

A HILBERT-TYPE INEQUALITY FOR FOURIER COEFFICIENTS

PRABIR BURMAN

(Communicated by J. Jakšetić)

Abstract. There is extensive literature on Hilbert inequality and its many extensions. In this work we obtain inequalities involving Fourier coefficients of a Hölder continuous function. The results given here are valid without any assumption of monotonicity or signs of the Fourier coefficients.

1. Introduction

Hardy-Hilbert inequalities have a long history ([3]) with a substantial amount of literature. For sequences of real numbers $\{c_j\}$ and $\{d_j\}$ with $\sum c_j^2 < \infty$ and $\sum d_j^2 < \infty$, the basic inequalities are of the form

$$\left| \sum_{1 \leq j, k \leq \infty} c_j d_k h_{jk} \right| \leq \pi \left[\sum c_j^2 \right]^{1/2} \left[\sum d_j^2 \right]^{1/2},$$

where $h_{jk} = 1/(j+k)$, or $h_{jk} = 1/(j+k-1)$ or

$$h_{jk} = 1/(j-k) \text{ if } j \neq k, \quad h_{jk} = 0 \text{ when } j = k.$$

Montgomery and Vaughan ([6]) extended the inequality whereby

$$h_{jk} = 1/(\lambda_j - \lambda_k) \quad \text{if } j \neq k, \quad h_{jk} = 0 \quad \text{when } j = k,$$

where $\{\lambda_j\}$ is an increasing sequence of real numbers with the constraint $\lambda_{j+1} - \lambda_j \geq f$, $j \geq 1$, for some positive constant f .

There are many extensions of discrete and integral versions of Hardy-Hilbert inequalities. A homogenous kernel $H(x, y)$, $x, y > 0$, is of order β if $H(tx, ty) = t^\beta H(x, y)$, $t > 0$. Extensive results are available for Hardy-Hilbert type inequalities for quadratic forms involving homogeneous kernels for discrete and continuous cases. A good account of these results can be found in the books [4] and [7], and in a recent survey article [2].

In this work we consider different kind of inequalities. Let h be a function on $[0, 1]$ which is Hölder continuous with exponent θ , $0 < \theta < 1$, ie,

$$w(h) = \sup_{0 \leq x, y \leq 1} |h(x) - h(y)| / |x - y|^\theta < \infty \quad (1.1)$$

Mathematics subject classification (2020): Primary 26D15; Secondary 40G99.

Keywords and phrases: Hilbert inequality, Hardy inequality, Fourier coefficients, homogeneous kernel.

Here we examine bounds for the quadratic forms $\sum_{j \neq k} c_j c_k h_{jk}$ and $\sum c_j c_k g_{jk}$, where

$$h_{jk} = (\rho_j \rho_k)^{\theta/2} \frac{\lambda_j - \lambda_k}{j - k}, \quad \text{with } \rho_j = \pi(j - 1/2), \quad j \neq k, \quad (1.2)$$

$$g_{jk} = (\rho_j \rho_k)^{\theta/2} \frac{\lambda_j + \lambda_k}{j + k - 1}, \quad (1.3)$$

$$\lambda_j = \lambda_j^C = \int_0^1 h(x) \cos(\rho_j x) dx \text{ or } \lambda_j = \lambda_j^S = \int_0^1 h(x) \sin(\rho_j x) dx.$$

Since λ_j^C and λ_j^S decay like $\rho_j^{-\theta}$, though not necessarily monotone (even in magnitude), we would expect h_{jk} and g_{jk} to behave like homogeneous kernels in ρ_j, ρ_k of order $\beta = -1$. We obtain the upper bound of the absolute values of $\sum_{j \neq k} c_j c_k h_{jk}$ and $\sum c_j c_k g_{jk}$ which involve the constant $w(h)$ given in (1.1) as well as the value of $h(1)$ or $h(0)$ depending on whether the quadratic form involves $\{\lambda_j^C\}$ or $\{\lambda_j^S\}$. We make no claim that the constants in the upper bounds are the best possible. We note in passing that $\{\phi_j = \sqrt{2} \cos(\rho_j x)\}$ is an orthonormal basis for $L_2 = L_2[0, 1]$, the space of square integrable functions on $[0, 1]$. Similarly, $\{\psi_j(x) = \sqrt{2} \sin(\rho_j x)\}$ is also an orthonormal basis for L_2 . Thus $\{\lambda_j^C\}$ and $\{\lambda_j^S\}$ are proportional to the Fourier coefficients of h with respect to the bases $\{\phi_j\}$ and $\{\psi_j\}$ respectively.

We mention that, using the methods described in this work, it is possible to obtain similar bounds when λ_j is of the form $\int_0^1 h(x) \cos(\pi j x) dx$, or $\int_0^1 h(x) \cos(2\pi j x) dx$, or $\int_0^1 h(x) \sin(\pi j x) dx$, or $\int_0^1 h(x) \sin(2\pi j x) dx$. However, we do not present them here.

Section 2 lists the main results. Section 3 contains the proofs.

2. The main results

We begin this section with a well known result on Hilbert type inequalities involving homogeneous kernels of order $\beta = -1$ ([1], [5]).

THEOREM 1. (a) *Let H be a homogeneous kernel of order $\beta = -1$, $H(x, y) \geq 0$ for all $x, y > 0$. Assume that $H(1, y)y^{-1/2}$ and $H(y, 1)y^{-1/2}$ are decreasing in y . If $H_1 = \int_0^\infty H(1, y)y^{-1/2} dy < \infty$, then for any sequences $\{c_j\}$ and $\{d_j\}$ with $\sum c_j^2 < \infty$ and $\sum d_j^2 < \infty$, the following holds*

$$|\sum c_j d_k H(j, k)| \leq H_1 \{\sum c_j^2\}^{1/2} \{\sum d_j^2\}^{1/2}.$$

(b) *Let H be as in part (a) above. Additionally assume that $H(1, y)y^{-1/2}$ and $H(y, 1)y^{-1/2}$ are convex in y . Denoting $j_1 = j - 1/2$, for any sequences $\{c_j\}$ and $\{d_j\}$, we have*

$$|\sum c_j d_k H(j_1, k_1)| \leq H_1 \{\sum c_j^2\}^{1/2} \{\sum d_j^2\}^{1/2}.$$

We should point out that the double sums in Theorem 1 include the diagonal, ie, $\sum c_j d_j H(j, j)$ in part (a), and $\sum c_j d_j H(j_1, j_1)$ in part (b).

Before we state the main results, we present two simple lemmas. The first lemma is rather easy to verify and is stated without proof.

LEMMA 1. *If f and g are both non-negative, non-increasing (or non-decreasing), and convex, then their product fg is also non-negative, non-increasing (or non-decreasing), and convex.*

Let

$$\begin{aligned}\gamma_*^C &= (2/\pi)w(h)S_\theta + (2/\pi)^{1-\theta}|h(1)|, \\ \gamma_*^S &= (2/\pi)w(h)S_\theta + (2/\pi)^{1-\theta}|h(0)|,\end{aligned}\quad (2.1)$$

where

$$S_\theta = \int_0^{\pi/2} x^\theta \sin(x) dx. \quad (2.2)$$

LEMMA 2. *Let λ_j^C and λ_j^S be as defined in the Introduction and let γ_*^C and γ_*^S be as in (2.1). Then*

$$\rho_j^\theta |\lambda_j^C| \leq \gamma_*^C, \quad \rho_j^\theta |\lambda_j^S| \leq \gamma_*^S.$$

The proof of Lemma 2 will be given later. Let

$$A(\theta) = 2\pi[1 + \tan(\pi\theta/2)].$$

We now state our main results. The proof of Theorem 2 involves carefully bounding the quadratic form $Q = \sum_{j \neq k} c_j c_k h_{jk}$ by sum of two appropriate quadratic forms. The first quadratic form uses Theorem 1 and the second quadratic form uses the well-known Hilbert inequality for $\{(j-k)^{-1}, j \neq k\}$.

THEOREM 2. *Let h_{jk} be as in (1.2). Then for any sequence $\{c_j\}$ of real numbers with $\sum c_j^2 < \infty$, we have*

$$\left| \sum_{j \neq k} c_j c_k h_{jk}^C \right| \leq \gamma_*^C A(\theta) \sum c_j^2,$$

and

$$\left| \sum_{j \neq k} c_j c_k h_{jk}^S \right| \leq \gamma_*^S A(\theta) \sum c_j^2.$$

We now write down another result involving $\{g_{jk}\}$ defined in (1.3). Its proof is simple.

THEOREM 3. *Let g_{jk} be as in (1.3). Then for any sequence $\{c_j\}$ of real numbers with $\sum c_j^2 < \infty$, we have*

$$\left| \sum c_j c_k g_{jk}^C \right| \leq \gamma_*^C 2\pi \sec(\pi\theta/2) \sum c_j^2,$$

and

$$\left| \sum c_j c_k g_{jk}^S \right| \leq \gamma_*^S 2\pi \sec(\pi\theta/2) \sum c_j^2.$$

Here the sums include the diagonal elements.

REMARK 1. The constant $A(\theta)$ behaves well as long as θ stays away from 1. However, as θ approaches 1, $A(\theta) \rightarrow \infty$. It is not possible to remedy this when θ is near 1 as can be seen when $\theta = 1$ and $\lambda_j = \rho_j^{-1}$, and in that case $h_{jk} = -\pi(\rho_j \rho_k)^{-1/2}$.

Take $c_j = \rho_j^{-1/2}$, $1 \leq j \leq n$ and $c_j = 0$ if $j > n$. The quadratic form with $\sum c_j^2 = 1$ is unbounded since

$$-\sum_{j,k} c_j c_k h_{jk} / \sum c_j^2 = \pi \sum_{j=1}^n \rho_j^{-1} \rightarrow \infty.$$

as $n \rightarrow \infty$.

REMARK 2. Focus of this paper is on the case $0 < \theta < 1$. However, when $\theta \rightarrow 0$, the upper bounds in Theorem 2 become simple. When $\theta \rightarrow 0$, $A(\theta) \rightarrow 2\pi$, and the upper bounds are

$$\gamma_*^C A(\theta) \rightarrow 4[w(h) + |h(1)|], \quad \gamma_*^S A(\theta) \rightarrow 4[w(h) + |h(0)|].$$

REMARK 3. We are not aware of any nice simple formula for the integral S_θ given in (2.2) which appears in the expressions for γ_*^C and γ_*^S . However, the following reasoning is suggested by the referee. For each x , x^θ is convex in θ , then so is S_θ . Since $S_0 = S_1 = 1$, we have $S_\theta \leq 1$. Consequently,

$$\gamma_*^C \leq (2/\pi)w(h) + (2/\pi)^{1-\theta}|h(1)|, \quad \gamma_*^S \leq (2/\pi)w(h) + (2/\pi)^{1-\theta}|h(0)|.$$

REMARK 4. When $\theta \rightarrow 0$, the upper bounds given in Theorem 3 converge to the same limiting quantities listed in Remark 2. However, the bounds diverge to infinity as θ approaches 1. It is not possible to remedy this when θ is near 1 as can be seen when $\theta = 1$ and $\lambda_j = \rho_j^{-1}$, and in that case $g_{jk} = \pi(\rho_j \rho_k)^{-1/2}$. Take $c_j = \rho_j^{-1/2}$, $1 \leq j \leq n$ and $c_j = 0$ if $j > n$, then $\sum c_j c_k g_{jk} / \sum c_j^2$ is equal to $\pi \sum_{j=1}^n \rho_j^{-1}$ which diverges to infinity as $n \rightarrow \infty$.

REMARK 5. Note that $h_{jk} = h_{kj}$ and $g_{jk} = g_{kj}$. It then follows that we can obtain Hilbert type inequalities for $\sum_{j \neq k} c_j d_k h_{jk}$ and $\sum c_j d_k g_{jk}$ with the same upper bounds given in Theorems 2 and 3, where $\sum c_j^2 < \infty$ and $\sum d_j^2 < \infty$.

3. The proofs

Proof of Theorem 2. Denote $\rho_j^\theta \lambda_j$ by γ_j , and we know from Lemma 2 that

$$\sup_j |\gamma_j| \leq \gamma_*,$$

where γ_* has two different expressions for cosines and sines. The proof involves bounding the quadratic form $Q = \sum_{j \neq k} c_j c_k h_{jk}$ by the sum of two appropriate quadratic forms: the first quadratic form uses Theorem 1 and the second quadratic form uses the Hilbert inequality for $\{1/(j-k) : j \neq k\}$. Note that h_{jk} is equal to h_{jk}^C in the cosine case, and h_{jk}^S in the sine case.

We approximate ρ_j by the geometric mean of ρ_j and ρ_k and hence

$$\begin{aligned}\lambda_j &= \rho_j^{-\theta} \gamma_j = [\rho_j^{-\theta} - (\rho_j \rho_k)^{-\theta/2}] \gamma_j + (\rho_j \rho_k)^{-\theta/2} \gamma_j \\ &= [\rho_j^{-\theta/2} - \rho_k^{-\theta/2}] \rho_j^{-\theta/2} \gamma_j + (\rho_j \rho_k)^{-\theta/2} \gamma_j.\end{aligned}$$

Therefore

$$\begin{aligned}\lambda_j - \lambda_k &= [\rho_j^{-\theta/2} - \rho_k^{-\theta/2}] \rho_j^{-\theta/2} \gamma_j + (\rho_j \rho_k)^{-\theta/2} \gamma_j \\ &\quad - [\rho_k^{-\theta/2} - \rho_j^{-\theta/2}] \rho_k^{-\theta/2} \gamma_k - (\rho_j \rho_k)^{-\theta/2} \gamma_k \\ &= -[\rho_k^{-\theta/2} - \rho_j^{-\theta/2}] [\rho_j^{-\theta/2} \gamma_j + \rho_k^{-\theta/2} \gamma_k] + (\rho_j \rho_k)^{-\theta/2} (\gamma_j - \gamma_k).\end{aligned}$$

We can write

$$\begin{aligned}Q &= - \sum_{j \neq k} c_j c_k \frac{\rho_k^{-\theta/2} - \rho_j^{-\theta/2}}{j - k} [\rho_j^{-\theta/2} \gamma_j + \rho_k^{-\theta/2} \gamma_k] (\rho_j \rho_k)^{\theta/2} \\ &\quad + \sum_{j \neq k} c_j c_k \frac{\gamma_j - \gamma_k}{j - k} \\ &:= Q_1 + Q_2.\end{aligned}\tag{3.1}$$

Now denoting $\gamma_j c_j$ by d_j , we have

$$Q_2 = 2 \sum_{j \neq k} c_j c_k \frac{\gamma_j}{j - k} = 2 \sum_{j \neq k} d_j c_k \frac{1}{j - k}.$$

Use the Hilbert inequality for $\{(j - k)^{-1}, j \neq k\}$ to get

$$|Q_2| \leq 2\pi \left(\sum d_j^2 \right)^{1/2} \left(\sum c_j^2 \right)^{1/2} \leq 2\pi \gamma_* \sum c_j^2. \tag{3.2}$$

Noting that $(\rho_k^{-\theta/2} - \rho_j^{-\theta/2})/(j - k) > 0$ for all $j \neq k$, and denoting $j - 1/2$ by j_1 , we have

$$\begin{aligned}|Q_1| &\leq \sum_{j \neq k} |c_j c_k| \left| \frac{\rho_k^{-\theta/2} - \rho_j^{-\theta/2}}{j - k} \right| \left| \rho_j^{-\theta/2} \gamma_j + \rho_k^{-\theta/2} \gamma_k \right| (\rho_j \rho_k)^{\theta/2} \\ &\leq \gamma_* \sum_{j \neq k} |c_j c_k| \left| \frac{\rho_k^{-\theta/2} - \rho_j^{-\theta/2}}{j - k} \right| [\rho_j^{-\theta/2} + \rho_k^{-\theta/2}] (\rho_j \rho_k)^{\theta/2} \\ &= \gamma_* \sum_{j \neq k} |c_j c_k| \frac{\rho_k^{-\theta} - \rho_j^{-\theta}}{j - k} (\rho_j \rho_k)^{\theta/2} \\ &= \gamma_* \sum_{j \neq k} |c_j c_k| \frac{k_1^{-\theta} - j_1^{-\theta}}{j - k} (j_1 k_1)^{\theta/2} \\ &= \gamma_* \sum_{j \neq k} |c_j c_k| H(j_1, k_1),\end{aligned}$$

where

$$H(x, y) = \frac{y^{-\theta} - x^{-\theta}}{x - y} (xy)^{\theta/2}$$

Note that H is a nonnegative kernel of order $\beta = -1$ and $H(x, x) = \theta/x$. We will show that H satisfies conditions in part (b) of Theorem 1. In that case we will have

$$|Q_1| \leq \gamma_* \int_0^\infty H(1, y) y^{-1/2} dy \sum c_j^2, \quad (3.3)$$

where

$$\begin{aligned} \int_0^\infty H(1, y) y^{-1/2} dy &= \int_0^\infty \frac{y^{-\theta} - 1}{1 - y} y^{\theta/2 - 1/2} dy \\ &= \int_0^\infty \frac{y^{-\theta/2 - 1/2} - y^{\theta/2 - 1/2}}{1 - y} dy \\ &= 2 \int_0^1 \frac{y^{-\theta/2 - 1/2} - y^{\theta/2 - 1/2}}{1 - y} dy := 2 J. \end{aligned}$$

We now obtain an exact expression for J . Making a variable transformation $y = \exp(-t)$, we have

$$\begin{aligned} J &= \int_0^\infty \frac{\exp((1/2 + \theta/2)t) - \exp((1/2 - \theta/2)t)}{1 - \exp(-t)} \exp(-t) dt \\ &= \int_0^\infty \frac{\exp(-(1/2 - \theta/2)t) - \exp(-(1/2 + \theta/2)t)}{1 - \exp(-t)} dt \\ &= \int_0^\infty \left[\frac{\exp(-t)}{t} - \frac{\exp(-(1/2 + \theta/2)t)}{1 - \exp(-t)} \right] dt \\ &\quad - \int_0^\infty \left[\frac{\exp(-t)}{t} - \frac{\exp(-(1/2 - \theta/2)t)}{1 - \exp(-t)} \right] dt. \end{aligned}$$

Note that each of the two integrals above has Gauss's integral representation of digamma function Ψ . Thus

$$\begin{aligned} J &= \Psi(1/2 + \theta/2) - \Psi(1/2 - \theta/2) \\ &= \Psi(1 - (1/2 - \theta/2)) - \Psi(1/2 - \theta/2) \\ &= \pi \cot(\pi(1/2 - \theta/2)) = \pi \tan(\pi\theta/2), \end{aligned}$$

where the last equality follows because of the reflection principle of digamma function, ie,

$$\Psi(1 - x) - \Psi(x) = \pi \cot(\pi x).$$

Therefore

$$\int_0^\infty H(1, y) y^{-1/2} dy = 2\pi \tan(\pi\theta/2). \quad (3.4)$$

Our result follows from (3.2), (3.3) and (3.4).

What remains to show is that $H(1,y)y^{-1/2}$ is decreasing and convex in y . Since $H(x,y) = H(y,x)$, it follows that $H(y,1)y^{-1/2}$ is also decreasing and convex in y .

Note that

$$H(1,y)y^{-1/2} = \frac{y^{-\theta} - 1}{1-y} y^{\theta/2-1/2} = f(y)g(y), \quad \text{with}$$

$$f(y) = \frac{y^{-\theta} - 1}{1-y} \quad \text{and} \quad g(y) = y^{\theta/2-1/2}.$$

Clearly, both f and g are non-negative. If we can show that both f and g are decreasing and convex, then their product fg is also convex by Lemma 1. Clearly, g is decreasing and convex. We now show that f is also decreasing and convex.

The remainder theorem of calculus states that for any differentiable function p with a continuous derivative p' ,

$$p(x+h) - p(x) = h \int_0^1 p'(t(x+h) + (1-t)x) dt.$$

Let $p(x) = x^{-\theta}$. Taking $x = 1$ and $h = y - 1$, we have

$$y^{-\theta} - 1 = (y-1)(-\theta) \int_0^1 [ty + 1 - t]^{-\theta-1} dt$$

$$= (1-y)\theta \int_0^1 [ty + 1 - t]^{-\theta-1} dt.$$

Hence

$$f(y) = \frac{y^{-\theta} - 1}{1-y} = \theta \int_0^1 [ty + 1 - t]^{-\theta-1} dt.$$

For each t , $[ty + 1 - t]^{-\theta-1}$ is decreasing and convex in y , and therefore $\int_0^1 [ty + 1 - t]^{-\theta-1} dt$ is decreasing and convex in y . This completes the proof of the theorem. \square

Proof of Theorem 3. If we follow the same notations in the proof of Theorem 2, and denote $\sum c_j c_k g_{jk}$ by Q and $c_k \gamma_k$ by d_k , then

$$Q = 2 \sum c_j d_k \frac{\rho_j^{\theta/2} \rho_k^{-\theta/2}}{j_1 + k_1} = 2 \sum c_j d_k H(j_1, k_1),$$

and thus

$$|Q| \leq 2\gamma_* \sum |c_j| |c_k| H(j_1, k_1)$$

where $H(x,y) = x^{\theta/2} y^{-\theta/2} / (x+y)$. It is easy to check that the conditions of part (b) of Theorem 1 hold. The result now follows from Theorem 1b once we use Euler's reflection formula to get

$$\int_0^\infty H(1,y)y^{-1/2} dy = \text{Beta}((1-\theta)/2, (1+\theta)/2) = \Gamma((1+\theta)/2) \Gamma((1-\theta)/2)$$

$$= \pi / \sin(\pi(1+\theta)/2) = \pi \sec(\pi\theta/2). \quad \square$$

Proof of Lemma 2. We will give a detailed proof for the cosine case, and indicate how the proof for sines is slightly different. In both cases $\rho_j \lambda_j^C$ and $\rho_j \lambda_j^S$ are split into j integrals. The last integral for the cosine case involves approximation of h by $h(1)$, whereas the first integral in the sine case involves estimating h by $h(0)$. In each case, the remaining $j - 1$ integrals are approximated by using Hölder continuity of h .

For the cosine case, note that

$$\begin{aligned} \rho_j \lambda_j^C &= \int_0^{\rho_j} h(x/\rho_j) \cos(x) dx = \sum_{t=1}^{j-1} I_t + I_j, \text{ where} \\ I_t &= \int_{(t-1)\pi}^{t\pi} h(x/\rho_j) \cos(x) dx, \quad I_j = \int_{(j-1)\pi}^{(j-1/2)\pi} h(x/\rho_j) \cos(x) dx. \end{aligned} \quad (3.5)$$

The last integral involves approximating $h(x/\rho_j)$ by $h(1)$.

For the sine case, we split the integral $\rho_j \lambda_j^S$ a bit differently

$$\begin{aligned} \rho_j \lambda_j^S &= \int_0^{\rho_j} h(x/\rho_j) \sin(x) dx \\ &= \int_0^{\rho_1} h(x/\rho_j) \sin(x) dx + \sum_{t=2}^j \int_{\rho_{t-1}}^{\rho_t} h(x/\rho_j) \sin(x) dx. \end{aligned}$$

In the first integral $h(x/\rho_j)$ is approximated by $h(0)$.

We now provide details for the cosine case and write λ_j^C as λ_j for notational simplicity. We prove the case for $j \geq 2$ since the case for $j = 1$ is simple.

For any $1 \leq t \leq j - 1$, in (3.5) make a transformation $x \rightarrow x - (t - 1/2)\pi = x - \rho_t$ to get

$$\begin{aligned} I_t &= \int_{(t-1)\pi}^{t\pi} h(x/\rho_j) \cos(x) dx \\ &= \int_{-\pi/2}^{\pi/2} h(x/\rho_j + \rho_t/\rho_j) \cos(x + \rho_t) dx \\ &= (-1)^t \int_{-\pi/2}^{\pi/2} h(x/\rho_j + \rho_t/\rho_j) \sin(x) dx \\ &= (-1)^t \int_{-\pi/2}^{\pi/2} [h(x/\rho_j + \rho_t/\rho_j) - h(\rho_t/\rho_j)] \sin(x) dx. \end{aligned}$$

Since

$$|h(x/\rho_j + \rho_t/\rho_j) - h(\rho_t/\rho_j)| \leq w(h) |x/\rho_j|^\theta$$

we have

$$|I_t| \leq w(h) \rho_j^{-\theta} \int_{-\pi/2}^{\pi/2} |x|^\theta |\sin(x)| dx = 2w(h) \rho_j^{-\theta} \int_0^{\pi/2} x^\theta \sin(x) dx. \quad (3.6)$$

Now consider the last term in (3.5). Making a variable transformation $x \rightarrow x - \rho_j$, we

get

$$\begin{aligned}
I_j &= \int_{(j-1)\pi}^{(j-1/2)\pi} h(x/\rho_j) \cos(x) dx \\
&= \int_{-\pi/2}^0 h(x/\rho_j + 1) \cos(x + \rho_j) dx \\
&= (-1)^j \int_{-\pi/2}^0 h(x/\rho_j + 1) \sin(x) dx \\
&= (-1)^j \int_{-\pi/2}^0 [h(x/\rho_j + 1) - h(1)] \sin(x) dx + (-1)^j h(1) \int_{-\pi/2}^0 \sin(x) dx \\
&= (-1)^j \int_{-\pi/2}^0 [h(x/\rho_j + 1) - h(1)] \sin(x) dx + (-1)^{j-1} h(1).
\end{aligned} \tag{3.7}$$

The integral in the last line of the displayed equation above can be bounded as

$$\begin{aligned}
&\left| \int_{-\pi/2}^0 [h(x/\rho_j + 1) - h(1)] \sin(x) dx \right| \\
&\leq w(h) \rho_j^{-\theta} \int_{-\pi/2}^0 |x^\theta \sin(x)| dx = w(h) \rho_j^{-\theta} \int_0^{\pi/2} x^\theta \sin(x) dx.
\end{aligned} \tag{3.8}$$

Thus we have from (3.7) and (3.8)

$$|I_j| \leq w(h) \rho_j^{-\theta} \int_0^{\pi/2} x^\theta \sin(x) dx + |h(1)|. \tag{3.9}$$

From the upper bounds in (3.6) and (3.9), and the expression in (3.5), and denoting the integral $\int_0^{\pi/2} x^\theta \sin(x) dx$ by S_θ we have

$$\begin{aligned}
|\rho_j \lambda_j| &\leq \sum_{t=1}^{j-1} |I_t| + |I_j| \\
&\leq (j-1) 2w(h) S_\theta \rho_j^{-\theta} + w(h) S_\theta \rho_j^{-\theta} + |h(1)| \\
&= 2(j-1/2) w(h) S_\theta \rho_j^{-\theta} + |h(1)| \\
&= (2/\pi) w(h) S_\theta \rho_j^{1-\theta} + |h(1)|.
\end{aligned}$$

Thus

$$\rho_j^\theta |\lambda_j| \leq (2/\pi) w(h) S_\theta + \rho_j^{\theta-1} |h(1)| \leq (2/\pi) w(h) S_\theta + (2/\pi)^{1-\theta} |h(1)|. \quad \square$$

Acknowledgement. The author would like to thank an anonymous referee for thoughtful reports, and paper is much improved because of the suggestions and corrections in the reports.

REFERENCES

- [1] P. BURMAN, A HILBERT-TYPE INEQUALITY, *Mathematical Inequalities & Applications*, **18**, 1253–1260, (2015).
- [2] Q. CHEN AND B. YANG, *A survey on the study of Hilbert-type inequalities*, Journal of Inequalities and Applications, vol. 2015, Article number: 302 (2015).
- [3] G. H. HARDY, J. E. LITTLEWOOD, AND G. POLYA, *Inequalities*, Paperback Edition, Cambridge University Press, Cambridge, (1988).
- [4] M. KRNIĆ, J. PEČARIĆ, P. PERIĆ, AND P. VUKOVIĆ, *Recent Advances in Hilbert-type Inequalities*, Element, Zagreb, (2012).
- [5] M. KRNIĆ, *A refined discrete Hilbert inequality obtained via the Hermite-Hadamard inequality*, Comp. and Math. Appl., **63**, 1587–1596, (2012).
- [6] H. L. MONTGOMERY, AND R. C. VAUGHAN, *Hilbert's inequality*, J. London Math. (2) Soc. 8, 73–82, (1974).
- [7] B. C. YANG, *Discrete Hilbert-type Inequalities*, Bentham Science Publishers Ltd., (2011).

(Received December 13, 2020)

Prabir Burman
Department of Statistics
University of California, Davis, USA
e-mail: pburman@ucdavis.edu