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Abstract

We consider the inverse fault friction problem of determining the friction coef-
ficient in the Tresca friction model, which can be formulated as an inverse problem
for differential inequalities. We show that the measurements of elastic waves dur-
ing a rupture uniquely determine the friction coefficient at the rupture surface with
explicit stability estimates.

1. Introduction

The study of earthquake physics remains highly challenging through its com-
plex dynamics and multifaceted nature. Nearly all aspects of earthquake ruptures
are controlled by the friction along a fault, where these commonly occur, that pro-
gressively increases with tectonic forcing. Indeed, in a recent Annual Review of
Earth and Planetary Sciences, it was stated that “determining the friction during an
earthquake is required to understand when and where earthquakes occur” (Brod-
sky et al. [2]). Some common approach has been developed retrieving the stress
evolution at each point of the fault as dictated by the slip history obtained from
the kinematic inverse rupture problem; we mention work by Ide and Takeo [13],
who determined the spatiotemporal slip distribution on an assumed fault plane of
the 1995 Kobe earthquake by “waveform inversion” and then numerically solved
the elastodynamic equations to determine the stress distribution and constitutive
relations on the fault plane. However, seismologists studying earthquake dynamics
have reported that both stress and friction on a fault are still poorly known and
difficult to constrain with observations (Causse, Dalguer and Mai [4]). Here, we
address the question whether this is possible, in principle.

We study the recovery of a time- and space-dependent friction coefficient via the
slip rate and normal and tangential stresses, using the Tresca model (see, e.g., the
book of Sofonea and Matei [20]), at a pre-existing fault from “near-surface” elastic-
wave, that is, seismic displacement data. This dynamic inverse friction problem
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can be regarded as an inverse problem for differential inequalities, as the Tresca
friction model can be formulated through variational inequalities as seen in many
contact mechanics problems (e.g., [6,20]). While inverse problems for differential
equations have been widely studied, inverse problems for differential inequalities
have not yet received much attention. Our approach is based on the quantitative
unique continuation for the elastic wave equation established in our recent work [5],
where we studied the kinematic inverse rupture problem of determining the friction
force at the rupture surface from seismic displacement data. Itou and Kashiwabara
[14] recently analyzed the Tresca model on a fault coupled to the elastic wave
equation; we exploit their results in our study of the inverse problem. We also
mention recent work by Hirano and Itou [11] on deriving an analytical solution to
the slip rate distribution of self-similar rupture growth under a distance-weakening
friction model. As a disclaimer, while we address the most fundamental question,
we do ignore more complex physics such as thermo-mechanical effects.

We remark that in the past two decades, quite many studies have been devoted
to the practical determination of fault frictional properties by analyzing slowly-
evolving afterslip following large earthquakes. For very recent results, see Zhao
and Yue [23]. Afterslip is the fault slip process in response to an instantaneous
coseismic stress change, in which the slip velocity decrease corresponds to the
stress releasing by itself. Its “self-driven” nature provides a framework to model
the slip process with the fault frictional properties alone. For a review, see Yue
et al. [22]. Afterslip is analyzed with quasi-static deformation, that is, with the
elastostatic system of equations, typically using geodetic data.

Let M C R be abounded connected open set with smooth boundary, modelling
the solid Earth. Let ©; C M be a connected orientable embedded smooth surface
with nonempty smooth boundary satisfying ¢ N M = ¢, modelling the rupture
surface. Consider the elastic wave equation

pdfu — pAu — o+ WV -u) =0 in (M\Zf) x (=T, T), (1)
with the Tresca friction condition (e.g., [6, 14, 15]) on the rupture surface X¢:

o, = F, is given,

[o,]17 =0, [o.:]T =0,

lo:] <g= [du: 1" =0, @
loc|=g= [du: 1" -0, =g|[du.1"|.

Here 0, = (6 (u)n) - n and 0, = o (u)n — o,n are the normal and tangential
components of the stress tensor o (u#), where n is the unit normal vector of the
rupture surface ¥¢. The stress tensor o () is defined as

1
o(u) =2ue(u) + A(tre(u))l, e(u) = E(Vu + (Vu)T). 3)
The notation [-]* stands for the jump across the rupture surface; more precisely,

[Bu 1T =0, —uy), uf:= hlirgi u.(z+hn,t), ze% (4
—



Arch. Rational Mech. Anal. (2024) 248:64 Page 3 of 18 64

where u, is the tangential component of u, with respect to the unit normal vector
field n smoothly extended to a neighborhood of X¢. The friction force g at ¥y is of
the form

8§ = Z|Fal, ®)

where .# > 0 is the friction coefficient. Note that the friction force g and the
friction coefficient .# may depend on time.

Regarding the direct problem for the Tresca friction model above, the weak
formulation is understood in the variational sense (see, e.g., [6,14,20]). Let Vy =
{ve H'(M\X¢) : v = 0 on 9M}. Recall that with the Dirichlet condition on the
boundary d M, the problem of finding u satisfying the Tresca friction model (1-2)
is formulated as finding u such that for all v € H'(Vp) and all r € (0, T), the
following variational inequality holds:

,o/ (v — atu)afu av +a(u, v— 8tu)
M\ %¢

+[ g-|[vr]t|dA—/ g-|[atuf]t|dA+f Fy- [va]TdA > 0.(6)
> ¢ X

Here dV, d A stand for the volume and area element of M and X¢, respectively, and
a is a bilinear symmetric form defined by a (v, w) := fM\ff tr(a(v)Te(w)) dv.If
one assumes
uo :=u(-,0) € H' (Vo). du(-.0) € H' (Vo).
Fy € H*0,T; L*(%p), g€ H(0,T; L*(Zp),

and the compatibility conditions at t = O,

dive (ug) € L>(M \ %),
Gn(llg):Gn(ua):Fn('vo) on Xp,
o:(uy) =0.(uy) =0, duc(-00=0  onZy,

then the friction problem above has a unique solution [14],

ue Wh(0, T H' (Vo)) N W (0, T3 LE(M \ ). @

In this paper, we consider the inverse problem of determining the friction co-
efficient .% in the Tresca friction model above. For the sake of presentation, we
consider the elastic wave equation (1) on the time interval (=7, 7). Let M C R3
be a bounded connected open set with smooth boundary, modelling the solid Earth.
Let X¢ C M be a connected orientable embedded smooth surface with nonempty
smooth boundary, modelling the rupture surface. Denote the a priori bound for the
norm of the elastic wave u in the space (7) by

lllyice 7.7 1 nvED) + 18w 1 1020050 = Do ®)
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We impose the following assumption on the regularity of the normal stress F;, and
the friction coefficient .%Z. Assume that F,, F € C%!(Z¢ x [-T, T]), and

[Fal = co >0, [[Fallcorsixi—r.7 < Co»  F lcorsixi—r.11) < Co- (9)

In addition, assume that the parameters p i, 1 in the elastic wave equation (1) to
be smooth and time-independent on M \ Xr.

We prove the following result on the inverse fault friction problem during a
rupture:

Theorem 1. Ler M C R3 be a bounded connected open set with smooth boundary.
Let ¢ C M be a connected orientable embedded smooth surface with nonempty
smooth boundary, satisfying %t N M = (. Consider the elastic wave equation
(1) with smooth time-independent parameters and the Tresca friction condition
(2). Assume the normal stress F,, and the friction coefficient F satisfy (9) on Xs.
Assume | [0+ ]"_'| > c1 on X¢ X [—T, T] for some constant c; > 0 and a priori
norm (8) for the elastic wave u. Suppose that we are given the elastic wave u on
an interior open set U satisfying U C M\X¢ up to sufficiently large time T. Then
we have the following conclusions.

(1) The friction coefficient ¥ on X¢ X [—%, %] is uniquely determined by u on
UxI[-T,T]

(2) Suppose that we have two systems with friction coefficients %1, %, and we
are given the corresponding elastic waves uy, uy on U X [T, T). Then there
exist constants &y, C, ¢ > 0 such that for any 0 < gy < &, if

lur — w2\l g2 x(—1,77) < €0s
then the friction coefficients satisfy

”yl - g\Z”LZ(EfX[,g g]) =< C(log | loggOD_C’

s

where the constants &y, C depend on cg, Cg, Ao, c1, T, parameters of the elastic
wave equation and M, U, ¢, and c is an absolute constant.

We remark that one could also formulate the result assuming a lower bound for
| [0+ ]J_ri on a subset of ¢ and then recovers the friction coefficient .% in the
same subset. Theoretically speaking, our method can also work with measurements
of the elastic waves on an open subset of the boundary d M if additional regularity
of the elastic waves on 0 M can be assumed, see [5, Remark 1] or [3, Theorem
3]; however, this additional boundary regularity required is not provided by the
regularity class (7).

The proof of Theorem 1 is divided into two parts: the measurements of u on
U determine u near X¢, and the latter determines .%# under the Tresca friction
condition. The first part, also known as the kinematic inverse rupture problem
[10], has mostly been done in our recent work [5]. Our method was based on
the quantitative unique continuation for the elasticity system, motivated by [7,21].
However, regularity issues remain: the actual regularity of waves is not enough
for the quantitative unique continuation arguments to work on the whole domain,
which is addressed in Sect. 2. The second part is discussed in Sect. 3.
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Fig. 1. Setting of Lemma 1 and Proposition 1

2. Interior Regularity

Let N C R3 be abounded connected open set with smooth boundary. Let § > 0
be small, and denote the interior by

Ns :={x e N :d(x,0N) > §}. (10)

Let u be an elastic wave satisfying the elastic wave equation (1) on the whole
set N (without the presence of a rupture surface). Recall [7, Lemma 5.1] that the
elastic wave equation can be decomposed into a system of hyperbolic equations
for (u,divu, curlu). Let U C N be a connected open subset, and we choose &
sufficiently small such that U C Nj.

We apply Proposition 3.2 in [5] to (u, div u, curl u) in Nj: for sufficiently small
h and sufficiently large T (specified in [5, Proposition 3.2]), if

lull g2 xi-7.17) = €0,

then
lll 2y 5 = € exp(h™ ™) AU
(log (1 + h?—g)) :
+Clltl g vy 1.77) BT (11)
where n = dim(N) = 3, and
As = H(u, divu,curlu)||H](N6X[7T’TD. (12)

Observe that Aj essentially asks for H? regularity, while the solution of the
original direct problem (7) is only in H' in space. One way to resolve the issue
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is to use interior regularity estimate and then use Sobolev embedding to get an
immediate estimate for the boundary layer.
We assume that the elastic wave u in N is in the following energy class:

lullwico 7 7:m1(vy) T 18l w2~ 7:2(N)) < No- (13)

Lemma 1. The following H? interior regularity estimate holds for the elastic wave
equation (I)on N x [—T,T]:

—4
Nl g2 (Nysxi—1,77) < CTCMS (”u”WI»OO(—T,T;Hl(N)) + ||u||w2.°°(—T,T;L2(N)))-
That gives a bound

As < CrCn8™* Ao, (14)

where Ct depends only on T, and Cy depends only on geometric parameters of
N.

Proof. Suppose that ¢ is a weak solution of the elliptic equation on N,
Ap=f. ¢eH'(N), feL*N).

Let x be a cut-off function satisfying x|n; = 1, xlay = O and [[x llc2(n) < cs2.
Then

Yo =X
satisfies
Ago = x A +[A, xlp =t [,
{ @olan =0,
where

17200 = €872 (N0l + 1 1 zawy)-

Hence, g9 € H*(N) by boundary regularity for elliptic equations (e.g., [9, Theorem
4 in Chapter 6.3]). Then, it follows that ¢|y, € H*(Ns), and

Il < 9ol < Cv0 2 (I lman + 1/ 12a) ). (1)

The constant C depends on the first Dirichlet eigenvalue on N which is uniformly
bounded below by diameter and curvature bounds (e.g., [16, Theorem 8]). The
same argument is valid for ¢ € L%(N) and fe H~Y(N) with constant Cy82.

Now we switch to the notations in our first paper [5],

(u,v, w) = (u,divu, curlu). (16)
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Recall that the elastic wave equation (1) can be decomposed into the system ( [7,
Lemma 5.1] or [5, Lemma A.1])

P 5%u — Au+ Ay(u, v) =0,
m
0

2+ A
£8t2w — Aw + Az(u, v, w) =0,
w

320 — Av+ Ay(u, v, w) = 0, a7)

where A; are first order and has no time derivative.
Then consider the second equation. Since u € whoo(—T, T; HY(N)) from
(13), then

v,we Wh(=T,T; LA(N)), Ax(u,v,w) € W (=T, T; H"'(N)).
On the other hand, since u € W%°(—T, T; L%(N)) from (13), then
ve WrR(=T,T; H-Y(N)), 8%ve L®(-T,T; H'(N)).
Then using the second equation gives
Av € L®(=T,T; H Y (N)).
Thus from the interior regularity argument (15) (for L?-H™ 1), we have
vly, € L¥(=T,T; H'(Ny))

with constant Cy8~2 in the regularity estimate.
Next consider the first equation on Nj. Using the improved interior regularity
for v|y;, we see that Ay (u, v)|y, € L°(=T,T; L%(Nj)). This gives

Auly, € L®(=T, T; L*(Ny)),

considering that B,Zu € L®(=T,T; L>(N)). Thus by shrinking the domain by
another § and using (15), we obtain

uly,, € L¥(=T, T; H*(Ny))

with constant C N5’4 in the regularity estimate, i.e.,

4
Nl oo~ 7.7 22 (Ny)) < CNS (”uHWLOO(—T,T;Hl(N)) + ||u||W2~°°(—T,T;L2(N))>'
(18)
Thus, from (18) and (13), we obtain the estimate
leell t2 (Nys (-7, 7)) = CT<||”||L°°<7T,T;H2(N23>> + llellwroo -1, 7m0
+||u”W2~°°(—T,T;L2(N))>

< CTCN874<||M||W1’°°(—T,T;H1(N)) + ||"||W2,°°(—T,T;L2(N)>)'

O
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Proposition 1. Let N C R3 be a bounded connected open set with smooth boundary
andU C N be a connected open set. Let u be a solution of the elastic wave equation
(1)in N x [T, T1with a priori norm (13). Then, there exist constants &, C,c > 0
such that for any 0 < gy < &, if

lwll 2 xj—7,77) =< €0-

then
—c
”u”Lz(Nx[—%,g]) = C(lOg | IOg g0l ™",

where the constants &, C depend on Ay, T, parameters of the elastic wave equation
and geometric parameters of N, and c is an absolute constant.

Proof. We have already estimated the L?-norm of u on Ns x [—T/2, T /2] from
(11) and Lemma 1. The L?-norm on the remaining part follows from the Sobolev
embedding theorem. Namely, consider

T T
NI :={x e N:d(x, dN) <8} x [—5, 5].
Apply the Sobolev embedding theorem (e.g., Theorem 4.12 in [1]) to the space

N x [T, T] of dimension n 4+ 1 = 4, which satisfies the uniform cone condition
(Definition 4.8 in [1]),

ull 2041 < Cllu|| g _ < CAyp.
I ||L (S el g (vsi—1.77)

Then,
1
u 7y < ||| 2041 Vol T < CApdnt .
Il < Ml sy (VOIOVG) 0

Hence, we have

Heell 2 vser= 5. 50y = Wl 20— 2. 1)+ N8l 2oy - 2.5

. §TA
< Cexp(h™") O CAhTT + C A,

—4
<10g (1 + h%))2

19)

From here, we need to balance the parameters §, &, €g. Choose § = & such that
the three terms on the right-hand side of (19) are equal, and we get

§ =h = C(log|logeol) ", (20)

for some constant ¢ depending only on n = 3, and for some constant C independent
of h. The condition & < h¢ gives the choice for £p:

g = (expexp (Cilhgl/c))_l. (21

Inserting the choice of §, 4 back into (19) gives the desired form of the estimate. O
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Fig. 2. Applying the quantitative unique continuation to the connected open set N = M \ D
with smooth boundary, where D is a compact smooth manifold whose boundary extends ¢

3. Inverse Friction Problem

Using Proposition 1, we consider the inverse problem of determining the fric-
tion coefficient .% in the Tresca friction model. As Proposition 1 is formulated
without the presence of the rupture surface X, we apply the result to a smooth
manifold whose boundary extends X¢. Of course the choice of such a manifold can
be arbitrary and in this paper we use a type as illustrated in Fig. 2.

Lemma 2. Let M C R3 be a bounded connected open set with smooth boundary,
Xt be a connected orientable smooth embedded compact rupture surface with
nonempty smooth boundary satisfying Tt NIM =@, and U C M be a connected
open set satisfying U C M \ . Let u be a solution of the elastic wave equation
(1) with a priori norm (8). If, for sufficiently small &,

el g2 si—7,77) =< €0,
then for any o € (0, %), we have

o @)lx]| < CAy &,

1
H 27" (Ex[-5. 5D
where 1 := C(log|logeg|)™¢. The same estimate also holds for the components
O, 0 1. The constant C depends on Ay, T, parameters of the elastic wave equation
and M, U, X, and c is an absolute constant.

Proof. First, we construct a connected open set N C M with smooth boundary
such that U C N and X; C dN. Let n be a smooth unit normal vector field on X,
and consider the ray z + rn, r > 0, from a point z € Xf. Since ¢ is smoothly
embedded in R3, there exists sufficiently small 7o > 0 such that the nearest point of
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z+rnin X¢is z forall » € [0, rg] and all z € X¢. This gives a smooth embedding
f ¢ x[0, ro] — R3suchthat f(Zf x {0}) = Z¢. Note that g is chosen such that
the closure of the image of f does not intersect with dM or U. The boundary of the
image f(X¢ x [0, ro]) extends X¢, and can be smoothened over a neighborhood
of 3 X¢ without intersecting M or U. This construct a compact smooth manifolds
D C M with smooth boundary satisfying ¥y C 9D, see Fig.2. Note that the
complement M \ D is connected due to d Xs # (). Moreover, the manifold D can
be constructed such that the curvature tensor of 0D and its covariant derivatives
are bounded depending on ry, d(=¢, dM), d(Zf, U) and geometric parameters of
%r. Hence, Proposition 1 is applicable to the connected open set N := M \ D with
smooth boundary dN = dM U dD.

Applying Proposition 1 to N = M \ D gives ||”||L2(N><[—§ Iy, < e1. We have
a priori norm |[u|| g1 (v x(—7,77) < Ao by (8). By interpolation, we have

l—a .«
”u”Hl_D‘(NX[—g,%]) = A() &1 Va € (0, 1). (22)
Recall the system (17) for (u, v, w) := (u, divu, curl u). Then

l—o .«
”U”H_"‘(lefg,g])—i_ ”w”H_a(NX[fg,%]) SZA() &1 (23)
To proceed further, we recall the H s)-norm in R+ (see [12, Definition
B.1.10]) defined as

el = A; L EOPA+IED O +1E) e, (24)

with respect to the coordinates y = (x/, x") € R"” x R. Note that when s = 0, the
H i, 0)-norm above is equivalent to the usual H k_norm. The idea is using partial
hypoellipticity (e.g., [12, Appendix B] or [8, Chapter 26.1]) to trade regularity
between normal and tangential components.

Since the H,g)-norm was defined above for functions on R+ we apply the
technique to local coordinates and patch up using partition of unity in the standard
way. Let { By} 2’:1 be a finite open cover of a small neighborhood of ¢ in N, and let
{ Xk}f(V:l be a partition of unity subordinate to the open cover. Setting the diameter
of each open set By smaller than the injectivity radius of N, one can work in the

boundary normal coordinate (y', yZ, y3) € Ri1>0 of N, where y! = d(y, dN)

is the coordinate normal to dN. Let & : By — Ri]>0 be the smooth (boundary
normal) coordinate function on each By such that ®; ﬁlaps 2 N By to an open set
of {(y!, y2,y3) e R3: y!l = 0. Using the notation (24), we write v, w € H(—q,0)
from (23) and thus Pov = —Ax(u, v, w) € H(_1_q,0), Where Py = ﬁaﬁ —A
by the second equation in (17). We denote by P,  the push-forward of the operator
P> to Oy (By), that is, for any smooth function f on O (By),

Poif = (P2(f o ) o ;L. (25)
3

y1>0

standard form P ; = zlﬁa} — 851 —a(y, 8yz, 8y3) + first-order terms. Then, we

In the coordinate y = (y!, y2, y3) of x(By) C R the operator P> has the
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apply [12, Theorem B.2.9] to (xxv) o <D,:] (which is a function in the half-plane
supported in ©(By)),
—1 -1 -1
Gkv) o @ Nl(1—g,—1) < C(II(ka) 0 @ Ml(—a,0) + P2,k ((xkv) 0 @ )”(7170(,0))
= C(H0wv) 0 & a0y + 16wP2) 0 O - 1-a0)
P2, il 0 O 100y )

< C(Il a0 + 142G, v, 0 -1-0.0))
< CA(I)_ae‘lx,

where the constants C depend on the C2-norms of ¥y, CI>,:1, Xk, Which, in turn,

depend on the geometry of ;. Note that the commutator [ P2, xx]v in the above is

first order in v.
Let P = ga} — A in the first equation Piu = —A1(u, v) in (17), and denote

by P i the push-forward of the operator P; to @ (By). Now using (xxu) o <I>k_1 €
H(—a,00 C H(1—¢,—1) and the regularity (xxv) o an_l € H(1—q,—1) just obtained
above, we have
G @) 0 & a1y = C(1V(0um) 0 Ol + 1V (G 0 )l -1y
106 © O a1y + 1060) 0 B a1

= (16w 0 &7 Na-a,-1 + 1060 0 O e 1)

IA

€ (Illa—a0 + 10a) 0 O e )

l—o o
CAy ey,

IA

where the constants C depend on the C !_norms of Dy, CDk_l, Xk- Note that we have
used the fact that A; is a first-order linear operator in u, v. Using [12, Theorem
B.2.9] again to (yxu) o CDk_l, we have

166w © O a1 = €106 0 D7 a0 + 1P (Gtct) © D)l 1))
< C(Null-w0) + 10AL @, ) 0 W a1
HILPL 36l 0 D )
< C(”u”(l—a,()) + llull(1—a,-1)
G AL @, ) 0 & a1
< CA(lf"‘e‘f‘.
This gives V((xku) o CDk_I) € H(—q.—1) and

IV (Gaew) © @) 10,1y < CAY e
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Choosing 0 < & < 1/2, the trace of V((xxu) o @,:1) on &y (By N Z¢) x

[—T/2,T/2] is well-defined in H2 by [12, Theorem B.2.7] with norm esti-
mate,

[V (0w o ozl 10 < Call V(0w 0 @ )lla-ai-n) < CAG e

Changing back to the original Euclidean coordinate, we have V(xiu)|p,ns; €
H_%_“ on (B N X¢) x [-T/2,T/2]. Since u € Hl_“(N x [-T/2,T/2]), then
uly, € L>(Z¢ x [-T/2,T/2)) ifa < 1/2, and thus

g T T
xkVulpns, € H27%((Be N Zp) x [—5, 5]),

with the same norm estimate as above. Hence,

N
Vaulsl 1, = ” «Vu 1
Vul f”H bz -1.1)) ];X |Ef H 2 (2ex[- 5. T))

= le?x Hkau|Bkaf }|H’%7°‘(Ef><[—%%])

< CNA(I)_O‘E‘{‘.

Then, the regularity for the stress tensor o (#) on X immediately follows from the
definition (3). Contracting the stress tensor o (u#) gives the same estimate for the
components o,, 0. O

To prove our main result, we need the following lemma:

Lemma 3. Let ¢ > 0 be a constant and let @ C R", n > 2, be a bounded open set.
Suppose f € H'(S; R™) with value in R™, m > 1. Let p : R" — R™ be defined
by
3
pE)=——"-—— E=(1, ., En) €R™. (26)

max(|§], c)

Denoteby T, f = po f the composition operator. Then, Ty, is a continuous operator
from HY(S2; R™) to H'(Q2; R™), and

1o f 1 ey < Com, e, D(1+ 1Lf L g )

Proof. Let j =1,--- ,m.Toshow T, f € Hl(Q; R™), it is enough to show that
pjofeH 1(Q) for all j, where the function p j : R™ — R is the component of
p, namely,

§j

max(|§], ¢)’

pj§) = E= (&, - ,&) eR™. (27)

According to [18, Theorem 1], this follows after showing that p; is locally Lipschitz
and that there is a uniform constant C > 0 such that

|3gk/0](‘§)| SCa k= 15"' , m, (28)
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almost everywhere in R, forany j =1, --- , m.
For |&| # c, the function p; is smooth and it is straightforward to check that

2
|askloj|§;5 .]’k=15""m‘

Hence it suffices to verify that p; is Lipschitz across |§| = c. Let |§] < ¢ and
[n] > c. Then
£ nj
pi) —pj) ==L -,
¢ nl
and
§i & §j nj 1 1
pj €)= pj(I < |2 = 2L+ | 2L — =Ll < —[In| — cl| + =& — nj
c Inl [l Inl| — ¢ ¢

IA

1 1 2
—|Inl = &1 + =1&; — ;| < =1& —nl.
C C C

This shows that p; is Lipschitz on R™ with uniform Lipschitz constant 2/c, for
all j = 1,---,m. Moreover, [18, Theorem 1] gives an estimate for the norm

lpjo f||H1(Q),

loj o fla = Com e, D(1+1f lggmn ) J=1.m.

For the continuity of 7}, it is necessary to use the specific form of the function
p in (26), as the continuity does not hold for all composition operators in general,

see, e.g., [19, Section 1]. In our case, for & = (&1, --- , &,) € R™, we define
& &
— ==, l§l=c
hE) = o) — = { el 29)
0, €] < c.

Itis clear that A is uniformly Lipschitz on R™ as p is uniformly Lipschitz on R". We
apply [19, Example 3.1] to the Lipschitz function & with S = {£ € R™ : |&| < ¢},
the closed ball of radius c. Since # is identically 0 in S and & is smooth in the
complement of §, it is enough to verify that, for every &y € 95,

Sling Vh() -t =0, forallt e Tys(&), (30)
—50
§¢0S

where Tys5(&) denotes the tangent space of S = {£ € R™ : |§| =c} at&y € 9S.
For& € $\dS, we see VR(§) = 0 since h is identically 0 in S. On the complement
R™\ §, since k|gm\s can be smoothly extended to a function h(§) := &/|&§| —&/c
on a neighborhood of 9.5, we have

Jim VR(©) -7 = Vi) T =0, forallz € Tys().
—50
§¢S

In the above, the fact that VE(&O) -7 = 01s due to the deﬁrlition of tangent vector,
namely, by differentiating (h; o y)(s) at s = 0, where hj, j = 1,--- ,m, are
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the components of R and y(s) is a smooth curve in S with the initial vector
y'(0) = t € Tys(&p). Then the claim immediately follows since / joy = 0dueto
I = 0on dS. This verifies (30), and then [19, Example 3.1] gives the continuity of
T}, and thus the continuity of 7. O

Now we prove Theorem 1.

Proof of Theorem 1. Since | [ 8;u; 17| > ¢ > 0on ¢ x [T, T, i.e., the fault is
slipping everywhere, it follows from (9) that

g=locl=FIF| € CON 2 x [-T.TD, liglcorgexi-r.1p < C5- 31

On the other hand, the friction condition (2) implies that

[Our 1"
o= —m—. 32
T G2
Denote
Uy =uly, u_ :=ulnpn), (33)

where N, D are the manifolds with smooth boundary constructed in the proof of
Lemma 2, see Fig.2. Let us denote

E(N) := Wh®(=T, T; H'(N)) N W>°(=T, T; L*>(N)). (34)

Asuy € E(N) by (7), we can extend u to a small neighborhood N of N in M
so that the extension of . is in the same regularity class E (ﬁ ). Similarly, we can
extend u_ to a small neighborhood D of D in M so that the extension of u_ is
in the same regularity class £ (D). Let V be a small open neighborhood of X¢ in
M. As ¥f C 9D, in this way, the functions u, u_ are both extended to V and
the extensions are in E(V). Then d,u, d;u_ € H'(V x [—T, T1), and thus the
tangential component of the difference

fi=08(uy—u_), € H(V x [T, T)). (35)

Recall the definition of tangential component near X¢ in (4) where the unit normal
vector field n is smoothly extended to a neighborhood of X¢. By Lemma 3, the func-
tion f/max(|f|,cy) € HY(V x [=T, T]). Hence, as V is an open neighborhood
of X¢ in M, the trace of f/ max(| f], ci) onto X¢ is in HY2(S¢ x [-T, T)).

Denote the composition operator T, f := p o f, where p : R? — R3 is the
Lipschitz function with uniform Lipschitz constant 4/c; defined in (26), taking
¢ = c1. In the above, we have shown that tr(T, f) € HY2($¢ x [-T, T1), where
tr stands for the trace operator onto X¢. Now we show that tr(7, f) = T, (tr f) in
L?(Z¢ x [T, T1), which would imply that T,(tr f) € H/2(2¢ x [-T, T]). Let
fr € C®(V x [-T,T]) be a sequence of smooth vector-valued functions such
that f;, — fask — ocoin H'Y(V x [-T, T)). Then, as k — o0,

4
ITp(trf) = To(r f )l 25 xp—1,77) = a”trf =t fill2esexi—r, 1)
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4
< acllf = filmowxi-r.ry = 0,
and by the continuity of the composition operator 7, from Lemma 3,

te(Tp f) — (T fOl 2(sp =177 = CNTpf — Tp fillgr v x—7,77) = 0-

Since T (tr f ) = tr(T} f) for smooth functions, we see that T, (tr f) = tr(T, f) in
Lz(Efx [T, T].Astrf = [0,u, I by definition, we conclude that T, ([ 9,2, ]f)
Hl/z(Ef x [—T, T]). Thus, due to the condition | [ d;u- ]f| >c; > 0on X x
[—T, T], we have

[Bu. ]t

LU HiI(S x [-T. T)).
|[8tuf]f|€ 2(%f x [-T,T)) (36)

Using the equation (32), (31) and (36) imply that 0, € H'/?(Z¢ x [T, T]).
Namely, denote by A, the multiplication operation by g. Since g is Lipschitz by
(31), the operator Ag : L?(Z¢x [T, T]) — L*(Z¢x[~T, T and A, : H'(Zf x
[—T,T]) = HY(Z¢ x [-T, T]) are bounded. Hence Ag : HS(Zf x [-T,T]) —
H*(X¢ x [T, T)) is a bounded operator for any s € (0, 1) by [17, Theorem 5.1].
Thus, by (32) and (36),

0. € HY (S x [—T, T)), (37)

with an estimate of the norm depending on Ag, Co, c1 and X.
Suppose that we have two systems with friction coefficients .71, %, at X, and
we are given elastic waves u1, u that are close in the sense that

lur — w2l g2 xi—7,77) =< €0-

Denote by U(J ) (J ) (j = 1, 2) the components of the stress tensors corresponding
to the two systems. Since the stress tensor o (#) is linear in u, applying Lemma 2
tou) — uy gives

(1)
o
H HT 27 %&ex[-5.5n —

ol — g2 ” < CAy &

1_
H7 27 zex 5. 5D

< CA1 “ef,

Then picking @ = 1/4, by interpolation with o, € H'/?> by (37) and 0, = F,, €
Cc%! c H! by (9), we have

1

M _ @ o
o — 0 S C(C07A09T’ 61)8
H R VTC I E S !

1

) <2>‘ 7
o\ —¢o < C(Co, Ao, T)e/.
H " L2(zex[-5, T !

Hence,
(l)l ( )l
WA= Plasea-5.50 = | m — <2>| HLQ(EfX[—f 1)
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IA

2] (191 = 10 @1)io1 = (10”1 = 10 ) 0

- 1 2
&2 Cof1ot" - 10

.z

IA

— 1 2
+ g2 |le1 = 1?1,
(1)

On

.z

IA

ca2C0Ha(rl) - a(rz)

2.2
+¢(°Ch

‘L2(EfX[—§,§])
=
o N2ezex -, 5y
10

C(co, Co, Mo, T, c1)ey

IA

which proves the stability part (2). The uniqueness part (1) is a consequence of the
stability when ¢y — 0. O
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