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Abstract—Robust header compression (ROHC), critically po-
sitioned between the network and the MAC layers, plays an
important role in modern wireless communication systems for
improving data efficiency. This work investigates bi-directional
ROHC (BD-ROHC) integrated with a novel architecture of
reinforcement learning (RL). We formulate a partially observ-
able Markov decision process (POMDP), in which agent is the
compressor, and the environment consists of the decompressor,
channel and header source. Our work adopts the well-known
deep Q-network (DQN), which takes the history of actions and
observations as inputs, and outputs the Q-values of corresponding
actions. Compared with the ideal dynamic programming (DP)
proposed in the existing works, our method is scalable to the
state, action and observation spaces. In contrast, DP often suffers
from formidable computational complexity when the number of
states becomes large due to long decompressor feedback delay
and complex channel models. In addition, our method does
not require prior knowledge of the transition dynamics and
accurate observation dependency of the model, which are often
not available in many practical applications.

Index Terms—Bi-directional robust header compression (BD-
ROHC), network layer, packet header.

I. INTRODUCTION

Advancements in recent communication generations have
greatly enhanced bandwidth efficiency through technologies
at the PHY/MAC layer, reaching performance levels close to
their limits [1]. Consequently, little room is left for further im-
provement at PHY/MAC layer. With the widespread adoption
of Internet Protocols (IP) in numerous applications and ser-
vices, the move towards all-IP packet-switched architectures
in wireless network infrastructures has become prominent [2].
Future improvements in wireless networks should not only
concentrate on MAC and PHY layer techniques, but also
encompass a greater focus on optimizing IP-based protocol
stacks across wireless infrastructures.

An IP packet consists of a header and a payload, where the
header contains essential system information such as version,
time to live, and IP addresses. In certain applications, such
as Voice-over-Internet-Protocol (VoIP) and Internet-of-Things
(IoT), the header can be comparable to, or even larger in size
than, the payload, which can compromise the overall data
efficiency of packets transmission. To address this issue, a
mechanism called robust header compression (ROHC) was
developed [3-6]. ROHC takes advantage of the fact that
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many fields in the header tend to change slowly throughout
the lifetime of a data flow. It selects reference values for
these fields and only encodes the small deviations from these
reference values in the header. By compressing the header
in this manner, ROHC reduces the overhead associated with
transmitting IP packets, thereby improving packet network
efficiency. The adoption of ROHC has been widespread in
wireless packet switch networks such as 4G-LTE [7] and 5G-
NR [8], and it has a strong potential in IoT scenarios where
packets with short payload are prevalent. By minimizing the
header length without sacrificing important system informa-
tion, ROHC enhances the efficiency of IP-based communica-
tion in various wireless networks.

Despite its widespread deployment, ROHC has not received
significant attention. However, a few studies have focused
on improving and analyzing the performance of ROHC. As
an early work, the authors of [9] proposed configurations of
ROHC for scenarios with scarce resources links to improve
efficiency and robustness. Window-based least significant bits
(W-LSB) encoding [3] is one of the common compression
method in ROHC. The authors of [10] studied the impact
of the different channel conditions on W-LSB encoding in
ROHC. It pointed out that smaller window size is preferable
when channel condition is good. However, the existing works
only considered memoryless channels. A more recent work
[11] filled this gap by adopting Gilbert Elliot dynamic channel
model in ROHC, and described the system behavior with
mathematical models. The proposal of [12] leveraged hybrid
ARQ (HARQ) information from PHY/MAC layer to facilitate
ROHC design. More recently, the authors of [13] first for-
malized the U-mode ROHC as a partially observable Markov
decision process (POMDP), in which trans-layer information,
including HARQ, is used as partial observation to support
the decision-making of compressor. A subsequent work [14]
proposed the bi-directional ROHC (BD-ROHC), in which the
compressor may require feedback from the decompressor. It
formulated BD-ROHC as a POMDP and proposed the optimal
solution using dynamic programming (DP).

Although the optimal solution provided by DP [14] for the
BD-ROHC, it has two practical issues. First, DP becomes
computationally prohibitive when the number of POMDP
states becomes larger, resulting from long feedback delay
and complicated channel models. Second, DP, together with
other existing approaches, rely on transition dynamics and
probabilistic of POMDP model, which is often unavailable
or inaccurate in many practical applications. To address these
issues, we propose a BD-ROHC design using reinforcement
learning (RL). Specifically, we adopt deep Q-network (DQN)
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to incorporate the history of actions and observations as inputs,
and generate as outputs the Q-value corresponding to each
action. This RL framework enables us to handle POMDP
with a vast number of states, including the cases where the
state space is infinite. Moreover, DQN’s training process only
relies on collected episodes, eliminating the need for explicit
knowledge of transition dynamics. The double DQN (DDQN)
technique is further deployed to improve the convergence
and stability of the learning process. Our simulation results
demonstrate better transmission efficiency achieved by our
proposed RL method than benchmarks under different channel
models and parameter settings, without prior knowledge of
model dynamics.

The rest of this paper is organized as follows: Section
IT reviews the system model, including the basic function-
ality of compressor and decompressor. Section III delivers
the POMDP formulation. Section IV provides details on the
deployment of the deep Q-learning for BD-ROHC. Section
V demonstrates the the proposed design through simulations.
Section VI finally summarizes the work.

II. SYSTEM MODEL

Fig. 1 presents the system diagram of BD-ROHC. The
compressor selects compressed headers with different lengths
for the packets to be transmitted. The decompressor tries to de-
code headers of packets received from the channel. Decoding
failures could happen due to the imperfection of channels or
over-aggressive compression of the headers. The compressor
uses trans-layer information from lower layer (MAC/PHY) as
observations to support its decision making, such as channel
quality information (CQI), hybrid ARQ (HARQ) feedback and
frequency of header context initialization. In the bi-directional
setting, the ROHC compressor may also request feedback from
the decompressor, which can be used for decision making as
well. We now discuss the components and functionalities of
BD-ROHC in details.
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Fig. 1. The system diagram of BD-ROHC.

A. Headers

Let ac[t] denote the compressor’s decision on the headers
at the t-th slot. There are three choices of headers, namely
initialization and refresh (IR) header, compressed header with

7-bits CRC (CO7) and compressed header with 3-bits CRC
(CO3), denoted as avc = 0, 1, 2, respectively.

o IR header (a¢[t] = 0, longest with length L) is the full
length header, which is used to establish header context
at the decompressor. The decompressor can decode com-
pressed header, i.e., CO7 and CO3, only if the header
context has been established.

e CO3 header (ac[t] = 2, shortest with length L) is
the fully compressed header. It can be decoded only if
the decompressor maintains a header context. Due to
the imperfection of the channels, decoding failures can
happen even if header context is maintained. After a few
successive failures, the context will be damaged and CO3
will not be useful.

e CO7 header (ac[t] = 1, of medium length L;) is
used for repairing the damaged header context. If the
decompressor successfully decode a CO7 header, the
damaged header context can be repaired, after which CO3
header can be decoded again with the header context.

In general, longer headers are more likely to be successfully
decoded by the decompressor, but it has low packet transmis-
sion efficiency defined as L/(L + L;), where L is the length
of the payload.

Note that headers are not always compressible. Whether a
header is compressible depends on the header sources at the
transmitter. We denote the compressibility of the header at the
t-th slot as og[t], and use og[t] = 1 and og[t] = 0 to represent
compressible and uncompressible header, respectively. If a
header is uncompressible, an IR or CO7 header will be
required, i.e., ac[t] = 0,1, and CO3 header will not be taken
by the decompressor. We assume og[t] evolves as a dg-th order
Markov model with dynamic Tg(og[t]|os[t—1:t—ds]), which
represents the probability distribution of the future header
compressibility og[t], conditioned on the history of header
compressibilities og[t—1:t — dg].

B. Channel

The channel between the compressor and the decompressor
is not perfect. We denote the channel quality as oy [t] at the
t-th slot, where larger o [t] indicating better channel quality.
We use or[t] to denote the packet transmission status at the ¢-
th slot, and use op[t] = 1 and o [t] = 0 to denote transmission
success and failure, respectively. When the transmission fails,
the header can not be decoded by the decompressor.

In this work, we do not make specific assumptions on chan-
nel models. Instead, we only assume the channel quality o g [t]
evolves as a dy-th order Markov process through the dynamic
Tu(ow[t)|om[t-1:t—dg]), which is the probability distribution
of future channel quality o [t], conditioned on the history of
channel qualities og[t—1:¢t—dg]. The transmission status
or|t] depends on the channel quality oy [t] and the header
type ac[t—1] through the dynamic Tr(or[t]|ac[t—1], ox]t]),
which can be explained as conditional distribution similarly.

C. Trans-layer Information

The compressor makes decisions on headers to use and
on whether to send feedback requests leveraging trans-layer
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TABLE I
STATE TRANSITION OF THE DECOMPRESSOR.

0 (FC) 1 (FC) 2 (FC) W (RC) W41 (NC)
0 (FC) or=1V(ocs=1Aac#2) | or=0Acs=1 0s=0A(cr=0Aac=2)
1 (FC) or=1V(ocs=1Nac #2) or=0Nocgs=1 s =0A(c7=0Nac=2)
or=1V(ocs=1Aac #2) 0s=0AN(or=0Aac=2)
W—1(FC) | or=1V (cs=1ANac#2) or=0V (65s=0Aac=2)
W (RC) or=1Aac#2 or=0Vac=2
W+1 (NC) or=1ANac=0 or=0Vac#0

information, such as channel quality information (CQI), hybrid
ARQ (HARQ) feedback and frequency of header context
initialization. Usually these trans-layer information is man-
aged by lower layer protocols, and not reported to higher
layers. In our design, we assume the compressor extracts
trans-layer information to facilitate its decision making. For
simplification, we assume the compressor estimates the dp-
delayed channel quality og[t —dp] and transmission status
or[t—dp] from the trans-layer information, which are denoted
as zy and zr through the probabilistic Oy (2 [t]|or[t—dp))
and Or(zr[t]|lor[t — dp]), which can be explained as the
distribution of z[t] and zr[t] conditioned on delayed channel
condition o g [t—d p] and delayed transmission status o [t—dp)],
respectively. Again, we do not assume the model of this two
probabilistic in this work.

D. Decompressor

The goal of the decompressor is to decode the headers re-
ceived from the channels. Whether the header can be success-
fully decoded by the decompressor depends on the transmitted
header type ac, the compressibility of the header og (decided
by the header source at the transmitter), transmission status
or, and the state of the decompressor op.

The decompressor works as a finite state machine (FSM)
with W + 2 states, of which the state transition diagram
can be found in Fig. 2 of [14]. We use op = W + 1 to
represent the "No Context” (NC) state, op = W to represent
”Repair Context” (RC) state, op = 0,1, ..., W —1 to represent
“Full Context” (FC) state with confidence from high to low.
At the beginning, the decompressor is at NC state. It is not
able to decode CO3 or CO7 header since there is no context
established. When successfully decoding an IR header, the
decompressor establishes a context and transits to op = 0
FC state. At FC state op = [ with [ = 0,1,...., W — 2, if
transmission failure happens or = 0 and the header is fully
compressible g = 1, the decompressor will transit to the
lower level FC op = [+ 1 and claim a decoding failure. After
W such failures, it will transit to RC state. However, when the
header is not fully-compressible og = 0, it will directly transit
to RC state and claim decoding failure if transmission failure
happens o = 0 or the header is fully compressed ac = 2. At
RC state, unless it successfully decode an IR or CO7 packet,
ie., or = 1l and ac < 2, it will stay in RC and claim decoding
failure. It is worth noting that the decompressor successfully

decode the header if and only if its state transits to op = 0.
The detailed state transition is shown in Table I, where the
(i,4)-th entry is the condition on which the i-th state transits
to the j-th state. A blank entry means the transition can never
happen.

E. Compressor

The compressor makes decisions on ac[t] € {0,1,2} for
the t¢-th packet, i.e., deciding which one of the IR, CO7 and
CO3 headers should be used. In addition, it also decides
whether to request a feedback at the ¢-th slot from the
decompressor to facilitate future decision making. This request
allows the compressor to fully observe the decompressor state,
albeit with a time delay. We use ap[t] to denote the decision on
whether request feedback, and denote request and not request
as ap[t] = 1,0, respectively. If the compressor send a request
at the ¢-th slot, it will receive a feedback zp[t + dp| = oplt]
at the (t+dp)-th slot, indicating the state of the decompressor
at the ¢-th slot.

In general, the compressor does not know the state of the
decompressor. It relies on the trans-layer information zr[t]
and zg|t] as partial observations to make decisions. It can also
use the feedback zp[t] = op[t — dp] to support the decision
making if it requested a feedback at the (¢t—dp)-th slot.

Note that longer headers are more likely to be success-
fully decoded considering the imperfection of channels and
state transition of the decompressor but at the sacrifice of
packet-efficiency as a result. The feedback can provide more
information about the decompressor’s states, but at the cost of
additional communication resources. The decision making at
the compressor is nontrivial considering these factors.

F. Summary of Notations

We now using the following Table II to summarize the major
notations and symbols used in our problem formulation.

III. POMDP PROBLEM FORMULATION

In this section, we formulate the BD-ROHC as a partially
observable Markov decision process (POMDP). In the context
of RL [15], agent is the compressor, and the environment
consists of the decompressor and the channels. Our goal is to
find a policy for the compressor in the framework of POMDP.
The BD-ROHC model is summarized in Fig. 2.
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Fig. 2. The block diagram of BD-ROHC in the context of RL. Agent is the compressor, and the environment consists of the decompressor, channel and

header source.

TABLE II
SUMMARY OF NOTATIONS
Variable Description
o Compressor’s decision on headers: It takes value O, 1 and 2
c for IR, CO7 and CO3 header, respectively.
ap Compressor’s decision on whether or not to request feedback.
Compressibility of the header source: If g = 0 (not
gs compressor), IR or CO7 header must be used.
op State of decompressor.
or Transmission status.
Channel condition: Transmission is more likely to be
9H successful when channel condition is better.
2T Delayed observation of o.
- Feedback from the decompressor of its state, which has value
D —1 if the compressor did not request a feedback.
ZH Delayed observation of o.

A POMDP is a 7-tuple (S, A, T,R,Z,0,7), in which: §
is the set of states; A is the set of actions; 7 : S x A —
AS, (o,a) — T(-|o,«) is the transition dynamic, where
AS denotes the set of probability distributions defined on S;
R:SxAxS — Ry, (0,a,0") = R(o,a,0") is a reward
function, where o’ is the next state; Z is the sample space of
the observations; O : S — AZ, o — O(+|o) is the conditional
probability distribution of observation; vy is the discounting
factors. Let d = max(dg, dp, dp), we now define the POMDP
for our BD-ROHC system:

o The state variable o[t] € S is defined as
olt] =(aclt—1:t—d—1],ap[t—1:t—d—1], n
oglt:t—d],op[t—d],or[t—d],ou[t—d])

Naturally, the set of states is S = {0,1,2}9+! x
{0,134+ x {0, 1}9+ x {0,1,..., W+ 1} x {0,1} x Sg.
o The action variable a[t] € A is defined as
alt] = (acll], ar(t) @
with A = {0,1,2} x {0,1}.
« The partial observation variable z[t] € Z is defined as

z[t] = (zr[t], zu|t], zp[t], os[t:t—d]) 3)

with Z = {0,1} x Zgx {—1,0,1, ..., W41} x {0, 1}4+1,
Note that if the compressor receives feedback at ¢, then
zp[t] = oplt — d], otherwise we use zp[t] = —1 to
denote not receiving feedback.

The observation probabilistic O(z[t]|c[t]) is defined as

O(zlo[t])= Or(zr|or[t—d))Ou(Zulou[t—d])
X Lap[t—dj=0rzp=—1)V(ar[t-d=1rzp=0cp[t—d]) (4)
X lﬁszas[t:t—d]

where z = (2r,Zm,%p,0s), and 1, is the indicator
function returning 1 if the condition in “(-)” is satisfied,
returning 0 otherwise.

The transition dynamic 7 (c[t+1]|o[t], a[t]) is defined
as the follows

T(ololt], alt]) = Tr(r|ac(t—d], oult—d+1])
xTs(oslos[t:t—d)Tu(Tuloult—d)

XPD(a'DIO'T[t—d—I—l],Oéc[t—d],O'D[t—d]) )

X ]‘@C:ac[t:t—d] ltip:ap[t:t—d]

where s = (dc,dp,a's,a'p,ﬁT,ﬁH).
The reward function R(c[t], a[t], o[t+1]) is defined as
L1, (t-ampo0
R(olt], alt],olt+1 —ZZoplt R0\ Lt —d—1
(o) o] olt+1) =25 darpft—d 1]
(6)

where A\ > 0 is a constant. The first term on the right hand
side of eq. (6) accounts for the packet’s data-efficiency.
Recall that L and L; are payload size and the header
size corresponding to the action (header type) ac = 1,
respectively. When decoding fails, the the packet’s data-
efficiency is 0. When decoding successes, i.e., op = 0,
the packet’s data-efficiency is m The second
term penalizes the feedback since it introduces additional
communication costs. The reward at the ¢-th slot is simply
denoted as r[t] = R(o[t], a[t], o[t+1]).

Note that in the POMDP, the agent (compressor) only
has access to the partial observation z[t] (of the state o[t])
instead of o[t] itself. The agent has to rely on the history of
observations z[t: 0] and actions «t—1:0] to make decision
aft]. We denote the deterministic policy as = : F — A,
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where F is the history of the observations and actions, i.e.,
Ve, (2]t:0], a[t—1:0]) € F. Let @™ [t] = (aZ[t], afp[t]) be the
action taken under policy 7, then our goal is to find the policy
7 maximizing the accumulated discounted reward:

mT:rixE thR(a[tLa” [t],olt+1])| . )
t=0

In our formulation, the size of action space, state space
and observation space are |A| = 6, |S| = (W + 3)|Sy|12¢
and |Z| = 2(W + 3)|Zx|2%, respectively. The complexity of
solving a POMDP with dynamic programming (DP) [14] is
exponential to |A| x |Z| and linear to |S|, which becomes
prohibitive when the scale of the problem becomes large,

especially when d is large.

IV. COMPRESSOR POLICY WITH DEEP Q-LEARNING

A prior work [14] uses dynamic programming (DP) to solve
the problem formulated in (7) which exhibits two shortcom-
ings: 1) DP becomes computationally prohibitive when the
scale of the problem becomes large due to large delay d and
complex channel models. 2) DP requires the knowledge of
transition dynamic 7, which is often not available in many
practical applications. As we shall see in this section, these two
obstacles can be addressed by our proposed deep Q-learning
methods.

A. Deep Q-learning for MDP

Before moving onto deep Q-learning for POMDP, it is
helpful to review the Q-learning for MDP where states are
available. The key quantity plays in Q-learning is the Q-
function. In an MDP, the Q-function Q% : S x A — R with a
deterministic policy x : S — A is defined as

Q"(o,a) =E lz yor[t + k] ‘ olt] = o,alt] = a,k| . (8)

k=0

The Q-value (value of Q-function) can be explained as the
expected discounted accumulated rewards starting from state
s taking action a under policy x. The goal of Q-learning is
to find the optimal Q-function (corresponding to the optimal
policy k) in a sense that Q" (o, «) is maximized for every o
and «. For most cases, there is no closed-form formulation of
Q-function in terms of k.
According to [15], the optimal policy satisfies

K*(o) = arg max Q" (0,0). 9)

Applying the recursion of Q-function, and substituting eq. (9)
into eq. (8), we have

Q (o,0)= Y T(0'0.0) (Rl0.0,0")+7Q" (o, 5*(0")))

o'eS
YT 0)(Rio. o) 4y max 0 (). (10)
o'eS

which is the Bellman equation where Q) (o, «) can be viewed as
the unknown table to be solved with finite dimension |S|x |.A].
It has been proved that the Q-function (or the policy) is optimal

if and only if the Bellman equation is satisfied [15]. To solve
the equation, the Q-function can be updated as follows

Q(o,a) + r+ymax Q(o’,a) (11)
a’eA

where (0, o, 7, 0’) denote the state, action, reward and the next

state, respectively, sampled from trajectories (instantiations of

the MDP). Eq. (11) is guaranteed to converge to the optimal

Q" (o, ) according to [16].

When the state space and the action space both become
large (infinite if o and « are continuous), we can use a neural
network (NN) to represent the Q-function Q4 (o, o), where 6
are the weights of the NN. In this case, for each (o, a, 7, 0”),
the sample loss can be written as

glo,a,r,0':0) = (Qe(o, ) —7r —vgllgﬁQg(a', o))2 (12)
The update of 6 follows the mini-batch stochastic gradient
descent (SGD): 6 « 6 — nVg(o,a,r,c’), where n is the
learning rate. Note that, deep Q-learning is not guaranteed to
converge with non-linear NN model. Its convergence is still
an open problem under exploration.

B. Double Deep Q-learning Implementation for the Compres-
sor Policy in POMDP

In the POMDP, state o is not available, consequently we
replace Qg (o, @) with Qg(h, o), where h € F is the history
of partial observations and actions. Despite lacking theoretical
guarantee, it works well in many POMDP applications.

1) Deep Q-network: Let fy(-) be the function represented
by the deep Q-network (DQN). It takes truncated history

hlt] £ (z[t:t—d—do], alt—1:t—d—dg]) (13)

as the inputs and has a |.A|-dimension output, in which the -
th entry f§(h[t]) = Qo(h[t], ). The constant integer do > 0
is used to adjust the history window size. Technically, all the
histories of observations are informative to decision making.
In DQN, we only keep the latest observations and actions,
since the early ones have smaller impact on the current state.

2) Double deep Q-learning: As mentioned previously, deep
Q-learning often suffers from instability of convergence result-
ing in unsatisfactory performances. In this work, double DQN
(DDQN) is adopted to mitigate this issue, whose block dia-
gram is depicted in Fig. 3. In DDQN, there are two networks,
namely current DQN and target DQN, parameterised with 6
and 6’, respectively. The current DQN interacts with the envi-
ronment (decompressor, channel and header source) to collect
experience (finally stored in the episode memory M). During
the update of 6, the target network 6’ remains unchanged, and
participate in calculating the target r +y maxo c4 Qg (h', o)
and the following sample loss.

g(hy o, 1'50,0") = (Qo(hy ) — 1 — max Qo (W, a)))2.
(14)

After several updates of the current network 6§, DDQN updates
the target network 6’ by copying 6. The detailed algorithm for
DDQN is shown in Algorithm 1.
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Fig. 3. The training paradigm of DDQN. The current DQN interacts with the environment (channel and decompressor) to collect experience. During the
update of 0, the target network 6’ remains unchanged, and participate in calculating the target

We adopt nn e-greedy strategy such that the agent can
explore the action spaces in early training stages. At the
beginning, the agent has large probability € close to 1 to
take random actions. The value of e decays with rate ~..
After a duration, the agent will follow the current policy with
high probability. Note that there is a d-slot delay between the
compressor and the decompressor. For this reason, while the
compressor transmits «¢|t], the decompressor just receives
ac|t — d]. We denote the episode memory as M, which is
essentially a first-in-first-out (FIFO) with constant size.

It is worth mentioning that the proposed DDNQ method
finds the policy with trajectory samples obtained from inter-
acting with the environments, and does not require any prior
knowledge of the transition dynamic or observation probabilis-
tic. In addition, the proposed method can handle state, action
and observations from large finite or even continuous spaces.

V. EXPERIMENTAL RESULTS

We start with the general settings of the experiments. During
the training, the number of episode is set as M = 3,000, and
T = 10,000 packets are transmitted within each episode. Both
the current and target DQN are 4-layer dense NN, in which
the hidden layer has width 2, 048.

o Headers: The length of IR header (o = 0), CO7
header (¢ = 1) and CO3 header (aoc = 2) are set as
Ly =60, L; =15 and Lo = 1, respectively. The header
source og|t] is modelled as a Markov process with order
ds = 1 and transition dynamic Tg(os[t]|los[t—1]). In
the simulation, 7g(og[t] = 1llog[t—1] = 0) = 1 and
Ts(oslt] = 0los[t—1 =1) =0.1.

o Decompressor: The decompressor follows the model
in Sec. II-D with the maximum number of allowed
consecutive decoding failures as W = 5.

o Evaluation metric: We evaluate “transmission effi-
ciency”, which is defined as total length of corrected

received payloads over total length of the packet:

T
i1 Loppry=1L
T .
Zt:1(L + Lac[t])
We also evaluate “feedback rate”, which is defined as the

number of feedback requests over the total number of
transmitted packets:

5)

transmission efficiency =

T
t
feedback rate = M.

o Benchmarks: Given existing works can not handle situa-
tions with long feedback delays and unavailable transition
dynamics, we propose the following “keep transmitting”
(KT) algorithm as the benchmark. KT requests feedback
randomly with certain probability (such that feedback
rate is controlled), and chooses header based on the
latest feedback from the decompressor. KT keeps using
the same header based on the last feedback until new
feedback is received.

(16)

A. Results under Gilbert-Elliot Channel Model

First, we consider the well known Gilbert-Elliot channel
model [11]. It is parameterized with the average duration
of “bad” states [p and the probability of “bad” state ep.
The “bad” state is represented as op[t] = 0 and “good”
state is represented as og[t] = 1. The transition dynamic
Tu(ow[t]|om[t—1]) has values Ty (o g [t] = L|lom[t—1] = 0) =
A2 and Tu(oult] = Olou(t—1] = 1) = 1/lp. The trans-
mission status has dynamic Tr(or[t] = lloglt] = 1) = 5
and Tr(or[t] = 1|ou[t] = 0) = Bo. Through this subsection,
we set [p = 5.

The trans-layer information is summarized as the esti-
mates zp[t] and zr[t] through model Oy (zx[t]|lon[t—dp))
and Or(zr[t]|or[t — dp]), respectively. In our simulation,
OH(ZH[t] = O’H[t—dD”O'H[t—dD]) = l—EH, and OT(ZT[t] =
or[t—dpllor[t—dp]) = 1 — er, where ep and ey denote the
estimation error probability of transmission status and channel
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Algorithm 1 Training DDQN Compressor for BD-ROHC
1: Inmitialization: Initialize the current and target network
with 6 and @', respectively. Random exploration proba-
bility € = 1.
2: for 7 =0,1,..., M do
3 fort=0,1,...,7 do
4: Compressor:
5
6

Obtain og[t] from the header source
Obtain zp[t], zg[t] from the trans-layer information
based on or[t—d] and oy [t—d)
7: Obtain ZD[t] :O'D[t—d] if aF[t—d—l]: 1,
ZD[t] =-—11if aF[t—d—l] =0
if ¢ < rand() then
: aft] ~ Uniform(A)
10: else

11: Collect the history of og, 27, 21, @c, ap up to
the (t —d— do)-th slot, and concatenate them as
hlt]

12: at] = maxee Qo(ht], a)

13: end if

W (aclt)arl]) = aff

15: Transmit ac[t]

16: Poll feedback according to ap[t]

17: Decompressor:

18: Receive ac[t—d] with channel quality o[t —d+1]

and transmission status op[t—d+1]

19: Update state o p [t—d+1] based on a¢ [t—d], op[t—d+1]

and oplt—d+1]

20: Feedback op[t—d+1] if ap[t—d—1] =1

21: Episode Memory:

22: Collect the reward 7[t] = ?j{“ﬂ—/\a Flt—d—1]

Thag(t—d] B
23: Update memory M with (h[t—1], a[t—1], r[t—1], h[t])

24:  end for

25:  Training:

26: for k=0,1,... do

27: (h,o, 7, B') ~ M

28: 0 0—nVgh,a,rh';0,0)
29:  end for

30: 0«0
31: € < €7
32: end for

conditions, respectively. It is worth to clarify that channel
condition o [t] indicates how good the channel is at the ¢-th
slot, while ep parameterize the probabilistic model of o [t].

Fig. 4 shows the results of the proposed RL and KT under
different channel quality ep. It can be observed from the
figure that the performance gap between the two methods
becomes more obvious as feedback rate decreases. Since the
problem under low feedback rate is more challenging, the
carefully designed RL method can show more advantages
without surprise. The proposed RL has better performance
than KT with all different channel qualities. In the experiment,
er =0.1,eg =0.1,d=4, p1 =0.9, o = 0.1 and L = 20.

Fig. 5 shows the performance of both methods under
different feedback delay d. It can be observed that the proposed

o
o
L
l
\
L
H
y

\
g

5] —e— RL =01
Eos« —— KT, e5=0.1
2 —¥— RL,g5=0.2
g —¥— KT, 5=02
g —4— RL, =05
§0.4~ —— KT, e5=0.5
5

'

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
feedback rates

Fig. 4. Performance of the proposed RL and KT under different channel
quality parameter €. The proposed RL outperforms KT, and the performance
gap becomes more obvious as feedback rate decrease. (Gilbert-Elliot model)

transmission efficiency

—o—
——
>
>
—-
—-
.6

0.0 0.1 0.2 0.3 0.4 0.5 0
feedback rates

Fig. 5. Performance of the proposed RL and KT under different feedback
delay d. The proposed RL method outperforms KT, and both methods
performs worse as the feedback delay d becomes larger since the feedback
becomes less informative. (Gilbert-Elliot model)

RL method outperforms KT, and both methods performs worse
as the feedback delay d becomes larger, since the feedback
becomes less informative. In the experiment, ez = 0.2,
€T = 0.1, €Eg = 0.1, ﬁl = 0.9, ﬁo =0.1 and L = 20.

Fig. 6 shows the performances of both methods with dif-
ferent transmission status estimation error probability er. It
can be observed that the proposed RL method has better
performance when er is smaller. The performance of KT
does not change along with e, because it can not use trans-
layer information without knowledge of the model. In the
experiment, eg = 0.2, eg = 0.1, d = 4 and L = 20. In Fig.
7, we made observations similar to Fig. 6. In the experiment,
eg =02, er=01,d=4, $1 =0.9, oy =0.1 and L = 20.

Fig. 8 shows the impact of payload size L on the transmis-
sion efficiency. It can be observed from the figure that larger
payload size results in a high transmission efficiency. Notice
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Fig. 6. Performance of the proposed RL and KT under different transmission
status estimation error probability er. (Gilbert-Elliot model)
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Fig. 7. Performance of the proposed RL and KT under different channel
condition estimation error probability err. (Gilbert-Elliot model)
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Fig. 8. Performance of the proposed RL under different payload size L.
Transmission efficiency is higher with larger payload. (Gilbert-Elliot model)

that the payload size is not related to any transition dynamic
and observation probabilistic. For any instantiation of the pro-
cess, increase L always results in high transmission efficiency.
The limit of the transmission efficiency is Ethl 1oppe41)=1/T
according to eq. (15). In the experiment, eg = 0.2, e = 0.1,
€Eg = 0.1, 51 = 0.9, ﬂo =0.1and d = 4.

—— 6 layers
0.554 — 4layers
— 2 layers
0.50 A
°
g
] 0.45 A
0.40 -
0.35 A
T T T T T T T
0 500 1000 1500 2000 2500 3000
episode

Fig. 9. Convergence of the training process with different number of layers.
The curves are smoothed with a window of size 50. (Gilbert-Elliot model)

Fig. 9 shows performance of the proposed RL method
with DQN with different depths. From the figure, we can
observe that the DQN with 4 layers perform better than the
one with 2 layers, as the later one is too simple thus lack
of representation capability. However, when the DQN has 6
layers, the performance becomes worse surprisingly. It is likely
that the training of DQN becomes more unstable due to the
increasing sensitivity resulting from deeper models.

0.70
— £=0.1,02,05
0.65 — &=02
— g=0.5
0.60 -
0.55 -
B 0.50
©
8
= 0.45 4
0.40 -
0.30 4
2800 2850 2900 2950 3000 3050 3100 3150 3200
episode
Fig. 10. Rewards during training with varying environments. In the experi-

ment, eg = 0.1 before the 3, 000-th episode, and changes to 0.2 and 0.5 at
the 3, 001-th and 3, 101-th episode, respectively. (Gilbert-Elliot model)

Fig. 10 demonstrates how fast the proposed RL can adapt
to new environment. The orange and green curves show the
rewards from the 2, 800-th to the 3, 000-th episode during the
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training with eg = 0.2 and ep = 0.5, respectively. The blue
curve shows the reward with varying eg. Specifically, eg =
0.1 before the 3, 000-th episode, eg = 0.2 between the 3, 001-
th episode and 3, 100-th episode, e = 0.5 after the 3, 101-th
episode. From the figure we observe that the proposed DQN
can adopt to new environment quickly. The experiment setting
is same to Fig. 4.
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2
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% 0.32 4
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2
7
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—e— RL
0.26 1 —o— [11]
—o— [11] with wrong dynamic
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
feedback rate
Fig. 11. Compared with [14] with and without prior knowledge of model

dynamics. (Gilbert-Elliot model)

Fig. 11 shows a comparison between [14] and the proposed
RL. We can observe from the figure that [14] outperforms the
proposed RL with accurate knowledge of model dynamics.
However, when the knowledge is inaccurate, it performs worse
than the proposed RL. In the experiment, eg = 0.5, e = 0.4,
€Eg = 0.4, d= 4, 61 = 0.7, 60 =0.3 and L = 20.

B. Results under Hidden Markov Channel Model

We now apply a hidden Markov channel model [17] to test
the performance of the proposed RL and KT methods. The
model starts from the physical layer wireless channel with
Rayleigh model,

oult] =1/ Ar[t]? + Aglt]? (17)

where Ar[t] and Aglt] are in-phase and quadrature compo-
nents of the channel, respectively. A;[t] and Aglt] are inde-
pendent dg- order Markov Gaussian process. The transition
dynamic is described by a di X dg covariance matrix whose
(i,7)-th entry is pl*~J!. Here p is a parameter to adjust the
correlation of consecutive samples. The transmission status
or[t] can be expressed as

orlt] = 1p,apg>vu (18)

where Pr is transmitting power, and U [t] servers as a threshold
follows standard Gaussian distribution independently at every

time slot. The observation zp[t] is
ZH[t] :aH[t—d]—l—nH[t—d] (19)

where ny [t — d] is an additive white Gaussian noise (AWGN)
with zero-mean and w%l-variance. We assume zpy results from

channel estimation and channel reciprocity. The observation
zr is defined the same way with Gilbert-Elliot in Sec. V-A.
Through this subsection, we set dgy = 4, d = 8 and L = 20.
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Fig. 12. Performance of the proposed RL and KT under different transmitting
power Pr. (Hidden Markov model)

Fig. 12 shows the performances of both the proposed RL
and KT methods with different transmitting power Pr. From
the figure we observe that the propose RL methods outper-
forms KT in all cases, and their performance gap is relatively
larger when feedback rate is lower. In the experiment, we set
p=0.5 and w¥ = 1.
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Fig. 13. Performance of the proposed RL and KT under different channel
correlation p. (Hidden Markov model)

Fig. 13 shows the performances of both the proposed RL
and KT methods with different channel correlation p. From
the figure we observe that the performance of RL is better
than KT in call cases, but degrades when p becomes larger.
In the experiment, we set Pr = 2 and w% =1.

Fig. 14 shows the impact of the variance of channel con-
dition observation noise w? on the transmission efficiency.
Without surprise, smaller observation noise results in better
performance. It can be observed that the proposed RL method
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Fig. 14. Performance of the proposed RL and KT under different level of
channel condition observation noise w%l. (Hidden Markov model)

performs better than KT in all cases. In the experiment, we
set Pr =2 and p = 0.5.

VI. CONCLUSION

Existing works on bi-directional robust header compression
(BD-ROHC) with dynamic programming (DP) are difficult to
implement for large scale system due to prohibitive compu-
tational complexity. Moreover, dynamic programming ROHC
controls rely on prior knowledge of the underlying model
parameters, which is often unavailable practically. In this
paper, we propose a novel RL framework which addresses
these issues at the same time. We adopt a double deep
Q-network (DDQN) framework, whose input dimension is
scalable to the system model. Our training of the DDQN relies
on information obtained from interacting with channel and
compressor, which can adaptively learn and acquire useful
knowledge of the model dynamics implicitly. Experimental
results demonstrate strong and robust performance of our
proposed paradigm for different system models. Future work
may consider more complex environment with multi-agent
reinforcement learning.
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