adjointness, when it comes to studying other properties it is more convenient to rewrite it in
a different way.

Lemma 3.5 (Reduction lemma). Lefs € (0,1) and u € H(R"™). Then in weak sense, we have

(n/2 + 8)E°u = (2n + 4s + 1" (= A)* (upe) + nk(—A)* (uk)
— 20 spu(=AYTIVY - (up) — 2nsk(—AYTIVY - (uk)
+2su - (W u(=AY IV + nk(— A 1V2k)
— u{(2n + 45 + 1 (=AY u + nk(— Ak}, (3.5)

where n' :=2(n — 2)/n.

Proof. Step 1. By the computations in lemmas 3.2 and 3.1, we see that for all test functions
¢ € H3(R")

%(ESu, $) = (Cil(ICy 0, )05 0, 95))
= (MOMY) + 22 @) y) + 22w, 95 )
+ 2(u) ()97 ui, 07 i) + 2{u(xX)u(y); uj, 87 bi)
= (M MY) + 2My) + 22 () + 2(0) ()5 ), 957)
+ 2 (y)35 s, 35 1)-

For the last equality, we used the relation Bjsu]-BiSdJ,- = Bl.su]ﬂ;d),-, which follows directly from the

definition of the fractional gradient. Using the definitions k:= A + 2u/n and n’ :=2(n — 2)/n, we
can write

(E%u, ¢) = (2(nk(x)k(y) + 1’ n(@)u@)(V¥u)" + 4u)uly) Ve, Vi¢)
=: (a(x, y)Vu + b(x, y)(V*u)", V°p).

By the definition of the fractional gradient, we then have

(E°u, ) = (a(x, y)(u(y) — u(x) ® ¢ + b(x, y)¢ ® (u(y) — u()), () — p(x)) @ ¢)
= (a(x, )| P(u(y) — u(x) + bx, )¢ ® (u(y) — u(x))) - £, $(y) — H(x))
= (a(x, )|t P(u(y) — u(x)), $(y) — $(x))

+ (b, )E @ ¢) - (uly) — u(x), ) — ¢(x),

where at the second and third steps, we used lemma 2.4. Since

xoy VR —y™  Valx—yl ™
|x_y|m+2 - m - m
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holds for all m # 0, and also the identity Vi ® v = V(y¥v) — ¥ Vv holds for scalar ¥ and vector v
(see again lemma 2.4), we have

x—y)®x—y) 3 Vy(lx — y|*(n+25))

|x_y|n+25+2 - n+2s ®(x_y)
1 Id Ly xX—y
T n+2s lx — y|1+2s y |x — y|n+2s
1 Id  VyVallx — y|~(1+25-2))
S on+2s \ |x -yt n+42s—2 ’

which implies

|2 [2(u(y) — u(x))
n-+2s
Cn,sVny(lx - ]/|_(n+25_2))
2+ 25)(n+2s—2)

(C®¢) - (uy) —ux) =

- (u(y) — u(x)).

Using Cp s =2s(n + 25 — 2)C;, 51, we get

b(x,y)
n+2s

(Eu,¢) = <(a<x,y) 4 ) () — u(x), $(y) — ¢(x)>

sCis—1

C n+42s
. 11 — SIZ

T n/2+s

(b0, y)Vy Vallx — yI 72 7D) - (u(y) — u(x)), (y) — ()

Step 2. For the first term I;, we compute
(n +2s)a(x,y) + b(x,y) = 2(2n + 4s + n")u(x)p(y) + 2nk(x)k(y),
and then obtain

Iy = (2n +4s + 1) {(u@)u@y) Vou, Vi) + nlk(x)ky)Vou, Vie)
= (271 + 45 + n/)<CZZM/ ¢> + n<Ci2ul ¢)/

where C‘; y Ciz are fractional conductivity operators, as studied in [5]. Since by assumptions (A 1)-

(A 3) u?,k? are conductivities in the sense of [5], theorem 3.1 from this paper can be applied. This
leads to

I = @2n+4s + 1) (u(=A) (up) — pu(=A) (i — o), )
+ n k(=AY (uk) — ku(— AY (k — ko), ). (3.6)

For the second term I, we want to integrate by parts twice. For the sake of simplicity, we will
show our computations only for the term with k coming from b (the term with u is treated in the
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same way). For w := ku, we have the integral
/R L Vel =y~ D) [0 () — ¢) © (K(x)w(y) — k(y)w)] dy dx

=- /R L Vel =y ) (V- 9 k@) — kp)w)
+(0() ~ $() - (k)Ve(y) — V() ® w) dy dx
1
Z/RZ" lx_ylw(v')x{(v - P) W) (k()w(y) — k(y)w(x))
+(B) — $() - () V() — V() ® wx)} dy dx
1
= [ g (TH) - 20) KO - DT - 9
+ (W) ® Vk() — k@)(Vay)) : Vo@)
+(Vao(y) - V() = VKG)(V - ©)() - (@) — $(x))) dy dx
1
= [ g (V) - ) KO - DT - 9
+ (@(y) ® Vk@) — ky)(Vao@)) : Vo)
+ [Va(y) - Vk(x) — VE@)(V - w)(x)
— V() - VK@) + VK@V - 0)@)] - ¢} dydx,

where at the last step we exchanged the x,y variables in the last two terms. Observe that the
n+ 2s — 2 < n exponent ensures that all the above integrals are well-defined. If we define the new
operator R := (=AY~ Cps—1, we can rewrite the last line as

/ {RVE - w—kR(V - w)}(V - ¢) + {w ® RVk — kR(Vw)T}: Vb
RYL

+{Vw - RVk — VKR(V - w) — RVw - Vk+ RVK(V - w)} - ¢ dy.

We integrate by parts in the first two terms one more time. Since R commutes with the derivatives,
we get many cancellations, and eventually

[n —V{RVk - w—kR(V - w)} - ¢ — V - {w ® RVk — kR(Vw)T} - ¢
+{Vw - RVk — VKR(V - w) — RVw - Vk+ RVK(V - w)} - ¢ dy
=2(kRVYV - w —w - RV?%k, ¢)
=2(kRVYV - (ku) — ku - RV?%k, ¢).
Coming back to I, we have obtained
I =2nk(=AP"1VV - (ku) — ku - (=AY "1V%k, ¢)
+20 (= AP TIVY - () — pu - (=A) TV, ), (3.7)

and the wanted formula finally follows as a combination of (3.6) and (3.7); however, we still need
to make sure that all the involved terms make sense in H—*(R"). Recall that by assumptions (A 1),
(A2) there exist uo,ko > 0 such that i :=pu — o € CZT(2) and k:=k — kg € C2*¢(2). For each
term, we can use a decomposition of the kind

(=AY () = (=AY (ufi) + pofi(—AYu + po(— AV (ufi) + (= A)u,

and thus it suffices to study the terms in (3.6) and (3.7) with p, k substituted by i, k.
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Given that ji, k € C35T€(R™), they both map H°(R") to itself by [63], §3.3.2. Since the space of
multipliers on H*(R") coincides with that of the multipliers on H™5(R") (see [45,64]), we have
w(—A)*(up) € H=5(R"). This same reasoning shows that the first two terms on the right-hand sides
of (3.6) and (3.7) all make sense in H™*(R").

For the remaining parts of (3.6) and (3.7), we can proceed as follows, taking as an example
the term u - ji(—A)P~1V2[i. It suffices to show ji(—A)*"1V2j € L¥(R"), since this is a set of
multipliers on L2(R"). Moreover, given that /i CE=+E(2) C L®(RY), it is enough to show that the
operator (—Ay~1v2 maps Cgs+8((2) to L*°(R"). However, by formula (2.5), we have (=AY~ 1v2:
CZ+He(R™) — CE(R™), so that the wanted mapping property follows from C*(R") C L*°(R"). This
concludes the proof. [ |

Remark 3.6. The above reduction can similarly be performed if u € H*(R") is matrix-valued
instead than vector-valued. In this case, the fractional elasticity operator E° is weakly defined as

1/2 1/2

<Esul )= Z(Cijaﬁ (x)caﬂ[m(y)alsump/ als¢]p>/

for all matrix-valued test functions ¢ € H*(R"). The first step of the proof, which only deals with
the vector ¢, and formula (3.6) are unchanged in the matrix case, apart from the additional
component indicated by the index p. For the term I, in this case, we compute the integral

/Rzn By, iy, (1x — yI ") (i () — i () k(x)wi(y) — k(y)wip(x)] dy dx
=2 [ ¢:(kRVV - w—RV?*k - w)dy
RM

following the same integration by parts technique shown in the second step of the proof of lemma
3.5. If in particular there exists a scalar function r such that u = rld, and thus w commutes with all
matrices, we obtain that (3.5) holds. This observation will be used in the last steps of the proof of
the main theorem.

4. Well-posedness and the Dirichlet-to-Neumann map

We begin this section by defining our problem of interest. Let s € (0, 1), and assume 2 CR" is a
bounded open set. In the direct problem for the isotropic fractional elasticity equation, we are given an
exterior value f € H*(R"), and we want to find a weak solution u to

E'u=0 in £

u=f  in. (1

Here, the condition u =f in §2, should be intended in the sense that u — f € ﬁs(ﬂ). In order to
define what we mean by a weak solution, we introduce the following bilinear form. Using the
definition of the operator, we write for u, v € C°(R")

B w(u, v) := (CY2(x) : CY2(y)Vou, Vo).

It is immediately seen that By p; is symmetric. Boundedness in H*(R") x H’(R") follows easily
thanks to the assumption L, M € L>(R"), which implies %, 1 € L*°(R") as well:

IBrm(u, v)] < [1CY2(x) : CV2(y) Voul |2 gany || Vv | 2rny
SV ullpa@any IVl 2 ey < s ey 0] s Ry (4.2)

With this, we can extend the definition of By js to act on H*(R") x H*(R") by density. We can now
say that u € H’(R") is a weak solution to (4.1) if and only if By (1, ¢) =0 for all ¢ € H*(£2), and
u — f € H*(£2). More generally, we say that u € H*(R") is a weak solution to the inhomogeneous
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problem
Esu=F ing 43)
u=f in £2,, ’

where F € H75(£2), if and only if By (1, ¢) = F(¢) holds for all ¢ € ﬁs(.Q), andu —f e ﬁs(.Q)
For our problem (4.3), we have the following well-posedness result:

Proposition 4.1 (Well-posedness). Let s € (0,1) and assume 2 C R" is a bounded open set. For any
f e H(R") and F € H=*(£2), there exists a unique u € H*(R") such that u — f € H°(2) and

Brm(u, ¢) =F(¢) forall ¢ € F(2).
Moreover, the following estimate holds:
ullgs@ny < CUIfllEs@ny + I H-5(2))-

Proof. By letting ii :==u — f, we can reduce the above problem to the one of finding a unique
it € H*(£2) such that By p(ii, ¢) = E(¢), where F:=F — By, m(f, -) belongs to (H*(§2))* because of the
boundedness estimate (4.2) for the bilinear form:

IE@)] < [F@)| + [BLm(f, &)l < (IFll-s(2) + cl [f 1) 1] | s r)-

Observe that By p( -, -) gives an equivalent inner product on H%(22), because by lemma 3.4 the
fractional potential energy U*(v) always verifies ||v||%{5 < UP(v), and also it vanishes if and only if
v=0. In fact,

Brm(v, v) = (Vov, CY2(x) : CH2(y) Vov)

- /H;Z)x Cllféi‘} (x)cigzlm (y)S?j(xl y)sfm (xr y) dy dx == 2us (U)

The Riesz representation theorem now ensures the existence of a bounded linear operator
G:H%(2)— HS(Q) associating each functional in H7%(£2) to its unique representative in the
inner product given by By pm(-, -) on HS(Q). Thus the wanted (unique) solution i € HS(Q) can
be defined as i := GF, and it verifies

Brwm(it, ¢) = F(¢) for all ¢ € H(82).
The boundedness of G and the definition of ii eventually give the estimate
s rey < |F N Esqrey + il () = 11l Esqey + [IGEllps()
< fllpsny + ClIElH-s(2) < CUIfllHsn) + [1FllH-(2))-
|

In light of proposition 4.1, we can define a Poisson operator Pr 5 of H*(R") into itself: if f €
H*(R") is any exterior datum, then Py, y/f is by definition the unique solution to the homogeneous
problem (4.1). It of course follows from proposition 4.1 that P;, y is a bounded operator.

Remark 4.2. Let f, g be exterior values, let uf = Ppmf and ug := Py pg be the unique solutions
corresponding to them, and let ef, eg be any extensions. Then

Bp (i, eg) = (C/2(x) : CY2(y) Viuy, Vieg) = (ESuy, eg) = (Euy, eq) o,
= (B'uys, ug) o, = (E’us, ug) = (ur, Eug),

where we used the properties of (V -)*, the fact that E*uf =0 in £ and the self-adjointness of E°.
Now following the same computations backwards gives By m(uiy, eg) = BL m(utg, €f)-

With the well-posedness of the direct problem, we can now define the DN map. Consider first
the abstract trace space X := HS(R”)/ITIS(.Q). It is such that two functions f1, f» € H*(R") belong to
the same equivalence class if and only if they agree in £2,, in the sense that fy — f> € H5(2). If 2
happens to be Lipschitz, then it has been proved in [4, p. 463] that X = H°(£2.).
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Lemma 4.3 (DN map). Let s € (0,1), and assume that 2 C R" is a bounded open set. There exists a
continuous, self-adjoint linear map

Apm:X— X" defined by (Apmlf], [8]) := Brm(PLmf, 8),
where f,g € H(R").

Proof. The proof is quite standard, and it follows the arguments presented in [4,45,47]. The
DN map Aj p is well-defined because of the well-posedness of the direct problem: in fact, since
[f1=f + H(2), we have Ppyf' = Ppuf for all f' € [f]. Moreover, BLum(PLwf,g") = BLm(PLuf,8)
for all ¢’ € [g] by the definition of the Poisson operator. The boundedness of the bilinear form
and the well-posedness estimate give the continuity of A . Finally, the self-adjointness of Ar
follows from remark 4.2:

(ALmlfL 81 = BLm(PLmf, eg) = BLm(Prmg ef) = (ALmlgl, [f])-

5. The fractional Liouville reduction

In this section, we show an equivalence between our original problem (4.1) and a Schrédinger-
like problem in which the nonlocal part does not depend on the coefficients. In analogy to the
classical transformation from the conductivity equation to Schrédinger’s, we call this procedure
fractional Liouville reduction (see also [5]).

Recall that every vector valued u € H*(R") admits a Helmholtz decomposition, i.e. it can be
written as u = V¢ + F, where ¢ is the Newtonian potential of V - u and V - F=0. See e.g. [65]
and references therein.

This allows us to define an operator (-) :u+> u’ for all u € H*(R") x H(R") such that, if the
Helmbholtz decomposition of u is

uy Vo1 +F .
u= = ’ withV - F{=V . F =0,

then 1/ € H°(R") x H%(R") is

. 2n+4s+n' +2n's)Ver + (2n + 4s +n')Fq
- n(1 + 25)Veyo + nF, ‘

Recall that n’ =2(n — 2)/n. The operator ()" is bounded, with

2

W' e S Y (11V;l1as + 11Fjllae) < el e (5.1)
j=1

Moreover, if we define the differential operator D acting as

p(*).— Diur\ _ _ (diAur +d2VV -y
uz) \Dauz |’ dzAuy +dyVV - up
L ((21’1 +4s +n')Auq + 2n'sVV - ”1)

nAuy +2nsVV - up

we can compute

—Du— (2n +4s+n')A +2n'sVV - ) (V¢y + Fr)
- (nA +2nsVV - )(Vy + F)
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_[(@n+4s+n'+2n's)AVe1 + (2n 4 4s +1')AF;
- n(1 4 25)AVer + nAF,

_A (2n+4s+n'+2n's)Ve + 2n +4s +n')F1\ A
- n(1 4 2s)Vey + nF, T
which shows that Du = —Au’. In particular, (—A)*"'Du = (—A)*u’ whenever u € H(R") x H¥(R").

Proposition 5.1 (Fractional Liouville reduction). Let L, M € C>5¢(R") satisfy assumptions (A 1)—
(A 3), and assume f € C°(W) with W C §2, open and bounded. Define

I'(x _
PE)= (k) and Q= D - (-a) D) 1)
If u € H*(R™) solves the original problem
Eu=F in$2
. (5.2)
u=f in 2,
in the weak sense for some F € L*($2), then w := I" ® u solves the transformed problem
(=AY 'Dw—w - Q=G m Q 53)
w=IQf in 2

in the weak sense in I' ® H®, where G:=I" @ (n/2 + s)F/|I"|. Conversely, if we I' ® H*(R") solves
(6.3) in the weak sense in I’ @ H® for some Ge I' ® L3(82), then u:= T - w/|I"|? solves (5.2) in the weak
sense, where F=1T - G/(n/2 +s).

Observe that saying that w € I" ® H*(R") is a solution in the weak sense in I" ® H* means that
Bo(w, I ® $)=(G, I ® ¢), forall ¢ € H ().
This can be equivalently written as
r - (-AY '"Dw-—w-Q)=rI-GinS.

Proof. Because of the assumptions on L,M we have I" € CZ+¢(R") x C*+¢(R"), with I'(x) =
(o, ko) =: y for all x € §2,. Therefore,
I"(x)
| (%)

Qx) = S (=AFTID(r (x) - y) @ 1d),

where I'(x) — y =: " € C¥*¥(2) x C¥*¢(2). By formula (2.5), we have (—Ay 'D(I'(x) — y) ®
Id) € C*(R™) C L®(R"). Since I'(x)/|I"(x)|? is also in L°(R") by property (2.2), we conclude that
Qe L®(RM).

Let now u e H’(R"). In terms of the new symbols introduced in the statement of the

proposition, after a straightforward computation the equality from lemma 3.5 can equivalently
be written as

I (=A"'D(r ®@u)— (F@u) - Q)= (g n s) Eu. (5.4)

Observe that problem (5.3) is well-posed in the Hilbert space I' ® H*(R"). In fact, in (I' ®
H5(R™)) x (I" ® H*(R™)) the bilinear form

Bo(v1,12) == (= A0}, (—A) %) — (v - Q,v)
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is clearly bounded, and it is also coercive by equation (5.4)
Bo(r @ u, I @ u)= (=AY D" ®u) — (I'®u) - Q, ' @ u)
= (I - (=27 "'DIr @u) = (I' ®u) - Q),u)
=n/2+s)(E’u, u)
=(2n + 4s)U°(u) > 0.

Thus (5.3) has a unique solution of the kind w=I"® v for some v € H*(R"), provided that G €
Lz(.Q). Of course, one must have v =f in £2,.

If now u € H3(R") solves (5.2) and G:=I" ® ((n/2 + s)F/|I"|?), then by (5.4) w:=I" ® u solves
(5.3). Conversely,ifw=1I" @ vsolves (5.3)inI' ® H* and F=TI" - G/(n/2 + s), then by (5.4) v solves
(5.2). Therefore, u=1I" - w/|['*=T - (I ® v)/|I"|> = v must also solve (5.2). |

We also define the adjoint bilinear form
By (1, v) = ((— A)2u, (= 2)2) — (v - Qu),

which of course shares the same boundedness inequality as By and can similarly be extended
toacton (I' ® HS(Q)) x(I'® HS(Q)). It is also clear that we have Bg(u, v) = B*Q(v, u). Given the
well-posedness in I" ® H* of problem (5.3), we can define the Poisson operator Pg associating to
the exterior datum I" ® f the unique solution w=I" @ v to the problem (5.3) with G =0. We can
also define the DN map Ag in a similar fashion as in our lemma 4.3:

(Aol ® AL 1T ® f2])
:=Bo(Po(I' ®f1), I’ ®f2)
= (AP @ /1)), (=A)H (I ® f2)) — (Po(I' ®f1) - Q, T ®f2)
=(I' - (A 'DPo(I" ® fi) — Po(I" ® f1) - Q),fa),

and similarly for A’é. With the usual computation (see e.g. the analogous result in [45]), we get
(Aglg1l [g2]) = (1], A*é[gz]), which motivates the choice of symbols.

6. The Alessandrini identity

The most important instruments needed for proving our main theorem are the so-called
Alessandrini identity and Runge approximation property, which we study in this and the next
section. Let us start from a simple lemma relating the DN maps of the original and transformed
problems:

Lemma 6.1 (Relation between the DN maps). Let f] € C(?O(W]-) forj=1,2, where W1, Wy C £2. are
open, bounded and disjoint. Then the following equation holds:

(5 +5) ALmlAl 1f]) = (Aol ®ALLN ® o). (6.1)

Proof. Let uq be the unique solution to problem (5.2) corresponding to the exterior value f1, and
let wq be the unique solution to (5.3) corresponding to w7 via the fractional Liouville reduction. In
light of formula (5.4), we can compute

(5 +5) ALulfil [ = (5 +5) (Bun fo) = (I - (=7 ™Dy — 1 - Q). o)

= (=AY Dwy —wy - QT ®f) = (Aol ® 1l, [T ® fr]).

Therefore, complete knowledge of the DN map Ay y is equivalent to knowledge of the DN map
Ag on functions g; of the kind I ® f;. [ |

Next, we state and prove the Alessandrini identity:
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Lemma 6.2 (Alessandrini identity). Let 2 C R" be a bounded open set and s € (0,1). Let L;, M; for
j=1,2 be two sets of Lamé parameters satisfying assumptions (A1)~(A 3), corresponding to I}, Q; for
j=1,2 through the fractional Liouville reduction. Assume I'1(x) = I»(x) =: y for all x € 2, and that the
relative Poisson ratios of (L1, M) and (L, M) agree in R", i.e. (L1, M1) ~ (Lp, M2). Then the following
integral identity holds for all f1, f» € C2°(82.)

(5 +5) (AL = A )AL D) = w1 - Q1 = Qa)u3),

where uy := P, (y ® f1) and u3 := P, (v ® f2).

Remark 6.3. Let v be the Poisson ratio corresponding to the Lamé parameters M, K. By the
definition of v and lemma 3.1, we see that there is a one-to-one correspondence between v and the
ratio r := pu/k of the Lamé parameters p, k of the square root of the stiffness tensor. Thus (L1, M1) ~
(Lo, M) if and only if pu1/k1 = ua/ko, that is, if and only if It = p I for some fixed function p. We
say that in this case I'] and I are themselves in gauge, and we indicate this by I'7 ~ I'>.

Proof of lemma 6.2. The proof is a computation following from lemma 6.1:
n
(E + S) ((ALl,Ml - ALz,Mz)[fl]/ [fz])

= (/2 +95)(Ar AL [2D) — (A,m 1] [R2])
=(Ag, [N @A ®@f]) — (Ag, [ ®@AL 2@ fL])
=(Agly ®fil Iy ® fo]) — [y ® fil Ap, Iy ® f2])
=Bg,(Pg,(y ® f1), 12 ® f2) — B, (Py, (v ® f2), I ® f1)
=Bg, (u1,u3) — By, (u3, 1)

=(u1 - (Q1 — Q2),u3).

Here, we have used the fact that I'1 ~ I'; in order to deduce that B, (11, I ® f2) = Bo, (u1, u3), and
similarly for the other term. In fact, this will be true as soon as

Bo, (u1, I @ v2) =0

for all vy eﬁs(Q), which is granted by the fact that u; is a weak solution in It ® H® and
I =ply. |

Given that the right-hand side of the Alessandrini identity from lemma 6.2 only contains the
difference of the transformed potentials Q; and Q,, we can at most hope to recover Q from
the complete knowledge of the DN map Aj j. This suggests that we may encounter a gauge
invariance for our inverse problem: if many different couples of Lamé parameters (L, M) give rise
to the same transformed potential Q, they will remain indistinguishable. Thus we are now left
with two tasks: to find appropriate solutions to use in the Alessandrini identity which will let us
recover information about Q, and to study the relative gauge. These problems will be considered
in the coming sections.

7. Runge approximation property and proof of the main theorem

Because of the particular exterior values associated with the solutions appearing in our
Alessandrini identity, we do not need to prove a full Runge approximation property in the sense
of [4] or [45]. We rather need only the following result:

Lemma 7.1 (Runge approximation property). Let 2, W C R" be bounded open sets such that W C
820, and assume s € (0, 1). Define

. P* ~
R:= Flig_(lg@)ﬂ—f:fecgo(W) c ().
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Then the set {w|q :w € R} is dense in L2(§2). The same result holds when we substitute Pg to PZ‘Q in the
definition of R.

Proof. By the Hahn-Banach theorem, it is enough to show that any F € L2(£2) such that (F, v) =0
for all v € R must vanish identically. Fix any F € L2(£2) with such property, and consider the
problem
I'®F

s—1 _
(=AY Dw—w - Q= TaE

in
and
w=0 in £2,.

It has a unique weak solution in I’ ® s (£2) of the form w =TI ® ¢ by proposition 5.1. Then for
any f € C2°(W), we have

O:<F,F - PH(I ®f) - >
|2

=<F,F ‘ P*Q(F®f)—F®f>

I'®F
|2

Py(I - I
=((-AF "Dw—w - QI ®f) — (—A) 'Dw—w - Q,PH(I" ®f)).
The second term on the right-hand side is

BQ(w,P’é(F ®f))=B*Q(P*Q(F ®f),w)=0,

because of the fact thatw e I ® ﬁS(Q) and the definition of weak solution to the adjoint problem.
Thus we are left with

0=((—AY""Dw—-w- QT ®f)
=((~AFDw—w - Qy ®f) =(~AF'Dw,y ®f)
because of the assumption that the supports of f, w are disjoint. Eventually,
0=((—A)""Dw,y & f) = (AFw,y @f) = (=AY (y - @), f),

which by the arbitrariety of f implies (—A)*(y - w’) =0in W. The UCP for the fractional Laplacian
and the exterior datum of w now imply y - w’ =0. Thus in £2 by lemma 2.4

- IMF I'®F
T ey A )
=—(-8 W)ty - - Q=y (W Q)
=y (F®e¢) - Q= -9 -Q),
and by the positivity of y - I", we get ¢ - Q=F/|I"|? in £2. Therefore, in £2

. _I'eF _ oo E\_
Carw=w- 0Trp _F®(¢ © |F|2)_O'

which means that w’ solves
(=AYw' =0 in

and

w' =0 in £2,.

By the well-posedness of the direct problem for the fractional Laplacian, we deduce w’ =0, which
entails w =0 and eventually F = 0. |

With this result at hand, we can prove our main theorem.
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Proof of theorem 1.2. Step 1. Given that the known data can always be restricted, we can without
loss of generality assume that the sets Wy and W, are disjoint. Let f; € C2°(W)) for j=1,2, and
define uy :=Pq,(y ® f1), uz:=Pp (v ® f2). By the definition of the Poisson operators, we have
up =11 ® vy, u;y = I ® vp for some vy, v2 € H*(R"). Thus by the Alessandrini identity from lemma
6.2 and lemma 2.4 it holds that

0= (g + s) (AL vy — A, )l 2D

=(u1 - (Q1 — Q2), u3)
=((Im®v) - (Q1—Q2), 12Q )
=(v1 - (Q1—Q2),(I1 - I)v2). (7.1)

Let now g1,¢> be any functions belonging to C2°(£2). Using the Runge approximation property
from lemma 7.1, we can find two sequences {f;;}; C CZ°(W;), j = 1,2, such that

I - Po,(y ®f1,0)

ith 1
LY =fuit+gtry,  withllrllze) < -

Vi =

and
I - Po,(y ® )

. 1
V= T =fi+g+r;, with [172,illr2(0) < 7

Substituting vy ;, vy ; into (7.1) gives
0=(v1 - (Q1—Q2),(I1 - I2)v2)
=((fi+81+r) - (Q1—Q2), (1 - I2)(f2i + 82 +72,4))
=(g1+ 71, - (Q1—Q2), (I - D)(g2+12)

by the support assumptions. Moreover, the terms containing the errors T vanish as i — oo, since
for example
C
[(ri - (Q1—Q2), (I1 - I)ra i)l < lIri - (Q1 — Q)2 |l - T2)raillrze) < 2

and similarly for the other ones. Therefore, we are left with

0=(g1 - (Q1 —Q2), (I - 12)g2).

Since Il - I> = u1po + kika > 0, by the arbitrariety of g1, g2 € C2°(§2), we obtain Q1 = Qp in £2.

Step 2. We are left with the task of proving that Q; =Q; in £ implies I'1 = I>. By remark
6.3, the assumption (L1, M1) ~ (Lo, M>) already implies that /> = rI"] for some fixed but unknown
function r. Thus I'> solves

- (—AY DR @Id) = PQ; in

and
=y in 2,

which implies that r solves
M- (AF'D(N @ (r1d)) — (I ® (7Id)) - Q1) =0 in 2
and
r=1 1in £2,.

By remark 3.6, equation (3.5) holds when u =rld. Observe that the right-hand side of equation
(3.5) can be rewritten as the left-hand side of the above equation in £2 (see proposition 5.1).
This lets us deduce that Eil M (rId) =0 holds in £2. Because the direct problem for the fractional
elasticity equation can be showed to be well-posed in the matrix case as well by the same strategy
used in proposition 4.1, we conclude that it must necessarily be r = 1. |
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