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Abstract:  
 

Peptide amphiphiles (PAs) self-assemble into cylindrical nanofibers with applications in protein 
purification, tissue engineering, and regenerative medicine. For these applications, functionalized 
PAs are often co-assembled with oppositely charged filler PAs. Finding the conditions at which 
these fibers are homogeneously mixed or segregated is crucial for the required application. We 
co-assemble negative 𝐶12𝑉𝑉𝐸𝐸 fillers and positive 𝐶12𝑉𝑉𝐾𝐾 − 𝑂𝐸𝐺4 − 𝑍33 ligands, which are 
important for antibody purifications. Our results show that the ligands tend to cluster and locally 
segregate in the fiber surfaces. The 𝑍33s are overall neutral and form large aggregates in bulk 
solution due to short range attractions. However, full segregation of the 𝐶12𝑉𝑉𝐾𝐾 − 𝑂𝐸𝐺4 −
𝑍33 is not observed in the cylindrical surface due to the electrostatic penalty of forming large 
domains of similarly charged molecules. This is commensurate with previous theoretical 
predictions, showing that the competition between short-range attractive interactions and long-
range electrostatic repulsions leads to pattern formation in cylindrical surfaces. This work offers 
valuable insight into the design of functionalized nanofibers for various biomedical and chemical 
applications. 

  



Introduction:  
Peptide Amphiphiles are a class of molecules consisting of peptide heads connected to 
hydrophobic alkyl tails that can self-organize in aqueous solutions. This self-assembly behavior is 
often driven by the tendency of hydrophobic domains to bury away from water while hydrophilic 
peptide regions to expose to the solvent. The ability of peptide amphiphiles (PAs) to self-assemble 
into fibers, membranes, and micelles has been widely explored for achieving functions such as 
mineralization, cell proliferation, molecular imaging, drug delivery, and pH sensing.1-14 One of the 
critical advantages of PAs is their ability to be modified with specific ligands to achieve the desired 
functionality. For instance, PA nanofibers modified with ligands have shown potential in purifying 
antibodies.15,16 Therefore, understanding the distribution of ligands on the nanofiber surface is 
extremely important to optimize functionalization, thereby enabling their widespread application 
in biomedical research and therapeutics.  

Peptides can carry charge, and it has been observed that oppositely charged peptides can 
facilitate the co-assembly process of PAs with different peptides and epitopes. Co-assembly by 
mixing oppositely charged PAs is a powerful way to achieve increased functionalities. Niece et al. 
17 first reported the importance of opposite charges on the co-assembly of PAs functionalized 
with different bioactive sequences, of which each bearing a different biological signal. Recently, 
Li et al.15,16 showed the assembly of negatively charged 𝐶12𝑉𝑉𝐸𝐸 (filler) and positively charged 
𝐶12𝑉𝑉𝐾𝐾 − 𝑂𝐸𝐺4 − 𝑍33 (ligand) to capture and purify IgG antibodies. 𝑍33 is a 33 amino acid 
derivative (FNMQQQRRFYEALHDPNLNEEQRNAKIKSIRDD) of protein A18 which strongly binds to 
the Fc domain of the antibody.19 Their experiment suggests that aggregation of Z33 can reduce 
the purification efficiency as the steric effect may hinder Z33 from accessing and binding 
effectively with antibodies.15,16 As the demand for therapeutic antibodies continues to 
increase,20,21 it is crucial to understand the factors affecting the mechanism to recover antibodies. 
Here we exploit the co-assembly and distribution of positive ligands in a nanofiber made with 
negative filler Pas. 

Previous theoretical works have analyzed the distribution of oppositely charged molecules 
absorbed on flat and cylindrical surfaces.22,23 The model suggested that oppositely charged 
molecules with different cohesive energy or compatibility can induce the formation of charged 
domains or aggregation of molecules on the surface.22 This is due to the competition between 
the tension line, and electrostatic energy. Tension line favors the growth of domains of segregated 
components of similar compatibility, while electrostatic repulsion increases rapidly as the surface 
charge density and the size of the domain increase. However, those models although can include 
the curvature of cylindrical fibers.22-24 lacked the complexity of real PAs and ligands. The possibility 
of small clusters or aggregation of molecules with similar compatibility and lack of homogeneity 
in ligand distribution is also suggested by stochastic optical reconstruction microscopy in Stupp 
group.25 Besides these works, there is a dearth of knowledge on understanding the co-assembly 
of oppositely changed PAs and ligands distribution in a co-assembled surface.  



In this study, we use molecular dynamics simulations to co-assemble oppositely charged filler and 
ligand PAs. We use the capability of the Martini3 coarse-grained model to simulate large time and 
length scales. We have also employed all-atom simulation to verify ligand aggregation. We find 
that ligands come close to each other in the assembled fiber and form clusters on the surface. 
We discussed the importance of attractive interactions between ligands and electrostatics of the 
fiber surface in creating local segregation of ligands.   



Results and Discussion:  
𝐶12𝑉𝑉𝐸𝐸 is an ideal candidate for forming one dimensional self-assembled structure.  𝐶12 is the 
hydrocarbon hydrophobic core, 𝑉  (valine) provides hyrdogen bonds, hydrophobicity and 𝐸 
(glutamic acid) is negatively charged and hydrophilic. Our previous study shows that only the 
outer 𝐸 of the PA is deprotonated or carries −1𝑒 charge26 in a self-assembled fiber. Keeping this 
in mind, we also model the inner glutamic acid as protonated. 𝐾  (lysin) is used as positively 
charged group in our simulation in 𝐶12𝑉𝑉𝐾𝐾 − 𝑂𝐸𝐺4 − 𝑍33 ligand. 𝑍33 acts as an epitope in 
the ligand with 𝑂𝐸𝐺4 (oligoethylene glycol) helping as the spacer group. We used Martini 3 force 
field27 which averaged 2-4 heavy atoms into one bead and was extensively used in many amino 
acid simulations.  

The randomly added fillers and ligands initially form micelles and then assembled into a fiber. To 
differentiate the effect of 𝑍33, we start our analysis with observing co-assembly of 𝐶12𝑉𝑉𝐸𝐸 and 
𝐶12𝑉𝑉𝐾𝐾.  Interesting differences in the distribution of 𝐶12𝑉𝑉𝐾𝐾 and 𝐶12𝑉𝑉𝐾𝐾 − 𝑂𝐸𝐺4 − 𝑍33 
can be seen from the snapshot of the assembled fibers (Figure 1) where 𝐶12𝑉𝑉𝐸𝐸 act as filler 
chains. 𝐶12𝑉𝑉𝐾𝐾 are randomly distributed in the fiber (upper panel), while 𝐶12𝑉𝑉𝐾𝐾 − 𝑂𝐸𝐺4 −
𝑍33  ligands come together and form ligands-rich regions. No distinct clusters of 𝐶12𝑉𝑉𝐾𝐾  is 
observed in the upper panel, but we see 𝐶12𝑉𝑉𝐾𝐾 − 𝑂𝐸𝐺4 − 𝑍33 ligands form clusters in the 
fiber surface.  

Figure 1. Simulation snapshots of the Initial and co-assembled stages. Upper panel shows the 
distributions of lysin (red) and glutamic acid (green) amino acids in the assembled fiber. Lower panel 
shows the distribution of ligands in the fiber surface. A double alpha-helix structure of 𝑍33 is shown 
in the inset. Water, ions, valines are omitted from the snapshots for better visualization. In both cases 
the ratio between ligand and filler are 1/10 and no extra salt is added except counterions. 



To better understand the distribution, we have calculated the cluster size distributions of 𝑍33. 
The cut-off distance of 𝑍33 beads was set to 0.7 nm when calculating the cluster; two 𝑍33s are 
considered to form a cluster when they have at least one pair of beads closer than 0.7 nm. We 
chose 0.7 nm as the cut-off as it is the first valley of the radial distribution function of the Martini3 
beads and is also suggested in previous studies as the optimal cut-off distance for amino acid 
cluster analysis.28,29 Additionally, we checked the cluster size distribution of 𝐶12𝑉𝑉𝐾𝐾  for 
comparison (the simulation snapshot is shown in Figure 1, upper panel). We used 1.1 nm as the 
cut-off distance between 𝐾 of different PAs for this case, as it represents the second valley of the 
radial distribution function of the Martini3 beads and would consider two 𝐶12𝑉𝑉𝐾𝐾 to form a 
cluster even if they are separated by one layer of 𝐶12𝑉𝑉𝐸𝐸s. 

In Figure 2 we plot the cluster size probability distribution for various ligand-filler ratios and two 
salt concentrations. Comparison between 𝐶12𝑉𝑉𝐾𝐾 and 𝐶12𝑉𝑉𝐾𝐾 − 𝑂𝐸𝐺4 − 𝑍33 (salt 0.0 mM) 
can be observed from Figure 2(c). A quick drop in the probability value with increasing N shows 
that 𝐶12𝑉𝑉𝐾𝐾  does not form large clusters, they stay separated from each other. 
Electrostatistically this is reasonable as positively charged groups prefer to mix with oppositely 
charged groups to minimize the electrostatic energy. On the other hand, larger clusters are 
observed when we add the Z33 ligands.  

Figure 2. Cluster size distribution. (a) A cartoon representation of the cluster size (N) definition.  (b), 
(c) and (d) shows the cluster size distribution probability for ligand-filler ratio of 1/25, 1/10 and 1/5 
respectively.  



From Figure 2 (b-d), we can see that the probability of finding small clusters reduces with 
increasing the concentration of the ligand. More interestingly, we see a non-monotonic reduction 
of the cluster probability with increasing the number of ligands in a cluster, N arise. This non-
monotonic cluster size distribution is associated with micellar aggregation.30-32 Srebnik and 
Douglous also observed this kind of cluster size distribution, where positive and negative coarse-
grained beads were aggregating in a neutral nanotube surface.33 A small but finite probability for 
a very large cluster size   indicates the formation of large clusters by transient bridges between 
more persistent smaller structures. The effect of salt can be easily understood from these plots. 
The addition of 100 mM salt results in smaller clusters of ligands in all ligand concentrations.  

To clearly understand how ligands are distributed, we have plotted the distribution of Z33 ligands 
by mapping them onto a plane. To do this, we calculated the angle each Z33 forms with the fiber 

Figure 3. Top panel shows the cylinder (radius 𝑟) to plane (width 2𝜋𝑟) mapping. Red arrows indicate 
new positions of Z33s in the mapped plane. Mapped distribution is repeated twice in radial axial 
direction for periodicity. (a), (b) and (c) show the mapped distribution for ligand-filler ratio of 1/25, 1/10 
and 1/5 respectively. Four color indicates 4 periodic distributions. 



core and the x-axis by taking their respective center of mass. We then plotted these angles against 
the axial position of each Z33 along the fiber, which gave us a rectangular visualization of their 
distribution on the cylindrical surface of the fiber. The mapping is depicted in a cartoon in Figure 
3 (top panel). We multiplied the visualization twice in the radial and axial directions to account 
for periodicity. 

In Figure 3, we have plotted the distribution of Z33 for ligand-filler ratios of 1/25, 1/10, and 1/5 
(without any additional salt) in (a), (b), and (c), respectively. The plots clearly show that Z33s are 
forming clusters. What Is more, all three distributions exhibit regions with high Z33 
concentrations as well as areas without any Z33s. This is an example of local or microscopic 
segregation, which has been proposed in previous theoretical analyses.22-24 Recent studies also 
suggested the possibilities of similar segregation in other structures, like in charged polymer 
vesicles, polyelectrolyte brushes.34,35 Microscopic segregation arises from two competing forces: 
a short-range attractive force that encourages molecules to come close and form large-scale 
aggregates or macroscopic segregation, and a long-range repulsive force that opposes it. In the 
following sections, we will delve into the opposing factors in our case that could result in the local 
separation of ligands on the fiber surface. 

To understand why we are seeing local segregation of Z33s or ligands, we analyzed how Z33 
aggregates in the bulk. Randomly added Z33s aggregate in both Martini3 (Figure 4(a)) and all-
atom (Figure 4(b)) force fields (we are showing two simulation boxes for better visualization). 
These simulations show that, in bulk solutions, Z33s form large aggregates or macroscopic 
segregation, suggesting strong attractive interactions between Z33s. Simulations with 100 mM 
added salt show a weaker aggregation behavior for both Martini3 and all-atoms (Figure. 4(c) and 
4(d)); one or two Z33s stay separated from the aggregates. To quantify the aggregations for 
different cases, we calculated the number of nearest neighbors (NN) for each Z33. This number 
indicates how many Z33s are in close contact with another Z33 (0.7 nm is used as the cut-off). 
Figure 4(e) shows the neighbor number distribution for Martini3, and all-atom have similar 
profiles, although Martini3 shows a slightly higher probability for large NN. A weaker aggregation 
with the addition of salt is apparent from the reduction of probability at higher NN. This weaker 
aggregation can describe the salt concentration-dependent cluster size distribution discussed in 
Figure 2; the addition of salt reduces the probability of having a large cluster. This demonstrates 
the importance of controlling attractive interactions among ligands to regulate the cluster size in 
fiber surfaces. 

We know that protein aggregation in water is complicated and involves several factors, such as 
the interaction between hydrophobic amino acids, electrostatic interactions, hydrogen bonds, 
and the compactness of the protein. There are van der Waals and electrostatic energy gain 
associated with Z33 aggregation as some of the 33 amino acids are hydrophobic and nonpolar 
(see Figure S2), which prefer to stay away from polar water. Although the total charge of a Z33 is 
zero, some of the 33 amino acids are charged; positively charged amino acids are shown in red, 
and negatively charged amino acids are shown in teal color in the inset of Figure 4 (f). When the 



salt concentration is low, these positively charged and negatively charged amino acids form strong 
electrostatic interactions, leading to stronger attractive interactions. However, adding salt 
neutralizes some of the charged amino acids and reduces the electrostatic interactions, as seen 
in the radial distribution plot of positive and negative beads of the charged amino acids in Figure 
4(f). The addition of salt reduces the value of g(r) which indicates a less attractive electrostatic 
interaction between positive and negative amino acids at high salt concentrations.  

 

We conducted three additional simulations to verify that the electrostatic penalty linked with 
large clusters of positively charged ligands in a negatively charged fiber might cause the local 

Figure 4. Aggregation of Z33 in bulk solution. (a)-(d) shows snapshots of Z33 aggregation for Martini3 
(a and c) and all-atom simulation (b and d) with no added salt (a and b) and 100 mM salt (c and d). 
Two periodic images are shown for better visualization. (e) Nearest neighbor analysis for the 
simulations shown in (a)-(d). A cartoon representation is added to help understand the nearest 
neighbor definition. (f) Radial distribution function plot of positive and negative amino acids beads of 
Z33 in Martini3 simulations. Inset showing the positive (red) and negative (teal) amino acids.  



segregation of ligands in the fiber. We modified our original ligand from 𝐶12𝑉𝑉𝐾𝐾 − 𝑂𝐸𝐺4 − 𝑍33 
to 𝐶12𝑉𝑉𝐸𝐸 − 𝑂𝐸𝐺4 − 𝑍33 by replacing the positive lysin (𝐾) with negative glutamic acids (𝐸) 
in an already co-assembled fiber. We have depicted the cylinder-to-plane mapping of the ligands 
in Figure 5, where more connected ligand clusters are observed for all concentrations. No 
electrostatic penalty is associated with large clusters for these modified ligands, as all the 
molecules in the fiber now have similar charges. As a result, cluster formation is wholly driven by 
Z33-Z33 attractions, which can generate extensive, separated regions of ligand-rich and filler-rich 
surfaces. 

 

  

Figure 5. (a), (b) and (c) shows the mapped 𝐶12𝑉𝑉𝐸𝐸 − 𝑂𝐸𝐺4 − 𝑍33  ligands distribution for 
ligand-filler ratio of 1/25, 1/10 and 1/5 respectively. Four color indicates 4 periodic distributions. 



It is worth mentioning that we have performed our simulation with 𝐶12𝑉𝑉𝐸𝐸 − 𝑂𝐸𝐺4 − 𝑍33 
starting with a co-assembled structure to distinguish the effect of electrostatics in local 
segregation, we have not checked the co-assembly process itself. Because of very large 
differences in cohesive energy between 𝐶12𝑉𝑉𝐸𝐸  and 𝐶12𝑉𝑉𝐸𝐸 − 𝑂𝐸𝐺4 − 𝑍33 , co-assembly 
should be less favorable without any added benefit coming from opposite charges. We have also 
observed some instability in the fiber when few ligands came close (Figure S5 (a)), although we 
did not observe any demixing of 𝐶12𝑉𝑉𝐸𝐸 − 𝑂𝐸𝐺4 − 𝑍33  from the fiber during 10µs of 
simulation time. We have performed two simulations to check the relative co-assembly of 
oppositely charged (𝐶12𝑉𝑉𝐸𝐸  and 𝐶12𝑉𝑉𝐾𝐾 − 𝑂𝐸𝐺4 − 𝑍33 ) and similarly charged (𝐶12𝑉𝑉𝐸𝐸 
and 𝐶12𝑉𝑉𝐸𝐸 − 𝑂𝐸𝐺4 − 𝑍33 )  ligands and fillers. All the oppositely charged 𝐶12𝑉𝑉𝐾𝐾 −
𝑂𝐸𝐺4 − 𝑍33 ligands entered the already assembled fiber of fillers (upper panel, Figure S5 (b)) 
showing good mixing or co-assembly behavior. On the other hand, only 3 of the 16 added similarly 
charged 𝐶12𝑉𝑉𝐸𝐸 − 𝑂𝐸𝐺4 − 𝑍33 ligands enter the fiber after 1µs, indicating a significantly lower 
propensity of co-assembly.  

  



Method: 
GROMACS 2021.536 and MARTINI3 force field27,37 are combined in the coarse-grained simulations. 
We used similar definitions of MARTINI3 beads for C12 as defined in our previous work26 and 
mapped bond, angle parameters with all-atom simulation (see SI). We used Martinize238 to get 
amino acid parameters which can define bead types, bond, angle, dihedral parameters and can 
constrain protein’s secondary structure. Initially, we solvated 200 fillers and 8 ligands in an 
aqueous solution in a 14 × 14 × 14 𝑛𝑚3 box resulting a 1/25 ligand-filler ratio. We have increased 
the number of ligands and box size for other ratios. We have also added required numbers of 
counterions and salts. Energy minimization is first performed on the system, followed by 
equilibration under NVT (constant number of molecules, constant volume, and constant 
temperature) ensemble and then NPT (constant number of molecules, constant pressure, and 
constant temperature) ensemble. After the co-assembly of filler and ligands, we have replicated 
the fiber along the axial direction of the fiber, which doubles the number of fillers, ligands and 
gives better statistics. We have also increased the simulation box size in the other two directions 
and solvated with new water and ions (we changed the ligand type for Figure 5 in this stage). 
Then we performed the energy minimization and equilibration under NVT for 500 ns and semi-
isotropic NPT for 10µs. The last 3µs was considered as the production run. 3 copies of simulations 
are performed to get error bars.  

For Z33 aggregation in bulk simulations (Figure 4), we have added 10 Z33s in a 13 × 13 × 13 
𝑛𝑚3 simulation box and added required water and ions. The CHARMM3639 force field was used 
for all-atom simulations and the recommended CHARMM TIP3P water model was applied with 
the SETTLE algorithm.40 Other simulation parameter details can be found in the supporting 
information.  

We used Ovito41 for clustering (see Figure 2) and visualizations. To calculate the nearest neighbor 
(see Figure 4 (e)), we got the contact map from VMD.42 This contact map contained the residue-
residue minimum distance information and combined with in-house code to get nearest neighbor 
probability. A such contact map for all-atom, no salt system is shown in Figure S4. We have also 
used VMD to get the g(r) shown in Figure 4(f).  



Conclusion: 

In this study, molecular dynamics simulations revealed the distribution of ligands in co-assembled 
nanofibers of PAs with oppositely charged peptides. Our findings demonstrate that positively 
charged PAs (KK groups) with an attached neutral Z33 group (ligands) undergo microscopic 
segregation on the surface of fibers in excess of negatively charged PAs (fillers). We find that the 
short range attractions generated by the Z33 in PAsis responsible of the local segregation of the 
ligand, as evident in the segregation of Z33 in bulk solutions.  The ligands came close to each 
other in the assembled fiber and formed clusters on the surface that grow as the overall 
concentration of ligand on the fiber’s increases. We discuss the importance of attractive 
interactions between ligands and electrostatics of the fiber surface in creating local segregation 
of ligands.  While we focus on Z33 for its utility in antibody purifications, we believe that other 
ligands, proteins, or epitopes may also demonstrate similar behavior in co-assembled nanofibers, 
as attractive interactions can be prevalent among them. This study also demonstrates the 
possibility of controlling distribution not only through ligand's attractive interaction modifications 
but also by controlling charges on the filler and ligands through chemical modifications. Overall, 
our results provide valuable insights into the behavior of ligands in co-assembled nanofibers, 
which can inform the development of more effective and efficient materials for a wide range of 
applications. 
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