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RESOLVENT ESTIMATES FOR VISCOELASTIC SYSTEMS OF
EXTENDED MAXWELL TYPE AND THEIR APPLICATIONS\ast 
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Abstract. In the theory of viscoelasticity, an important class of models admits a representation
in terms of springs and dashpots. Widely used members of this class are the Maxwell model and
its extended version. This paper concerns resolvent estimates for the system of equations for the
anisotropic, extended Maxwell model (EMM) and its marginal model; special attention is paid to the
introduction of augmented variables. This leads to the augmented system that will also be referred
to as the ``original"" system. A reduced system is then formed which encodes essentially the EMM;
it is a closed system with respect to the particle velocity and the difference between the elastic and
viscous strains. Based on resolvent estimates, it is shown that the original and reduced systems
generate C0-groups and the reduced system generates a C0-semigroup of contraction. Naturally,
the EMM can be written in an integro-differential form with a relaxation tensor. However, there is
a difference between the original and integro-differential systems, in general, with consequences for
whether their solutions generate semigroups or not. Finally, an energy estimate is obtained for the
reduced system, and it is proven that its solutions decay exponentially as time tends to infinity. The
limiting amplitude principle follows readily from these two results.

Key words. viscoelasticity, anisotropy, resolvent estimates, limiting amplitude principle
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1. Introduction. Let \Omega \subset Rd with d = 2,3 be a bounded domain on which
a spring-dashpot model of a viscoelastic medium is defined. We assume that its
boundary \partial \Omega is connected and Lipschitz smooth. We divide \partial \Omega into \partial \Omega = \Gamma D \cup \Gamma N ,
where \Gamma D, \Gamma N \subset \partial \Omega are connected open sets, and we assume that \Gamma D \not = \emptyset , \Gamma D\cap \Gamma N = \emptyset 
and if d = 3, then their boundaries \partial \Gamma D, \partial \Gamma N are Lipschitz smooth. We emphasize
that the setup with \partial \Omega , \Gamma D, \Gamma N underpins the consideration of the so-called mixed
type boundary condition. Our analysis extends to the case where \partial \Omega consists of
several connected components and \Gamma D, \Gamma N are unions of these components.

Let x \in \Omega be a point in space and t \in R be time. For each 1\leq j \leq n with a fixed
n \in N, let Cj = Cj(x) be a stiffness tensor and \phi j = \phi j(x, t) be a tensor describing
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RESOLVENT ESTIMATES FOR VISCOELASTIC SYSTEMS 5783

the effect of viscosity; these are rank 4 and rank 2 tensors, respectively. Further, let
\rho = \rho (x) be the density defined on \Omega and each \eta j = \eta j(x), 1\leq j \leq n, be the viscosity
of the jth dashpot, respectively.

Throughout this paper, the assumptions for Cj , \eta j , and \rho are as follows.

Assumption 1.1.
(i) Cj , \eta j , \rho \in L\infty (\Omega ).
(ii) (full symmetry) (Cj)klrs = (Cj)rskl = (Cj)klsr, j \leq k, l, r, s\leq d a.e. in \Omega .
(iii) (strong convexity) There exists a constant \alpha 0 > 0 such that for any d\times d real

symmetric matrix w= (wkl)

(Cjw)w\geq \alpha 0| w| 2 a.e. in \Omega ,(1.1)

where | w| :=
\sqrt{} \sum d

k,l=1w
2
kl, and Cjw, (Cjw)w are defined as follows:\left\{       

(k, l)-component (Cjw)kl of the d\times d matrix Cjw is given as

(Cjw)kl :=
\sum d
r,s=1(Cj)klrswrs,

(Cjw)w is defined as (Cjw)w=
\sum d
k,l=1

\Bigl( \sum d
r,s=1(Cj)klrswrs

\Bigr) 
wkl.

(iv) There exist \beta 0 > 0 and \gamma 0 > 0 such that

\eta j \geq \beta 0, 1\leq j \leq n and \rho \geq \gamma 0 a.e. in \Omega .

Historically, viscoelasticity is introduced through relaxation leading to systems of
integro-differential equations, which we refer to as VID systems [1, 9]. In the case
of special, parametric models, representable by springs and dashpots [9], augmented
variables can be introduced to cast the systems of integro-differential equations into
systems of differential equations. This alternative mathematical description affects the
meaning of initial values. This also affects whether the solutions form a semigroup.
Here, we will present the analysis for and clarify the properties of the two different
types of systems associated with the so-called extended Maxwell model (EMM); see
Figure 1. We will also consider its related extended standard linear solid model
(ESLSM); see Figure 2 for an illustration of one unit. In the case of the EMM, the
solutions of the integro-differential (ID) system do not generate a semigroup, but
the solutions of the augmented system of differential equations (AD) generate not
only a semigroup but also a group. The ID system generates exponentially decaying
solutions; exponentially decaying solutions are generated by the AD only upon a
reduction of the system eliminating quasi-static modes. In fact, the proofs make use of
distinct energy functions. We will present the proof for the ID system in a companion
paper. In various remarks, we will indicate which results apply to the ESLSM.

As a direct application of the result on exponential decay in time, we show that
the solutions of the reduced system satisfy the limiting amplitude principle. That
is, if a time-harmonic vibration is given on a part of the boundary, this principle
implies how fast solutions of this system converge to time-harmonic solutions. We
note that the time-harmonic vibration given on the boundary has a transitional period
of time before becoming a time-harmonic vibration. If this convergence is fast, one
can quickly generate many time-harmonic solutions by switching the frequency of
the time-harmonic vibration given on a part of the boundary. This principle has
been accepted without mathematical proof in applications. In this paper, we give
a mathematical justification of this principle. For the Kelvin--Voigt model, which
can be directly described as a system of differential equations, the exponential decay
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5784 M. DE HOOP, M. KIMURA, C.-L. LIN, AND G. NAKAMURA

M1

M2

Mn

Fig. 1. EMM and its one unit called the Maxwell model, where the zigzag and piston describe
a spring and a dashpot, respectively. Here, Mj denotes the jth Maxwell constituent.

M1

M ′
2

Fig. 2. Standard linear solid model.

of solutions was proven before. By using the inner product introduced in [15], it
follows that this system generates a holomorphic semigroup and has the mentioned
decay of solutions. Based on these results the limiting amplitude was proven when
the medium is isotropic in [5] and [7] for the one space dimensional case and the
three space dimensional case, respectively. Applications of the limiting amplitude
principle appear, for example, in magnetic resonance elastography (MRE) [12] and
in exploration seismology with vibroseis. In MRE, one uses a special pulse-echo
sequence of MRI and measures the time-harmonic quasi-shear wave inside the tissue
of an organ generated by a time-harmonic vibration at its surface; this was analyzed
by Papazoglou et al. [13] using an ESLSM.

The remainder of the paper is organized as follows. In section 2, we introduce the
AD system and the ID system. We also analyze the relation between the ID system
and the AD system and give what causes their difference. In section 3, after giving
some notations convenient for this paper, we write the AD system to the first order
system with respect to the time derivative. Then, we state the semigroup property
of this system which will be proved in the next section. Section 4 is the core part
of this paper, devoted to giving resolvent estimates for the AD system, which leads
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RESOLVENT ESTIMATES FOR VISCOELASTIC SYSTEMS 5785

to giving not only its semigroup property but also its group property. In section 5,
besides these properties of the AD system, we discuss the abstract Cauchy problem
for the AD system. To show the other subject of this paper, the limiting amplitude
principle for the AD system, we need to have at least the following two conditions to be
satisfied. They are that the resolvent set contains the imaginary axis of the complex
plane and that solutions of the AD system have a uniform decaying property, for
example, polynomial or exponential as t\rightarrow \infty . However, these conditions do not hold
for the AD system due to the existence of a stationary solution. Hence, we introduce
a reduced system (RD), and then prove that it generates a C0-group of contraction in
section 6 and that it has the exponentially decaying property of solutions in section 7;
thus this system satisfies the mentioned two conditions. We conclude by establishing
the limiting amplitude principle for the reduced system. The last section is devoted to
giving some conclusions and pointing out the new idea deriving the resolvent estimate
for the AD system.

2. AD system and ID system. Let \Omega \subset Rd be a bounded domain with d= 2,3
and Lipschitz smooth boundary \partial \Omega . We consider \Omega as a reference domain on which
we consider a small viscoelastic deformation. The EMM is a spring-dashpot model
connecting n-number of Maxwell models in parallel (see Figure 1).

Corresponding to each of these models, we denote its pair of strain and stress as
(ei, \sigma i) in accordance with the labeling number i= 1, . . . , n. Also, we denote by (e,\sigma )
the pair of strain and stress of the EMM. Then, the strain and stress relation for each
model and the equation of motion for the EMM are given as follows:

Mi :

\Biggl\{ 
\sigma si =Cie

s
i , \eta i\partial te

d
i = \sigma di

ei = esi + edi , \sigma i = \sigma si = \sigma di
(i= 1, . . . , n),

EMM :

\left\{     
e= e[u] = 1

2 (\nabla u+ (\nabla u)t),
\rho \partial 2t u=div\sigma ,

\sigma =
\sum n

i=1
\sigma i, e= e1 = \cdot \cdot \cdot = en,

(2.1)

where ``t"" denotes the transpose. Also, hereby, for each i = 1, . . . , n, (esi , \sigma 
s
i ) and

(edi , \sigma 
d
i ) are the pairs of strain and stress for the spring and dashpot, respectively.

Also, Ci and \eta i for each i= 1, . . . , n are the elasticity tensor of the spring and viscosity
of the dashpot, respectively.

Now, we introduce the AD system for the EMM. In the absence of an exterior
force, the vibration with small deformation of a viscoelastic medium on \Omega , modeled
as the AD system, is expressed in terms of the elastic displacement u = u(x, t) and
viscous strains \phi = \phi (x, t) = (\phi 1(x, t), . . . , \phi n(x, t)) as follows:\left\{                   

\rho \partial 2t u - div\sigma [u,\phi ] = 0, \sigma [u,\phi ] =
\sum n
j=1 \sigma j [u,\phi j ],

\eta j\partial t\phi j  - \sigma j [u,\phi j ] = 0, j = 1, . . . , n,

u= 0 on \Gamma D, | \Gamma D| > 0,

\sigma [u,\phi ]\nu = 0 on \Gamma N , | \Gamma N | > 0,

(u,\partial tu,\phi )| t=0 = (u0, v0, \phi 0) on \Omega ,

(2.2)

requiring compatibility between the initial and boundary values, where \nu is the out-
ward unit normal of \partial \Omega , | \Gamma D| , | \Gamma N | are the respective measures of \Gamma D, \Gamma N , and

\sigma j [u,\phi j ] =Cj(e[u] - \phi j), \phi j := edj .(2.3)
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5786 M. DE HOOP, M. KIMURA, C.-L. LIN, AND G. NAKAMURA

Here, using (2.1), (2.3) is derived as follows:

\sigma j [u,\phi j ] = \sigma j = \sigma sj =Cje
s
j

=Cj(ej  - edj ) =Cj(e - edj ) =Cj(e[u] - \phi j).

Remark 2.1. We interpret the system for the ESLSM as a special case of the
system for the EMM in the sense that \eta  - 1

j Cj = 0 for some of the values of j, and
omitting the \phi j for such values.

The AD system (2.2) and its energy dissipation structure were studied in [17]
and in [10], based on a preceding work [8], where a simplified AD system without the
inertia term and its energy dissipation structure were considered.

The first two equations of (2.2) are considered on \Omega \times R unless otherwise specified
in the further analysis. The function spaces for the solution and the initial data will
be specified later, in sections 3, 4, and 5, while addressing the unique solvability of
(2.2); this will follow from the existence of a C0-(semi)group for (2.2).

Next, we discuss the ID system associated with the EMM. Essentially, this system
follows directly from (2.2) upon setting \phi 0 = 0. With this initial condition, one can
integrate \Biggl\{ 

\eta j\partial t\phi j = \sigma j [u,\phi j ] =Cj(e[u] - \phi j),

\phi j(0) = 0,
(2.4)

to yield

\phi j(t) =

\int t

0

e - (t - s)\eta  - 1
j Cj \eta  - 1

j Cj e[u(s)]ds,(2.5)

where the x-dependence of the different functions and tensors is suppressed. With
the first equation of (2.2), we directly obtain

\sigma [u] =G(x,0)e[u](t) +

\int t

0

(\partial tG)(x, t - s)e[u(s)]ds(2.6)

with \phi being eliminated and signifying a description in terms of relaxation tensor

G(x, t) :=

n\sum 
j=1

e - t\eta 
 - 1
j CjCj .(2.7)

The ID system for the EMM is then given by\left\{             

\rho \partial 2t u - div\sigma [u] = 0,

u= 0 on \Gamma D,

\sigma [u]\nu = 0 on \Gamma N ,

(u,\partial tu)| t=0 = (u0, v0) on \Omega .

(2.8)

Here we can include the ESLSM by setting \eta jCj = 0 for some of the values of j.
We remark that this system is equivalent to (2.2) subject to the restriction \phi 0 = 0.

Also, this initial condition avoids the occurrence of stationary solutions. The men-
tioned reduced system, which will be discussed later, is a (closed) system given in
terms of other dependent variables; the reduced system does not have stationary so-
lutions either. However, it generates such solutions upon transforming the variables

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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RESOLVENT ESTIMATES FOR VISCOELASTIC SYSTEMS 5787

back to the original ones. We remark that this restriction has profound consequences
such as preventing the generation of a semigroup. The well-posedness of this system
in appropriate function spaces and the exponential decay of solutions in these function
spaces are presented in a companion paper [3]. We note that the exponential of the
relaxation tensor is evaluated through an expansion and contractions of rank 4 tensor
Cj with itself.

Ahead of the further analysis of properties of solutions, we note that obtaining
exponential decay is a nontrivial matter. In the case that EMM includes an ESLS,
neither the \phi j 's nor the solution u of the ID system exhibits this decay. In the case
of a pure EMM, the exponential decay of each \phi j depends on the relation between
the lower bound of positive symmetric matrix \eta  - 1

j Cj and the exponential decay rate
of solutions of the ID system.

3. AD system and its semigroup. We rewrite the AD system by introducing
the following notations. We let \u C := blockdiag(C1, . . . ,Cn), \u \eta := blockdiag(\eta 1Id, . . . ,
\eta nId), where Id stands for the d \times d identity matrix and \u I := blockdiag(Id, . . . , Id).
To be more precise, for example, \u C is defined for C1, . . . ,Cn as

\u C =

\left(    
C1 O \cdot \cdot \cdot 0
O C2 \cdot \cdot \cdot 0
\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot 
O O \cdot \cdot \cdot Cn

\right)    .

Then, by using these notations, we can write \sigma [u,\phi ] in the forms

\sigma [u,\phi ] =

n\sum 
j=1

\sigma j [u,\phi j ] =

n\sum 
j=1

Cj(e[u] - \phi j)

= trace [diag(C1(e[u] - \phi 1),C2(e[u] - \phi 2), . . . ,Cn(e[u] - \phi n))]

=T\{ \u C(e[u] \u I  - \phi )\} ,

(3.1)

where T denotes the trace for the diagonal blocks. Also, we understand the multipli-
cations \u C\phi , e[u] \u I and \u C(e[u] \u I) as follows:\left\{             

\u C\phi := blockdiag(C1\phi 1, . . . ,Cn\phi n)

with Cj\phi i := ((Cj\phi i)kl) , (Cj\phi i)kl =
\sum n
r,s=1(Cj)klrs(\phi i)rs,

e[u] \u I := blockdiag(e[u], . . . , e[u]),

\u C(e[u] \u I) := blockdiag(C1e[u], . . . ,Cne[u]).

In order to write the equations in (2.2) as a first order system with respect to the
time derivative, we let u1 = u, u2 = \partial tu, and U := (u1, u2, \phi )

t. Then, using (2.2) and
(3.1), we get \left\{     

\partial tu1 = u2,

\partial tu2 = \rho  - 1div\sigma [u1, \phi ] = \rho  - 1divT\{ \u C(e[u1] \u I  - \phi )\} ,
\partial t\phi = \u \eta  - 1\{ \u C(e[u1] \u I  - \phi )\} ,

(3.2)

which takes the form \partial tU =AU with

A=

\left(   O Id O

\rho  - 1divT\{ \u C(e[\cdot ] \u I)\} O  - \rho  - 1divT\{ \u C\cdot \} 
\u \eta  - 1\{ \u C(e[\cdot ] \u I)\} O  - \u \eta  - 1\{ \u C\cdot \} 

\right)   ,(3.3)
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5788 M. DE HOOP, M. KIMURA, C.-L. LIN, AND G. NAKAMURA

where O denotes the zero matrix. Since we need to prepare several notations to define
the domain D(A) of A, we will give it later when we introduce another operator AZ .

In the later resolvent analysis which we will give in section 4 for \~A pertaining to
A, we need to consider the resolvent equation for the (u1, u2) components separately.
For that, we have to give an appropriate regularity for \phi so that it will not affect
the boundary condition over \Gamma N . Hence, we have to modify the blockwise component
 - \rho  - 1divT\{ \u C\cdot \} of A not to decrease the regularity when it is applied to \phi . More
precisely, we want to have the term  - \rho  - 1divT\{ (\lambda I + \u \eta  - 1 \u C) - 1 \u C(z\omega )\} \in L2

\rho (\Omega ) which
is the term of a component of the inhomogeneous term of (4.4) equivalent to \lambda -equation
(4.1) given later in section 4. Therefore, we introduce AZ by modifying A as follows:

AZ := Z - 1AZ=

\left(   O Id O

\rho  - 1div [T\{ \u C(e[\cdot ] \u I)\} ] O  - \rho  - 1div [T\{ ( \u Cz)\cdot \} ]
z - 1\u \eta  - 1\{ \u C(e[\cdot ] \u I)\} O  - z - 1\u \eta  - 1[( \u Cz)\cdot ]

\right)   ,(3.4)

where

Z :=

\left(  Id O O
O Id O
O O z

\right)  ,(3.5)

z= \zeta \u I with

\zeta := ( - \Delta ) - 1/2 : L2(\Omega )
\sim  - \rightarrow H1

0 (\Omega ).

Here \Delta is the Laplace operator on \Omega supplemented with the Dirichlet boundary con-
dition on \partial \Omega and H1

0 (\Omega ) := \{ \phi z \in H1(\Omega ) : \phi 
\bigm| \bigm| 
\partial \Omega 

= 0\} .
Our immediate challenge is to show that AZ generates a group on the Hilbert

space WZ = S\infty \times L2(\Omega ) given as the direct product of the Hilbert spaces S\infty :=
K(\Omega )\times L2

\rho (\Omega ) and L
2(\Omega ). Here, K(\Omega ) := \{ v1 \in H1(\Omega ) : v1 = 0 in \Omega \} , L2

\rho (\Omega ) :=L2(\Omega )
and the inner products are as follows:\left\{   ( , )WZ

:= ( , )S\infty + ( , ),

(V,V \prime )S\infty := (C\nabla v1,\nabla v\prime 1) + (v2, v
\prime 
2)\rho for V = (v1, v2)

t, V \prime = (v\prime 1, v
\prime 
2)

t \in S\infty 

(3.6)

with C :=
\sum n
j=1Cj , L

2(\Omega )-inner product ( , ), and L2
\rho (\Omega )-inner product (v2, v

\prime 
2)\rho =\int 

\Omega 
v2 \=v\prime 2\rho dx for v2, v

\prime 
2 \in L2

\rho (\Omega ). Then, domain D(AZ) of AZ is given as

D(AZ) := \{ V \in WZ :AZV \in \scrL 2(\Omega )\} (3.7)

with \scrL 2(\Omega ) := L2
\rho (\Omega )\times L2(\Omega )\times L2(\Omega ). Also, the postponed definition of the domain

D(A) is given as

D(A) := \{ U \in W : AU \in \scrL 2(\Omega )\} ,(3.8)

where W := S\infty \times H1
0 (\Omega ) equipped with the inner product ( , )W := ( , )S\infty +

( , )H1
0 (\Omega ), and ( , )H1

0 (\Omega ) denotes the H
1
0 (\Omega )-inner product.

To see the mentioned generation of a group based on the Hille--Yoshida theorem
[11], [14], we need to prove that AZ is a densely defined closed operator on WZ with
the estimate

\| (\lambda I  - AZ)
 - 1\| \leq (| \lambda |  - \beta ) - 1, | \lambda | >\beta ,
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RESOLVENT ESTIMATES FOR VISCOELASTIC SYSTEMS 5789

for the resolvent (\lambda I - AZ) - 1 with an appropriate constant \beta > 0. Here \| \cdot \| is the op-
erator norm for the bounded linear operator (\lambda I - AZ) - 1 onWZ , and I is the identity
operator. Here, we have used the following convention for the notation I. That is,
even though the I here is the multiplication operator by the (n+2)d\times (n+2)d identity
matrix, we just write this operator as I. This convention will be used for the resolvent
and the associated \lambda -equation (see (4.1) given just below) in the rest of this paper.

4. Resolvent estimate. To analyze the resolvent (\lambda I  - AZ)
 - 1, consider the

\lambda -equation

(\lambda I  - AZ)V = F,(4.1)

where V = (v1, v2, \phi z)
t \in D(AZ), F = (f1, f2, \omega )

t \in \scrL 2(\Omega ).
The componentwise expression of (4.1) is given as\left\{       

\lambda v1  - v2 = f1,

\lambda v2  - \rho  - 1div [T\{ \u C(e[v1] \u I)\} ] + \rho  - 1div [T\{ ( \u Cz)\phi z\} ] = f2,

\lambda \phi z  - z - 1\u \eta  - 1\{ \u C(e[v1] \u I)\} + z - 1\u \eta  - 1[( \u Cz)\phi z] = \omega .

(4.2)

Substituting (v1, v2, \phi z)
t = (u1, u2, z

 - 1\phi )t, that is, U = (u1, u2, \phi )
t = ZV , a computa-

tion yields \left\{             

\lambda u1 = u2 + f1,

\lambda u2 = \lambda \rho  - 1divT\{ (\lambda I + \u \eta  - 1 \u C) - 1 \u C (e[u1] \u I)\} 

 - \rho  - 1divT\{ (\lambda I + \u \eta  - 1 \u C) - 1 \u C(z\omega )\} + f2,

\lambda \phi = \lambda (\lambda I + \u \eta  - 1 \u C) - 1[\u \eta  - 1\{ \u C(e[u1] \u I)\} + z\omega ],

(4.3)

which can be written in the matrix form

(\lambda I  - \~A)U = (f1, f2  - \rho  - 1divT\{ (\lambda I + \u \eta  - 1 \u C) - 1 \u C(z\omega )\} , \lambda (\lambda I + \u \eta  - 1 \u C) - 1(z\omega ))t,(4.4)

with

\~A :=

\left(    
O Id O

\lambda \rho  - 1divT\{ (\lambda I + \u \eta  - 1 \u C) - 1( \u Ce[\cdot ] \u I)\} O O

\lambda (\lambda I + \u \eta  - 1 \u C) - 1\u \eta  - 1\{ \u C(e[\cdot ] \u I)\} O O

\right)    .(4.5)

By U = ZV , it is clear that (4.1) is equivalent to

(\lambda I  - A)U = ZF.(4.6)

Further, we will see later that (4.4) is equivalent to (4.6). Note that the boundary con-
dition over \Gamma N of (2.2) is always able to express using the (2,1)-blockwise component
of A, AZ , \~A.

To see (4.4) is equivalent to (4.6), observe that the componentwise description
(4.6) is given as \left\{     

\lambda u1 = u2 + f1,

\lambda u2 = \rho  - 1divT\{ \u C(e[u1] \u I  - \phi )\} + f2,

\lambda \phi = \u \eta  - 1\{ \u C(e[u1] \u I  - \phi )\} + z\omega .

(4.7)
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5790 M. DE HOOP, M. KIMURA, C.-L. LIN, AND G. NAKAMURA

Then, using the third equation of (4.7), we find that

\phi = (\lambda I + \u \eta  - 1 \u C) - 1[\u \eta  - 1\{ \u C(e[u1] \u I)\} + z\omega ].(4.8)

Combining (4.7) and (4.8), we obtain

\lambda 2u1 = \lambda u2 + \lambda f1

= \rho  - 1divT\{ \u C(e[u1] \u I)\}  - \rho  - 1divT\{ \u C\phi \} + f2 + \lambda f1

= \rho  - 1divT\{ \u C(e[u1] \u I)\} + f2 + \lambda f1

 - \rho  - 1divT\{ \u C(\lambda I + \u \eta  - 1 \u C) - 1[\u \eta  - 1\{ \u C(e[u1] \u I)\} + z\omega ]\} .

(4.9)

Now, observe that

\u C(e[u1] \u I) - \u C(\lambda I + \u \eta  - 1 \u C) - 1 \u \eta  - 1 \u C(e[u1] \u I)

= \u C(e[u1] \u I) - \u \eta  - 1 \u C(\lambda I + \u \eta  - 1 \u C) - 1 \u C(e[u1] \u I)

= [I  - \u \eta  - 1 \u C(\lambda I + \u \eta  - 1 \u C) - 1] \u C (e[u1] \u I)

= \lambda (\lambda I + \u \eta  - 1 \u C) - 1 \u C (e[u1] \u I).

(4.10)

Combining (4.9) and (4.10), we have

\lambda u2 = \lambda \rho  - 1divT\{ (\lambda I + \u \eta  - 1 \u C) - 1 \u C (e[u1] \u I)\} 
 - \rho  - 1divT\{ \u C(\lambda I + \u \eta  - 1 \u C) - 1z\omega \} + f2

= \lambda \rho  - 1divT\{ (\lambda I + \u \eta  - 1 \u C) - 1 \u C (e[u1] \u I)\} 
 - \rho  - 1divT\{ (\lambda I + \u \eta  - 1 \u C) - 1 \u Cz\omega \} + f2.

(4.11)

This immediately implies (4.4). Since this argument is reversible, we have the equiv-
alence.

We note that the rightmost column of \~A in the blockwise sense is zero. We will
later appreciate that this form of \~A implies that 0 is not in the resolvent set of AZ .

The remainder of this section is devoted to proving that AZ generates a C0-
semigroup for both t \geq 0 and t \leq 0. This is accomplished by proving the following
estimate upon analyzing the relevant \lambda -equation.

Proposition 4.1. There exists a constant \beta > 0 such that the resolvent exists
for \lambda satisfying | \lambda | >\beta , and it satisfies the estimate

\| (\lambda I  - AZ)
 - 1\| \leq (| \lambda |  - \beta ) - 1, | \lambda | >\beta ,(4.12)

where \| \cdot \| is the operator norm on the space WZ .

Proof. The proof is quite long and it is divided into two cases: \lambda > 0 and \lambda < 0.
The proofs for both cases are similar. So, after introducing some notations, we will
provide some brief orientation for the proof for the case \lambda > 0. Let W\lambda := S\lambda \times H1

0 (\Omega )
with S\lambda := K(\Omega ) \times L2

\rho (\Omega ). S\lambda is a Hilbert space equipped with the inner product
(\cdot , \cdot )S\lambda 

depending on \lambda and given as

(V,V \prime )S\lambda 
:= (B\lambda \nabla v1,\nabla v\prime 1) + (v2, v

\prime 
2)\rho , V = (v1, v2)

t, V \prime = (v\prime 1, v
\prime 
2)

t,(4.13)

where

B\lambda \nabla v1 := \lambda T\{ (\lambda I + \u \eta  - 1 \u C) - 1( \u Ce[v1] \u I)\} .
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RESOLVENT ESTIMATES FOR VISCOELASTIC SYSTEMS 5791

In the further analysis, we will consider the asymptotic limits, B\infty and S\infty , of
B\lambda and S\lambda , which are defined via B\infty = lim\lambda \rightarrow \infty B\lambda and the induced inner product.
They are

B\infty \nabla v1 =T\{ ( \u Ce[v1] \u I)\} =C\nabla v1(4.14)

and the space W which we defined before. Also, let \~Au be the upper left submatrix
of \~A, which has the form

\~Au :=

\biggl( 
O Id

\lambda \rho  - 1divT\{ (\lambda I + \u \eta  - 1 \u C) - 1( \u Ce[\cdot ] \u I)\} O

\biggr) 
=

\biggl( 
O Id

\rho  - 1div(B\lambda \nabla [\cdot ]) O

\biggr) 
.(4.15)

Here, we remark that special inner product (4.13) handles the boundary condition on
\Gamma N for the operator \~Au.

Now, for the case \lambda > 0, we briefly give an orientation to the subsequent argu-
ments. Having the equivalence relationship between three equations (4.1), (4.4), (4.6),
the arguments are given in the following three steps:

(i) Show the existence of the resolvent (\lambda I  - \~Au)
 - 1 and prove that it satisfies

the Hille--Yoshida type estimate:

\| (\lambda I  - \~Au)
 - 1\| \leq \lambda  - 1, \lambda > 0,

where the norm \| \| is the operator norm on S\lambda .
(ii) Lift this up to show the existence of the resolvent (\lambda I  - \~A) - 1 for \lambda > 0 and

the estimate

\| U\| W\lambda 
\leq (\lambda  - m) - 1\| ZF\| W\lambda 

, \lambda >m,

for some m> 0.
(iii) By showing the estimates between the norms \| \| W\lambda 

and \| \| W , the above
estimate in (ii) holds with respect to the norm \| \| W for larger \lambda . Then, this
immediately implies (4.12).

Returning to continue the proof, we consider the equation \~AuYu = G with G =
( \^f1, \^f2)

t and Yu = (y1, y2)
t, which is equivalent to y2 = \^f1, \rho 

 - 1div(B\lambda \nabla y1) = \^f2. The
second equation is related to the Neumann boundary condition on \Gamma N . In terms of
the continuous sesquilinear form

a\prime (y1, z) :=

\int 
\Omega 

(B\lambda \nabla y1)\nabla z, y1, z \in K(\Omega ),(4.16)

we consider the linear map K(\Omega ) \ni y1 \rightarrow \rho  - 1div(B\lambda \nabla y1) as the bounded linear
operator A\prime :K(\Omega )\rightarrow K(\Omega )\prime defined by

a\prime (y1, z) = (A\prime y1, z)\rho , y1, z \in K(\Omega ),

where K(\Omega )\prime is the dual space of K(\Omega ) with respect to the inner product (\cdot , \cdot )\rho .
Furthermore, we let A : S\lambda \rightarrow S\prime 

\lambda be the operator defined by replacing the left lower
block of the operator matrix in (4.15) by A\prime , that is,

A=

\biggl( 
O Id
A\prime O

\biggr) 
,

where S\prime 
\lambda is the dual space of S\lambda with respect to the L2(\Omega )\times L2

\rho (\Omega )-inner product.

Then we identify \~Au with A| D( \~Au)
, with

D( \~Au) := \{ Yu = (y1, y2)
t \in S\lambda : AYu \in L2(\Omega )\times L2

\rho (\Omega )\} .
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5792 M. DE HOOP, M. KIMURA, C.-L. LIN, AND G. NAKAMURA

By the coercivity of the sesquilinear form (4.16) due to Korn's inequality [4], we have

D( \~Au) = S\lambda [16, Chapter 3, section 2].
An elementary calculation leads to

( \~AuYu, Yu)S\lambda 
= (B\lambda \nabla y2,\nabla y1) + (div\{ B\lambda \nabla y1\} , y2)
= - (y2,div\{ B\lambda \nabla y1\} ) + (div\{ B\lambda \nabla y1\} , y2)
= - \{ (y2,div\{ B\lambda \nabla y1\} ) - (div\{ B\lambda \nabla y1\} , y2)\} 
= - (Yu, \~AuYu)S\lambda 

(4.17)

for Yu \in D( \~Au). Using this equality, we obtain for \lambda > 0 and Yu \in D( \~Au) the estimate

\| (\lambda I  - \~Au)Yu\| 2S\lambda 
= ((\lambda I  - \~Au)Yu, (\lambda I  - \~Au)Yu)S\lambda 

= \lambda 2\| Yu\| 2S\lambda 
+ \| \~AuYu\| 2S\lambda 

\geq \lambda 2\| Yu\| 2S\lambda 
.

(4.18)

The case \lambda > 0. For any \lambda > 0, the bijectivity of the map

\lambda I  - \~Au :D( \~Au)\rightarrow S\lambda 

can be shown using the unique solvability of the aforementioned variational problem
by recalling the Korn inequality. Hence, in terms of the operator norm, (4.18) implies

\| (\lambda I  - \~Au)
 - 1\| \leq \lambda  - 1, \lambda > 0.(4.19)

Now, we lift \~Au to W\lambda := S\lambda \times H1
0 (\Omega ) to define an operator which is nothing but

\~A, which clearly has D( \~A) =W\lambda , where D( \~A) is the domain of \~A simply given as

D( \~A) :=D( \~Au)\times H1
0 (\Omega ).

For any \lambda > 0,

\lambda I  - \~A :D( \~A)\rightarrow W\lambda 

is bijective.
Combining the relevant components of (4.3) and (4.19), we find that

\| (u1, u2)\| S\lambda 
\leq \lambda  - 1\| (f1, f2  - \rho  - 1divT\{ (\lambda I + \u \eta  - 1 \u C) - 1 \u C(z\omega )\} )\| S\lambda 

\leq \lambda  - 1\| (f1, f2)\| S\lambda 
+m1\lambda 

 - 2\| z\omega \| H1
0 (\Omega )

(4.20)

for some positive constant m1. With the third equation of (4.3) and (4.20), we get

\| \phi \| H1
0 (\Omega ) = \| (\lambda I + \u \eta  - 1 \u C) - 1[\u \eta  - 1\{ \u C(e[u1] \u I)\} + z\omega ]\| H1

0 (\Omega )

\leq m2\lambda 
 - 1\| (u1, u2)\| S\lambda 

+ \lambda  - 1(1 +m3\lambda 
 - 1)\| z\omega \| H1

0 (\Omega )

\leq m4\lambda 
 - 2\| (f1, f2)\| S\lambda 

+ \lambda  - 1(1 +m5\lambda 
 - 1)\| z\omega \| H1

0 (\Omega ),

(4.21)

where m2,m3,m4,m5 are positive constants chosen appropriately.
We introduce m according to

m :=m1 +m4 +m5.(4.22)
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RESOLVENT ESTIMATES FOR VISCOELASTIC SYSTEMS 5793

For \lambda >m, we have the elementary estimate

\lambda  - 1 +m\lambda  - 2 = (\lambda  - m) - 1(\lambda  - m)\lambda  - 1(1 +m\lambda  - 1)

= (\lambda  - m) - 1(1 - m\lambda  - 1)(1 +m\lambda  - 1)

= (\lambda  - m) - 1(1 - m2\lambda  - 2)

\leq (\lambda  - m) - 1.

(4.23)

Combining (4.20), (4.21), and (4.23), we then obtain

\| U\| 2W\lambda 
\leq \lambda  - 2(1 +m4\lambda 

 - 1)2\| (f1, f2)\| 2S\lambda 
+ \lambda  - 2(1 +m1\lambda 

 - 1 +m5\lambda 
 - 1)2\| z\omega \| 2H1

0 (\Omega )

\leq (\lambda  - 1 +m\lambda  - 2)2\| (f1, f2)\| 2S\lambda 
+ (\lambda  - 1 +m\lambda  - 2)2\| z\omega \| 2H1

0 (\Omega )

\leq (\lambda  - 1 +m\lambda  - 2)2\| ZF\| 2W\lambda 

\leq (\lambda  - m) - 2\| ZF\| 2W\lambda 
,

(4.24)

where \| \cdot \| 2W\lambda 
= \| \cdot \| 2S\lambda 

+ \| \cdot \| 2
H1

0 (\Omega )
.

However, the norm of W\lambda depends on \lambda . To proceed, we need an estimate similar
to (4.24) with respect to a norm independent on \lambda . To this end, we consider the
asymptotic behavior of the norm of W\lambda as | \lambda | \rightarrow \infty .

We revisit (4.13) and note that the asymptotic behavior of B\lambda determines how
the desired estimate can be obtained. We have

(B\lambda \nabla v1,\nabla v1) = (\lambda T\{ (\lambda I + \u \eta  - 1 \u C) - 1( \u Ce[v1] \u I)\} ,\nabla v1)
= (T\{ (I + \lambda  - 1\u \eta  - 1 \u C) - 1( \u Ce[v1] \u I)\} ,\nabla v1)
\leq (T\{ \u Ce[v1] \u I\} ,\nabla v1) + l1\lambda 

 - 1(T\{ \u Ce[v1] \u I\} ,\nabla v1)
\leq (C\nabla v1,\nabla v1) + l2\lambda 

 - 1\| \nabla y1\| 2L2(\Omega )

(4.25)

with positive constants l1, l2. Then, by (3.6), (3.8), and (4.25), we obtain the estimates

\| Y \| 2W \leq (1 + k1\lambda 
 - 1)\| Y \| 2W\lambda 

,

\| Y \| 2W\lambda 
\leq (1 + k2\lambda 

 - 1)\| Y \| 2W ,
(4.26)

where k1, k2 are suitable positive constants. Combining (4.24) and (4.26), we have,
for \lambda >m\geq 1, that

\| U\| 2W \leq (1 + k1\lambda 
 - 1)\| U\| 2W\lambda 

\leq (1 + k1\lambda 
 - 1)(\lambda  - m) - 2\| ZF\| 2W\lambda 

\leq (1 + k1\lambda 
 - 1)(\lambda  - m) - 2(1 + k2\lambda 

 - 1)\| ZF\| 2W
\leq (1 + k\lambda  - 1)(\lambda  - m) - 2\| ZF\| 2W ,

(4.27)

where k is given by

k := 1 + k1 + k2 + k1k2.(4.28)

For \lambda >m+ k, we have the elementary estimate,

(1 + k\lambda  - 1)(\lambda  - m) - 2 \leq (1 + k(\lambda  - m) - 1)(\lambda  - m) - 2

= (\lambda  - m - k) - 2(\lambda  - m - k)2(\lambda  - m) - 2(1 + k(\lambda  - m) - 1)

= (\lambda  - m - k) - 2(1 - k(\lambda  - m) - 1)2(1 + k(\lambda  - m) - 1)

\leq (\lambda  - m - k) - 2(1 - k(\lambda  - m) - 1)(1 + k(\lambda  - m) - 1)

\leq (\lambda  - m - k) - 2.

(4.29)
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5794 M. DE HOOP, M. KIMURA, C.-L. LIN, AND G. NAKAMURA

Combining (4.27) and (4.29), we have that for \lambda >m+k, the following estimate holds:

\| U\| 2W \leq (\lambda  - m - k) - 2\| ZF\| 2W .(4.30)

In terms of V , (4.30) is given as

\| V \| WZ
\leq (\lambda  - m - k) - 1\| F\| WZ

, \lambda >m+ k.(4.31)

The case \lambda < 0. It is clear that if \lambda \leq  - l0 for a large enough l0 > 0, then (V,V \prime )S\lambda 

in (4.13) is a norm. We repeat the arguments from (4.13) to (4.18), and conclude
having the estimate

\| (\lambda I  - \~Au)
 - 1\| \leq ( - \lambda ) - 1, \lambda \leq  - l0,(4.32)

in terms of the operator norm on S\lambda . Combining (4.4) and (4.32), we have for \lambda \leq  - l1,
l1 sufficiently large,

\| (u1, u2)\| S\lambda 
\leq ( - \lambda ) - 1\| (f1, f2  - \rho  - 1divT\{ (\lambda I + \u \eta  - 1 \u C) - 1 \u C(z\omega )\} )\| S\lambda 

\leq ( - \lambda ) - 1\| (f1, f2)\| S\lambda 
+m1\lambda 

 - 2\| z\omega \| H1
0 (\Omega );

(4.33)

here, m1 \geq l1 > 0 in (4.20) large so that they can be used here. With the third
equation of (4.3) and (4.33), we obtain, for \lambda \leq  - l1,

\| \phi \| H1
0 (\Omega ) = \| (\lambda I + \u \eta  - 1 \u C) - 1[\u \eta  - 1\{ \u C(e[u1] \u I)\} + z\omega ]\| H1

0 (\Omega )

\leq m2( - \lambda ) - 1\| (u1, u2)\| S\lambda 
+ ( - \lambda ) - 1(1 +m3( - \lambda ) - 1)\| z\omega \| H1

0 (\Omega )

\leq m4\lambda 
 - 2\| (f1, f2)\| S\lambda 

+ ( - \lambda ) - 1(1 +m5( - \lambda ) - 1)\| z\omega \| H1
0 (\Omega ).

(4.34)

We have taken m2,m3,m4,m5 in (4.21) large to be able to use a common notation.
We then repeat the arguments from (4.23) to (4.31) and get

\| V \| WZ
\leq ( - \lambda  - m - k) - 1\| F\| WZ

,  - \lambda >m+ k.(4.35)

Combining (4.31) and (4.35), we find that

\| V \| WZ
\leq (| \lambda |  - m - k) - 1\| F\| WZ

, | \lambda | >m+ k.(4.36)

Therefore, we obtained (4.12) for AZ with \beta :=m+ k.

5. \bfitC 0-group for the AD system. In this section, based on the resolvent es-
timates in the previous section, we will discuss the generation of a C0-group for the
AD system. For that, we first recall the following standard theorem (see Corollary of
Theorem 5.6 on page 296 of [11] or Theorem 6.3 on page 23 of [14]).

Theorem 5.1. Let \scrA be a closed operator on a Banach space X having a dense
domain of definition in X. If there exists \beta \geq 0 such that for | \lambda | > \beta , the resolvent
(\lambda I  - \scrA ) - 1 of \scrA exists and satisfies

\| (\lambda I  - \scrA ) - 1\| \leq (| \lambda |  - \beta ) - 1, | \lambda | >\beta ,(5.1)

then \scrA generates a C0-group on X.

With Theorem 5.1, the resolvent estimate in the previous section implies the
following.
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RESOLVENT ESTIMATES FOR VISCOELASTIC SYSTEMS 5795

Theorem 5.2. AZ generates a C0-group on WZ and \rho (AZ) \supset \{ \lambda \in R : | \lambda | > \beta \} ,
where \rho (AZ) denotes the resolvent set of AZ and \beta =m+ k with m and k defined as
(4.22) and (4.28), respectively.

Abstract Cauchy problem. As an immediate consequence of this theorem, we ob-
tain the following theorem.

Theorem 5.3.
(i) Let F \in C1([0,\infty );WZ) and consider the following Cauchy problem:\left\{   

d

dt
V (t) =AZV (t) + F (t), t > 0,

V (0) = V 0 \in D(AZ).
(5.2)

Then, there exists a unique strong solution V = V (t) \in C0([0,\infty );WZ) \cap 
C1((0,\infty );WZ) of (5.2). Here, in addition to the usual conditions for the
solution of (5.2), the strong solution V (t) has to be differentiable almost ev-
erywhere in (0,\infty ) and dV (t)/dt\in L1((0, T );WZ) for each T > 0.

(ii) Concerning the regularity of the solution of (5.2), let F \in Cm+1([0,\infty );WZ)
for m \in N and assume that the condition V \ell \in D(AZ), 1\leq l \leq m, referred to
as the compatibility condition of order m, holds. Here, the V \ell 's are defined
as

V \ell :=AZV
l - 1 + F (l - 1)(0) with F (l - 1) :=

dl - 1F

dtl - 1
.

Consider

V (t) :=
m - 1\sum 
l=0

tl

l!
V l +

\int t

0

(t - s)m - 1

(m - 1)!
\~V (s)ds,(5.3)

where \~V \in C0([0,\infty );WZ) \cap C1((0,\infty );WZ) is the unique strong solution to
the Cauchy problem\left\{   

d

dt
\~V (t) =AZ \~V (t) + F (m)(t), t > 0,

\~V (0) = V m.
(5.4)

Then, V = V (t) \in Cm([0,\infty );WZ) \cap Cm+1((0,\infty );WZ) is the unique strong
solution to (5.2) in the space C0([0,\infty );WZ)\cap C1((0,\infty );WZ).

(iii) Statements (i) and (ii) hold upon replacing t > 0, [0,\infty ), and (0,\infty ) by t < 0,
( - \infty ,0], and ( - \infty ,0), respectively. Furthermore, the two solutions in the
above two different intervals match at t = 0 up to mth order derivatives if
F (t) \in Cm+1(R;WZ), and this F (t) together with V 0 \in D(AZ) satisfies the
compatibility condition of order m. Hence, (ii) implies the existence of a
unique strong solution V \in Cm(R;WZ) to (5.2).

We refer to Theorem 5.6 of [11] and section 4.2 of [14] for the study of the abstract
Cauchy problem and the generation of a C0-semigroup; we mention section 1.6 [14],
where the relation between the C0-semigroup and the C0-group is established. As
for (5.3), there is a similar formula in [2, 6]. By quite a formal argument, except
for verifying the commutativity of AZ and

\int t
0

\cdot ds, it follows that V (t) given by
(5.3) is the unique solution to (5.2) in the space C0([0,\infty );WZ) \cap C1((0,\infty );WZ).
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5796 M. DE HOOP, M. KIMURA, C.-L. LIN, AND G. NAKAMURA

The verification of the mentioned commutativity can be shown by using that AZ is a
closed operator.

We conclude this section by showing that 0 \not \in \rho (AZ). This yields an obstruction
to guaranteeing decaying properties of the solutions, which would require that \{ i\mu :
\mu \in R\} \subset \rho (AZ). By relation (3.4) between AZ and A via the isomorphism Z, we have
\rho (AZ) = \rho (A). Hence, it is enough to show 0 \not \in \rho (A). Let U \in W satisfy AU = 0.
Then, using (4.7), we have\left\{       

u2 = 0,

divT\{ \u C (e[u1] \u I)\}  - divT\{ \u C\phi \} = 0,

\u C(e[u1] \u I) - \u C\phi = 0.

(5.5)

Now, let 0 \not = \phi \in L2(\Omega ) and search for a u1 that satisfies e[u1] \u I = \phi . Then u1 is given
as the unique nonzero solution u1 \in K(\Omega ) of the following boundary value problem:\left\{       

divT\{ \u C(e[u1] \u I\} =divT\{ \u C\phi \} ,

u1 = 0 on \Gamma D,

(T\{ \u C(e[u1] \u I)\} )\nu = (T\{ \u C\phi \} )\nu on \Gamma N .

(5.6)

We note here that the above boundary condition on \Gamma N comes from the boundary
condition \sigma [u1, \phi ]\nu = 0 on \Gamma N , which is consistent with the occurrence of the inhomo-
geneous term in the first equation of (5.6). Hence, there exists 0 \not = U = (u1,0, \phi )

t \in 
D(A), AU = 0. As a consequence, we have 0 \not \in \rho (A).

6. Reduced system, \bfitC 0-group, and abstract Cauchy problem. To miti-
gate the fact that 0 \not \in \rho (A), we introduce a reduction of the original system. We then
establish that this system generates a C0-group.

The reduced system. We let v= \partial tu and \psi = e[u] \u I  - \phi . We observe that (2.2)
contains the following closed subsystem:\left\{             

\partial tv= \rho  - 1divT\{ \u C\psi \} ,

\partial t\psi = - \u \eta  - 1 \u C\psi + e[v] \u I,

v= 0 on \Gamma D, (T\{ \u C\psi \} )\nu = 0 on \Gamma N ,

(v,\psi ) = (v0, e[u0] \u I  - \phi 0) at t= 0.

(6.1)

Remark 6.1. By assuming that the initial value for u in (6.1) is u0, we obtain a
solution (u, v,\phi ) of (2.2) from the relation v= \partial tu, \psi = e[u] \u I  - \phi .

Next, we rewrite this initial boundary value problem (6.1) as an abstract Cauchy
problem. To begin with, we let

L\cdot =

\Biggl( 
0 \rho  - 1divT\{ \u C\cdot \} 

e[\cdot ] \u I  - \u \eta  - 1 \u C\cdot 

\Biggr) 
(6.2)

and its domain D(L) be given as

D(L) :=

\biggl\{ 
(v,\psi )\in K(\Omega )\times L2(\Omega ) :L

\biggl( 
v
\psi 

\biggr) 
\in L2

\rho (\Omega )\times L2(\Omega )

\biggr\} 
.
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RESOLVENT ESTIMATES FOR VISCOELASTIC SYSTEMS 5797

We equip Hilbert space H :=L2
\rho (\Omega )\times L2(\Omega ) with the inner product

(V,V \prime )H := (v, v\prime )\rho + (\psi ,\psi \prime ) \u C(6.3)

for V = (v,\psi )t, V \prime = (v\prime ,\psi \prime )t, where (\psi ,\psi \prime ) \u C := ( \u C\psi ,\psi \prime ) for \psi , \psi \prime \in L2(\Omega ). This
inner product is equivalent to the standard inner product of L2

\rho (\Omega )\times L2(\Omega ). It can

be shown that D(L) =H and L is a closed operator in H in a way similar to how this
was done for \~Au. Then, the abstract Cauchy problem takes the form\left\{     \partial t

\Biggl( 
v

\psi 

\Biggr) 
=L

\Biggl( 
v

\psi 

\Biggr) 
,

(v,\psi ) = (v0,\psi 0) at t= 0,

(6.4)

where \psi 0 := e[u0] \u I  - \phi 0.
Next, we show that L generates a semigroup. To begin with, as we did in section 4,

we consider the \lambda -equation associated with the first equation of (6.4):

(\lambda I  - L)

\biggl( 
v
\psi 

\biggr) 
=

\biggl( 
f
\omega 

\biggr) 
\in H with \lambda = \sigma + i\mu , \sigma , \mu \in R.(6.5)

This equation is equivalent to the system\Biggl\{ 
\lambda v= \rho  - 1divT\{ \u C\psi \} + f,

\lambda \psi = - \u \eta  - 1 \u C\psi + e[v] \u I + \omega ,
(6.6)

supplemented with the boundary condition given in (6.1). Since \eta  - 1
j Cj > 0 for 1 \leq 

j \leq n, there exists a \delta > 0 such that

\sigma I + \eta  - 1
j Cj \geq \delta , 1\leq j \leq n for \sigma \geq  - \delta 0 with a constant \delta 0 > 0.(6.7)

For given v, \psi can be obtained from the second equation of (6.6) based on (6.7).
Substituting the result into the first equation of (6.6) gives

\lambda v= \rho  - 1divT\{ \u C(\lambda \u I + \u \eta  - 1 \u C) - 1(e[v] \u I)\} + \rho  - 1divT\{ \u C(\lambda \u I + \u \eta  - 1 \u C) - 1\omega \} + f.(6.8)

The boundary condition, T\{ ( \u C\psi )\} \nu = 0 on \Gamma N , becomes

\{ T(\{ \u C(\lambda \u I + \u \eta  - 1 \u C) - 1(e[v] \u I)\} )\} \nu = - T\{ \u C(\lambda \u I + \u \eta  - 1 \u C) - 1\omega \} \nu on \Gamma N .(6.9)

Here, we note the following identity: For any positive symmetric tensor K,

(i\mu I +K) - 1 =Q+ iR,

Q=K - 1  - \mu 2K - 1(\mu 2I +K2) - 1, R= - \mu (\mu 2I +K2) - 1.
(6.10)

Applying this identity to (\lambda \u I + \u \eta  - 1 \u C) - 1 = (i\mu \u I +K) - 1 with K = \sigma \u I + \u \eta  - 1 \u C leads to

\lambda v= \rho  - 1divT\{ \scrI (e[v] \u I)\} + \rho  - 1divT\{ \scrI \omega \} + f,(6.11)

where \scrI is given by

\scrI := (K  - i\mu \u I)(\mu 2 \u I +K2) - 1 \u C.(6.12)
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5798 M. DE HOOP, M. KIMURA, C.-L. LIN, AND G. NAKAMURA

Variational form. Associated to (6.11), we introduce a bilinear form, B(v,w),
on K(\Omega ) as follows:

B(v,w) := (T\{ \scrI (e[v] \u I)\} , e[w]) + \lambda (v,w)\rho , v,w \in K(\Omega ).(6.13)

Then, the variational problem which is equivalent to the boundary value problem for
(6.6) with the aforementioned boundary conditions is given by

B(v,w) = (divT\{ \scrI \omega \} ,w) + (f,w)\rho for all w \in K(\Omega ).(6.14)

Now, we split the bilinear form B into two parts upon splitting \scrI into its real and
imaginary parts,

\scrI =K(\mu 2 \u I +K2) - 1 \u C + i\{  - \mu (\mu 2 \u I +K2) - 1 \u C\} .(6.15)

That is,

B =B1 + iB2,

B1(v,w) = (T\{ K(\mu 2 \u I +K2) - 1 \u C(e[v] \u I)\} , e[w]) + \sigma (v,w)\rho ,

B2(v,w) = - \mu (T\{ (\mu 2 \u I +K2) - 1 \u C(e[v] \u I), e[w]) + \mu (v,w)\rho .

(6.16)

Here, B1 and B2 are both continuous symmetric bilinear forms on K(\Omega ).
Using that

T\{ K(\mu 2 \u I +K2) - 1 \u C(e[v] \u I)\} =
n\sum 
j=0

CjKj(\mu 
2I +K2

j )
 - 1e[v],(6.17)

where each Kj is given by Kj = \sigma I+\eta  - 1
j Cj , and (6.7), it follows that B1 is coercive for

such \sigma due to the Korn inequality. Hence, the above variational problem is uniquely
solvable by the usual argument [11, Chapter 3, section 9].

Generation of contractive \bfitC 0-group for \bfitL . We begin with the following.

Lemma 6.2. Let L be given by (6.2). The following holds true:\bigm\| \bigm\| \bigm\| \bigm\| (\lambda I  - L)

\biggl( 
v
\psi 

\biggr) \bigm\| \bigm\| \bigm\| \bigm\| 
H

\geq \lambda 

\bigm\| \bigm\| \bigm\| \bigm\| \biggl( v\psi 
\biggr) \bigm\| \bigm\| \bigm\| \bigm\| 

H

, \lambda > 0,

\biggl( 
v
\psi 

\biggr) 
\in D(L).(6.18)

Proof. For ( v\psi )\in D(L), we have\biggl( 
L

\biggl( 
v
\psi 

\biggr) 
,

\biggl( 
v
\psi 

\biggr) \biggr) 
H

= (\rho  - 1divT\{ \u C\psi \} , v)\rho + ( - \u \eta  - 1 \u C\psi + e[v] \u I,\psi ) \u C

= - (\psi , \u C(e[v] \u I)) - (\u \eta  - 1 \u C\psi ,\psi ) \u C + (e[v] \u I,\psi ) \u C ,

(6.19)

\biggl( \biggl( 
v
\psi 

\biggr) 
,L

\biggl( 
v
\psi 

\biggr) \biggr) 
H

= (v, \rho  - 1divT\{ \u C\psi \} )\rho + (\psi , - \u \eta  - 1 \u C\psi + e[v] \u I) \u C

= - ( \u C(e[v] \u I),\psi ) - (\u \eta  - 1 \u C\psi ,\psi ) \u C + (\psi ,e[v] \u I) \u C .

(6.20)

Combining (6.19) and (6.20), we find that\biggl( 
L

\biggl( 
v
\psi 

\biggr) 
,

\biggl( 
v
\psi 

\biggr) \biggr) 
H

+

\biggl( \biggl( 
v
\psi 

\biggr) 
,L

\biggl( 
v
\psi 

\biggr) \biggr) 
H

= - 2(\u \eta  - 1 \u C\psi ,\psi ) \u C \leq 0.(6.21)
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RESOLVENT ESTIMATES FOR VISCOELASTIC SYSTEMS 5799

Hence, for \lambda > 0, ( v\psi )\in D(L),\bigm\| \bigm\| \bigm\| \bigm\| (\lambda I  - L)

\biggl( 
v
\psi 

\biggr) \bigm\| \bigm\| \bigm\| \bigm\| 2
H

= \lambda 2
\bigm\| \bigm\| \bigm\| \bigm\| \biggl( v\psi 

\biggr) \bigm\| \bigm\| \bigm\| \bigm\| 2
H

+

\bigm\| \bigm\| \bigm\| \bigm\| L\biggl( v\psi 
\biggr) \bigm\| \bigm\| \bigm\| \bigm\| 2

H

 - \lambda 

\biggl( 
L

\biggl( 
v
\psi 

\biggr) 
,

\biggl( 
v
\psi 

\biggr) \biggr) 
H

 - \lambda 

\biggl( \biggl( 
v
\psi 

\biggr) 
,L

\biggl( 
v
\psi 

\biggr) \biggr) 
H

\geq \lambda 2
\bigm\| \bigm\| \bigm\| \bigm\| \biggl( v\psi 

\biggr) \bigm\| \bigm\| \bigm\| \bigm\| 2
H

.

(6.22)

Thus we have proved estimate (6.18).

Using the aforementioned solvability of the variational problem, we get the bijec-
tivity of the map \lambda I  - L : D(L) \rightarrow H for \lambda with Re\lambda > 0 and, hence, the resolvent
(\lambda I  - L) - 1 satisfies

\| (\lambda I  - L) - 1\| \leq \lambda  - 1, \lambda > 0,(6.23)

where \| \cdot \| is the operator norm on H. Furthermore, for the resolvent set \rho (L) of L,
we have the inclusion

\{ \sigma \geq  - \delta 0\} \subset \rho (L) for some \delta 0 > 0,(6.24)

where \delta 0 is the one given in (6.7). With these results and this observation, we formu-
late the following theorem.

Theorem 6.3. L generates a C0-semigroup, etL, of contraction on H and the
imaginary axis is in \rho (L).

Remark 6.4. It is possible to improve estimate (6.18). In fact, we have

\| (\lambda I  - L) - 1\| \leq (\lambda 2 + \varepsilon 2)
 - 1/2, \lambda > \beta ,(6.25)

for some \varepsilon 2 > 0 and \beta < 0.

Proof. Recalling (6.21), we modify estimate (6.22) as follows. We consider

L

\biggl( 
v
\psi 

\biggr) 
=

\biggl( 
g1
g2

\biggr) 
,(6.26)

which is equivalent to \Biggl\{ 
\rho  - 1divT\{ \u C\psi \} = g1,

 - \u \eta  - 1 \u C\psi + e[v] \u I = g2,
(6.27)

where g1 \in L2
\rho (\Omega ) and g2 \in L2(\Omega ). Then, from (6.27), we have

(\rho g1, v) = - (T\{ \u C\psi \} , e[v]) = (T( - \u \eta e[v] \u I + \u \eta g2), e[v]),

which is nothing but

 - (| \eta | e[v], e[v]) = - (T(\u \eta g2), e[v]) + (\rho g1, v).

Hence, by the positivity of | \eta | , we have

\varepsilon 1(\| v\| + \| \nabla v\| )\leq \| g1\| \rho + \| g2\| (6.28)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

11
/1

5/
24

 to
 1

68
.5

.8
.0

 . 
R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



5800 M. DE HOOP, M. KIMURA, C.-L. LIN, AND G. NAKAMURA

for some \varepsilon 1 > 0, where \| \cdot \| denotes the L2(\Omega )-norm. From this estimate and the
second equation of (6.27), we conclude that

2\varepsilon 2\| (v,\psi )t\| 2H \leq \| (g1, g2)t\| 2H(6.29)

for some \varepsilon 2 > 0. Hence, we have obtained\bigm\| \bigm\| \bigm\| \bigm\| L\biggl( v\psi 
\biggr) \bigm\| \bigm\| \bigm\| \bigm\| 2

H

\geq 2\varepsilon 2

\bigm\| \bigm\| \bigm\| \bigm\| \biggl( v\psi 
\biggr) \bigm\| \bigm\| \bigm\| \bigm\| 2

H

.(6.30)

Now, we choose a constant \beta < 0 such that 2\lambda (\u \eta  - 1 \u C\psi ,\psi )+ \varepsilon 2\| \psi \| 2 \geq 0 for \lambda > \beta .
Then, using (6.21), we have for \lambda > \beta that\bigm\| \bigm\| \bigm\| \bigm\| (\lambda I  - L)

\biggl( 
v
\psi 

\biggr) \bigm\| \bigm\| \bigm\| \bigm\| 2
H

= \lambda 2
\bigm\| \bigm\| \bigm\| \bigm\| \biggl( v\psi 

\biggr) \bigm\| \bigm\| \bigm\| \bigm\| 2
H

+

\bigm\| \bigm\| \bigm\| \bigm\| L\biggl( v\psi 
\biggr) \bigm\| \bigm\| \bigm\| \bigm\| 2

H

 - \lambda 

\biggl( 
L

\biggl( 
v
\psi 

\biggr) 
,

\biggl( 
v
\psi 

\biggr) \biggr) 
H

 - \lambda 

\biggl( \biggl( 
v
\psi 

\biggr) 
,L

\biggl( 
v
\psi 

\biggr) \biggr) 
H

\geq (\lambda 2 + \varepsilon 2)

\bigm\| \bigm\| \bigm\| \bigm\| \biggl( v\psi 
\biggr) \bigm\| \bigm\| \bigm\| \bigm\| 2

H

.

(6.31)

Thus, we have proven estimate (6.25).

Next, we give an estimate of (\lambda I  - L) - 1 for negative \lambda .

Lemma 6.5. There exists a positive constant l such that\bigm\| \bigm\| \bigm\| \bigm\| (\lambda I  - L)

\biggl( 
v
\psi 

\biggr) \bigm\| \bigm\| \bigm\| \bigm\| 
H

\geq ( - \lambda  - l)

\bigm\| \bigm\| \bigm\| \bigm\| \biggl( v\psi 
\biggr) \bigm\| \bigm\| \bigm\| \bigm\| 

H

,  - \lambda > l,
\biggl( 
v
\psi 

\biggr) 
\in D(L).(6.32)

Proof. From (6.21) and (6.22), we have that if \lambda \leq  - l2 for some positive constant
l2, then \bigm\| \bigm\| \bigm\| \bigm\| (\lambda I  - L)

\biggl( 
v
\psi 

\biggr) \bigm\| \bigm\| \bigm\| \bigm\| 2
H

= \lambda 2
\bigm\| \bigm\| \bigm\| \bigm\| \biggl( v\psi 

\biggr) \bigm\| \bigm\| \bigm\| \bigm\| 2
H

+

\bigm\| \bigm\| \bigm\| \bigm\| L\biggl( v\psi 
\biggr) \bigm\| \bigm\| \bigm\| \bigm\| 2

H

+ 2\lambda (\u \eta  - 1 \u C\psi ,\psi ) \u C

\geq (\lambda 2  - 2| \lambda | M)

\bigm\| \bigm\| \bigm\| \bigm\| \biggl( v\psi 
\biggr) \bigm\| \bigm\| \bigm\| \bigm\| 2

H

,

(6.33)

where M > l2 is a positive constant. Since

\lambda 2  - 2| \lambda | M = \lambda 2  - 4| \lambda | M + 4M2 + 2| \lambda | M  - 4M2

= (| \lambda |  - 2M)2 + 2M(| \lambda |  - 2M),
(6.34)

we find that for  - \lambda > l\bigm\| \bigm\| \bigm\| \bigm\| (\lambda I  - L)

\biggl( 
v
\psi 

\biggr) \bigm\| \bigm\| \bigm\| \bigm\| 2
H

\geq (| \lambda |  - l)2
\bigm\| \bigm\| \bigm\| \bigm\| \biggl( v\psi 

\biggr) \bigm\| \bigm\| \bigm\| \bigm\| 2
H

,(6.35)

where l= 2M .

Once again, from the aforementioned solvability of the variational problem, we
have the following resolvent estimate:

\| (\lambda I  - L) - 1\| \leq (| \lambda |  - l) - 1,  - \lambda > l,(6.36)

where \| \cdot \| is the operator norm on H.
Therefore, combining the two resolvent estimates (6.23) and (6.36), we arrive at

the following.
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RESOLVENT ESTIMATES FOR VISCOELASTIC SYSTEMS 5801

Theorem 6.6. L generates a C0-group on H.

Abstract Cauchy problem. We obtain the unique solvability of the abstract Cauchy
problem for the reduced system as we had obtained this for the full AD system. In
Theorem 5.3, V becomes (v,\psi )t, and AZ simply needs to be replaced by L and WZ

by H.

7. Decaying property and limiting amplitude principle for the reduced
system. In this section, we first prove that any solution (v,\psi ) of (6.1) whose initial
data satisfies the compatibility condition of order 2 decays exponentially as t\rightarrow \infty .
Then, combining this result with the fact that \rho (L) contains the imaginary axis (see
(6.24)), we prove the limiting amplitude principle for the AD system.

Exponential energy decay of solutions for the AD system. We start by
introducing the energy

E(v,\psi ) :=
1

2
\| v\| 2\rho +

1

2

n\sum 
j=1

(Cj\psi j ,\psi j),(7.1)

where ( , ) denotes the L2(\Omega )-inner product.

Lemma 7.1. The energy defined in (7.1) satisfies

d

dt
E(v,\psi ) = - 

n\sum 
j=1

\eta j\| e[v] - \partial t\psi j\| 2,(7.2)

where \| \| denotes the L2(\Omega )-norm.

Proof. The first equation of (6.1) implies that

(\rho \partial tv, v) =

\left(  div
n\sum 
j=1

Cj\psi j , v

\right)  = - 
n\sum 
j=1

(Cj\psi j , e[v]).(7.3)

The second equation of (6.1) gives

\eta j(\partial t\psi j , \partial t\psi j) = (\eta je[v] - Cj\psi j , \partial t\psi j) = (\eta je[v], \partial t\psi j) - (Cj\psi j , \partial t\psi j).(7.4)

A straightforward computation, using (7.3), (7.4), and the second equation of (6.1),
yields

d

dt
E(v,\psi ) =

n\sum 
j=1

(Cj\psi j , \partial t\psi j) + (\rho \partial tv, v)

= - 
n\sum 
j=1

\eta j\| \partial t\psi j\| 2 +
n\sum 
j=1

(\eta je[v], \partial t\psi j) - 
n\sum 
j=1

(Cj\psi j , e[v])

= - 
n\sum 
j=1

\eta j\| \partial t\psi j\| 2 +
n\sum 
j=1

2\eta j(e[v], \partial t\psi j) - 
n\sum 
j=1

\eta j\| e[v]\| 2

= - 
n\sum 
j=1

\eta j\| e[v] - \partial t\psi j\| 2,

(7.5)

which is the statement of the lemma.
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5802 M. DE HOOP, M. KIMURA, C.-L. LIN, AND G. NAKAMURA

We now differentiate (6.1) in t to obtain the following system for (\partial tv, \partial t\psi ):

\left\{             

\partial 2t v= \rho  - 1divT\{ \u C\partial t\psi \} ,

\partial 2t \psi = - \u \eta  - 1 \u C\partial t\psi + e[\partial tv] \u I,

\partial tv= 0 on \Gamma D, (T\{ \u C\partial t\psi \} )\nu = 0 on \Gamma N ,

(\partial tv, \partial t\psi )| t=0 is obtained by using the first and second equations of (6.1).

(7.6)

The associated energy is

E(\partial tv, \partial t\psi ) :=
1

2
\| \partial tv\| 2\rho +

1

2

n\sum 
j=1

(Cj\partial t\psi j , \partial t\psi j),

which satisfies

d

dt
E(\partial tv, \partial t\psi ) = - 

n\sum 
j=1

\eta j\| e[\partial tv] - \partial 2t \psi j\| 2(7.7)

in analogy to the statement in Lemma 7.1. We then define a higher energy, \=E(v,\psi ),
as

\=E(v,\psi ) =E(v,\psi ) +E(\partial tv, \partial t\psi ).(7.8)

For simplicity of notations, we define

\| \~v\| 2\rho := \| v\| 2\rho + \| \partial tv\| 2\rho , \| \~\psi \| 2 = \| \psi \| 2 + \| \partial t\psi \| 2.

Then, from these definitions, we have

a1(\| \~v\| 2\rho + \| \~\psi \| 2)\leq \=E(v,\psi )\leq b1(\| \~v\| 2\rho + \| \~\psi \| 2)(7.9)

for some positive constants a1, b1 with a1 < 1< b1. Further, using (7.2) and (7.7), we
obtain from the second equation of (6.1),

d

dt
\=E(v,\psi ) = - 

n\sum 
i=1

\eta i\| e[v] - \partial t\psi i\| 2  - 
n\sum 
i=1

\eta i\| e[\partial tv] - \partial 2t \psi i\| 2

\leq  - a2\| \~\psi \| 2
(7.10)

for some positive constant a2 < 1. Comparing (7.9) and (7.10), we need to amend
\=E(v,\psi ) through adding a function fE so that d

dtfE has a contribution  - \| \partial tv\| 2\rho . We
define such an fE by

fE =

\left(  n\sum 
j=1

Cj\psi j , e[v]

\right)  .

Using (6.1), a direct computation yields

d

dt
fE =

\left(  n\sum 
j=1

Cj\partial t\psi j , e[v]

\right)  +

\left(  n\sum 
j=1

Cj\psi j , e[\partial tv]

\right)  
=

\left(  n\sum 
j=1

Cj\partial t\psi j , e[v]

\right)   - 

\left(  div
n\sum 
j=1

Cj\psi j , \partial tv

\right)  
\leq b2\| \~\psi \| 2  - \| \partial tv\| 2\rho .

(7.11)
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Further, using the second equation of (6.1) and (7.9), we have

| fE | \leq b3\| \~\psi \| 2 \leq 
b3
a1

\=E(v,\psi )(7.12)

for some positive constant b3 > 1. Based on these estimates, we define the amended
energy as

\~E(v,\psi ) := \=E(v,\psi ) +
a1a2
2b2b3

fE .(7.13)

Here, we note that \{ a1, a2\} and \{ b1, b2, b3\} can be taken arbitrarily small and large,
respectively. Hence, \~E(v,\psi ) is equivalent in the sense of norms to \| \~v\| 2 + \| \~\psi \| 2.

Combining (7.9) to (7.12) leads to the estimate for the time derivative,

d

dt
\~E(v,\psi )\leq  - a2\| \~\psi \| 2 +

a1a2
2b3

\| \~\psi \| 2  - a1a2
2b2b3

\| \partial tv\| 2\rho 

\leq  - a1a2
2b2b3

(\| \partial tv\| 2\rho + \| \~\psi \| 2)

\leq  - a1a2
2b1b2b3

\=E(v,\psi )

\leq  - a4 \~E(v,\psi ),

(7.14)

where a4 = (a1a2)/(3b1b2b3). Equation (7.14) implies the following exponential decay
of solution (v,\psi ) of (6.1):

a1(\| \~v\| 2\rho + \| \~\psi \| 2)\leq \=E(v,\psi )\leq 2 \~E(v,\psi )\leq 2 \~E(v(0),\psi (0))e - a4t.(7.15)

This proves the next theorem.

Theorem 7.2. Let (v(t),\psi (t)) \in C2([0,\infty );H1(\Omega )) \times C2(([0,\infty );L2(\Omega )) be the
solution of (6.1) satisying the compatibility condition of order 2. Then, there exists a
constant a4 > 0 independent of the initial values such that (v(t),\psi (t)) is exponentially
decaying of order O(e - a4t) as t \rightarrow \infty with respect to the square root of the higher
energy (7.8).

Limiting amplitude principle. Next, we state the limiting amplitude principle
for the AD system and give its proof. To begin with, we consider the following initial
boundary value problem for the reduced system:\left\{             

\partial tv= \rho  - 1divT\{ \u C\psi \} ,

\partial t\psi = - \u \eta  - 1 \u C\psi + e[v] \u I,

v= ei\kappa t \chi \~f
\bigm| \bigm| 
\Gamma D

on \Gamma D, (T\{ \u C\psi \} )\nu = 0 on \Gamma N ,

(v,\psi ) = (0,0) at t= 0,

(7.16)

where \kappa > 0 is a fixed angular frequency, \~f \in H1(\Omega ), and \chi = \chi (t)\in C\infty ([0,\infty )) with
the properties \chi (t) = 0 near t= 0, \chi (t) = 1, t\geq t0 for a fixed t0 > 0. The input over
\Gamma D is time harmonic after the time t0. Here, note that the reason why we introduced
\chi is to make the boundary condition and the initial condition of (7.16) compatible.

In order to transform the boundary condition of (7.16) to a homogeneous one, we
consider the following boundary value problem:\left\{       

i\kappa \~v0  - \rho  - 1divT\{ \u C \~\psi 0\} = 0,

i\kappa \~\psi 0 + \u \eta  - 1 \u C \~\psi 0  - e[\~v0] \u I = 0,

\~v0 = \~f
\bigm| \bigm| 
\Gamma D

on \Gamma D, (T\{ \u C \~\psi 0\} )\nu = 0 on \Gamma N .

(7.17)
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5804 M. DE HOOP, M. KIMURA, C.-L. LIN, AND G. NAKAMURA

The unique solvability of this problem can be shown as follows. Due to the fact
\~f \in H1(\Omega ), it can be reduced to that of the boundary value problem for (6.6) with
\lambda = i\kappa , that is, by transforming the inhomogeneous boundary condition on \Gamma D to
the homogeneous one. We use that (6.6) is uniquely solvable even in the case that
f is in the dual space of K(\Omega ) (cf. (6.24)). Hence, there exists a unique solution
(\~v0, \~\psi 0)\in H1(\Omega )\times L2(\Omega ) of (7.17).

We define (v0,\psi 0) by

(v0,\psi 0) = \chi (t)(\~v0, \~\psi 0)(7.18)

and seek a solution (v,\psi ) of (7.16) of the form

v= ei\kappa tv0 + \~v, \psi = ei\kappa t\psi 0 + \~\psi .(7.19)

Then (\~v, \~\psi ) has to satisfy the following initial boundary value problem:\left\{             

\partial t\~v - \rho  - 1divT\{ \u C \~\psi \} = - ei\kappa t \.\chi (t)\~v0 =: \.\chi (t) \~F1(\kappa ),

\partial t \~\psi + \u \eta  - 1 \u C \~\psi  - e[\~v] \u I = - ei\kappa t \.\chi (t) \~\psi 0 =: \.\chi (t) \~F2(\kappa ),

\~v= 0 on \Gamma D, (T\{ \u C \~\psi \} )\nu = 0 on \Gamma N ,

(\~v, \~\psi ) = 0 at t= 0.

(7.20)

Here, \.\chi (t) := d\chi 
dt (t). As

F (t) := ( \.\chi (t) \~F1(\kappa ), \.\chi (t) \~F2(\kappa ))
t \in C\infty ([0,\infty );H)

is 0 near t= 0, any order of the compatibility condition for (7.20) is satisfied. Using
the semigroup, etL, solutions \~V := (\~v, \~\psi )t take the form

\~V (t) =

\int t

0

e(t - s)L ei\kappa s \.\chi (s)ds \~F (\kappa ),(7.21)

where \~F (\kappa ) = ( \~F1(\kappa ), \~F2(\kappa ))
t. By a straightforward computation, we obtain

\~V (t) = etL
\biggl( 
I +

\int t0

0

(i\kappa I  - L) e(i\kappa I - L)s(1 - \chi (s))ds

\biggr) 
\~F (\kappa ) = etL (I +O(1)) \~F (\kappa ),

(7.22)

where O(1) denotes a term which is uniformly bounded in time. Hence, by the
exponential decay of solutions for the reduced system, we have

\| \~V (t)\| =O(e - a4t) as t\rightarrow \infty .(7.23)

We have proved the following theorem.

Theorem 7.3. Let (v(t),\psi (t)) \in C2([0,\infty );H1(\Omega )) \times C2(([0,\infty );L2(\Omega )) be the
solution of (6.1) satisfying the compatibility condition of order 2. Then, there exists
a constant a4 > 0 independent of the initial data such that (v(t),\psi (t)) converges to
ei\kappa t(\~v0, \~\psi 0) exponentially fast of order O(e - a4t) as t\rightarrow \infty with respect to the amended
energy (7.13). Here (\~v0, \~\psi 0)\in H1(\Omega )\times L2(\Omega ) is the unique solution of (7.17).
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8. Conclusion and discussion. We first summarize the results which we ob-
tained in this paper. For typical spring-dashpot models, the EMM (extended Maxwell
model) and its marginal model the ESLSM (extended standard linear solid model),
which we simply refer to as the EMM, we showed that the solutions of the EMM gen-
erate C0-groups. Among these solutions, those satisfying zero initial viscous strains
satisfy the ID system (integro-differential system). However, due to the convolutional
integral term, that is, the memory term with an integral kernel called the relaxation
tensor, the solutions of the ID system do not generate any semigroup. Concerning the
property of solutions, this is a big difference between the EBM and the ID system.
Further, concerning the decay property of solutions as t \rightarrow \infty , the solutions of the
EMM do not have the decaying property. To mitigate this fact, we introduced the re-
duced system, which is a subsystem of the EMM. Then, we proved that the solutions
of this system not only generate a contractive C0 group but also decay exponentially
as t\rightarrow \infty . By combining this with the property of resolvent of the system, we proved
the limiting amplitude property for the reduced system. We would like to emphasize
that we analyzed the EMM for the case where the tensors are heterogeneous and
anisotropic. Despite the importance of heterogeneity and anisotropy in the field of
rheology, and earth and planetary science, there are not many mathematical studies
on the spring-dashpot models for such a case. Except some results [8, 10, 17] on nu-
merical analysis by the group of the second co-author of this paper, we haven't seen
any other papers giving results similar to ours for the EMM.

Next, we point out a special mathematical method which we used to prove that
the operator AZ generates a C0-group. Here, AZ is the operator which describes
the AD system after transforming it to the first order system with respect to the
t-derivative. Since the size of AZ is very large and it has a complicated form, it is very
hard to directly estimate AZ . The idea we used to show the existence of the resolvent
of AZ and its Hille--Yoshida type estimate was as follows. Instead of analyzing the
\lambda -equation associated to AZ , we look at an equivalent \lambda -equation described by another
operator \~A and analyzed \~Au, the upper left block of \~A (see (4.15)). We showed that
its resolvent exists and it satisfies the Hille--Yoshida type estimate with respect to
an operator norm depending on \lambda . Then, we lifted this up for \~A, and then for AZ
with respect to an operator norm depending on \lambda , which is the operator norm on
the space W\lambda depending on \lambda . By the asymptotic behavior of the norm of the space
W\lambda , we finally succeeded in proving the Hille--Yoshida type resolvent estimate for the
operator AZ with respect to the operator norm on WZ which does not depend on \lambda .
As far as we know, we haven't seen such a method in any other papers.
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