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Abstract

Networks analysis has been commonly used to study the interactions between units of complex
systems. One problem of particular interest is learning the network’s underlying connection pat-
tern given a single and noisy instantiation. While many methods have been proposed to address
this problem in recent years, they usually assume that the true model belongs to a known class,
which is not verifiable in most real-world applications. Consequently, network modeling based
on these methods either suffers from model misspecification or relies on additional model selec-
tion procedures that are not well understood in theory and can potentially be unstable in practice.
To address this difficulty, we propose a mixing strategy that leverages available arbitrary mod-
els to improve their individual performances. The proposed method is computationally efficient
and almost tuning-free; thus, it can be used as an off-the-shelf method for network modeling.
We show that the proposed method performs equally well as the oracle estimate when the true
model is included as individual candidates. More importantly, the method remains robust and
outperforms all current estimates even when the models are misspecified. Extensive simulation
examples are used to verify the advantage of the proposed mixing method. Evaluation of link
prediction performance on 385 real-world networks from six domains also demonstrates the
universal competitiveness of the mixing method across multiple domains.

1 Introduction

Networks are widely used to represent complex interactions between entities, and network analysis
has been an intensively studied topic in statistics, computer science, physics, social science, and
many areas in recent years. Analyzing the structures of network data can render salient insights
about relation formulation or interaction mechanisms between individuals. Network analysis has
been used in various applications in science, engineering, and social studies, revealing many new
aspects in these studies [Barabási and Albert, 1999, Steglich et al., 2006, Newman, 2010, Fortunato,
2010, Lü and Zhou, 2011].

*Both authors contributed equally to this work.
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Due to the noisy nature of network data, statistical modeling has been a common approach network
analysis. Multiple probabilistic frameworks have been proposed for network data (e.g., Barabási and
Albert [1999], Bollobas et al. [2007], Crane [2018], Ghafouri and Khasteh [2020]). These frame-
works are understood as approximations of real-world network formulation from different aspects
with pros and cons in various situations. Our discussion in this paper is embedded in arguably
one of the most popular frameworks for statistical network modeling – the so-called “inhomoge-
neous Erdős-Rényi model” [Bollobas et al., 2007, Goldenberg et al., 2010, Newman, 2010]. This
framework includes as special cases several important models in the network literature, such as the
stochastic block model (SBM) [Holland et al., 1983] and its variants [Airoldi et al., 2008, Karrer
and Newman, 2011, Jin et al., 2017, Sengupta and Chen, 2018, Noroozi et al., 2019] for community
structures, the random dot product model [Young and Scheinerman, 2007] and latent space model
[Hoff et al., 2002, Hoff, 2008] for latent vector spaces, and the graphon model node-exchangeable
graphs [Aldous, 1981, Lovász and Szegedy, 2006, Diaconis and Janson, 2008].

While effective modeling strategies have been proposed and studied in many settings, it is ob-
served that real-world networks may exhibit a much wider range of patterns [Ugander et al., 2013,
Ghasemian et al., 2020, Miao and Li, 2021] and it is generally difficult to know which model is
the proper one, or whether there is a proper choice. Therefore, an indispensable task in network
modeling is to select a proper model or algorithm to use. Depending on the scope of generality,
model selection procedures have been proposed in different categories. The model-based methods
are designed under a family of models, such as testing procedures [Bickel and Sarkar, 2016, Gao and
Lafferty, 2017, Lei, 2016, Mukherjee and Sen, 2017, Banerjee and Ma, 2017, Jin et al., 2019, Zhang
and Amini, 2020] and criterion-based methods [Saldana et al., 2017, Wang and Bickel, 2017, Le
and Levina, 2015, Yan et al., 2017]. The more general model selection approach is cross-validation
[Chen and Lei, 2018, Li et al., 2020b, Chang et al., 2020], which can be used to compare models
across different families. Cross-validation intuitively seeks the most proper model for the data even
if none of the models under consideration are true. Despite the many good properties derived from
these methods, model selection can be unstable [Breiman, 1996a] in the sense that a small pertur-
bation of the data can result in selecting a different model. Moreover, even if one does know the
correct class of candidate models, it is not always possible to effectively fit such models due to var-
ious constraints. For example, when the network is sparse, it is known that one cannot accurately
estimate an SBM with a large number of communities [Rohe et al., 2011, Lei and Rinaldo, 2014,
Gao et al., 2017, Li et al., 2020a] or a general graphon structure [Chatterjee, 2015, Zhang et al.,
2017, Gao et al., 2015].

To address the aforementioned shortcomings, this paper aims for an “off-the-shelf” and principled
network modeling strategy. From a practical perspective, it is computationally efficient for large-
scale networks and does not require careful tuning or model specification. From the theoretical
perspective, our strategy can be general enough to incorporate the well-studied models in the liter-
ature with a theoretical guarantee on performance. These properties are achieved by a simple but
powerful idea: instead of selecting a single model, we take a constrained linear combination of all
candidate models in a data-driven way, such that the aggregated estimate is provably more stable
and adaptive to different underlying models.

Model aggregation is not unique to network data. The idea has been studied in statistical learning
on metric space data, such as density estimation and regression problems, often known as the “mix-
ing” or “stacking” procedure [Stone, 1974, Wolpert, 1992, Breiman, 1996b, LeBlanc and Tibshirani,
1996, Catoni, 1997, Haussler et al., 1998, Yang, 2000, 2001, Juditsky and Nemirovski, 2000, Tsy-
bakov, 2003, Bunea et al., 2007]. However, the mixing strategy in network settings has not been
well studied, except for the recent empirical work of Ghasemian et al. [2020]. Designing a net-
work version of mixing estimation as an “off-the-shelf” method is non-trivial. The previous mixing
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strategies either fail to produce good theoretical guarantees in network settings [Tsybakov, 2003]
or are computationally prohibitive [Yang, 2000, 2001, Tsybakov, 2003, Bunea et al., 2007, van der
Laan et al., 2007] and require additional tuning [Bunea et al., 2007]. The unique nature of network
data (e.g., no i.i.d sample, discreteness, sparsity) also require special methodological designs and a
different approach to theoretical analysis.

Our mixing methods rely on splitting the network node-pairs into a training and a validation data
set, as in Li et al. [2020b], although other methods may be considered [Spielman and Srivastava,
2011, Rohe and Qin, 2013, Le, 2021]. Multiple individual models are fit using the training data and
then aggregated according to the validation data. A simple aggregation approach with exponential
weights is introduced to achieve the basic model adaptivity, an ideal property one could hope for the
cross-validation procedure. Then, based on special geometrical properties of network data, we de-
sign a sign-constrained least square procedure to find the aggregation, which significantly improves
the strategy. Our method is much simpler to implement and possesses strong theoretical guarantees.
Our numerical and theoretical analyses show that the proposed mixing methods nearly achieve the
oracle estimators’ accuracy regardless of whether the true model is contained in the candidate model
set. Furthermore, an evaluation of 385 real-world networks shows that the proposed methods are
more accurate and much more computationally efficient than the stacking method of Ghasemian
et al. [2020], which still lacks theoretical support.

The rest of the paper is organized as follows. Section 2 introduces the proposed methods and their
theoretical properties. We start from the basic setup of the mixing strategy. Exponential mixing is
first introduced as a warm-up, which is shown to achieve single-model adaptivity. Then we introduce
the more general non-negative linear mixing method and show that the non-negative property is
crucial in network settings. Section 3 includes extensive simulation studies of the (almost) tuning-
free properties and compares the mixing estimators with several benchmark methods under both
graphon (nonparametric) models and parametric models. In Section 4, we consider link prediction
tasks on 385 real-world networks from 6 domains, introduced in Ghasemian et al. [2020]. The
evaluation demonstrates the advantage of the proposed method as an “off-the-shelf” method for link
prediction. Section 5 concludes the paper.

2 The network mixing method and its properties

Notations. Given a matrix M , we use ‖M‖ and ‖M‖F to denote its spectral norm and Frobenius
norm, respectively, and let ‖M‖∞ = maxij |Mij |. In addition, for any two matrices P1, P2 of the
same dimensions, we define 〈P1, P2〉 = trace(P T1 P2). Given a matrix M ∈ Rn×n and an index
set Ω ⊂ [n] × [n], denote by M(Ω) the matrix obtained from M by setting all entries of M with
indices in the complement Ωc of Ω to zero. For two sequences {an} and {bn}, we write an . bn
if an = O(bn), in which case we can also write it as bn & an. If an . bn and an & bn, we write
an ≈ bn. We say that an event E occurs with high probability if P(E) ≥ 1−n−δ for some constant
δ > 0. We use C > 0 to denote an absolute constant whose value may change from line to line.

We focus on unweighted undirected networks in this paper. Let n be the network size. A network
can be represented by a binary adjacency matrixA ∈ {0, 1}n×n, whereAij = 1 if and only if node i
and node j are connected. Since the network is undirected, we have A = AT . Furthermore, assume
Aii = 0 for all i (we do not consider self-loops). Our discussion of networks will be embedded in the
inhomogeneous Erdős-Rényi network model [Bollobas et al., 2007], which requires that the upper
diagonal entries ofA are independent Bernoulli random variables. Denote P = EA and assume that
there exists a set M of m available methods for estimating P from A. These may be parametric
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estimation procedures, such as those based on the stochastic block model [Chen and Lei, 2018, Li
et al., 2020b] or the latent space model [Ma et al., 2020], or nonparametric algorithms [Chatterjee,
2015, Airoldi et al., 2013, Chan and Airoldi, 2014, Gao et al., 2015, Zhang et al., 2017]. Our goal is
to leverage these methods to derive a new estimator P̂ that can achieve a better approximation of P
in terms of the mean squared error. A natural baseline target is, not surprisingly, to ensure that P̂ is
as good as the unknown optimal estimator inM. Such a property is often referred to as adaptivity
[Catoni, 1997, Yang, 2000, 2001]. Ultimately, our goal will be more ambitious than adaptivity: we
would like to achieve optimality within a broader class of estimators than the m estimators ofM.
We aim for an off-the-shelf option for modeling networks. That is, in addition to strong theoretical
properties, empirical applicability is equally important. In a linear regression setting, procedures
with provable adaptivity may not be computationally feasible or may require tuning parameters
[Catoni, 1997, Yang, 2000, 2001, Tsybakov, 2003, Bunea et al., 2007, van der Laan et al., 2007],
but we will introduce a computationally efficient and tuning-free method that can be scalable even
to large networks.

Motivated by the adaptive mixing method in the classical regression setting, we resort to a data-
splitting strategy to design our method. The strategy is based on the dyad-splitting of the network
cross-validation procedure of Li et al. [2020b]. Specifically, given a fixed p ∈ (0, 1), we randomly
choose a subset of node pairs Ω ⊂ [n] × [n] by independently selecting each node pair with prob-
ability p; in our setting, p is usually a constant between 0 and 0.5. Then A(Ωc) can be viewed as
an adjacency matrix generated from the inhomogeneous Erdős-Renyi model with probability matrix
(1 − p)P . Therefore, any model fitting methods for inhomogeneous Erdős-Renyi networks can be
used with the same theoretical guarantees for consistency as their original version as discussed in
Gao and Ma [2020] and Li et al. [2020c]. We apply the methods fromM to A(Ωc) to get estimators
of (1 − p)P , and multiply them by (1 − p)−1 to obtain estimators P̂ (1), ..., P̂ (m) of P . We assume
that the entries of these estimators always fall between 0 and 1. If this is not the case, we can always
threshold the entries without increasing the error. The mixing strategy is essentially an aggregated
version of the m estimators for P .

We use the hold-out entriesA(Ω) to determine a reasonable way to combine the available estimators.
A potential approach for this purpose is the cross-validation method of Li et al. [2020b], which
calculates ‖A(Ω)− P̂ (r)(Ω)‖2F , 1 ≤ r ≤ m, and picks the one with the smallest error:

P̂ = P̂ (r̂), r̂ = argmin
1≤r≤m

‖A(Ω)− P̂ (r)(Ω)‖2F . (1)

(In practice, one often repeats this procedure multiple times and uses the average validation error as
the criterion. Here we focus on the single split for conceptual simplicity.) This is one of the most
common model selection strategies in statistical modeling [Hastie et al., 2009]. It has been verified,
for example, in the context of multivariate outcome prediction and density estimation [van der Laan
et al., 2006, Feng and Yu, 2019, Lei, 2020]. But so far it is unclear whether such an approach
is valid for network cross-validation. For example, although the estimator in (1) works well for
moderately dense networks whenM contains the true model, its performance deteriorates quickly
in a sparse regime or under model misspecification (as we show in Section 3). We now introduce a
soft-selection version of the cross-validation method to address this shortcoming.

2.1 Network mixing with exponential weights and estimation adaptivity

We view the validation error ‖A(Ω) − P̂ (r)(Ω)‖2F as a goodness-of-fit metric for the rth model.
To match the performance of the optimal model inM, we focus on the models with small valida-
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tion errors. In particular, we propose the following simple rule to combine the models based on
exponential weights:

P̂ (exp) =
m∑
r=1

πrP̂
(r), πr =

exp
(
−‖A(Ω)− P̂ (r)(Ω)‖2F

)
∑m

r=1 exp
(
−‖A(Ω)− P̂ (r)(Ω)‖2F

) . (2)

Compared with (1), this estimator is a soft-selection version of the cross-validation procedure. De-
spite its simplicity, we now show that it achieves model adaptivity, matching the performance of
the unknown optimal estimator produced byM. Since Ω is independent of the data, all theoretical
analysis is conditioned on Ω. The data-splitting proportion p is a fixed constant, independent of the
network size n.

Theorem 1 (Mixing estimator with exponential weights). LetA be the adjacency matrix of a random
network drawn from the inhomogeneous Erdős-Rényi model with probability matrix P = EA.
Denote by P̂ (r), 1 ≤ r ≤ m, the estimators of P obtained by applying the methods from M to
A(Ω), and let P̂ be the convex combination of these estimates defined by (2). Assume m = o(n2).
Then with high probability,∥∥P̂ (exp)(Ω)− P (Ω)

∥∥
F
≤ min

1≤r≤m

∥∥P̂ (r)(Ω)− P (Ω)
∥∥
F

+ Cε, (3)

where C > 0 is a constant and

ε =
(

log n ·max
i,j

Pij

)1/2
+ min

{
log(nm)

min1≤r≤m ‖P (r)(Ω)− P (Ω)‖F
, log1/2(nm)

}
.

Remark 1. Although Theorem 1 describes the error restricted to Ω, extending the error bound to the
entire matrix P is trivial. Replacing Ω by Ωc = [n]2 \ Ω in the estimating procedure and applying
Theorem 1 would generate another estimator P̆ that admits the same type of error bound. Then
combining P̂ (Ω) and P̆ (Ωc) as a full estimator would produce the same error bound for the entire
matrix P . For simplicity, we will state our results only in terms of P (Ω) in all theoretical discussions
to follow.

Theorem 1 states that the estimator given in (2) is nearly as good as the best estimate produced by
a single method from M. To better understand the additional error ε, assume that the network is
generated from a stochastic block model, under which nodes are partitioned into k groups according
to a label vector c ∈ [n]k and edges are formed independently between nodes with probabilities
Pij = Bcicj for some fixed matrix B ∈ Rk×k. According to Gao et al. [2015],

min
1≤r≤m

∥∥P̂ (r)(Ω)− P (Ω)
∥∥2

F
& k2 + n log k,

while the square of the additional error is

ε2 . log n+ min

{
log2(nm)

k2 + n log k
, log(nm)

}
≈ log n+

log2(nm)

k2 + n log k
.

It is easy to see that ε2 is smaller than the rate-optimal error k2 + n log k. Therefore, our estimator
can always match the optimal estimator fromM.

As a connection to similar properties of statistical estimation problems, Catoni [1997] and Yang
[2000, 2001] introduce mixing methods for regression and density estimation that can achieve esti-
mation adaptivity. Unfortunately, their strategies are computationally expensive even in regression
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settings, let alone in network problems, the sample size of which scales in O(n2). In contrast, our
estimator (2) achieves the same type of adaptivity with negligible computational cost in addition to
the m model-fitting procedures.

2.2 Beyond adaptivity: Non-negative linear network mixing

The exponential mixing estimator (2) performs well when at least one of them individual estimators
is accurate. In practice, however, all the available estimators may be inaccurate, for example, when
the network is very sparse. Given the m estimators at hand, it is natural to be more ambitious: to
seek a better candidate than any single model estimate.

Consider the class of linear combinations of the m estimators

P̂ =
m∑
r=1

πrP̂
(r). (4)

The most natural option is the linear mixing estimator, which uses the weights provided by solving
the ordinary least squares (OLS) problem:

π̂(ols) = argmin
π∈Rm

∥∥∥ m∑
r=1

πrP̂
(r)(Ω)−A(Ω)

∥∥∥2

F
. (5)

Although linear mixing performs very well in many settings, it is a generic method and does not
leverage many features of network estimation. For example, all the entries of P are non-negative,
and therefore it is expected that 〈P̂ (r)(Ω), P (Ω)〉 > 0 for any reasonable estimate P̂ (r)(Ω). Simi-
larly, 〈P̂ (r)(Ω), P̂ (s)(Ω)〉 > 0 for all 1 ≤ r, s ≤ m (unless their supports are disjoint), and the angles
between reasonably good estimators tend to be small. Moreover, in sparse networks the noises (en-
tries of A − P ) are heavy-tailed random variables, so the available estimators of P can be very
noisy. These observations motivate us to further improve the linear mixing method by introducing
a natural non-negative constraint to the OLS weights. In particular, we consider the non-negative
linear (NNL) mixing estimator based on the following weights:

π̂(nnl) = argmin
π�0

∥∥∥ m∑
r=1

πrP̂
(r)(Ω)−A(Ω)

∥∥∥2

F
, (6)

where π � 0 denotes the constraint that all the entries of the weight vector π are non-negative.
This is a simple convex optimization problem and can be solved efficiently by either a projected
quasi-Newton algorithm or a sequential coordinate descent algorithm [Kim et al., 2006, Chen and
Plemmons, 2010]. The NNL mixing estimator is defined to be

P̂ (nnl) =

m∑
r=1

π̂(nnl)
r P̂ (r). (7)

We can see that P̂ (nnl)(Ω) is the projection of A(Ω) on the convex cone formed by the conical
combination of m individual estimators P̂ (r)(Ω), 1 ≤ r ≤ m. The non-negative sign constraint
directly imposes a regularization effect that significantly helps the method handle the potentially
large number of individual estimators. This is crucial for a tuning-free procedure and matches our
aim for an “off-the-shelf” method.
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The non-negative constraint has proved effective in high-dimensional linear regression problems
[Slawski and Hein, 2011, Slawski et al., 2013, Meinshausen et al., 2013], with properties similar
to the LASSO estimator. However, in the current context, NNL estimation is not motivated by the
curse of dimensionality. In network mixing problems, the sample size for (5) is of order n2, and m
is usually much smaller than n2. Therefore, thoughm can be large if one wants to ensure the expres-
siveness of the mixing estimator, (5) is usually not an ultra-high-dimensional problem. Instead, the
strong correlation between the P̂ (r)s and the low concentration of the adjacency matrix (due to the
network sparsity) complicate the matter and result in the deterioration of the OLS estimator, even in
a relatively low-dimensional setting.

To see why the non-negative constraint can help, let us assume that the true signal P (Ω) is within
the convex cone of the estimators. Figure 1a illustrates an ideal situation. When the two individual
estimators form a large angle, and the perturbation range ofA around P is not too large, the observed
adjacency matrix is likely to stay within or close to the convex cone, so the OLS and NNL estimators
perform similarly. When the perturbation range is large, as in Figure 1b (which happens in sparse
networks [Le et al., 2017]), A may be far from the cone (and P ), and the projection to the cone
can result in a better estimator. On the other hand, when the two estimators align well, the convex
cone is smaller (Figure 1c), and A is unlikely to belong to the cone. In this case, the NNL estimator
can also outperform the OLS estimator. Overall, these observations show that sparse networks and
strong alignment between estimators tend to make the OLS estimator vulnerable to increasing m,
even when m is much smaller than n2.

!"(")

!"($)
"

#

perturbation

(a) Good concentration and weak
alignment

!"(")

!"($)
"

#

perturbation

(b) Bad concentration and weak
alignment

!"(")

!"($)"
#

perturbation

(c) Good concentration and strong
alignment

Figure 1: Illustration of the relation between the convex cone and the concentration of the adjacency matrix.

We now present the theoretical support for the NNL estimator and its claimed advantage over linear
mixing. Let

L =
{ m∑
r=1

πrP̂
(r)(Ω), πr ∈ R, 1 ≤ r ≤ m

}
, C =

{ m∑
r=1

πrP̂
(r)(Ω), πr ≥ 0, 1 ≤ r ≤ m

}
be the linear subspace and the cone generated by {P̂ (r)(Ω), 1 ≤ r ≤ m}. Denote by ΠL and ΠC the
projections onto L and C, respectively.

Theorem 2 (Non-negative mixing estimator, positive inner products). LetA be the adjacency matrix
of a random network drawn from the inhomogeneous Erdős-Rényi model with probability matrix
P = EA. Denote by P̂ (r), 1 ≤ r ≤ m, the estimates of P obtained by applying the methods from
M to A(Ωc), and let P̂ (nnl) be the NNL estimator defined by (7). Assume that

δ = min
1≤r,s≤m

〈P̂ (r)(Ω), P̂ (s)(Ω)〉
‖P̂ (r)(Ω)‖F · ‖P̂ (s)(Ω)‖F

> 0. (8)
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Then there exists a constant C > 0 such that with high probability,

‖P̂ (nnl)(Ω)− P (Ω)‖F ≤ ‖ΠCP (Ω)− P (Ω)‖F + Cδ−1/2ε, (9)

where C > 0 is a constant and

ε = max
1≤r≤m

‖P̂ (r)(Ω)‖∞
‖P̂ (r)(Ω)‖F

· log(n+m) +
√
‖P (Ω)‖∞ log(n+m). (10)

Theorem 2 states that the proposed estimator P̂ (nnl)(Ω) is nearly as accurate as the non-negative
linear oracle ΠCP (Ω). Given a fixed δ, the extra error term ε can be at most of the order log(n+m),
although it will grow much more slowly if the entries of P and P̂ (r) are of similar orders and the
network is relatively sparse.

As a consequence of Theorem 2, the next corollary shows that the NNL estimator can be strictly
more accurate than the OLS estimator ΠLA(Ω), especially when m is large (a typical scenario in
model aggregation).

Corollary 1 (Comparison of NNL and OLS estimators). Let A be the adjacency matrix of a random
network drawn from the inhomogeneous Erdős-Rényi model with probability matrix P = EA.
Denote by P̂ (r), 1 ≤ r ≤ m, the estimators of P obtained by applying the methods from M to
A(Ωc), and let P̂ (ols) be the OLS estimator defined by (5). With high probability,

‖P̂ (ols)(Ω)− P (Ω)‖2F ≤ ‖ΠLP (Ω)− P (Ω)‖2F +m‖P (Ω)‖∞ + (m log n‖P (Ω)‖∞)1/2 . (11)

Furthermore, consider the setting in Theorem 2 and denote

ρ =
(
1− ‖P (Ω)‖∞

)2 · min
(i,j)∈Ω

P 2
ij , ∆ = ‖P̂ (ols)(Ω)− P (Ω)‖2F − ‖P̂ (nnl)(Ω)− P (Ω)‖2F .

Assume m ≥ C‖P (Ω)‖∞ρ−1 log n for some sufficiently large constant C > 0. Then with high
probability,

∆ ≥ mρ1/2

2
−Ψ, (12)

where

Ψ =
C ′ log2(n+m)

δ

(
max

1≤r≤m

‖P̂ (r)(Ω)‖2∞
‖P̂ (r)(Ω)‖2F

+ ‖P (Ω)‖∞
)

+ ‖ΠCΠLP (Ω)−ΠLP (Ω)‖2F

for some constant C ′ > 0.

Note that the term ‖ΠCΠLP (Ω) − ΠLP (Ω)‖F is the distance from the linear oracle ΠLP (Ω) to
the cone C, measuring the degree of violation of the non-negative cone assumption. Corollary 1
demonstrates the effects of the main factors on performance. It can be seen that the advantage
of NNL mixing over OLS mixing increases with m and also with the correlation δ, as we have
discussed above. Next, we illustrate the effect of network density.

Example 1. Assume a sparse network and that all the entries of P are of the same order d/n =
o(1), where d is the average degree. Also, assume that the m individual estimators are reasonable,
so all the P̂ (r)

ij s are also of the same order as the Pijs. When the conical assumption holds and
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m� n log n/d, taking the relative error to cancel the scaling effect of P , we have

∆

‖P (Ω)‖2F
&
m

nd
− log2(n+m)

δd2
.

For sparser networks with small d, the advantage of the NNL estimator is more dramatic. This
theoretical prediction is further supported by our empirical evidence in Section 3.

Theorem 2 requires P̂ (r)(Ω), 1 ≤ r ≤ m, to have positive inner products. This assumption is reason-
able because they are all estimators of P (Ω) and must have non-negative entries. More importantly,
we can directly calculate δ from data.

Next, we consider an even weaker assumption, which is true in all reasonable settings we can think
of. We replace the assumption (8) in Theorem 2 with the following assumption on P̂ (r)(Ω), 1 ≤
r ≤ m, known as the self-regularizing property [Slawski and Hein, 2011]. Denote by Σ ∈ Rm×m
the matrix with entries Σrs = 〈P̂ (r)(Ω), P̂ (s)(Ω)〉 and ‖Σ‖∞ = max1≤r,s≤m |Σrs|. We say that Σ
satisfies the self-regularizing property with constant κ, 0 < κ ≤ 1, if

βTΣβ ≥ κ‖Σ‖∞, for all β � 0 and
∑m

r=1 βr = 1. (13)

Notice that, like (8), this condition can be numerically verified from the data by solving a convex
problem. More importantly, in our current setting of network mixing, this condition will almost
always hold due to the following property, taken directly from the discussion of Slawski and Hein
[2011].

Proposition 1. If there exists a partition {Qt}Tt=1 of [m] such that

min
r,s∈Qt

〈P̂ (r)(Ω), P̂ (s)(Ω)〉 ≥ κmax
r∈Qt

‖P̂ (r)(Ω)‖2F > 0, for all 1 ≤ t ≤ T,

then Σ is self-regularizing with constant κ/T .

To see why (13) is weaker than (8), notice that without loss of generality we can assume that all
the P̂ r(Ω)s have the same norm, because rescaling does not change our linear fitting. So when (8)
holds, Σ also satisfies (13), with κ = ρ. Moreover, even if we are in the extreme situation where

〈P̂ (r)(Ω), P̂ (s)(Ω)〉 = 0

for some r, s, Proposition 1 indicates that (13) can still hold as long as we separate such pairs
in different groups. Even in the worst case, the m-way partition guarantees the self-regularizing
property, with κ = 1/m.

Theorem 3. Consider the setting of Theorem 2 with condition (8) replaced by the self-regularizing
property (13). Then there exists a constant C > 0 such that with high probability,

‖P̂ (nnl)(Ω)− P (Ω)‖F ≤ inf
η∈C
‖η −ΠLP (Ω)‖F + Cκ−1/2ε′,

where

ε′ =

(
Φ log(n+m)√

‖Σ‖∞
+
√

Φ‖π∗‖1 log(n+m)

)
,

Φ = max
1≤r≤m

‖P̂ (r)(Ω)‖∞ + ‖P (Ω)‖1/2∞ ‖Σ‖∞,

9



and π∗ is the non-negative linear coefficient of the oracle estimator such that

ΠCP (Ω) =
∑
r

π∗r P̂
(r)(Ω).

Compared with Theorem 2, the price we pay for the weaker assumption in Theorem 3 is greater
additive error. As a simple demonstration, consider the setting of Example 1 and assume that all the
P̂ r(Ω)s have the same norm. In this case, κ = δ. At best, the ε′ of Theorem 3 has

ε′ ≈ d3/2

n1/2
log(n+m) +

d5/4

n1/4
log1/2(n+m).

In contrast, the ε of Theorem 2 gives

ε ≈ 1

n
log(n+m) +

d1/2

n1/2
log1/2(n+m),

which is clearly of a lower order.

2.3 Candidate set and other practical considerations

The mixing strategy involves determining a set of candidate estimators and the hold-out proportion,
p. For the OLS and NNL mixing methods, the scales of the individual estimators do not matter, and
they do not need to be accurate individually. This property is essential for a mixing method to be
applicable for general link prediction problems (see Section 4). But exponential mixing does not
make sense if the P̂ (r)s are in the wrong scale or if they are all inaccurate.

In determining the candidate setM, there is a necessary tradeoff between computational efficiency
and expressiveness. We recommend using spectral clustering together with SBM fitting for 1 ≤ k ≤
Kmax, spherical spectral clustering [Rohe et al., 2011, Lei and Rinaldo, 2014] and DCBM fitting for
1 ≤ k ≤ Kmax, and the universal singular value thresholding (USVT) of Chatterjee [2015], with the
improvement mentioned in Zhang et al. [2017], by taking the first n1/3 singular components. This set
of candidate estimators can be calculated efficiently for large networks, with the main computational
burden being the one-time calculation of SVD. The block models, despite their simplicity, have
been shown to have great approximation power if they are used properly [Airoldi et al., 2013], and
USVT also comes with good expressiveness. When networks are sparse, the block components
likely receive higher mixing weights, helping stabilize the estimator. In contrast, when networks
are sufficiently dense, USVT can be more effective. Empirically, we observe that this setup gives
very effective estimation performance. In the above recommendation, Kmax is a reasonably large
positive integer, and in Sections 3 and 4, we show that our method is very robust to Kmax and
ρ within reasonable ranges, which is again due to the regularizing property of the non-negative
constraint.

The discussion so far has focused on one random split, Ω. In practice, one can also randomly repeat
the procedure multiple times and take the average as the output. This may slightly improve accuracy
in our limited evaluation but will also increase the computational cost by a multiplicative factor. For
this reason, we only consider single splits in this study.

The mixing method, and any aggregation methods, do have limitations. The primary performance
metric of the mixing approach is estimation accuracy. Combining multiple estimators may destroy
the structural interpretations of each individual estimator, such as block structures or smoothness.
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However, when special structures are desirable, one can always apply the same structural extraction
strategy, such as community detection, to the estimated P̂ . A more accurate estimate of P may lead
to more accurate structure extraction.

3 Simulation examples

We now evaluate the mixing methods using simulation examples. We focus on the task of estimating
the network connection probability matrix, P . In all the examples below, we set the network size
to n = 1000, with varying density. We first evaluate our method in the graphon model settings. In
particular, we use the three connection graphon connection matrices W from Zhang et al. [2017],
for which we set P = α · W and use α to control the expected average degree of the networks
(Figure 2).

(a) Model 1 (b) Model 2 (c) Model 3

Figure 2: Three network models based on the graphon setup from Zhang et al. [2017]. The first model is of
rank 3. The other two are full-rank models.

The mixing methods are based on the recommended setting discussed in Section 2.3, using SBM
and DCBM fitting for 1 ≤ k ≤ Kmax, and USVT. We first show that the proposed method is robust
to Kmax within a reasonable range. After that, we compare the mixing estimator with a few bench-
marks. We use Kmax = 15 and p = 0.1 as the default setting in all the benchmark comparisons.
Given an estimator P̂ , performance is measured by the relative Frobenius error, defined as

‖P̂ − P‖2F /‖P‖2F .

3.1 Comparison of mixing aggregation strategies

We first want to compare different aggregation strategies for the mixing method, including linear
mixing (OLS-m), NNL mixing (NNL-m), exponential mixing (EXP-m), and edge cross-validation
model selection (ECV-m). SinceKmax needs to be specified, we investigate its impact on the mixing
method’s performance. To demonstrate that the method is almost tuning-free, we want to show that
it remains stable for a reasonable range of Kmax values. Figure 3 shows the estimation performance
with varying Kmax for networks with expected average node degree 20.
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Fi g ur e 3: R el ati v e esti m ati o n err or of P wit h v ari o us v al u es of K m a x a n d p = 0 .1 . T h e n et w or ks u n d er
e v al u ati o n h a v e n = 1 0 0 0 n o d es a n d a v er a g e n o d e d e gr e e 2 0 .

As c a n b e s e e n, s m all v al u es of K m a x r es ult i n u n d er fitti n g a n d a l ar g e err or. As K m a x i n cr e as es, t h e
err or dr o ps u ntil o v er fitti n g ki c ks i n. H o w e v er, o v er all, e x p o n e nti al mi xi n g, N N L mi xi n g, a n d cr oss-
v ali d ati o n d o n ot s uff er fr o m o v er p ar a m et eri z ati o n of bl o c k a p pr o xi m ati o ns. Li n e ar c o m bi n ati o n, i n
c o ntr ast, d e gr a d es w h e n K m a x is l ar g e. T his o bs er v ati o n m at c h es o ur t h e or eti c al u n d erst a n di n g of
t h e li n e ar esti m at or as w e ar e fitti n g t h e m o d el wit h a n i n cr e asi n g n u m b er of v ari a bl es. E x p o n e nti al
mi xi n g si g ni fi c a ntl y o ut p erf or ms cr oss- v ali d ati o n, w hil e N N L mi xi n g is m u c h b ett er t h a n b ot h.

N e xt, w e e v al u at e t h e r o b ust n ess of t h e diff er e nt str at e gi es wit h r es p e ct t o t h e h ol d- o ut pr o p orti o n,
p . We e v al u at e t h eir p erf or m a n c e w h e n p v ari es fr o m 0. 1 t o 0. 5 a n d K m a x is fi x e d at 1 5 ( Fi g ur e 4 ).
O v er all, all t h e a g gr e g ati o n m et h o ds t e n d t o i m pr o v e as p d e cr e as es wit hi n t his r a n g e. T his i n di c at es
t h at t h e a g gr e g ati o n w ei g ht d et er mi n ati o n st e p is e asi er a n d r e q uir es a s m all er s a m pl e si z e t h a n t h e
i n di vi d u al m o d el esti m ati o n st e p. Of all t h e a g gr e g ati o n m et h o ds, n o n- n e g ati v e li n e ar c o m bi n ati o n
is t h e m ost r o b ust. Li n e ar c o m bi n ati o n als o d eli v ers c o m p etiti v e esti m ati o n a c c ur a c y. B as e d o n t his
o bs er v ati o n, w e r e c o m m e n d usi n g K m a x = 1 5 , p = 0 .1 as t h e d ef a ult c o n fi g ur ati o n f or n et w or k
mi xi n g esti m ati o n.
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( c) M o d el 3

Fi g ur e 4: R el ati v e esti m ati o n err or of P wit h v ar yi n g p a n d K m a x = 1 5 . T h e n et w or ks u n d er e v al u ati o n h a v e
m = 1 0 0 0 a n d a v er a g e n o d e d e gr e e 2 0 .

N o w w e fi x K m a x = 1 5 a n d p = 0 .1 a n d e v al u at e t h e esti m ati o n p erf or m a n c e f or a r a n g e of n et w or k
s p arsit y l e v els, v ar yi n g t h e e x p e ct e d a v er a g e d e gr e e fr o m 5 t o 4 5 ( Fi g ur e 5 ). I n t h e s p ars e r e gi m e,
N N L mi xi n g o ut p erf or ms t h e ot h ers, w hil e li n e ar mi xi n g c at c h es u p as t h e n et w or k b e c o m es d e ns er.
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( c) M o d el 3

Fi g ur e 5: R el ati v e esti m ati o n err or of P wit h v ari o us e x p e ct e d a v er a g e d e gr e es. T h e n et w or ks u n d er e v al u a-
ti o n c o nt ai n n = 1 0 0 0 n o d es, a n d K m a x = 1 5 , p = 0 .1 ar e us e d.

O v er all, N N L mi xi n g is pr ef er a bl e c o m p ar e d t o t h e ot h er m et h o ds. Li n e ar mi xi n g is l ess r o b ust
t o t h e c h oi c e of K m a x a n d is i nf eri or t o n o n- n e g ati v e c o m bi n ati o n i n t h e s p ars e s etti n g. H o w e v er,
w h e n t h e n et w or k is d e ns er, it o ut p erf or ms t h e ot h ers. I n all of t h e e x p eri m e nts t o f oll o w, w e us e
K m a x = 1 5 a n d p = 0 .1 , a n d w e b eli e v e t his c o n fi g ur ati o n c a n b e us e d i n al m ost all a p pli c a bl e
t as ks.

3. 2 C o m p a ris o n wit h b e n c h m a r k n et w o r k esti m ati o n m et h o ds

N o w w e c o m p ar e t h e mi xi n g m et h o d wit h a f e w b e n c h m ar k n et w or k esti m ati o n m et h o ds. We s plit
t his i nt o t w o p arts. First, w e c o nsi d er t h e t hr e e gr a p h o n m o d els i n Fi g ur e 2 , a n d w e c o m p ar e t h e
mi xi n g m et h o d t o t h e gr a p h o n m et h o ds, w hi c h h a v e t h e or eti c al g u ar a nt e es a n d r e as o n a bl e c o m p u-
t ati o n al c ost. T h es e i n cl u d e t h e U S V T esti m at or of C h att erj e e [2 0 1 5 ], t h e n ei g h b or h o o d s m o ot hi n g
( N S) m et h o d of Z h a n g et al. [2 0 1 7 ], a n d t h e s ort- a n d-s m o ot h ( S A S) m et h o d of bl o c k a p pr o xi m ati o n
fr o m Air ol di et al. [2 0 1 3 ] a n d C h a n a n d Air ol di [2 0 1 4 ]. S e c o n d, w e g e n er at e n et w or ks fr o m t w o
s p e ci al p ar a m etri c m o d els: t h e S B M a n d t h e l at e nt s p a c e m o d el [ H off et al. , 2 0 0 2 ]. U n d er t h es e
m o d els, or a cl e esti m ati o ns c a n b e a c hi e v e d b y p ar a m etri c m o d el fitti n g, a n d t h e y ar e i n cl u d e d f or
c o m p aris o n. T h e mi xi n g, U S V T, N S, a n d l at e nt s p a c e m o d el fitti n g [ M a et al. , 2 0 2 0 ] ar e all b as e d
o n t h e R p a c k a g e r a n d n et [Li et al. , 2 0 2 1 ], w hil e S A S is b as e d o n t h e R p a c k a g e gr a p h o n [Yo u ,
2 0 2 0 ].

Fi g ur e 6 s h o ws t h e m o d el esti m ati o n p erf or m a n c e of t h e pr o p os e d mi xi n g str at e gi es a n d t h e t hr e e
gr a p h o n esti m ati o n b e n c h m ar ks. All f o ur v ari a nt mi xi n g str at e gi es u nif or ml y o ut p erf or m t h e b e n c h-
m ar k m et h o ds wit h all t hr e e m o d els. T h e a d v a nt a g e of t h e mi xi n g m et h o d is cl e ar w h e n t h e n et w or ks
ar e s p ars e. Of t h e t hr e e gr a p h o n esti m ati o n m et h o ds, S A S is m or e a c c ur at e f or t h e first t w o m o d els,
w hil e U S V T a n d N S ar e b ett er f or t h e t hir d o n e. T h e diff er e n c e b et w e e n v ari o us mi xi n g str at e gi es
is n e gli gi bl e.
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(a) Model 1
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Figure 6: Estimation performance of the proposed mixing methods and three benchmark graphon estimation
methods on synthetic networks generated from three graphon models.

Next, we generate networks from two parametric models. The first one is the SBM, with six commu-
nities of equal size, following the configuration of Zhang et al. [2017]. Under the SBM, we include
two oracle estimators. Oracle1 requires the true community labels and estimates the probability ma-
trix P by averaging entries within corresponding blocks of the adjacency matrix A. Oracle2 knows
the true SBM with six clusters but not the true community labels; it uses spectral clustering to find
the node labels and averages entries within estimated blocks of A. In particular, notice that Oracle2
itself is automatically included as one of the individual models in the mixing.

The second model is the latent space model (LSM), with

logit(Pij) = αi + αj + 〈Zi, Zj〉,

where Zi, Zj are latent vectors in R4, generated by N(0, I4) and then centralized according to Ma
et al. [2020]. Oracle1 in this case is the oracle version of the model that uses the true model structure
and also the true latent dimension, estimated by the gradient descent method of Ma et al. [2020]
with the recommended initialization. Oracle2 still assumes the correct model structure, but uses the
wrong dimension (3 instead of 4), representing the possibility of dimensionality mis-specification.
For reference, we also include an oracle version of the NNL mixing method, which has Oracle1 as
an individual component.

Figure 7 shows the performance of all the methods under the two parametric models. In the SBM
setting, the mixing methods are inferior only to the unbeatable Oracle1 and are even better than Or-
acle2. Since the mixing procedure includes Oracle2 as an individual component, this result demon-
strates the effects of ensembling multiple models. In the difficult regime, including multiple models
may help stabilize the estimation and further improve the estimate of the true model when it is fit-
ted separately. In the LSM setting, the mixing method is again inferior only to the perfect oracle
parametric estimation (Oracle1) in the dense setting and, again, it is even better than it in the sparse
setting. USVT is also very effective in this setting, as indicated by the theory of Chatterjee [2015],
and the mixing method adapts to it. NNL-m and USVT are even better than Oracle2 estimate. The
oracle NNL-m adapts to Oracle1 in the dense setting and outperforms it in the sparse setting. The
comparison between the mixing method and the oracle methods under these two parametric models
highlights two advantages of the mixing approach:

• In the sparse regime, the estimation accuracy may be poor even if the true model is known.
The mixing strategy provides a mechanism for combining simpler models to obtain a more
stable estimate.
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• In the dense regime, the mixing approach may remain effective even if the mixing ensemble
does not include the true model and can match the oracle otherwise.
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Figure 7: Comparison with benchmark graphon estimation methods on synthetic networks generated from
two parametric models.

4 Link prediction in real-world networks

Link prediction is a widely used procedure in network science and many scientific domains to predict
missing links/non-links based on a partially observed network [Liben-Nowell and Kleinberg, 2007,
Lichtenwalter et al., 2010, Lü and Zhou, 2011]. A link prediction algorithm usually provides a set
of scores corresponding to the missing links/non-links. A higher score means that it is more likely
that a link exists between the corresponding nodes. When the data are generated from a random
network model, the estimated edge probabilities, if available, provide natural prediction scores. One
can predict that edges exist for the node pairs with scores higher than a given threshold. Ghasemian
et al. [2020] test a large body of link prediction algorithms on 550 real-world networks from six
application domains (biological, economic, social, technological, information and transportation).
They observe that no method provides superior prediction accuracy across all domains. To achieve
reasonable adaptivity, they propose the optimal link prediction (OLP) strategy, which aggregates a
large ensemble of link prediction algorithms using random forest. They first train random forest
models and then refit the link prediction algorithms using all the training data. For this data set, OLP
gives nearly optimal performance across all domains. In this section, we explore the adaptivity of
the mixing method for this task and compare it with OLP.

We first explain how to apply the mixing method to the link prediction task. In Ghasemian et al.
[2020], three categories of link prediction algorithms are used in the ensemble: topological methods,
model-based methods, embedding methods. The linear and NNL mixing methods we have intro-
duced can include the link prediction scores from topological/embedding algorithms as individual
predictions and then use either linear combination or non-negative linear combination to aggregate
them. Therefore, the mixing method in this situation is similar to OLP, except that we use linear
methods instead of random forest to aggregate the available estimates. Conceptually, the advantages
of the mixing method are straightforward. First, it is much more computationally efficient than OLP,
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especially for large networks and validation sets; this is because the sample size for random forest
fitting in OLP scales as O(n2). Second, theoretical guarantees are available for the mixing method.

The data set of all the networks and the Python implementation of OLP are provided by Ghasemian
[2020]. Ghasemian et al. [2020] use 42 topological network features for link prediction. We expand
this set by adding the model estimates from the canonical mixing procedure – the SBM and DCBM
estimates with K = 1, 2, ..., 15, and the USVT estimate. We use three different configurations
of features to investigate the effectiveness of different categories of features: link prediction based
on all 73 features (42 topological plus 31 model-based); link prediction based on the 42 topological
features; and prediction based on the 31 model-based features only. In the model-based category, we
also include the three graphon methods and the latent space model studied in Section 3. Notice that
the model-based methods are computationally efficient, while calculating some of the 42 topological
features is much more time-consuming. Therefore, the topological approaches (using all 42 features)
can be computationally prohibitive for large networks.

For a stable evaluation of performance, we consider only networks with more than 200 nodes, giving
in 385 networks in total. Based on their origins, they are labeled as biological (72), economic (112),
informational (10), social (108), technological (55), and transportation networks (28). Given each
network, we randomly sample 10% (capped at 20,000) of the node pairs to form the test set and
use the complement subnetwork for training. This sampling scheme is different from the one used
by Ghasemian et al. [2020], where the test set is sampled in a balanced manner to maintain similar
amounts of edges and non-edges. Although that can provide better predictive performance, it may
be unrealistic in practice when one has no control over the test set. We therefore take the more
natural approach to sample the test set randomly. We measure the link prediction performance of a
method by the predictive area under the ROC curve (AUC) based on the test data and average it over
ten independent repetitions. The predictive AUC is a widely used performance metric for the link
prediction task [Huang and Ling, 2005].

Figure 8 shows the results for the three categories of link prediction features. The overall link
prediction accuracy varies widely across domains. Social networks are easier for link prediction,
while economic, technological, and transportation networks are more difficult for the same task.
When topological algorithms and mode-based algorithms are implemented, the mixing method with
non-negative linear combination and OLP perform similarly in five of the six categories. OLP gives
slightly worse results for the sixth category, informational networks. The mixing method with linear
combination is inferior to the other two in five domains but is better for economic networks. The
inferiority of linear mixing may be because 73 predictors are used, and linear combination suffers
from this large number of predictors. The comparison remains similar for the methods based on
topological algorithms only. Overall, for model-based algorithms, the two mixing methods are still
better than the other methods. The LSM and graphon estimators might be good for one category
(e.g., NS for social networks) but inferior in others. The mixing methods and OLP are reasonably
good in all categories. In particular, the mixing methods are still comparable to or even better than
the OLP method.
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Figure 8: Link prediction performance on 385 real-world networks from six domains.

Figure 9 compares the performance of each mixing strategy for different categories of features. Both
OLP and non-negative linear mixing show the same pattern: the model-based prediction is worse
than the topology-based prediction, while the version using both the model and topological features
has similar performance as the topology-based algorithms. Linear mixing using all features is never
superior in all domains. This is likely because it becomes unstable when many mixing features are
used.

As practical guidance, we also want to briefly mention the speed of the above (model-based) meth-
ods. USVT is only based on the SVD of the adjacency matrix, which is usually very sparse. It is
usually the most efficient one. The mixing methods need additional modeling fitting after SVD (note
that the mixing needs only one round of SVD as well), but that additional cost is relatively small. So
with an efficient SVD implementation [Baglama et al., 2019, Qiu and Mei, 2019], SVD and USVT
can easily handle networks of size O(105) on a single laptop. In principle, SAS has a similar speed,
though we observe that it is slightly slower than mixing. OLP can generate all the features in the
same way as the mixing methods, but random forest fitting can be much slower, and model-fitting
cost becomes the major bottleneck. In our experiments, while OLP is feasible for networks with a
few thousand nodes, it is much slower than mixing. The gradient method for the latent space model
and neighborhood smoothing can handle networks of moderate size but may become too slow if the
size is larger than 3000.

In summary, though the OLP method is claimed to be nearly optimal for link prediction, we find
that the NNL mixing strategy delivers comparable or slightly better accuracy and adaptivity across
all domains. Given its additional theoretical guarantees and much higher computational efficiency,
we believe that the mixing method can generally serve as an off-the-shelf link prediction algorithm.
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Figure 9: Mixing performance using different features.

5 Discussion

We have introduced a mixing strategy for network estimation. It can be used as an off-the-shelf
method for network modeling with both flexibility and scalability. The method is designed according
to geometrical insights into the network modeling problems, and we have shown the advantage of
the design theoretically. We have also demonstrated its competitive performance empirically in link
prediction problems.

The current study could be extended in several directions for future follow-up. In this paper, we
focus on the accuracy of the mixing estimator for a network model. In many network analysis
problems, the crucial quantities can differ from the properties of the network model P itself. For
example, in regression inference of network-linked data [Le and Li, 2020], the recovery of the
network projection operator is critical. Intuitively, using the mixing estimator should render a more
robust inference. The theory of this type of inference warrants further study. Another direction is
to extend the mixing strategy to dynamic network modeling problems [Kim et al., 2018]. Flexible
dynamic network models tend to be computationally challenging to fit. Given its flexibility and
computational efficiency, it would be interesting to see whether the mixing method can help alleviate
this difficulty.
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A Exponential weight mixing

Proof of Theorem 1. From (2), we have

πr ∝ exp

− ∑
(i,j)∈Ω

(
Aij − P̂ (r)

ij

)2


∝ exp

− ∑
(i,j)∈Ω

(
Aij − P̂ (r)

ij

)2
+
∑

(i,j)∈Ω

(Aij − Pij)2

 =: exp
(
−S(r)

)
,

where ∝ denotes “proportional to”. Rewrite S(r) as follows:

S(r) =
∑

(i,j)∈Ω

(
Pij − P̂ (r)

ij

)(
2Aij − Pij − P̂ (r)

ij

)
=:

∑
(i,j)∈Ω

X
(r)
ij .

Denote ρ = maxi,j Pij . Conditioning on A(Ωc) (thus on P̂ (r)), S(r) is the sum of independent
random variables X(r)

ij with mean and variance given by

EX(r)
ij =

(
Pij − P̂ (r)

ij

)2
, var

(
X

(r)
ij

)
= 4Pij(1− Pij)

(
Pij − P̂ (r)

ij

)2
≤ 4ρ

(
Pij − P̂ (r)

ij

)2
.

Since
∣∣X(r)

ij

∣∣ ≤ 8, by Bernstein’s inequality,

P
(∣∣S(r) − ES(r)

∣∣ > t
)
≤ 2 exp

 −t2/2

4ρ
∑

(i,j)∈Ω

(
Pij − P̂ (r)

ij

)2
+ 8t/3

 .

Since m = o(n2), we have

∣∣∣S(r) −
∑

(i,j)∈Ω

(
Pij − P̂ (r)

ij

)2 ∣∣∣ ≤ C
ρ log n

∑
(i,j)∈Ω

(Pij − P̂ (r)
ij )2

1/2

+ C log n (14)

for all 1 ≤ r ≤ m with high probability for a sufficiently large constant C. In other words, S(r) con-
centrates well around the mean

∑
(i,j)∈Ω

(
Pij − P (r)

ij

)2, and the mixture of P (r) puts exponentially
large weight on the estimator P (r) with the smallest error ‖P (r)(Ω)− P (Ω)‖2F .

Let r∗ = argmin1≤r≤m ‖P (r)(Ω)− P (Ω)‖2F and denote

xr = ‖P (r)(Ω)− P (Ω)‖F , x = ‖P (r∗)(Ω)− P (Ω)‖F .

Consider the index set

I =

{
r ∈ [m] : xr ≤ x+ 2C

√
ρ log n+

2C log(nm)

x

}
.
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By the triangle inequality,∥∥∥ m∑
r=1

πrP
(r)(Ω)− P (Ω)

∥∥∥
F
≤

m∑
r=1

πr‖P (r)(Ω)− P (Ω)‖F =
∑
r∈I

πrxr +
∑
r 6∈I

πrxr.

From the definition of I we get∑
r∈I

πrxr ≤ x+ 2C
√
ρ log n+

2C log(nm)

x
.

For the second sum, consider r 6∈ I . Recall that πr ∝ exp(−S(r)) and by (14), S(r) and S(r∗)

concentrate around x2
r and x2, respectively. Therefore with high probability we have

πr =
exp(−S(r))∑
r exp(−S(r))

≤ exp
(
S(r∗) − S(r)

)
≤ exp

(
x2 − x2

r + 2C
√
ρ log n(x+ xr) + 2C log n

)
.

Since r 6∈ I ,

x2
r − x2 − 2C

√
ρ log n(xr + x) = (xr + x)(xr − x− 2C

√
ρ log n) ≥ 4C log(nm),

and consequently,

πr ≤ exp (−2C log(nm)) = (nm)−2C .

Since xr ≤ n, by choosing C > 1, we get∑
r 6∈I

πr‖P (r)(Ω)− P (Ω)‖F ≤
∑
r 6∈I

n(nm)−2C = o(1).

In summary, we have proved that with high probability,∥∥∥ m∑
r=1

πrP
(r)(Ω)− P (Ω)

∥∥∥
F
≤ min

1≤r≤m

∥∥P (r)(Ω)− P (Ω)
∥∥
F

+ δ,

where

δ = 3C
(

log n ·max
i,j

Pi,j

)1/2
+

3C log(nm)

min1≤r≤m ‖P (r)(Ω)− P (Ω)‖F
.

In case min1≤r≤m ‖P (r)(Ω) − P (Ω)‖F ≤ 1, we can replace log(nm)/x in the definition of I by
log1/2(nm) and repeat the above argument. Again, for constant C > 1, the same derivations can
still go through and the resulting error would be

δ = 3C
(

log n ·max
i,j

Pi,j

)1/2
+ 3C log1/2(nm).

Consequently, the error can be improved as follows:

δ = 3C
(

log n ·max
i,j

Pij

)1/2
+ 3C min

{
log(nm)

min1≤r≤m ‖P (r)(Ω)− P (Ω)‖F
, log1/2(nm)

}
.

Rewriting 3C as a new constant C completes the proof.
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B Non-negative linear aggregation

Proof of Theorem 2. Denote E = A(Ω)− P (Ω). By the triangle inequality,

‖ΠCA(Ω)− P (Ω)‖F ≤ ‖ΠCE‖F + ‖ΠCP (Ω)− P (Ω)‖F . (15)

We now show that ‖ΠCE‖F is small due to condition (8). Since C is a cone, whether ‖ΠCE‖F = 0
or ‖ΠCE‖F > 0, depending on the relative location of E to C. If ‖ΠCE‖F > 0 then there exists
ν ∈ C with ‖ν‖F = 1 such that ‖ΠCE‖F = 〈ν,E〉. Let ν(r) be the normalized predictor

ν(r) = ‖P̂ (r)(Ω)‖−1
F P̂ (r)(Ω)

and ν =
∑m

r=1 λrν
(r) for some λ1, ..., λm ≥ 0. Then by (8),

1 = ‖ν‖2F =
∑

1≤r,s≤m
λrλs〈ν(r), ν(s)〉 ≥ δ

( m∑
r=1

λr

)2
,

which implies
∑m

r=1 λr ≤ δ−1/2. Therefore

‖ΠCE‖F = 〈ν,E〉 =

m∑
r=1

λr〈ν(r), E〉 ≤ δ−1/2 max
1≤r≤m

〈ν(r), E〉.

For each ν(r) =
(
ν

(r)
ij

)
with ‖ν(r)‖ := max(i,j)∈Ω |ν

(r)
ij |, by Bernstein’s inequality,

P
(
|〈ν(r), E〉| > t

)
≤ exp

 −t2/2∑
(i,j)∈Ω

(
ν

(r)
ij

)2var(Eij) + ‖ν(r)‖∞t/3


≤ exp

(
−t2/2

‖P (Ω)‖∞ + ‖ν(r)‖∞t/3

)
.

Choosing t ≈ max1≤r≤m ‖ν(r)‖∞ log(n+m)+(‖P (Ω)‖∞ log(n+m))1/2 and applying the union
bound, we obtain that with high probability,

‖ΠCE‖F ≤ Cδ−1/2

(
max

1≤r≤m
‖ν(r)‖∞ log(n+m) + (‖P (Ω)‖∞ log(n+m))1/2

)
.

The proof is complete.

Proof of Corollary 1. Denote E = A(Ω)− P (Ω). We can view E and ΠL as a vector and a matrix
in R|Ω| and R|Ω|×|Ω|, respectively. Then ‖ΠLA(Ω) − ΠLP (Ω)‖2F = ‖ΠLE‖2F . Denoting by ◦ the
entry-wise product, we get

E‖ΠLE‖2F = E〈ΠLE,ΠLE〉 = trace(ΠLdiag(P (Ω) ◦ (I − P (Ω)))ΠT
L) (16)

So we have

m
√
ρ = m · min

(i,j)∈Ω
Pij ·

(
1− max

(i,j)∈Ω
Pij

)
≤ E‖ΠLE‖2F ≤ m · max

(i,j)∈Ω
Pij . (17)
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Furthermore, by the Cauchy–Schwarz inequality,

(E‖ΠLE‖F )2 ≤ E‖ΠLE‖2F ≤ m · ‖P (Ω)‖∞. (18)

Since ‖ΠL‖ = 1, by Hanson-Wright inequality [Klochkov and Zhivotovskiy, 2020, Theorem 1.1]
and (17), for any t ≥ max{E‖ΠLE‖F , 1} we have

P
(∣∣‖ΠLE‖2F − E‖ΠLE‖2F

∣∣ > t
)
≤ exp

(
−cmin

{
t2

(E‖ΠLE‖F )2 , t

})
≤ exp

(
−cmin

{
t2

E‖ΠLE‖2F
, t

})
.

Choosing t = (m log n · ‖P (Ω)‖∞)1/2 and using (18), we see that

t > max{E‖ΠLE‖F , 1}.

Then (17) leads to

‖ΠLE‖2F ≤ m · max
(i,j)∈Ω

Pij + (m log n · ‖P (Ω)‖∞)1/2 (19)

with high probability. Combining the assumption m ≥ 4ρ−1‖P (Ω)‖∞ log n and (17), we can see
that

E‖ΠLE‖2F ≥ m
√
ρ > 2

√
m‖P (Ω)‖∞ log n = 2t > t

and therefore with high probability

‖ΠLE‖2F ≥ m · min
(i,j)∈Ω

Pij ·
(
1− ‖P (Ω)‖∞

)
− (m log n · ‖P (Ω)‖∞)1/2 >

m
√
ρ

2
. (20)

Notice that (19) directly indicates (11). Now we have

∆ = ‖P̂ (ols)(Ω)− P (Ω)‖2F − ‖P̂ (nnl)(Ω)− P (Ω)‖2F
= ‖ΠLA(Ω)−ΠLP (Ω)‖2F + ‖ΠLP (Ω)− P (Ω)‖2F
−‖ΠCA(Ω)−ΠLP (Ω)‖2F − ‖ΠLP (Ω)− P (Ω)‖2F

≥ ‖ΠLE‖2F − ‖ΠCE‖2F − ‖ ΠCΠLP (Ω)−ΠLP (Ω)‖2F .

On the other hand, by Theorem 2 and (20),

∆ ≥ mρ1/2

2
− C2

δ
ε2 − ‖ΠCΠLP (Ω)−ΠLP (Ω)‖2F

with high probability, and the proof is completed by using the basic inequality (a+b)2 ≤ 2(a2 +b2)
for ε2.

Proof of Theorem 3. We will mainly follow the proof strategy of Slawski and Hein [2011]. How-
ever, there is one key step in their proof (right after B.5) that may not go through. So our proof can
be seen as a corrected version of that.

Recall the definition of β̂ in (6). Since this is a constrained linear regression problem, for the notation
simplicity, let us denote Xr = P̂ (r)(Ω), Y = A(Ω), µ = P (Ω), and E = A(Ω)− P (Ω) = Y − µ.
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We view them as column vectors and further denote X = (X1, ..., Xm). The optimization problem
(6) is equivalent to

π̂ = argmin
π�0

‖Y −Xπ‖2. (21)

Consider the oracle parameter
π∗ = argmin

π�0
‖µ−Xπ‖2

and define δ = π∗ − π for any π � 0. In particular, we write δ̂ = π∗ − π̂.

Our goal is to compare the NNL mixing estimate Xπ̂ with the best linear approximation Xπ∗ in the
noiseless setting when µ is known. We first rewrite the objective function in (21) as follows:

‖Y −Xπ‖2 = ‖µ−Xπ∗ +X(π∗ − π) + E‖2

= ‖µ−Xπ∗‖2 + ‖Xδ‖2 + ‖E‖2 + 2ET (µ−Xπ∗) + 2ETXδ.

Note that the constraint π � 0 is equivalent to δ � π∗, and only the second and the last terms of the
expression above depend on δ, it follows that

δ̂ = argmin
δ�π∗

{
‖Xδ‖2 + 2ETXδ

}
. (22)

Since the objective function on the right-hand side is zero when δ = 0, its value at the minimizer
δ = δ̂ is at most zero. Equivalently, we have

‖Xδ̂‖2 ≤ 2ETXδ̂.

For a vector x ∈ Rm, denote

S+(x) = {i ∈ [m] : xi ≥ 0}, S−(x) = {i ∈ [m] : xi < 0}.

Let xP be the vector obtained from x by setting all entries within S−(x) to zero and xN = x− xP .
The inequality above implies

‖Xδ̂‖2 ≤ 2‖ETX‖∞‖δ̂‖1 ≤ 2‖ETX‖∞
(
‖δ̂P ‖1 +‖δ̂N‖1

)
≤ 2‖ETX‖∞

(
‖π∗‖1 +‖δ̂N‖1

)
, (23)

where ‖δ̂P ‖1 ≤ ‖π∗‖1 because δ̂ = π∗ − π̂ ≤ π∗ for π̂ � 0. It remains to bound ‖δ̂N‖1.

Denote Σ = XTX . For each δ ≤ π∗, let ΣPP , ΣNN and ΣNP be the matrices obtained from Σ by
setting all entries with indices (i, j) outside S+(δ)× S+(δ), S−(δ)× S−(δ) and S−(δ)× S+(δ) to
zero, respectively. Then (22) is equivalent to

δ̂ = argmin
δ�π∗

{
δTPΣPP δP + δTNΣNNδN + 2δTNΣNP δP + 2ETX(δN + δP )

}
.

Define T = {x ∈ Rm : x ≤ π∗, xi ≤ 0, i ∈ S−(δ̂), xi = 0, i ∈ S+(δ̂)}. Replacing δP in the
objective function above on the right-hand side with δ̂P , we see that

δ̂N = argmin
δN∈T

{
δTNΣNNδN + 2δTNΣNP δ̂P + 2ETXδN

}
.
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Since the objective function on the right-hand side is zero when δN = 0 ∈ Ω,

δ̂TNΣNN δ̂N + 2δ̂TNΣNP δ̂P + 2ETXδ̂N ≤ 0.

Denote ‖Σ‖∞ = max1≤r,s≤m |Σrs|. By the self-regularizing property (13), we have

0 ≥ κ‖δ̂N‖21‖Σ‖∞ − 2‖δ̂N‖1‖δ̂P ‖1‖Σ‖∞ + 2ETXδ̂N

≥ κ‖δ̂N‖21‖Σ‖∞ − 2‖δ̂N‖1‖δ̂P ‖1‖Σ‖∞ − 2‖ETX‖∞‖δ̂N‖1.

It follows that

‖δ̂N‖1 ≤
2

κ

(
‖δ̂P ‖1 +

‖ETX‖∞
‖Σ‖∞

)
≤ 2

κ

(
‖π∗‖1 +

‖ETX‖∞
‖Σ‖∞

)
. (24)

From (23) and (24), we get

‖Xπ̂ −Xπ∗‖2 ≤ 4‖ETX‖2∞
κ‖Σ‖∞

+
(2κ+ 4)‖ETX‖∞‖π∗‖1

κ
.

By Bernstein’s inequality on the Bernoulli error E, for each 1 ≤ r ≤ m, we have

P
(
|ETXr| > t

)
≤ 2 exp

(
−t2/2

‖P (Ω)‖∞‖P̂ (r)(Ω)‖2F + t‖P̂ (r)(Ω)‖∞/3

)
.

Choosing t ≈ ‖P̂ (r)(Ω)‖∞ log(n + m) + ‖P̂ (r)(Ω)‖F (‖P (Ω)‖∞ log(n + m))1/2 for each r and
using the union bound across r, we obtain the final bound for ‖Xπ̂−Xπ∗‖2 = ‖P̂ (Ω)−ΠCP (Ω)‖2F
with

Φ = max
r
‖P̂ (r)(Ω)‖∞ + ‖P (Ω)‖1/2∞ max

r
‖P̂ (r)(Ω)‖F = max

r
‖P̂ (r)(Ω)‖∞ + ‖P (Ω)‖1/2∞ ‖Σ‖∞.

The proof is complete.
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