athematical
nequalities
& Paeplications
Volume 27, Number 3 (2024), 519-528 doi:10.7153/mia-2024-27-35

A HILBERT-TYPE INEQUALITY FOR FOURIER COEFFICIENTS

PRABIR BURMAN

(Communicated by J. Jakseti¢)

Abstract. There is extensive literature on Hilbert inequality and its many extensions. In this work
we obtain inequalities involving Fourier coefficients of a Holder continuous function. The results
given here are valid without any assumption of monotonicity or signs of the Fourier coefficients.

1. Introduction

Hardy-Hilbert inequalities have a long history ([3]) with a substantial amount of
literature. For sequences of real numbers {c;} and {d;} with 2c§ < e and Zdjz- < oo,
the basic inequalities are of the form

1/2 1/2
2 dekhjk gn[Zcﬂ / [Zdﬂ ! ’

1< k<o
where hj=1/(j+k), or hjp=1/(j+k—1) or
hjg=1/(j—k)if j #k, hjx =0 when j = k.
Montgomery and Vaughan ([6]) extended the inequality whereby
hjg=1/(Aj—=X) if j#k, hjp=0 when j=k,

where {A;} is an increasing sequence of real numbers with the constraint A; | —A; >
f, j =1, for some positive constant f.

There are many extensions of discrete and integral versions of Hardy-Hilbert in-
equalities. A homogenouskernel H (x,y), x,y > 0, is of order f if H(tx,1y) =1PH(x,y),
t > 0. Extensive results are available for Hardy-Hilbert type inequalities for quadratic
forms involving homogeneous kernels for discrete and continuos cases. A good account
of these results can be found in the books [4] and [7], and in a recent survey article [2].

In this work we consider different kind of inequalities. Let /4 be a function on
[0, 1] which is Holder continuous with exponent 6, 0 < 6 < 1, ie,

w(h) = sup |h(x)=h(y)|/lx—y|® <eo (1.1)

0<x,y<1
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Here we examine bounds for the quadratic forms ¥, cjcihjx and Y cjcrgjk, where

A= . .

hj = (pip)"P =8, with pj=n(j=1/2), ] £k (1.2)
A+ A

gik=(pipe) P ==, (1.3)

1 1
Ay =AC = /0 h(x) cos(pjx)dx o Ay = A5 = /0 h(x) sin(px)dx.

Since )LJC and /lf decay like p_e though not necessarily monotone (even in magni-
tude), we would expect £ j; and gjk to behave like homogeneous kernels in pj, px of
order f = —1. We obtaln the upper bound of the absolute values of ¥ ;. c;jcihj; and
Y cjcrg jx which involve the constant w(h) givenin (1.1) as well as the value of i(1) or
h(0) depending on whether the quadratic form involves {)LJC} or {/ljs }. We make no
claim that the constants in the upper bounds are the best possible. We note in passing
that {¢; = v/2cos(p;x)} is an orthonormal basis for L, = L,[0, 1], the space of square
integrable functions on [0, 1]. Similarly, {y;(x) = v2sin(p;x)} is also an orthonormal
basis for L,. Thus {/IC} and {)L } are proportional to the Fourier coefficients of £
with respect to the bases {0} and {y;} respectively.

‘We mention that, using the methods described in this work, it is possible to obtain
similar bounds when A; is of the form fol h(x)cos(mjx)dx, or fol h(x)cos(27 jx)dx, or
fol h(x)sin(7 jx)dx, or fol h(x)sin(2r jx)dx. However, we do not present them here.

Section 2 lists the main results. Section 3 contains the proofs.

2. The main results

We begin this section with a well known result on Hilbert type inequalities involv-
ing homogeneous kernels of order § = —1 ([1], [5]).

THEOREM 1. (a) Let H be a homogeneous kernel of order 3 = —1, H(x,y) >0

for all x,y > 0. Assume that H(1,y)y~"/? and H(y,1)y~'/? are decreasing in y. If

= f(;”H(l,y)y’lpdy < oo, then for any sequences {c;} and {d;} with Zc; < oo
and de- < oo, the following holds

Sejdd (0] <H YA (T a2}

(b) Let H be as in part (a) above. Additionally assume that H(l,y)y_l/2 and
H(y,1)y~'/2 are convex in y. Denoting j, = j—1/2, for any sequences {cj} and

{d;}, we have
. v 1/2 21 1/2
| Y cideH (k)| <H VD eih DT}
We should point out that the double sums in Theorem I include the diagonal, ie,
Ycjd;H(j,]) inpart (a), and Y,c;jd;iH(ji, ji) in part (b).

Before we state the main results, we present two simple lemmas. The first lemma
is rather easy to verify and is stated without proof.
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LEMMA 1. If f and g are both non-negative, non-increasing (or non-decreasing),
and convex, then their product fg is also non-negative, non-increasing (or non-decrea-
sing), and convex.

Let
¥E = (2/m)w(h)Se+ (2/m)' " |n(1)],
¥ = (2/m)w(h)Se + (2/m)' ~O|n(0)], (2.1)
where
S = /O mx@ sin(x)dx. (2.2)

LEMMA 2. Let AS and )Ljs be as defined in the Introduction and let Y and y>
beasin (2.1). Then

Py IASI<¥S, pPIASI< Y.
The proof of Lemma 2 will be given later. Let
A(0) =2n[l +tan(m6/2)].

We now state our main results. The proof of Theorem 2 involves carefully bounding
the quadratic form Q = ¥, cjcyhji by sum of two appropriate quadratic forms. The
first quadratic form uses Theorem 1 and the second quadratic form uses the well-known
Hilbert inequality for {(j —k)~!, j #k}.

THEOREM 2. Let hji be as in (1.2). Then for any sequence {c;} of real numbers
with EC% < oo, we have

D cjckhjck <YEA(8) Zc%,
ik
and

Yy c,-ckh§k <PA0)Y c.
j#k

We now write down another result involving {g} defined in (1.3). It’s proof is
simple.

THEOREM 3. Let gji be asin (1.3). Then for any sequence {c;} of real numbers
with Zc; < oo, we have

’chckgjc-k’ <y 2msec(n0/2) Y c3,
and

'chckgfk) < y2msec(n0/2) Y c3.
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Here the sums include the diagonal elements.

REMARK 1. The constant A(6) behaves well as long as 6 stays away from 1.
However, as 0 approaches 1, A(0) — . It is not possible to remedy this when 6 is
near 1 as can be seen when 6 =1 and A; = p].’1 , and in that case hj; = —n(pjpk)‘l/z.

Take ¢j = pj_l/2

unbounded since

, 1 <j<nand c¢;=0if j>n. The quadratic form with Ec?zl is

n
—Xejehi /X =m Y p;t = e
Jjk j=1
as n — oo,

REMARK 2. Focus of this paper is on the case 0 < 6 < 1. However, when 6 — 0,
the upper bounds in Theorem 2 become simple. When 6 — 0, A(6) — 27, and the
upper bounds are

YEA(0) — Alw(h) + [n(1)]],  ¥2A(0) — 4w(h)|+[A(0)]].

REMARK 3. We are not aware of any nice simple formula for the integral Sg
given in (2.2) which appears in the expressions for y¢ and y3 . However, the following
reasoning is suggested by the referee. For each x, x? is convex in 6, then so is Sg.
Since Sp =S| =1, we have Sg < 1. Consequently,

1< @/mw(h)+(2/m)' (D)), ¥ < (2/mw(h)+(2/7)'C|h(0)].

REMARK 4. When 0 — 0, the upper bounds given in Theorem 3 converge to the
same limiting quantities listed in Remark 2 However, the bounds diverge to infinity as
0 approaches 1. It is not possible to remedy this when 6 is near 1 as can be seen when
SPig<n
and ¢; =0 if j > n, then chckgjk/2c§ is equal to nz;?zl pj*1 which diverges to
infinity as n — oo.

0=1and A; = pj_l, and in that case g = 7(p;pox) " /%. Take ¢; = o

REMARK 5. Note that &, = hy; and g = gi; - It then follows that we can obtain
Hilbert type inequalities for ¥ ;. cjdihj; and ¥ c;dyg x with the same upper bounds
given in Theorems 2 and 3, where 2c§ < oo and Zdjz- < oo,

3. The proofs

Proof of Theorem 2. Denote p,»e)t i by vj, and we know from Lemma 2 that

sup|7j| < ¥e,
J

where 7, has two different expressions for cosines and sines. The proof involves bound-
ing the quadratic form Q =3, . ¢ jcxh ji by the sum of two appropriate quadratic forms:
the first quadratic form uses Theorem 1 and the second quadratic form uses the Hilbert
inequality for {1/(j —k): j # k}. Note that & j is equal to hjc.k in the cosine case, and
I, in the sine case.
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We approximate p; by the geometric mean of p; and p; and hence

A =070 = ;% = (0jpe)"Plyi+ (pip) %y
—-0/2 —-0/27 — _

=lo; " =0, 10 Py + (00~
Therefore

A= =07 7 = p 1oy i+ (pjor)

-0 -0 —0 _
~ 10" =010 P~ (o) P
-0 —0 —0 —0 _
= 10" =0, 105 Py + 0 Pl + (pipe) O — )
We can write
62 62
P P —0/2 —0/2
—chckik kj lo; Pyi40, 0 (pon) 0
7k
Yi— Yk
+ CiCp—=
=01+ 0. 3.1

Now denoting yjc; by d;, we have

ZZCJck —Zchk

7k 7k
Use the Hilbert inequality for {(j—k)~!, j # k} to get

ol <2n(Fa})"” (X))’ <2nn Teh (32)

Noting that (,ok_e/2 —pj_e/z)/(j—k) > 0 for all j # k, and denoting j —1/2 by ji,
we have

P02 p—e/z
—0 0
01/ < Y Jejerl 10715+ 0, P (0002
J#k
02 002
Y*Zlcjc;c\ik[p 4 O (pon) 0
J#k
9 79
=Y« 2 |CJCk\ (P Pk)g/z
J#k
e
=% Y, lejor] F—"— L (jiky)?/?
J#k

=%y, |Cj0k\H(jl»k1)»
JFk
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where
-0

0
y —X
H(x,y) = ﬁ(xy)e/z

Note that H is a nonnegative kernel of order f = —1 and H(x,x) = 0/x. We will show
that H satisfies conditions in part (b) of Theorem 1. In that case we will have

01] < Y*/o H(1,y)y~dy 3¢, (33)

where

—1
/OH(l vy 2y = /y — VO/21/2g,

_/ y=0/2-1/2 _\0/2-1/2

dy

y0/2- 1/2 y0/2-1/2
—z/ dy:=21J.

We now obtain an exact expression for J. Making a variable transformation y = exp(—1),
we have

J_ / exp((1/2+ 9/122)6;)5?2()(1/2—6/2)0 exp(—1)dt
:/ exp(—(1/2—6/2)t)—exp(—(l/2+6/2)t)dt
0 1 —exp(—1)
_ [~ [exp(=t) exp(—(1/2+6/2)t)
_/0 [ t 1 —exp(—t) ]dt
> Texp(—t) exp(—(1/2—6/2))
_/0 { t 1—exp(—1) _] a

Note that each of the two integrals above has Gauss’s integral representation of digamma
function ¥. Thus

J=Y(1/2+0/2)-¥(1/2—-0/2)
=¥(1-(1/2-06/2))-¥(1/2-6/2)
=mcot(n(l/2—0/2)) = ntan(n6/2),

where the last equality follows because of the reflection principle of digamma function,
ie,

Y(1—x)—¥(x)=mcot(mx).
Therefore

/OwH(l,y)y_l/zdy — 27tan(n0/2). (3.4)

Our result follows from (3.2), (3.3) and (3.4).
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What remains to show is that H(1, y)y‘l/ 2 is decreasing and convex in y. Since
H(x,y) = H(y,x), it follows that H (y,1)y~'/? is also decreasing and convex in y.

Note that

-0
. y -1 _ .
H(1,y)y 1/2=71_y YW= f(y)g(y), with

—1 B
)= and g0) =)0

Clearly, both f and g are non-negative. If we can show that both f and g are de-
creasing and convex, then their product fg is also convex by Lemma 1. Clearly, g is
decreasing and convex. We now show that f is also decreasing and convex.

The remainder theorem of calculus states that for any differentiable function p
with a continuous derivative p’,

p(x+h)—px)= h/olp/(t(x—i—h) + (1 —1t)x)dr.

Let p(x) =x"9. Taking x=1 and 4 =y — 1, we have
1
y 0= 1= (= 1)(=0) [ v+ 1 -7 a

=(1 —y)G/OI[ter 1—1] % lar.

Hence
y -1 ! 01
) = :e/ lty+1—1]70dr.
1—y 0
For each 7, [ty+1—1]79~" is decreasing and convex in y, and therefore [, [ty + 1 —
t]79=1dr is decreasing and convex in y. This completes the proof of the theorem. [

Proof of Theorem 3. 1f we follow the same notations in the proof of Theorem 2,
and denote ¥ cjcigjx by O and ¢y, by dy, then

pe/z -6/2
Q=22dek7], k
J

=2 dieH (1, k
Tk ch WH(j1,k1),

and thus
101 < 2. Y lejllexl H (j1, ki)

where H(x,y) = x%/2y=0/2 /(x4 y). It is easy to check that the conditions of part (b)
of Theorem 1 hold. The result now follows from Theorem 1b once we use Euler’s
reflection formula to get

/OwH(l,y)y’l/zdy =Beta((1—0)/2,(140)/2)=T((140)/2)T'((1—6)/2)
=n/sin(n(1+06)/2)=msec(n6/2). O
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Proof of Lemma 2. We will give a detailed proof for the cosine case, and indicate
how the proof for sines is slightly different. In both cases p j/ljc and p;A js are split into
J integrals. The last integral for the cosine case involves approximation of & by h(1),
whereas the first integral in the sine case involves estimating & by 4(0). In each case,
the remaining j — 1 integrals are approximated by using Holder continuity of /.

For the cosine case, note that

Pj izl
pj/ljc = /0 h(x/p;j)cos(x)dx = 21 I, +1;, where
=

(j=1/2)m

I = /m h(x/p)) cos(x)dx, [ = / h(x/pj)cos()dx.  (3.5)

(t-D)m (j—-Dm
The last integral involves approximating /(x/p;) by h(1).
For the sine case, we split the integral p;A JS a bit differently
s Pi .
pi2f = [ hix/py)sin(x)dx
—/ h(x/pj)sin(x +2/ h(x/pj)sin(x)dx.

In the first integral h(x/p;) is approximated by A(0).

We now provide details for the cosine case and write )ch as A; for notational
simplicity. We prove the case for j > 2 since the case for j =1 is simple.

Forany 1 <7< j—1,in (3.5) make a transformation x — x— ( — 1 /2)r = x— py
to get

L= /( " B/ py)cos(x)dx

t—1)m

7/
= /_ . /22h(x/Pj+.0r/Pj)COS(x+.0t)dx
/2
—(—1Y /_ /03t pufp3)sinx)dx
n/2
= (1) [ /i o1/~ hip o) sin(x)a

Since
|h(x/p;+pi/p;) — h(pe/p)| < w(h)|x/p;|°

we have

—o [M? 0. o [™? o
1] < w(h)p; / 1x|?sin(x)|dx = 2w(h)p; / Osin(x)dx.  (3.6)
2 X 0

Now consider the last term in (3.5). Making a variable transformation x — x — p;, we
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get

G-1/2)
/( | h(x/p;) cos(x)dx W

j-U=m
0
:/ 2h(x/pj—i—l)cos()c—kpj)dx

—n/

- (_l)j/on/2h(x/pj+1)sin(x)dx

:(—l)j/_oﬂ/z[h(x/pj—i—l)—h( )] sin(x)dx + (— )jh(l)/_on/zsin(x)dx

- (_1)f/on/2[h(x/p,-+1) — h(1)]sin(x)dx + (— 1)/ 'h(1). (3.7)

The integral in the last line of the displayed equation above can be bounded as

‘ / " (/04 1) — h(1)]sin(x)dx
—n/2

0 /2
< w(h),o;9 /—n/z |x? sin(x)|dx = w(h)pjfe/O x? sin(x)dx. (3.3)

Thus we have from (3.7) and (3.8)

0 n/2
[1;| < w(h)p; /0 x9 sin(x)dx + |h(1)]. (3.9)

From the upper bounds in (3.6) and (3.9), and the expression in (3.5), and denoting the
integral fo x 9sin(x)dx by Sg we have

j—1

lpiAil < Y ||+ |1

=1
< (J—1)2w(h)Sop; * +w(h)Sep; * + [1(1)]
=2(j— 1/2)w(h)Sep; * + h(1)|
= (2/m)w(h)Sop; %+ |h(1)|.

Thus

P712j] < (2/m)w()So+p] " [R(1)| < (2/m)w(R)So + (2/m)' |n(1)]. O
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