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Abstract

We consider the inverse fault friction problem of determining the friction coef-
ficient in the Tresca friction model, which can be formulated as an inverse problem
for differential inequalities. We show that the measurements of elastic waves dur-
ing a rupture uniquely determine the friction coefficient at the rupture surface with
explicit stability estimates.

1. Introduction

The study of earthquake physics remains highly challenging through its com-
plex dynamics and multifaceted nature. Nearly all aspects of earthquake ruptures
are controlled by the friction along a fault, where these commonly occur, that pro-
gressively increases with tectonic forcing. Indeed, in a recent Annual Review of
Earth and Planetary Sciences, it was stated that “determining the friction during an
earthquake is required to understand when and where earthquakes occur” (Brod-
sky et al. [2]). Some common approach has been developed retrieving the stress
evolution at each point of the fault as dictated by the slip history obtained from
the kinematic inverse rupture problem; we mention work by Ide and Takeo [13],
who determined the spatiotemporal slip distribution on an assumed fault plane of
the 1995 Kobe earthquake by “waveform inversion” and then numerically solved
the elastodynamic equations to determine the stress distribution and constitutive
relations on the fault plane. However, seismologists studying earthquake dynamics
have reported that both stress and friction on a fault are still poorly known and
difficult to constrain with observations (Causse, Dalguer and Mai [4]). Here, we
address the question whether this is possible, in principle.

We study the recovery of a time- and space-dependent friction coefficient via the
slip rate and normal and tangential stresses, using the Tresca model (see, e.g., the
book of Sofonea andMatei [20]), at a pre-existing fault from “near-surface” elastic-
wave, that is, seismic displacement data. This dynamic inverse friction problem
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can be regarded as an inverse problem for differential inequalities, as the Tresca
friction model can be formulated through variational inequalities as seen in many
contact mechanics problems (e.g., [6,20]). While inverse problems for differential
equations have been widely studied, inverse problems for differential inequalities
have not yet received much attention. Our approach is based on the quantitative
unique continuation for the elastic wave equation established in our recent work [5],
where we studied the kinematic inverse rupture problem of determining the friction
force at the rupture surface from seismic displacement data. Itou and Kashiwabara
[14] recently analyzed the Tresca model on a fault coupled to the elastic wave
equation; we exploit their results in our study of the inverse problem. We also
mention recent work by Hirano and Itou [11] on deriving an analytical solution to
the slip rate distribution of self-similar rupture growth under a distance-weakening
friction model. As a disclaimer, while we address the most fundamental question,
we do ignore more complex physics such as thermo-mechanical effects.

We remark that in the past two decades, quite many studies have been devoted
to the practical determination of fault frictional properties by analyzing slowly-
evolving afterslip following large earthquakes. For very recent results, see Zhao
and Yue [23]. Afterslip is the fault slip process in response to an instantaneous
coseismic stress change, in which the slip velocity decrease corresponds to the
stress releasing by itself. Its “self-driven” nature provides a framework to model
the slip process with the fault frictional properties alone. For a review, see Yue
et al. [22]. Afterslip is analyzed with quasi-static deformation, that is, with the
elastostatic system of equations, typically using geodetic data.

LetM ⊂ R
3 be a bounded connected open setwith smooth boundary,modelling

the solid Earth. Let �f ⊂ M be a connected orientable embedded smooth surface
with nonempty smooth boundary satisfying �f ∩ ∂M = ∅, modelling the rupture
surface. Consider the elastic wave equation

ρ∂2t u − μ�u − (λ + μ)∇(∇ · u) = 0 in
(
M \ �f

) × (−T, T ) , (1)

with the Tresca friction condition (e.g., [6,14,15]) on the rupture surface �f :
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

σn = Fn is given,

[ σn ]+− = 0, [ σ τ ]+− = 0,

|σ τ | < g �⇒ [ ∂tuτ ]+− = 0,

|σ τ | = g �⇒ [ ∂tuτ ]+− · σ τ = g
∣
∣ [ ∂tuτ ]+−

∣
∣ .

(2)

Here σn = (σ (u)n) · n and σ τ = σ (u)n − σnn are the normal and tangential
components of the stress tensor σ (u), where n is the unit normal vector of the
rupture surface �f . The stress tensor σ (u) is defined as

σ (u) = 2με(u) + λ
(
tr ε(u)

)
I, ε(u) = 1

2

(
∇u + (∇u)T

)
. (3)

The notation [ · ]+− stands for the jump across the rupture surface; more precisely,

[ ∂tuτ ]+− := ∂t (u+
τ − u−

τ ), u±
τ := lim

h→0± uτ (z + hn, t), z ∈ �f , (4)
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where uτ is the tangential component of u, with respect to the unit normal vector
field n smoothly extended to a neighborhood of �f . The friction force g at �f is of
the form

g = F |Fn|, (5)

where F > 0 is the friction coefficient. Note that the friction force g and the
friction coefficient F may depend on time.

Regarding the direct problem for the Tresca friction model above, the weak
formulation is understood in the variational sense (see, e.g., [6,14,20]). Let V0 =
{v ∈ H1(M\�f) : v = 0 on ∂M}. Recall that with the Dirichlet condition on the
boundary ∂M , the problem of finding u satisfying the Tresca friction model (1-2)
is formulated as finding u such that for all v ∈ H1(V0) and all t ∈ (0, T ), the
following variational inequality holds:

ρ

∫

M\�f

(v − ∂tu)∂2t u dV + a
(
u, v − ∂tu

)

+
∫

�f

g · ∣∣ [ vτ ]+−
∣∣ d A −

∫

�f

g · ∣∣ [ ∂tuτ ]+−
∣∣ d A +

∫

�f

Fn · [ vn ]+− d A ≥ 0.(6)

Here dV, d A stand for the volume and area element of M and�f , respectively, and
a is a bilinear symmetric form defined by a(v,w) := ∫

M\�f
tr
(
σ (v)T ε(w)

)
dV . If

one assumes

u0 := u(·, 0) ∈ H1(V0), ∂tu(·, 0) ∈ H1(V0),

Fn ∈ H2(0, T ; L2(�f)), g ∈ H2(0, T ; L2(�f)),

and the compatibility conditions at t = 0,

⎧
⎪⎨

⎪⎩

div σ (u0) ∈ L2(M \ �f),

σn(u
+
0 ) = σn(u

−
0 ) = Fn(·, 0) on �f ,

σ τ (u
+
0 ) = σ τ (u

−
0 ) = 0, ∂tuτ (·, 0) = 0 on �f ,

then the friction problem above has a unique solution [14],

u ∈ W 1,∞(
0, T ; H1(V0)

) ∩ W 2,∞(
0, T ; L2(M \ �f)

)
. (7)

In this paper, we consider the inverse problem of determining the friction co-
efficient F in the Tresca friction model above. For the sake of presentation, we
consider the elastic wave equation (1) on the time interval (−T, T ). Let M ⊂ R

3

be a bounded connected open set with smooth boundary, modelling the solid Earth.
Let �f ⊂ M be a connected orientable embedded smooth surface with nonempty
smooth boundary, modelling the rupture surface. Denote the a priori bound for the
norm of the elastic wave u in the space (7) by

‖u‖W 1,∞(−T,T ;H1(M\�f ))
+ ‖u‖W 2,∞(−T,T ;L2(M\�f ))

≤ 	0. (8)
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We impose the following assumption on the regularity of the normal stress Fn and
the friction coefficient F . Assume that Fn,F ∈ C0,1(�f × [−T, T ]), and

|Fn| ≥ c0 > 0, ‖Fn‖C0,1(�f×[−T,T ]) ≤ C0, ‖F‖C0,1(�f×[−T,T ]) ≤ C0. (9)

In addition, assume that the parameters ρ, λ, μ in the elastic wave equation (1) to
be smooth and time-independent on M \ �f .

We prove the following result on the inverse fault friction problem during a
rupture:

Theorem 1. Let M ⊂ R
3 be a bounded connected open set with smooth boundary.

Let �f ⊂ M be a connected orientable embedded smooth surface with nonempty
smooth boundary, satisfying �f ∩ ∂M = ∅. Consider the elastic wave equation
(1) with smooth time-independent parameters and the Tresca friction condition
(2). Assume the normal stress Fn and the friction coefficient F satisfy (9) on �f .
Assume

∣∣ [ ∂tuτ ]+−
∣∣ ≥ c1 on �f × [−T, T ] for some constant c1 > 0 and a priori

norm (8) for the elastic wave u. Suppose that we are given the elastic wave u on
an interior open set U satisfying U ⊂ M\�f up to sufficiently large time T . Then
we have the following conclusions.

(1) The friction coefficient F on �f × [− T
2 , T

2 ] is uniquely determined by u on
U × [−T, T ].

(2) Suppose that we have two systems with friction coefficients F1,F2, and we
are given the corresponding elastic waves u1, u2 on U × [−T, T ]. Then there
exist constants ε̂0,C, c > 0 such that for any 0 < ε0 < ε̂0, if

‖u1 − u2‖H2(U×[−T,T ]) ≤ ε0,

then the friction coefficients satisfy

‖F1 − F2‖L2(�f×[− T
2 , T2 ]) ≤ C(log | log ε0|)−c,

where the constants ε̂0,C depend on c0,C0,	0, c1, T , parameters of the elastic
wave equation and M,U, �f , and c is an absolute constant.

We remark that one could also formulate the result assuming a lower bound for∣∣ [ ∂tuτ ]+−
∣∣ on a subset of �f and then recovers the friction coefficient F in the

same subset. Theoretically speaking, our method can also work with measurements
of the elastic waves on an open subset of the boundary ∂M if additional regularity
of the elastic waves on ∂M can be assumed, see [5, Remark 1] or [3, Theorem
3]; however, this additional boundary regularity required is not provided by the
regularity class (7).

The proof of Theorem 1 is divided into two parts: the measurements of u on
U determine u near �f , and the latter determines F under the Tresca friction
condition. The first part, also known as the kinematic inverse rupture problem
[10], has mostly been done in our recent work [5]. Our method was based on
the quantitative unique continuation for the elasticity system, motivated by [7,21].
However, regularity issues remain: the actual regularity of waves is not enough
for the quantitative unique continuation arguments to work on the whole domain,
which is addressed in Sect. 2. The second part is discussed in Sect. 3.
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Fig. 1. Setting of Lemma 1 and Proposition 1

2. Interior Regularity

Let N ⊂ R
3 be a bounded connected open set with smooth boundary. Let δ > 0

be small, and denote the interior by

Nδ := {x ∈ N : d(x, ∂N ) ≥ δ}. (10)

Let u be an elastic wave satisfying the elastic wave equation (1) on the whole
set N (without the presence of a rupture surface). Recall [7, Lemma 5.1] that the
elastic wave equation can be decomposed into a system of hyperbolic equations
for (u, div u, curl u). Let U ⊂ N be a connected open subset, and we choose δ

sufficiently small such that U ⊂ Nδ .
We apply Proposition 3.2 in [5] to (u, div u, curl u) in Nδ: for sufficiently small

h and sufficiently large T (specified in [5, Proposition 3.2]), if

‖u‖H2(U×[−T,T ]) ≤ ε0,

then

‖u‖L2(Nδ×[− T
2 , T2 ]) ≤ C exp(h−cn)

	δ

(
log

(
1 + h	δ

ε0

)) 1
2

+C‖u‖H1(Nδ×[−T,T ]) h
1

n+1 , (11)

where n = dim(N ) = 3, and

	δ := ∥∥(u, div u, curl u)
∥∥
H1(Nδ×[−T,T ]). (12)

Observe that 	δ essentially asks for H2 regularity, while the solution of the
original direct problem (7) is only in H1 in space. One way to resolve the issue
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is to use interior regularity estimate and then use Sobolev embedding to get an
immediate estimate for the boundary layer.

We assume that the elastic wave u in N is in the following energy class:

‖u‖W 1,∞(−T,T ;H1(N )) + ‖u‖W 2,∞(−T,T ;L2(N )) ≤ 	0. (13)

Lemma 1. The following H2 interior regularity estimate holds for the elastic wave
equation (1) on N × [−T, T ]:

‖u‖H2(N2δ×[−T,T ]) ≤ CTCMδ−4
(
‖u‖W 1,∞(−T,T ;H1(N )) + ‖u‖W 2,∞(−T,T ;L2(N ))

)
.

That gives a bound

	δ ≤ CTCN δ−4	0, (14)

where CT depends only on T , and CN depends only on geometric parameters of
N .

Proof. Suppose that ϕ is a weak solution of the elliptic equation on N ,

�ϕ = f, ϕ ∈ H1(N ), f ∈ L2(N ).

Let χ be a cut-off function satisfying χ |Nδ = 1, χ |∂N = 0 and ‖χ‖C2(N ) ≤ Cδ−2.
Then

ϕ0 := χϕ

satisfies
{

�ϕ0 = χ�ϕ + [�,χ ]ϕ =: f̃ ,

ϕ0|∂N = 0,

where

‖ f̃ ‖L2(N ) ≤ Cδ−2
(
‖ϕ‖H1(N ) + ‖ f ‖L2(N )

)
.

Hence,ϕ0 ∈ H2(N ) by boundary regularity for elliptic equations (e.g., [9, Theorem
4 in Chapter 6.3]). Then, it follows that ϕ|Nδ ∈ H2(Nδ), and

‖ϕ‖H2(Nδ)
≤ ‖ϕ0‖H2(N ) ≤ CN δ−2

(
‖ϕ‖H1(N ) + ‖ f ‖L2(N )

)
. (15)

The constantCN depends on the first Dirichlet eigenvalue on N which is uniformly
bounded below by diameter and curvature bounds (e.g., [16, Theorem 8]). The
same argument is valid for ϕ ∈ L2(N ) and f ∈ H−1(N ) with constant CN δ−2.

Now we switch to the notations in our first paper [5],

(u, v,w) := (u, div u, curl u). (16)
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Recall that the elastic wave equation (1) can be decomposed into the system ( [7,
Lemma 5.1] or [5, Lemma A.1])

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ρ

μ
∂2t u − �u + A1(u, v) = 0,

ρ

2μ + λ
∂2t v − �v + A2(u, v,w) = 0,

ρ

μ
∂2t w − �w + A3(u, v,w) = 0,

(17)

where Ai are first order and has no time derivative.
Then consider the second equation. Since u ∈ W 1,∞(−T, T ; H1(N )) from

(13), then

v,w ∈ W 1,∞(−T, T ; L2(N )), A2(u, v,w) ∈ W 1,∞(−T, T ; H−1(N )).

On the other hand, since u ∈ W 2,∞(−T, T ; L2(N )) from (13), then

v ∈ W 2,∞(−T, T ; H−1(N )), ∂2t v ∈ L∞(−T, T ; H−1(N )).

Then using the second equation gives

�v ∈ L∞(−T, T ; H−1(N )).

Thus from the interior regularity argument (15) (for L2-H−1), we have

v|Nδ ∈ L∞(−T, T ; H1(Nδ))

with constant CN δ−2 in the regularity estimate.
Next consider the first equation on Nδ . Using the improved interior regularity

for v|Nδ , we see that A1(u, v)|Nδ ∈ L∞(−T, T ; L2(Nδ)). This gives

�u|Nδ ∈ L∞(−T, T ; L2(Nδ)),

considering that ∂2t u ∈ L∞(−T, T ; L2(N )). Thus by shrinking the domain by
another δ and using (15), we obtain

u|N2δ ∈ L∞(−T, T ; H2(N2δ))

with constant CN δ−4 in the regularity estimate, i.e.,

‖u‖L∞(−T,T ;H2(N2δ))
≤ CN δ−4

(
‖u‖W 1,∞(−T,T ;H1(N )) + ‖u‖W 2,∞(−T,T ;L2(N ))

)
.

(18)

Thus, from (18) and (13), we obtain the estimate

‖u‖H2(N2δ×[−T,T ]) ≤ CT

(
‖u‖L∞(−T,T ;H2(N2δ))

+ ‖u‖W 1,∞(−T,T ;H1(N ))

+‖u‖W 2,∞(−T,T ;L2(N ))

)

≤ CTCN δ−4
(
‖u‖W 1,∞(−T,T ;H1(N )) + ‖u‖W 2,∞(−T,T ;L2(N ))

)
.

��
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Proposition 1. Let N ⊂ R
3 beabounded connectedopen setwith smoothboundary

andU ⊂ N be a connected open set. Let u be a solution of the elastic wave equation
(1) in N ×[−T, T ]with a priori norm (13). Then, there exist constants ε̂0,C, c > 0
such that for any 0 < ε0 < ε̂0, if

‖u‖H2(U×[−T,T ]) ≤ ε0,

then

‖u‖L2(N×[− T
2 , T2 ]) ≤ C(log | log ε0|)−c,

where the constants ε̂0,C depend on	0, T , parameters of the elasticwave equation
and geometric parameters of N , and c is an absolute constant.

Proof. We have already estimated the L2-norm of u on Nδ × [−T/2, T/2] from
(11) and Lemma 1. The L2-norm on the remaining part follows from the Sobolev
embedding theorem. Namely, consider

N T
δ := {x ∈ N : d(x, ∂N ) ≤ δ} × [−T

2
,
T

2
].

Apply the Sobolev embedding theorem (e.g., Theorem 4.12 in [1]) to the space
N × [−T, T ] of dimension n + 1 = 4, which satisfies the uniform cone condition
(Definition 4.8 in [1]),

‖u‖
L

2(n+1)
n−1 (N×[−T,T ])

≤ C‖u‖H1(N×[−T,T ]) ≤ C	0.

Then,

‖u‖L2(N T
δ ) ≤ ‖u‖

L
2(n+1)
n−1 (N×[−T,T ])

(
Vol(N T

δ )
) 1
n+1 ≤ C	0δ

1
n+1 .

Hence, we have

‖u‖L2(N×[− T
2 , T2 ]) ≤ ‖u‖L2(Nδ×[− T

2 , T2 ]) + ‖u‖L2((N\Nδ)×[− T
2 , T2 ])

≤ C exp(h−cn)
δ−4	0

(
log

(
1 + h δ−4	0

ε0

)) 1
2

+ C	0h
1

n+1 + C	0δ
1

n+1 .

(19)

From here, we need to balance the parameters δ, h, ε0. Choose δ = h such that
the three terms on the right-hand side of (19) are equal, and we get

δ = h = C
(
log | log ε0|

)−c
, (20)

for some constant c depending only on n = 3, and for some constantC independent
of h. The condition h < h0 gives the choice for ε̂0:

ε̂0 =
(
exp exp

(
C−1h−1/c

0

))−1
. (21)

Inserting the choice of δ, h back into (19) gives the desired form of the estimate. ��
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Fig. 2. Applying the quantitative unique continuation to the connected open set N = M \ D
with smooth boundary, where D is a compact smooth manifold whose boundary extends �f

3. Inverse Friction Problem

Using Proposition 1, we consider the inverse problem of determining the fric-
tion coefficient F in the Tresca friction model. As Proposition 1 is formulated
without the presence of the rupture surface �f , we apply the result to a smooth
manifold whose boundary extends �f . Of course the choice of such a manifold can
be arbitrary and in this paper we use a type as illustrated in Fig. 2.

Lemma 2. Let M ⊂ R
3 be a bounded connected open set with smooth boundary,

�f be a connected orientable smooth embedded compact rupture surface with
nonempty smooth boundary satisfying �f ∩ ∂M = ∅, and U ⊂ M be a connected
open set satisfying U ⊂ M \ �f . Let u be a solution of the elastic wave equation
(1) with a priori norm (8). If, for sufficiently small ε0,

‖u‖H2(U×[−T,T ]) ≤ ε0,

then for any α ∈ (0, 1
2 ), we have

∥∥σ (u)|�f

∥∥
H− 1

2−α
(�f×[− T

2 , T2 ]) ≤ C	1−α
0 εα

1 ,

where ε1 := C(log | log ε0|)−c. The same estimate also holds for the components
σn, σ τ . The constant C depends on 	0, T , parameters of the elastic wave equation
and M,U, �f , and c is an absolute constant.

Proof. First, we construct a connected open set N ⊂ M with smooth boundary
such that U ⊂ N and �f ⊂ ∂N . Let n be a smooth unit normal vector field on �f ,
and consider the ray z + rn, r ≥ 0, from a point z ∈ �f . Since �f is smoothly
embedded inR3, there exists sufficiently small r0 > 0 such that the nearest point of
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z + rn in �f is z for all r ∈ [0, r0] and all z ∈ �f . This gives a smooth embedding
f : �f ×[0, r0] → R

3 such that f (�f ×{0}) = �f . Note that r0 is chosen such that
the closure of the image of f does not intersect with ∂M orU . The boundary of the
image f (�f × [0, r0]) extends �f , and can be smoothened over a neighborhood
of ∂�f without intersecting ∂M or U . This construct a compact smooth manifolds
D ⊂ M with smooth boundary satisfying �f ⊂ ∂D, see Fig. 2. Note that the
complement M \ D is connected due to ∂�f �= ∅. Moreover, the manifold D can
be constructed such that the curvature tensor of ∂D and its covariant derivatives
are bounded depending on r0, d(�f , ∂M), d(�f ,U ) and geometric parameters of
�f . Hence, Proposition 1 is applicable to the connected open set N := M \ D with
smooth boundary ∂N = ∂M ∪ ∂D.

Applying Proposition 1 to N = M \ D gives ‖u‖L2(N×[− T
2 , T2 ]) ≤ ε1. We have

a priori norm ‖u‖H1(N×[−T,T ]) ≤ 	0 by (8). By interpolation, we have

‖u‖H1−α(N×[− T
2 , T2 ]) ≤ 	1−α

0 εα
1 , ∀α ∈ (0, 1). (22)

Recall the system (17) for (u, v,w) := (u, div u, curl u). Then

‖v‖H−α(N×[− T
2 , T2 ]) + ‖w‖H−α(N×[− T

2 , T2 ]) ≤ 2	1−α
0 εα

1 . (23)

To proceed further, we recall the H(k,s)-norm in R
n+1 (see [12, Definition

B.1.10]) defined as

‖u‖2(k,s) =
∫

Rn+1
|̂u(ξ)|2(1 + |ξ |2)k(1 + |ξ ′|2)sdξ , (24)

with respect to the coordinates y = (x ′, xn) ∈ R
n × R. Note that when s = 0, the

H(k,0)-norm above is equivalent to the usual Hk-norm. The idea is using partial
hypoellipticity (e.g., [12, Appendix B] or [8, Chapter 26.1]) to trade regularity
between normal and tangential components.

Since the H(k,s)-norm was defined above for functions on R
n+1, we apply the

technique to local coordinates and patch up using partition of unity in the standard
way. Let {Bk}Nk=1 be a finite open cover of a small neighborhood of�f in N , and let
{χk}Nk=1 be a partition of unity subordinate to the open cover. Setting the diameter
of each open set Bk smaller than the injectivity radius of N , one can work in the
boundary normal coordinate (y1, y2, y3) ∈ R

3
y1≥0

of N , where y1 = d(y, ∂N )

is the coordinate normal to ∂N . Let �k : Bk → R
3
y1≥0

be the smooth (boundary
normal) coordinate function on each Bk such that �k maps �f ∩ Bk to an open set
of {(y1, y2, y3) ∈ R

3 : y1 = 0}. Using the notation (24), we write v,w ∈ H(−α,0)
from (23) and thus P2v = −A2(u, v,w) ∈ H(−1−α,0), where P2 = ρ

2μ+λ
∂2t − �

by the second equation in (17). We denote by P2,k the push-forward of the operator
P2 to �k(Bk), that is, for any smooth function f̂ on �k(Bk),

P2,k f̂ := (
P2( f̂ ◦ �k)

) ◦ �−1
k . (25)

In the coordinate y = (y1, y2, y3) of �k(Bk) ⊂ R
3
y1≥0

, the operator P2,k has the

standard form P2,k = ρ
2μ+λ

∂2t − ∂2
y1

− a( y, ∂y2 , ∂y3) + first-order terms. Then, we
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apply [12, Theorem B.2.9] to (χkv) ◦ �−1
k (which is a function in the half-plane

supported in �k(Bk)),

‖(χkv) ◦ �−1
k ‖(1−α,−1) ≤ C

(
‖(χkv) ◦ �−1

k ‖(−α,0) + ‖P2,k
(
(χkv) ◦ �−1

k

)‖(−1−α,0)

)

≤ C
(
‖(χkv) ◦ �−1

k ‖(−α,0) + ‖(χk P2v) ◦ �−1
k ‖(−1−α,0)

+‖[P2, χk ]v ◦ �−1
k ‖(−1−α,0)

)

≤ C
(
‖v‖(−α,0) + ‖A2(u, v,w)‖(−1−α,0)

)

≤ C	1−α
0 εα

1 ,

where the constants C depend on the C2-norms of �k,�
−1
k , χk , which, in turn,

depend on the geometry of �f . Note that the commutator [P2, χk]v in the above is
first order in v.

Let P1 = ρ
μ
∂2t − � in the first equation P1u = −A1(u, v) in (17), and denote

by P1,k the push-forward of the operator P1 to �k(Bk). Now using (χku) ◦ �−1
k ∈

H(1−α,0) ⊂ H(1−α,−1) and the regularity (χkv) ◦ �−1
k ∈ H(1−α,−1) just obtained

above, we have

‖(χk A1(u, v)
) ◦ �−1

k ‖(−α,−1) ≤ C
(
‖∇(

(χku) ◦ �−1
k

)‖(−α,−1) + ‖∇(
(χkv) ◦ �−1

k

)‖(−α,−1)

+‖(χku) ◦ �−1
k ‖(−α,−1) + ‖(χkv) ◦ �−1

k ‖(−α,−1)

)

≤ C
(
‖(χku) ◦ �−1

k ‖(1−α,−1) + ‖(χkv) ◦ �−1
k ‖(1−α,−1)

)

≤ C
(
‖u‖(1−α,0) + ‖(χkv) ◦ �−1

k ‖(1−α,−1)

)

≤ C	1−α
0 εα

1 ,

where the constants C depend on the C1-norms of �k,�
−1
k , χk . Note that we have

used the fact that A1 is a first-order linear operator in u, v. Using [12, Theorem
B.2.9] again to (χku) ◦ �−1

k , we have

‖(χku) ◦ �−1
k ‖(2−α,−1) ≤ C

(
‖(χku) ◦ �−1

k ‖(1−α,0) + ‖P1,k
(
(χku) ◦ �−1

k

)‖(−α,−1)

)

≤ C
(
‖u‖(1−α,0) + ‖(χk A1(u, v)) ◦ �−1

k ‖(−α,−1)

+‖[P1, χk]u ◦ �−1
k ‖(−α,−1)

)

≤ C
(
‖u‖(1−α,0) + ‖u‖(1−α,−1)

+‖(χk A1(u, v)) ◦ �−1
k ‖(−α,−1)

)

≤ C	1−α
0 εα

1 .

This gives ∇(
(χku) ◦ �−1

k

) ∈ H(1−α,−1) and

‖∇(
(χku) ◦ �−1

k

)‖(1−α,−1) ≤ C	1−α
0 εα

1 .
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Choosing 0 < α < 1/2, the trace of ∇(
(χku) ◦ �−1

k

)
on �k(Bk ∩ �f) ×

[−T/2, T/2] is well-defined in H− 1
2−α by [12, Theorem B.2.7] with norm esti-

mate,
∥∥∇(

(χku) ◦ �−1
k

)|�k (Bk∩�f )

∥∥
H− 1

2−α
≤ Cα‖∇(

(χku) ◦ �−1
k

)‖(1−α,−1) ≤ C	1−α
0 εα

1 .

Changing back to the original Euclidean coordinate, we have ∇(χku)|Bk∩�f ∈
H− 1

2−α on (Bk ∩ �f) × [−T/2, T/2]. Since u ∈ H1−α(N × [−T/2, T/2]), then
u|�f ∈ L2(�f × [−T/2, T/2]) if α < 1/2, and thus

χk∇u|Bk∩�f ∈ H− 1
2−α

(
(Bk ∩ �f) × [−T

2
,
T

2
]),

with the same norm estimate as above. Hence,

‖∇u|�f‖H− 1
2−α

(�f×[− T
2 , T2 ]) =

∥∥
∥

N∑

k=1

χk∇u
∣∣
�f

∥∥
∥
H− 1

2−α
(�f×[− T

2 , T2 ])

≤ N max
k

∥∥χk∇u|Bk∩�f

∥∥
H− 1

2−α
(�f×[− T

2 , T2 ])
≤ CN	1−α

0 εα
1 .

Then, the regularity for the stress tensor σ (u) on �f immediately follows from the
definition (3). Contracting the stress tensor σ (u) gives the same estimate for the
components σn, σ τ . ��

To prove our main result, we need the following lemma:

Lemma 3. Let c > 0 be a constant and let � ⊂ R
n, n > 2, be a bounded open set.

Suppose f ∈ H1(�;Rm) with value in R
m, m ≥ 1. Let ρ : Rm → R

m be defined
by

ρ(ξ) = ξ

max(|ξ |, c) , ξ = (ξ1, · · · , ξm) ∈ R
m . (26)

Denote by Tρ f = ρ◦ f the composition operator. Then, Tρ is a continuous operator
from H1(�;Rm) to H1(�;Rm), and

‖Tρ f ‖H1(�;Rm ) ≤ C(m, c,�)
(
1 + ‖ f ‖H1(�;Rm)

)
.

Proof. Let j = 1, · · · ,m. To show Tρ f ∈ H1(�;Rm), it is enough to show that
ρ j ◦ f ∈ H1(�) for all j , where the function ρ j : Rm → R is the component of
ρ, namely,

ρ j (ξ) = ξ j

max(|ξ |, c) , ξ = (ξ1, · · · , ξm) ∈ R
m . (27)

According to [18, Theorem 1], this follows after showing that ρ j is locally Lipschitz
and that there is a uniform constant C > 0 such that

|∂ξkρ j (ξ)| ≤ C, k = 1, · · · ,m, (28)
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almost everywhere in Rm , for any j = 1, · · · ,m.
For |ξ | �= c, the function ρ j is smooth and it is straightforward to check that

|∂ξkρ j | ≤ 2

c
, j, k = 1, · · · ,m.

Hence it suffices to verify that ρ j is Lipschitz across |ξ | = c. Let |ξ | ≤ c and
|η| ≥ c. Then

ρ j (ξ) − ρ j (η) = ξ j

c
− η j

|η| ,

and

|ρ j (ξ) − ρ j (η)| ≤
∣
∣∣∣
ξ j

c
− ξ j

|η|
∣
∣∣∣ +

∣
∣∣∣
ξ j

|η| − η j

|η|
∣
∣∣∣ ≤ 1

c

∣∣|η| − c|∣∣ + 1

c
|ξ j − η j |

≤ 1

c

∣∣|η| − |ξ |∣∣ + 1

c
|ξ j − η j | ≤ 2

c
|ξ − η|.

This shows that ρ j is Lipschitz on R
m with uniform Lipschitz constant 2/c, for

all j = 1, · · · ,m. Moreover, [18, Theorem 1] gives an estimate for the norm
‖ρ j ◦ f ‖H1(�),

‖ρ j ◦ f ‖H1(�) ≤ C(m, c,�)
(
1 + ‖ f ‖H1(�;Rm)

)
, j = 1, · · · ,m.

For the continuity of Tρ , it is necessary to use the specific form of the function
ρ in (26), as the continuity does not hold for all composition operators in general,
see, e.g., [19, Section 1]. In our case, for ξ = (ξ1, · · · , ξm) ∈ R

m , we define

h(ξ) := ρ(ξ) − ξ

c
=

⎧
⎨

⎩

ξ

|ξ | − ξ

c
, |ξ | ≥ c,

0, |ξ | < c.
(29)

It is clear that h is uniformly Lipschitz onRm as ρ is uniformly Lipschitz onRm .We
apply [19, Example 3.1] to the Lipschitz function h with S = {ξ ∈ R

m : |ξ | ≤ c},
the closed ball of radius c. Since h is identically 0 in S and h is smooth in the
complement of S, it is enough to verify that, for every ξ0 ∈ ∂S,

lim
ξ→ξ0
ξ /∈∂S

∇h(ξ) · τ = 0, for all τ ∈ T∂S(ξ0), (30)

where T∂S(ξ0) denotes the tangent space of ∂S = {ξ ∈ R
m : |ξ | = c} at ξ0 ∈ ∂S.

For ξ ∈ S\∂S, we see ∇h(ξ) = 0 since h is identically 0 in S. On the complement
R
m \ S, since h|Rm\S can be smoothly extended to a function h̃(ξ) := ξ/|ξ | − ξ/c

on a neighborhood of ∂S, we have

lim
ξ→ξ0
ξ /∈S

∇h(ξ) · τ = ∇ h̃(ξ0) · τ = 0, for all τ ∈ T∂S(ξ0).

In the above, the fact that ∇ h̃(ξ0) · τ = 0 is due to the definition of tangent vector,
namely, by differentiating (̃h j ◦ γ )(s) at s = 0, where h̃ j , j = 1, · · · ,m, are
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the components of h̃ and γ (s) is a smooth curve in ∂S with the initial vector
γ ′(0) = τ ∈ T∂S(ξ0). Then the claim immediately follows since h̃ j ◦ γ = 0 due to
h̃ = 0 on ∂S. This verifies (30), and then [19, Example 3.1] gives the continuity of
Th and thus the continuity of Tρ . ��

Now we prove Theorem 1.

Proof of Theorem 1. Since
∣∣ [ ∂tuτ ]+−

∣∣ ≥ c1 > 0 on �f × [−T, T ], i.e., the fault is
slipping everywhere, it follows from (9) that

g = |σ τ | = F |Fn| ∈ C0,1(�f × [−T, T ]), ‖g‖C0,1(�f×[−T,T ]) ≤ C2
0 . (31)

On the other hand, the friction condition (2) implies that

σ τ = g
[ ∂tuτ ]+−∣∣ [ ∂tuτ ]+−

∣∣ . (32)

Denote

u+ := u|N , u− := u|int(D), (33)

where N , D are the manifolds with smooth boundary constructed in the proof of
Lemma 2, see Fig. 2. Let us denote

E(N ) := W 1,∞(−T, T ; H1(N )) ∩ W 2,∞(−T, T ; L2(N )). (34)

As u+ ∈ E(N ) by (7), we can extend u+ to a small neighborhood Ñ of N in M
so that the extension of u+ is in the same regularity class E(Ñ ). Similarly, we can
extend u− to a small neighborhood D̃ of D in M so that the extension of u− is
in the same regularity class E(D̃). Let V be a small open neighborhood of �f in
M . As �f ⊂ ∂D, in this way, the functions u+, u− are both extended to V and
the extensions are in E(V ). Then ∂tu+, ∂tu− ∈ H1(V × [−T, T ]), and thus the
tangential component of the difference

f := ∂t (u+ − u−)τ ∈ H1(V × [−T, T ]). (35)

Recall the definition of tangential component near �f in (4) where the unit normal
vector field n is smoothly extended to a neighborhood of�f . By Lemma 3, the func-
tion f /max(| f |, c1) ∈ H1(V × [−T, T ]). Hence, as V is an open neighborhood
of �f in M , the trace of f /max(| f |, c1) onto �f is in H1/2(�f × [−T, T ]).

Denote the composition operator Tρ f := ρ ◦ f , where ρ : R3 → R
3 is the

Lipschitz function with uniform Lipschitz constant 4/c1 defined in (26), taking
c = c1. In the above, we have shown that tr(Tρ f ) ∈ H1/2(�f × [−T, T ]), where
tr stands for the trace operator onto �f . Now we show that tr(Tρ f ) = Tρ(tr f ) in
L2(�f × [−T, T ]), which would imply that Tρ(tr f ) ∈ H1/2(�f × [−T, T ]). Let
f k ∈ C∞(V × [−T, T ]) be a sequence of smooth vector-valued functions such
that f k → f as k → ∞ in H1(V × [−T, T ]). Then, as k → ∞,

‖Tρ(tr f ) − Tρ(tr f k)‖L2(�f×[−T,T ]) ≤ 4

c1
‖tr f − tr f k‖L2(�f×[−T,T ])
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≤ 4

c1
C‖ f − f k‖H1(V×[−T,T ]) → 0,

and by the continuity of the composition operator Tρ from Lemma 3,

‖tr(Tρ f ) − tr(Tρ f k)‖L2(�f×[−T,T ]) ≤ C‖Tρ f − Tρ f k‖H1(V×[−T,T ]) → 0.

Since Tρ(tr f k) = tr(Tρ f k) for smooth functions, we see that Tρ(tr f ) = tr(Tρ f ) in
L2(�f×[−T, T ]).As tr f = [ ∂tuτ ]+− bydefinition,weconclude thatTρ( [ ∂tuτ ]+−) ∈
H1/2(�f × [−T, T ]). Thus, due to the condition

∣∣ [ ∂tuτ ]+−
∣∣ ≥ c1 > 0 on �f ×

[−T, T ], we have
[ ∂tuτ ]+−∣∣ [ ∂tuτ ]+−

∣∣ ∈ H
1
2 (�f × [−T, T ]). (36)

Using the equation (32), (31) and (36) imply that σ τ ∈ H1/2(�f × [−T, T ]).
Namely, denote by Ag the multiplication operation by g. Since g is Lipschitz by
(31), the operator Ag : L2(�f×[−T, T ]) → L2(�f×[−T, T ]) and Ag : H1(�f×
[−T, T ]) → H1(�f × [−T, T ]) are bounded. Hence Ag : Hs(�f × [−T, T ]) →
Hs(�f × [−T, T ]) is a bounded operator for any s ∈ (0, 1) by [17, Theorem 5.1].
Thus, by (32) and (36),

σ τ ∈ H
1
2 (�f × [−T, T ]), (37)

with an estimate of the norm depending on 	0,C0, c1 and �f .
Suppose that we have two systems with friction coefficientsF1,F2 at �f , and

we are given elastic waves u1, u2 that are close in the sense that

‖u1 − u2‖H2(U×[−T,T ]) ≤ ε0.

Denote by σ
( j)
n , σ

( j)
τ ( j = 1, 2) the components of the stress tensors corresponding

to the two systems. Since the stress tensor σ (u) is linear in u, applying Lemma 2
to u1 − u2 gives

∥∥∥σ (1)
τ − σ (2)

τ

∥∥∥
H− 1

2−α
(�f×[− T

2 , T2 ]) ≤ C	1−α
0 εα

1 ,

∥∥∥σ (1)
n − σ (2)

n

∥∥∥
H− 1

2−α
(�f×[− T

2 , T2 ]) ≤ C	1−α
0 εα

1 .

Then picking α = 1/4, by interpolation with σ τ ∈ H1/2 by (37) and σn = Fn ∈
C0,1 ⊂ H1 by (9), we have

∥
∥∥σ (1)

τ − σ (2)
τ

∥
∥∥
L2(�f×[− T

2 , T2 ]) ≤ C(C0,	0, T, c1)ε
1
10
1 ,

∥∥∥σ (1)
n − σ (2)

n

∥∥∥
L2(�f×[− T

2 , T2 ]) ≤ C(C0,	0, T )ε
1
7
1 .

Hence,

‖F1 − F2‖L2(�f×[− T
2 , T2 ]) =

∥∥∥
|σ (1)

τ |
|σ (1)
n |

− |σ (2)
τ |

|σ (2)
n |

∥∥∥
L2(�f×[− T

2 , T2 ])
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≤ c−2
0

∥∥
∥
(
|σ (1)

τ | − |σ (2)
τ |

)
|σ (2)
n | −

(
|σ (1)
n | − |σ (2)

n |
)
|σ (2)

τ |
∥∥
∥
L2

≤ c−2
0 C0

∥
∥∥|σ (1)

τ | − |σ (2)
τ |

∥
∥∥
L2

+ c−2
0 C2

0

∥
∥∥|σ (1)

n | − |σ (2)
n |

∥
∥∥
L2

≤ c−2
0 C0

∥∥∥σ
(1)
τ − σ

(2)
τ

∥∥∥
L2(�f×[− T

2 , T2 ]) + c−2
0 C2

0

∥∥∥σ
(1)
n

−σ
(2)
n

∥∥∥
L2(�f×[− T

2 , T2 ])

≤ C(c0,C0,	0, T, c1)ε
1
10
1 ,

which proves the stability part (2). The uniqueness part (1) is a consequence of the
stability when ε0 → 0. ��
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