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S U M M A R Y

The geophysical detection of magma bodies and the estimation of the dimensions, physical

properties and the volume fraction of each phase composing the magma is required to improve

the forecasting of volcanic hazards and to understand transcrustal magmatism. We develop an

analytical model to calculate P waves velocity in a three-phase magma consisting of crystals

and gas bubbles suspended in a viscous melt. We apply our model to calculate the speed of

sound as a function of the temperature in three magmas with different chemical compositions,

representative of the diversity that is encountered in arc magmatism. The model employs

the coupled phase theory that explicitly accounts for the exchanges of momentum and heat

between the phases. We show that the speed of sound varies nonlinearly with the frequency

of an acoustic perturbation between two theoretical bounds. The dispersion of the sound in

a magma results from the exchange of heat between the melt and the dispersed phases that

affects the magnitude of their thermal expansions. The lower bound of the sound speed occurs

at low frequencies for which all the constituents can be considered in thermal equilibrium,

whereas the upper bound occurs at high frequencies for which the exchange of heat between

the phases may be neglected. The presence of gas in a magma produces a sharp decrease in

the velocity of compressional waves and generates conditions in which the dispersion of the

sound is significant at the frequencies usually considered in geophysics. Finally, we compare

the estimates of our model with the ones from published relationships. Differences are largest

at higher frequencies and are <10 per cent for typical magma.

Key words: Acoustic properties; Body waves; Physics of magma and magma bodies; Volcano

seismology.

1 I N T RO D U C T I O N

Most upper crustal magma reservoirs are probably dominated by

crystals. However, volumes dominated by the presence of fluids

must exist if only episodically as evidenced by the crystal con-

tent of eruptive products (e.g. Pallister et al. 1996; Eichelberger &

Izbekov 2000; Takahashi & Nakagawa 2013). The possible mecha-

nisms leading to the presence of fluid-dominated magmatic volumes

are the replenishment of crystal-rich magma reservoirs with crystal-

poor magmas (e.g. Caricchi et al. 2014; Annen et al. 2015; Wiebe

2016; Carrara et al. 2020), and the extraction of melt or exsolved

volatiles from crystal-rich reservoirs (e.g. Bachmann & Bergantz

2004; Huber et al. 2011; Parmigiani et al. 2016; Holness 2018;

Bachmann & Huber 2019; Degruyter et al. 2019). The crystals and

exsolved volatiles of a magma affect its rheology (e.g. Caricchi et

al. 2007; Petford 2009; Mader et al. 2013) and can dramatically

change eruptive styles (e.g. Karlstrom et al. 2012; Cassidy et al.

2018). When the solid volume fraction reaches a threshold, crystals

start to touch each other, forming a semi-rigid skeleton inhibiting

magma flow (Bergantz et al. 2017). In contrast, the volumes dom-

inated by the presence of fluids represent the eruptible portions

of the reservoir. Therefore, the detection of such volumes and the

estimation of the volume fraction of each phase is of paramount im-

portance to enhance our ability to predict the occurrence and style

of eruptions and to best assess volcanic hazards.

Among geophysical methods, tomography of seismic wave ve-

locities and attenuations has been widely employed to map magma

reservoirs but has not clearly evidenced the presence of fluid-

dominated bodies (Waite & Moran 2009; Paulatto et al. 2012; De

Siena et al. 2014; Huang et al. 2015; Delph et al. 2017; Kiser et al.

2018; Hooft et al. 2019). Tomography images are computed with

the first wave arrival at the stations, which corresponds to the fastest
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Dispersive waves in magmatic suspensions 2123

travel from the source. The velocities of compressional waves (also

called sound speed or P-wave velocity) are lower in fluid-rich mag-

mas. As a result, the ray paths of the first arrivals may circumvent

and undersample such volumes in the resulting images. The spa-

tial averaging of the seismic properties resulting from tomography

may also smooth the effects of the presence of small fluid bodies,

which are then interpreted as partially molten rocks. Finally, seis-

mic waves may be attenuated during their propagation across the

magma reservoir. Hence, improving our knowledge of the acoustic

properties of the materials constituting the magma reservoir can

reduce the uncertainties in interpreting tomography images.

While models exist to compute the speed of sound and/or the asso-

ciated attenuation coefficient in partially molten rocks (e.g. Mavko

1980; Hammond & Humphreys 2000; Takei 2002; Hier-Majumder

2008; Carcione et al. 2020) or in bubbly melts (e.g. Chouet 1996;

Kumagai & Chouet 2000; Morrissey & Chouet 2001; Neuberg &

O’Gorman 2002; Collier et al. 2006; Karlstrom & Dunham 2016),

no model addresses the acoustic properties of magmas composed

of crystals and gas bubbles suspended in the melt. Here, we aim at

calculating the velocity of a compressional wave at the frequencies

used in volcano seismology (∼0.001–1000 Hz) in a three-phase sus-

pension composed of solids and gas bubbles suspended in a viscous

liquid. Previous models for the acoustic properties of a suspen-

sion employed methods based on the effective medium theory (e.g.

Kuster & Toksöz 1974; Berryman 1980) because they are applica-

ble at any frequency, and account for the presence of an unlimited

number of phases. However, this approach neglects the influence

of the liquid phase viscosity, the relative motion (or relative veloc-

ity) between the constituents, the evolution of the temperature of

the phases and the interaction between neighbouring solids grazing

each other. Alternatively, methods using the coupled phase theory

(e.g. Harker & Temple 1988; Atkinson & Kytömaa 1992; Margulies

& Schwarz 1994; Kytömaa 1995; Evans & Attenborough 1997;

Valier-Brasier et al. 2015) can capture all these effects for bi-phasic

suspensions (e.g. solids in a liquid or bubbles in a liquid) but are

restricted to the long-wavelength approximation (wavelength of the

perturbation much larger than the size of the discrete phases). The

coupled phase theory is suitable to compute the acoustic properties

of magmas because the long-wavelength approximation is valid at

the frequencies used in geophysics. To be extended to a three-phase

magma, the method requires modifications to account for both vis-

cous and thermal effects and the joint presence of crystals and gas

bubbles.

Here, we adapt the coupled phase theory to the computation of

the velocity of compressional waves travelling in magmas where

the crystals are not touching each other and where the melt is the

carrier phase. We first introduce the conservation equations con-

trolling the propagation of an acoustic perturbation in a suspension

and present the calculation of the speed of sound using the cou-

pled phase theory. The resulting model allows us to compute both

the velocity and the intrinsic attenuation coefficient of compres-

sional waves. In this work, we focus on the speed of sound and

we will address attenuation in a future communication. Results are

first presented for a suspension representative of magmas to illus-

trate how its composition and the characteristics of the perturbation

(frequency and propagation direction) affect the speed of sound.

We then apply the model to magmas having different chemical

compositions representative of arc magmatism to highlight the key

features of the propagation of sound in magmas. Finally, we com-

pare the results of our model with other relationships proposed or

employed by authors to estimate compressional wave velocity in

magmas.

2 M E T H O D

To present the model, we first introduce the physical model and

assumptions about the initial conditions (Section 2.1). Then, we in-

troduce the conservation equations describing the dynamics of the

phases (Section 2.2). These equations are similar to those reported

in the literature (e.g. Harker & Temple 1988; Atkinson & Kytömaa

1992; Evans & Attenborough 1997) and include a few modifica-

tions to account for the presence of three phases and the dynamic

viscosity of the melt. The details of the derivation of these equa-

tions are presented in Supporting Information 1 (online). In Section

2.3, we present the relationships controlling the momentum transfer

between the phases and within the liquid and solid phases. Section

2.4 details the relationships we used to account for the transfer of

heat within the liquid phase and between the carrier and suspended

phases. Section 2.5 describes briefly the calculation of the speed

of sound using the coupled phase theory because we employed the

same method as presented and employed by several authors to cal-

culate the velocity of a compressional wave (e.g. Harker & Temple

1988; Atkinson & Kytömaa 1992; Evans & Attenborough 1997).

We detail the calculation of the speed of sound in Supporting In-

formation 2 (online). In Section 2.6, we derive the bounds of the

speed of sound in magma using an alternative approach consid-

ering an isotropic compression of an isolated volume of magma.

Finally, we present the initial composition of the magmas and how

their changes in physical properties are computed as a function of

temperature (Section 2.7).

2.1 Physical model

We consider an elementary volume of a suspension composed of

solid particles and gas bubbles in a viscous liquid (Fig. 1). Both dis-

crete phases are represented with monodisperse spheres. Initially,

we consider all the constituents of the suspension to be static and

in thermodynamic equilibrium. The thermodynamic properties of

each phase (e.g. bulk modulus or specific heat capacity) are con-

sidered uniform within the elementary volume and constant with

pressure and temperatures. The presence of mass transfer or chem-

ical reactions between the phases is neglected.

A plane and monochromatic compressional wave propagates in

a gravitational field in the direction x with an angle θ from the

horizontal (Fig. 1). The geometry of the acoustic perturbation allows

us to express the conservation equations describing the dynamics of

each phase in one dimension aligned with the propagation direction

x (∂y = ∂z = 0). The wave has a small amplitude and a frequency in

the range of the acoustic signals recorded in nature (0.001–1000 Hz)

for which its wavelength is much larger than the diameters of the

particles and bubbles. Therefore, the scattering of the acoustic wave

resulting from resonance effects in the discrete solids and bubbles

may be neglected (Atkinson & Kytömaa 1992).

2.2 Conservation equations

The propagation of an acoustic perturbation in the suspension is

governed by the conservation equations of each phase. Neglecting

the transfer of mass between the phases and chemical reactions, the

conservation of mass of the liquid phase reads:

∂t (φlρl ) + ∂x (φlρlu) = 0, (1)

where ρ l is the density of the liquid phase, φl is the volume fraction

of liquid in the suspension and u is the liquid velocity in the direction

x (u = ux, the velocities in the other directions are null because we
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2124 A. Carrara et al.

Figure 1. Schematic representation of a suspension of solid particles and

gas bubbles in a viscous liquid. The scheme represents a cross-section of an

elementary volume perpendicular to the north direction. The liquid phase

is represented in grey. The black and white discs correspond to the solid

particles and gas bubbles, respectively. The three grey axes (east, north and

vertical) indicate the orientation with respect to the gravitational acceleration

vector. The black orientation axes (x, y and z) indicate the coordinate system

used to express the conservation equations, in which the direction x is aligned

in the direction of the propagation of the wave. The sinusoid represents the

plane acoustic perturbation propagating along the direction x with an angle

θ (positive clockwise) from the east direction.

consider a plane wave and the suspension to be initially static).

Similarly, for the solid and gas phases, mass conservations are:

∂t (φsρs) + ∂x (φsρsv) = 0, (2)

∂t

(

φgρg

)

+ ∂x

(

φgρgw
)

= 0, (3)

where ρs is the density of the solids, φs is the volume fraction of

solids, v is the velocity of the solids in the direction x, ρg is the gas

density, φg is the volume fraction of gas and w is the velocity of the

gas bubbles.

The rate of change of momentum of the liquid equals the sum of

the applied force and may be expressed as (see Supporting Infor-

mation 1, online):

φlρl (∂t (u) + u∂x (u)) + φl∂x (P) + Ill + Ils + Ilg (4)

+ φlρl gsinθ = 0,

where P is the pressure, Ill is the rate of momentum exchange among

the liquid, Ils is the rate of momentum exchange between the liquid

and solid phases, Ilg is the rate of momentum exchange between

the liquid and gas phases and g is the gravitational acceleration.

The exchange of momentum within the liquid, Ill, is equal to the

divergence of the viscous stress tensor and indicates the rate at which

the viscous stress propagates in the liquid. The two other terms, Ils

and Ilg, express the exchanges of momentum between the carrier

and discrete phases through the drag forces when they have relative

velocities. The conservation of momentum in the solid phases is:

φsρs (∂t (v) + v∂x (v)) + φs∂x (P) + Iss − Ils (5)

+ φsρs gsinθ = 0,

where Iss represents the transfer of momentum between close solids.

Here, this term corresponds to the lubrication forces caused by the

squeezing of the interstitial liquid located between two grazing

particles (see the next section for details about this term). The

momentum conservation in the gas phase reads:

φgρg (∂t (w) + w∂x (w)) + φg∂x (P) − Ilg + φgρggsinθ = 0. (6)

The conservation of energy in the carrier liquid expressed as a

function of the temperature reads:

φlρlCPl (∂t (Tl ) + u∂x (Tl )) − φl Tlαl (∂t (P) + u∂x (P)) (7)

+ 2φlρl gusinθ−σxx∂x (u) + Hll + Hls + Hlg = 0

where Tl is the temperature of the liquid phase, CPl is the specific

heat capacity at a constant pressure of the liquid, αl is the coef-

ficient of thermal expansion of the liquid, σ̄ is the liquid viscous

stress tensor, Hll is the rate of heat diffusion within the liquid phase

by conduction, Hls is the rate of heat exchange between the carrier

liquid and discrete solids and Hlg is the rate of heat exchange be-

tween the liquid and gas bubbles. The two terms Hls and Hlg are the

total heat flux through the interfaces between the carrier and dis-

crete phases. They depend on the temperature difference between

constituents. Similarly, in the solid and gas phases, the conservation

of energy is:

φsρsCPs (∂t (Ts) + v∂x (Ts)) − φs Tsαs (∂t (P) + v∂x (P)) (8)

+ 2φsρs gvsinθ − Hls = 0,

φgρgCPg

(

∂t

(

Tg

)

+ w∂x

(

Tg

))

− φgTgαg (∂t (P) + w∂x (P)) (9)

+ 2φgρggwsinθ − Hlg = 0,

where Ts is the temperature of the solids, Tg is the temperature of

the gas, CPs is the specific heat capacity at a constant pressure of

the particles, CPg is the specific heat capacity of the gas, αs is the

coefficient of thermal expansion of the solid particles and αg is the

coefficient of thermal expansion of the gas.

The state equations link the variation of the density of the phases

to the evolution of their temperatures and pressure:

dρl −
ρl

Kl

d P + αlρl dTl = 0, (10)

dρs −
ρs

Ks

d P + αsρs dTs = 0, (11)

dρg −
ρg

Kg

d P + αgρg dTg = 0, (12)

where Kl is the bulk modulus of the liquid phase (inverse of the

coefficient of isothermal compressibility), Ks is the bulk modulus

of the solids and Kg is the bulk modulus of the gas. The last conser-

vation equation ensures that the sum of the volume fraction of all

the phases is always equal to one. In differential form, it reads:

∂t (φl ) + ∂t (φs) + ∂t

(

φg

)

+ u∂x (φl ) + v∂x (φs) (13)

+ w∂x

(

φg

)

= 0.

2.3 Interphase exchanges of momentum

The exchange of momentum within the liquid phase, Ill, is equal to

the divergence of the viscous stress tensor, σ̄ , which depends on the

dynamic shear viscosity, η and volume viscosity, λ, of the liquid (

Ill = φ∇ · [ηε̄ + λtr (ε̄) Ī ], where ε̄ is the strain rate tensor and Ī

is the unit tensor). For a magmatic melt in relaxed conditions (low-

frequency perturbations), Dingwell & Webb (1989) showed that λ

= η/3. Since the velocity of the liquid in the directions y and z are
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Dispersive waves in magmatic suspensions 2125

Figure 2. Conceptual configuration of the crystals used to derive the rate of

momentum exchange between the solids. The scheme represents one target

particles located in the layer 2 and its six closest neighbours located in layers

1 and 3. The colour of the boundary of each particle depends on the layer

in which it is located (green for layer 1, red for layer 2 and blue for layer 3).

Each arrow indicates the velocity vector of the corresponding particles. The

grazing angle β is represented in purple.

null, the rate of momentum exchange in the liquid can be calculated

as:

Ill =
7

3
φlη∂2

x (u) . (14)

While contacts are neglected, crystals can exchange momentum

through lubrication forces (Marzougui et al. 2015; Bergantz et al.

2017; Carrara et al. 2019). Lubrication refers to the hydrodynamic

forces resulting from the resistance of the liquid located in the gap

between two neighbouring particles to their relative motions. These

forces influence the duration of the initiation and closure of mo-

tion of the solid phase (Carrara et al. 2019). The propagation of

a wave in a suspension can be viewed as a ‘cyclical transient’ in

which the relative motions between neighboring solids are repeti-

tively initiated and dissipated. To derive an expression of the rate

of momentum exchange between the solids, Iss, we consider a sus-

pension where spherical particles are regularly organized forming

a hexagonal close-packed lattice (Fig. 2). In this configuration, the

distances between the particles are identical and minimized such

that the influence of lubrication is maximized. The solid lattice is

oriented along the direction of propagation of the wave (x) such that

it can be represented as three layers of particles orthogonal to the

direction x (Fig. 2). The total lubrication force between two neigh-

boring particles (here labelled as i and k) including both normal and

tangential components can be expressed as (Marzougui et al. 2015;

Carrara et al. 2019):

Flub (k, i) =
3ηA

ρsds
2

(vk − vi ) , (15)

where A is a geometrical parameter indicating the relative impor-

tance between normal and tangential lubrication forces that depends

on the distance between the surface of the particles and on the graz-

ing angle β (Carrara et al. 2019):

A =
3cosβ

2 j
− ln ( j) sinβ, (16)

where j is the ratio between the distance separating the surface of the

neighbouring particles and their radius. Both the incidence angle

and distance between the surface of the particles can be deduced

from geometrical arguments since the solid lattice is regular. For

a compressional wave β = (2/3)1/2 and j is related to the volume

fraction of solids by (Atkinson & Kytömaa 1992):

j = 1 −

(

φs

φs max

)
1
3

, (17)

where φs max is the maximum volume fraction at which the solids

start to touch each other. For a hexagonal close-packed lattice,

φs max = 0.64. Summing all the lubrication interactions experienced

by the particle located on the second layer in Fig. 2 gives:

Flub
tot (2) =

9ηA

ρsds
2

(v1 + v3 − 2v2) , (18)

where v1, v2 and v3 are the velocity of the particles in the layers 1,

2 and 3, respectively. The sum of the solid velocities on the right-

hand side of eq. (18) may be approximated with the second-order

derivative in space of the solid velocity:

∂2vx

∂x2
�

(v1 + v3 − 2v2)

�x
2

, (19)

where �x is the distance in the direction x separating two successive

layers of solids in Fig. 2, which can be calculated as:

�x =

√

2

3
ds

(

j

2
+ 1

)

. (20)

Inserting eqs (19) and (20) into eq. (18) gives the following

expression for the exchange of momentum between the solids:

Iss = Flub �
6ηA

(

j

2
+ 1

)2

ρs

∂2v

∂x2
. (21)

The liquid exchanges momentum with the other phases (particles

and bubbles) because of their relative motions. The transfers of mo-

mentum between the carrier and discrete phases include both steady

(drag) and unsteady (added mass and Basset forces) contributions.

Because of the high viscosity of magmatic melts, the frequency

range considered here is well below those at which unsteady forces

become significant compared to the steady contribution (Gumerov

et al. 1988; Atkinson & Kytömaa 1992). Therefore, the rate of

momentum exchange between the liquid and solid phases can be

reduced to the steady term (Gidaspow 1994):

Ils = βls (u − v) , (22)

and the rate of momentum exchange between liquid and bubbles

is:

Ilg = βlg (u − w) , (23)

where β ls is the coefficient of momentum exchange between the

liquid and solids and β lg is the coefficient of momentum exchange

between the liquid and gas phases. To compute these two coef-

ficients, several empirical correlations exist in the literature (e.g.

Ergun 1952; Wen & Yu 1966; Syamlal et al. 1993; Gidaspow 1994;
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2126 A. Carrara et al.

Benyahia et al. 2006). Here, we combine a Stokes drag law for high

porosity (high liquid volume fraction) and an Ergun relationship at

lower liquid volume fraction. Because of the high viscosity of the

liquid phase, the Ergun drag law may be reduced to the Carman–

Kozeny relationship because the inertial term becomes negligible:

βls =

⎧

⎨

⎩

18ηφs

ds
2

i f φl >
25

28
150φs

2η

φl ds
2 i f φl ≤ 25

28

, (24)

βlg =

⎧

⎪

⎨

⎪

⎩

18ηφg

dg
2

i f φl >
25

28
150φg

2η

φl dg
2 i f φl ≤ 25

28

, (25)

where ds is the diameter of the solid particles and dg is the diameter

of the gas bubbles. The drag laws we used here are similar to the

one proposed by Gidaspow (1994), but uses the Stokes drag instead

of the Wen–Yu drag correlation at high porosity such that the drag

forces are linearly dependent on the relative velocities between the

phases, which is suitable for the coupled phase theory.

2.4 Interphase exchanges of heat

The amount of heat transferred within the carrier liquid by conduc-

tion is calculated using Fourier’s law:

Hll = φl kl∂
2
x (Tl ) , (26)

where kl is the heat conductivity of the liquid.

The rate of heat exchange between the carrier and discrete phases

are expressed by:

Hls = γls (Tl − Ts) , (27)

and,

Hlg = γlg

(

Tl − Tg

)

, (28)

where γ ls is the coefficient of heat transfer between the fluid and

solids and γ lg is the coefficient of heat exchange between the fluid

and gas. In the absence of mass transfer between the phases, the

coefficients of heat transfer can be estimated as (Syamlal et al.

1993):

γls =
6klφs Nu

ds
2

, (29)

and,

γlg =
6klφg Nu

dg
2

, (30)

where Nu is the Nusselt number. To estimate Nu, we used the empir-

ical correlation proposed by Gunn (1978), which depends on both

the porosity and relative velocity between the phases. Since in our

case the relative velocities are very small because of the small am-

plitude of the perturbation and the viscosity of the liquid, Nu may

be expressed as a function of φl only:

Nu =
(

7 − 10φl + 5φl
2
)

. (31)

2.5 Coupled phase model

To compute the speed of sound from eqs (1) to (13), we employed

the coupled phase theory (e.g. Harker & Temple 1988; Atkinson

& Kytömaa 1992; Evans & Attenborough 1997; Valier-Brasier et

al. 2015; see Supporting Information 2, online, for details about

the method and equations), which consists in imposing a small and

monochromatic perturbation to all the variables that oscillate during

the propagation of the acoustic perturbation (ρ l, ρs, ρg, u, v, w, Tl,

Ts, Tg, φl, φs, φg, P) by using wave-like solutions (here for the

density of the liquid phase):

ρl = ρl
0 + ρle

i(kx−ωt), (32)

where ρl
0 is the static fluid density, ρl is the amplitude of the per-

turbation of the fluid density at the source and i2= −1. Note that

since all phases are static and in thermal equilibrium before the

perturbation, u0 = v0 = w0 = 0 and Tl
0 = Ts

0 = Tg
0 = T0. The expo-

nential term in eq. (32) expresses the spatial and temporal variations

of the liquid density and depends on ω, the angular frequency (ω

= 2π f, f is the frequency of the perturbation), and k the complex

wavenumber defined as:

k =
ω

c
+ iα, (33)

where c is the speed of sound and α is the associated intrinsic atten-

uation coefficient. After the introduction of the oscillating variables

and linearization (the products of two small oscillations are ne-

glected), the set of equations can be expressed as a matrix equation

(see Supporting Information 1 for details about the matrix equa-

tion):

M
[

ρl , ρs, ρg, φl , φs, φg, Tl , Ts, Tg, ū, v̄, w̄, P
]T

= 0, (34)

where M is a coefficients matrix containing k as unique unknown.

To ensure the equality in eq. (34), the non-trivial solution (a pertur-

bation exists) imposes that M is singular and thus:

det (M) = 0. (35)

The speed of sound and associated attenuation coefficient at a

given frequency can be found from the wavenumber, k, that is phys-

ically meaningful and that satisfies eq. (35).

2.6 Bounds of the sound speed in magmas

The speed of sound in a suspension depends on the variation of its

density and volume during an adiabatic compression or dilatation

(Temkin 1998). Consider an elementary volume, V, containing a

constant mass of solids and gas bubbles suspended in a viscous

liquid. By neglecting the relative motions between the phases, the

suspension can be approximated as a homogeneous material having

a bulk density, ρ∗, defined as (Brennen 2005):

ρ∗ = φl ρl + φsρs + φgρg. (36)

The total net change of the elementary volume, dV, can be written

as the sum of the net changes of the volume of the three phases:

dV = dVl + dVs + dVg, (37)

where dVl is the net change of the volume of liquid, dVs is the

net change of the volume of solid and dVg is the net change of the

volume of gas. Neglecting phase changes, eq. (37) may be expressed

as:

dρ∗

ρ∗
=

φl

ρl

dρl +
φs

ρs

dρs +
φg

ρg

dρg, (38)

where dρ∗ is the net change in the bulk density of the suspension,

dρ l is the net change of the liquid density, dρs is the net change of

the density of the solids and dρg is the net change of the density of

the gas bubbles. The evolution of the density of each phase depends

on the change in pressure (here we consider that the pressure is the
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Dispersive waves in magmatic suspensions 2127

same in all the phases) and in its temperature as (here for a phase

i):

d ρi =

(

∂ρi

∂ P

)

T

d P +

(

∂ρi

∂Ti

)

P

dTi , (39)

where (∂ρ i/∂P)T is the variation of the density of a constituent

with the pressure at a constant temperature and (∂ρ i/∂Ti)P is the

derivative of its density with respect to its temperature at a constant

pressure. Introducing eqs (39) into (38) yields:

dρ∗

ρ∗
=

1

K∗
d P +

φl

ρl

(

∂ρl

∂Tl

)

P

dTl +
φs

ρs

(

∂ρs

∂Ts

)

P

dTs (40)

+
φg

ρg

(

∂ρg

∂Tg

)

P

dTg,

where K∗ is the bulk modulus characterizing the suspension and

defined as:

1

K∗

=
φl

Kl

+
φs

Ks

+
φg

Kg

, (41)

with Kl/ρ l= (∂P/∂ρ l)T, Ks/ρs= (∂P/∂ρs)T and Kg/ρg= (∂P/∂ρg)T.

When the net changes in temperature of the phases are neglected,

the isothermal speed of sound is:

c−2 =
dρ∗

d P
=

ρ∗

K∗
. (42)

When considering temperature variations, the speed of sound de-

pends on the evolution of the bulk density of the suspension with

pressure at constant entropy (Temkin 2000). The net change of en-

tropy, dS, in each phase may be expressed as a function of the net

change in its temperature and pressure (here for a phase i):

Ti d Si =

(

∂Si

∂Ti

)

P

dTi +

(

∂Si

∂ P

)

T

d P. (43)

Considering an isentropic transformation, eq. (43) can be ex-

pressed as:
(

∂Ti

∂ P

)

S

= −

(

∂Ti

∂Si

)

P

(

∂Si

∂ P

)

T

. (44)

Because the magma constituents have different thermodynamic

properties, the net changes in temperature of the phases for the

same net change in pressure are not equal. Two end-member scenar-

ios may be considered as a function of the perturbation frequency

and characteristic times for the phases to reach thermal equilib-

rium, τ . When f�τ –1, the heat exchanges between the phases

may be neglected such that dTl 	= dTs 	= dTg. Inserting eq. (44)

into eq. (40) and considering the relationships dTi = (∂Ti/∂P)S dP,

(∂Ti/∂Si)P = Ti/CPi, (∂Si/∂P)T = −αi/ρ i and (∂ρ i/∂T)P = −αi ρ i,

the speed of sound at thermal disequilibrium reads:

c−2 =
dρ∗

d P
= ρ∗

(

1

K∗
−

φlα
2
l T 0

CPlρ f

−
φsα

2
s T 0

CPsρs

−
φgα

2
gT 0

CPgρg

)

. (45)

When f
τ –1, the rates of heat exchanges between the phases are

efficient such that the phases may be considered in thermal equi-

librium during the propagation of the perturbation. In adiabatic

conditions, the total change of temperature in the suspension at

equilibrium, dT∗, may be calculated as:

dT ∗ =
φlρlCPldTl + φsρsCPsdTs + φgρgCPgdTg

φlρlCPl + φsρsCPs + φgρgCPg

. (46)

Setting dTl = dTs = dTg = dT∗ in eq. (40) and inserting eqs (44)

and (46) give the following relationship for the speed of sound at

thermal equilibrium:

c−2 =
dρ∗

d P
=

ρ∗

K∗
−

α∗2T 0

CP∗
, (47)

where α∗ is the bulk coefficient of thermal expansion defined as:

α∗ = φl αl + φsαs + φgαg, (48)

and CP∗ is the specific bulk heat capacity at constant pressure

calculated as a mass average:

CP∗ =
φlρlCPl + φsρsCPs + φgρgCPg

ρ∗

. (49)

The characteristic time at which the transition between the two

regimes occurs depends on the rate at which the heat is exchanged

between the phases. Two characteristic times may be calculated

since both the gas and solids are suspended in the liquid. To es-

timate these critical frequencies, we start by considering a static

suspension of gas bubbles in a liquid. The evolution of the differ-

ence in temperature between the two phases resulting only from the

heat exchanged between them may be approximated as:

∂t

(

Tl − Tg

)

+ τg
−1

(

Tl − Tg

)

= 0. (50)

where τ g is the characteristic time to equilibrate the temperature of

the liquid and the gas phases given by:

τ−1
g = γlg

(

1

φlρlCPl

+
1

φgρgCPg

)

. (51)

Similarly, the characteristic time to equilibrate the temperature

of the phases in a suspension of solids in a liquid, τ s, is:

τ−1
s = γls

(

1

φlρlCP f

+
1

φsρsCPs

)

. (52)

2.7 Magmas under consideration

We considered three different magmas representative of composi-

tions that may be encountered in arc magmatism (basalt, andesite

and dacite) and simulated their adiabatic cooling and crystalliza-

tion using the software MELTS (Ghiorso 2004) at a pressure of

150 MPa and fixing the oxygen fugacity along the Ni–NiO oxygen

buffer for the andesite and dacite, and along the quartz–fayalite–

magnetite buffer for the basalt. The initial compositions were taken

from Dufek & Bachmann (2010) and Martel et al. (1999) (see Ta-

ble 1). We set the initial amount of dissolved water in the magmas

to ∼3.5 wt. per cent to ensure that water vapour starts exsolving

once the mass fraction in liquid is ∼70 wt. per cent (Duan 2014).

We used the thermodynamic properties of each phase computed

during the cooling simulations to estimate the speed of sound in the

magmas as a function of their temperature. All the simulations were

stopped when the crystallinity of the magmas reached the maximum

packing fraction (φl = 0.36).

3 R E S U LT S

3.1 The speed of sound in three phases suspensions

To illustrate how the material properties and characteristics of the

perturbation affect the speed of sound in magmas, we define ref-

erence conditions relevant to magmas (Table 2) and vary selected

parameters independently from each other. Fig. 3(a) displays the

evolution of the velocity of a compressional wave as a function of the

volume fraction in liquid, solids and gas bubbles when f = 0.01 Hz.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/2
2
8
/3

/2
1
2
2
/6

4
0
9
1
3
4
 b

y
 U

n
iv

e
rs

ity
 o

f W
a
s
h
in

g
to

n
 u

s
e
r o

n
 0

5
 M

a
y
 2

0
2
3



2128 A. Carrara et al.

Table 1. Initial chemical composition, pressure and temperature of the

magmas.

Composition

wt. per cent Basalt Andesite Dacite

SiO2 48.108 59.736 66.013

TiO2 0.970 0.469 0.440

Al2O3 16.883 17.341 15.263

Fe2O3 1.755 1.277 0.663

FeO 8.279 4.765 2.031

MnO 0.174 0.176 0.069

MgO 5.925 2.239 0.908

CaO 10.396 6.100 2.910

Na2O 2.657 3.451 3.691

K2O 1.193 1.026 4.004

P2O5 0.214 0.000 0.186

H2O 3.447 3.4213 3.435

T start (◦C) 1100 1050 950

T stop (◦C) 960 700 715

P (MPa) 150 150 150

fO2 buffer QFM Ni–NiO Ni–NiO

Source Dufek &

Bachmann

(2010)

Martel et al.

(1999)

Dufek &

Bachmann

(2010)

Table 2. Reference physical properties used to explore the influence of the

composition of the suspension and characteristics of the perturbation on

the speed of sound. They correspond to an approximate total pressure of

150 MPa

Variable Reference value

T 1000 ◦C

ρl
0 2500 kg m–3

ρs
0 3000 kg m–3

ρg
0 350 kg m–3

Kl 15 GPa

Ks 50 GPa

Kg 150 MPa

η 1000 Pa s

CPl 1300 J kg–1 K–1

CPs 1200 J kg–1 K–1

CPg 3750 J kg–1 K–1

αl 10–4 K–1

αs 10–6 K–1

αg 10–3 K–1

kl 1 W m–1 K–1

ds 5 mm

dg 0.5 mm

g −9.81 m s–2

θ 0◦

It shows that the speed of sound decreases rapidly once a small

volume fraction of volatiles is exsolved. When φg > 0.05, the solid

volume fraction has a negligible influence on the compressional

wave velocity compared to that in the presence of gas.

Fig. 3(b) displays the speed of sound in the same suspension as

in Fig. 3(a) when f = 100 Hz. Results show the same dependence

of the wave velocity on φg. The amplitude of the decrease of the

speed of sound when increasing the volume fraction of gas is, how-

ever, slightly lower as illustrated by the shift of the position of the

isocontour of c = 500 m s–1. The frequency of the perturbation

changes both the minimum (c ≈ 457 m s–1 when f = 0.01 Hz and

c ≈ 482 m s–1 when f = 100 Hz) and maximum (c ≈ 3117 m s–1

when f = 0.01 Hz and c ≈ 3150 m s–1 when f = 100 Hz) velocities

computed by the model. On the contrary, when φl = 1 the speed of

sound is the same at the two frequencies (2582 m s–1).

To further investigate the influence of the perturbation frequency

on sound speed in a magma, we set the volume fractions of its

constituents to φl = 0.65, φs = 0.3 and φg = 0.05 and calculate the

dispersion curve of the acoustic waves (Fig. 4). Results show that

the speed of sound increases nonlinearly with the frequency and that

three plateaus can be identified. The lowest plateau at c ≈ 1020 m s–1

occurs when f < 0.01 Hz. The second velocity plateau at c ≈ 1025 m

s–1 occurs when 0.1 Hz < f < 1 Hz, whereas the third and fastest

one at c ≈ 1090 m s–1 is reached when f > 100 Hz. As illustrated

in Fig. 4, the uppermost plateau occurs when f�max(τ s
–1,τ g

–1)

and corresponds to the thermal disequilibrium bound of the speed

of sound predicted by eq. (45). The lowest plateau is found when

f
min(τ s
–1,τ g

–1) and corresponds to thermal equilibrium bound of

the speed of sound given by eq. (47). The isothermal bound (eq. 42)

underestimate the speed of sound at all frequencies.

Fig. 5 displays the evolution of the wave velocity as a function

of the propagation angle, θ , and frequency of the perturbation.

When f ≥ 0.1 Hz, the velocity of the wave is lower when the

wave propagates upward than when it propagates downward. When

f < 0.1 Hz, the speed of sound show a complex dependence on

the propagation angle. The maximum velocity is computed when θ

= π /2, whereas the minimum sound speed occurs when the wave

propagates downward with a propagation angle of ∼30◦ from the

horizontal. The propagation angle influences sound speed because

of the terms involving the gravitational acceleration in eqs (4)–(9).

In momentum conservation, these terms express the contribution of

the change in the density of the phases to the gravitational force.

In the energy conservations, the term involving the gravitational

acceleration expresses the rate at which the potential energy changes

as a function of the velocity of the phase along the vertical direction.

However, the variations in wave velocities as a function of the

propagation angle (<1 per cent) are negligible compared to the

influences of the volume fraction of the constituents (Fig. 3) and

frequency of the perturbation (Fig. 4).

Fig. 6(a) displays the difference between the velocity of a com-

pressional wave computed when lubrication is accounted for and

when it is neglected as functions of the ratio of the solid volume

fraction over the maximum packing fraction, φs/φs max, and the per-

turbation frequency. The difference increases with the ratio φs/φs max

and with wave frequency. When f < 105 Hz, the influence of lubri-

cation forces on the velocity of a P wave is negligible. Lubrication

forces have some influence of sound speed in a magma only at high

frequency (f > 106 Hz).

3.2 Application to magmas

Figs 7(a)–(e) displays the evolution of the phase assemblages and

thermodynamic properties of the three magmas computed by the

cooling simulations and averaged over the phases with eqs (35),

(42), (45) and (47) (see Supporting Information 3, online, for details

on the thermodynamic properties of the constituents). The thermo-

dynamic properties show sharp changes once the water vapour is

exsolved. The bulk moduli of the magmas, in particular, drop by

almost one order of magnitude once a small fraction of water is

exsolved (Fig. 7d), resulting in a sharp decrease of the sound speed

(Fig. 7f). In the absence of gas, the influence of the frequency of

the perturbation is weak enough for the lower (eq. 47) and upper

(eq. 45) bounds of the P-wave velocity to be almost equal. On the

contrary, the two bounds show significant differences when a gas
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Dispersive waves in magmatic suspensions 2129

Figure 3. Speed of sound as a function of the volume fraction in liquid, solids and gas when (a) f = 0.01 Hz and (b) f = 100 Hz. The background colour

depends on the speed of compressional waves. The white dashed curves indicate isocontours of the sound speed. The black dashed line indicates the theoretical

limit of the validity of the model at φl = 0.36. The material properties of the constituents and the incidence angle are indicated in Table 2. The black cross

indicates the volume fractions used to compute the dispersion curve in Fig. 4.

Figure 4. Dispersion curve of a magmatic suspension. The volume fraction

of the constituents are φl = 0.6, φs = 0.35 and φg = 0.05. The solid black

curve indicates the results obtained with the coupled phase theory (eq. 35).

The black, red and blue dashed lines indicate the isothermal speed of sound

(eq. 42), the isentropic speed of sound at thermal equilibrium (eq. 47), and the

isentropic speed of sound out of thermal equilibrium (eq. 45), respectively.

The black and blue vertical dotted lines indicate the critical frequencies

above which the solid and gas bubbles are not in thermal equilibrium with

the surrounding liquid, respectively (eqs 51 and 52). The material properties

of the constituents and the incidence angle are indicated in Table 2.

phase is present (Fig. 7f). The amplitude of the difference between

the two bounds increases with the volume fraction of gas and de-

creases with temperature. In the final phases assemblages, the gas

volume fractions are φg ≈ 0.15 in the basalt (Fig. 7a), φg ≈ 0.1 in

Figure 5. Evolution of the compression wave velocity as a function of the

incidence angle and frequency of the perturbation. The radial axis indicates

the difference in per cent between the velocity of the compressional wave

at θ and θ = 0. The blue, red, green and purple curves correspond to

frequencies of 0.01, 0.1, 1 and 10 Hz, respectively. The volume fraction

of the constituents are φl = 0.65, φs = 0.3 and φg = 0.05. The material

properties of the constituents are indicated in Table 2.

the andesite (Fig. 7b) and φg ≈ 0.05 in the dacite (Fig. 7c). These

values translate into amplitude differences between the upper and

lower bounds of ∼150 m s–1 in the basalt, ∼200 m s–1 in the andesite

and ∼250 m s–1 in the dacite (Fig. 7f).
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2130 A. Carrara et al.

Figure 6. Influence of the lubrication forces on the speed of sound in a suspension of solid particles in a viscous fluid. (a) Difference between the speed of

sound computed with eq. (35) considering and neglecting lubrication forces. The physical properties of the liquid and solids are the ones indicated in Table 2.

(b) Evolution of the difference between the speed of sound computed with eq. (35) considering (club) and neglecting (cnolub) lubrication forces as a function of

ηk2/ρs. The shaded area indicates the area covered by magmas.

Figure 7. Evolution of the phase assemblage, thermodynamic properties, and speed of sound of the magmas during the cooling simulations. (a)–(c) are the

phases assemblage computed during the simulation of the cooling of the (a) basalt, (b) andesite and (c) dacite. (d) Evolution of the bulk densities and bulk

moduli of the magmas. (e) Evolution of the bulk coefficient of thermal expansion and bulk heat capacity at constant pressure as a function of temperature. (f)

Evolution of the speed of sound in the magmas. The solid, dashed and dashed–dotted curves indicate the thermal disequilibrium (high frequency), thermal

equilibrium (low frequency) and isothermal bounds, respectively. The shaded areas correspond to the range of velocity that may be computed with eq. (35) at

different frequencies.
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Dispersive waves in magmatic suspensions 2131

Table 3. List of the thermodynamical properties, or expressions employed

to estimate them, used to compare the different models in Fig. 8. The surface

tension at the interfaces between the bubbles and liquid is neglected. The

thermodynamic properties and relationships are taken from Kieffer (1977).

Parameters Expression or value

ρl
0 1000 kg m–3

ρg
0 ρ0

g = ( P
Gair

)
1
γ

ρg
ref 690 kg m–3

Gair Gair = T R

Mgρg
ref γ−1

T 20 ◦C

P 500 bars

γ 1.4

dg 0.5 mm

η 10 Pa·s

Mg 29.98 × 10–3 kg

mol–1

CPl 1300 J kg–1 K–1

CPg CPg = R
Mg

(1 − 1
γ

)

Kf 1 GPa

Kg Kg = P

αl 1 × 10–4 K–1

αg αg = 1/T

The dispersion of sound is particularly important in bubbly mag-

mas (Fig. 3 and Fig. 7F). In general, αg/(ρg Cpg) � αl/(ρ l Cpl). As

a result, for the same net change in pressure, |dTl|<|dT∗|<|dTg|

(eq. 44). Since αg � αf, the net thermal expansion of the gas bub-

bles increases significantly out of thermal equilibrium, which in turn

amplifies the resistance of the bulk material to compression and de-

compression and increases the speed of sound (Temkin 2000). This

effect results in the two increases of the speed of sound with fre-

quency observed in Fig. 4. The first increase occurs when the solids

become out of thermal equilibrium with the liquid. This velocity

jump may be ignored in crystal-bearing magmas (Fig. 7f) because

the coefficients of thermal expansion of the melt and crystals are

small (see Supporting Information 3, online).

4 D I S C U S S I O N

4.1 Predicting the speed of sound in magmas

Several relationships have been proposed to estimate the speed of

sound in two-phase suspensions (e.g. Kuster & Toksöz 1974; Ki-

effer 1977; Berryman 1980; Harker & Temple 1988; Commander

& Prosperetti 1989; Atkinson & Kytömaa 1992), and employed for

bubbly magmas (e.g. Chouet 1996; Kumagai & Chouet 2000; Mor-

rissey & Chouet 2001; Neuberg & O’Gorman 2002; Karlstrom &

Dunham 2016). To compare all these models with the results of eq.

(35) based on the coupled phase theory, we considered a suspen-

sion of bubbles of an ideal gas suspended in water (see Table 3

for thermodynamic properties of the phases). Fig. 8(a) displays the

comparison of the speed of sound estimated with the different mod-

els for 10–3 ≤ f ≤ 103 Hz. The models neglecting the evolution of the

temperature of the phases (Kuster & Toksöz 1974; Berryman 1980;

Harker & Temple 1988; Atkinson & Kytömaa 1992; Neuberg &

O’Gorman 2002; Karlstrom & Dunham 2016) give the same results

as eq. (42), underestimating the speed of sound and do not captur-

ing its dispersion. When a material is compressed or decompressed,

the temperature of its constituents changes accordingly, inducing

their thermal expansions, which oppose the change of volume re-

sulting from the change in pressure. Consequently, neglecting the

thermal effects results in overestimating the ratio (dρ∗/dP), and

in turn, underestimating compressional waves velocity. In magmas

and at low frequency, the difference between the isothermal and

isentropic speed of sounds is, however, small when a gas phase is

present (Fig. 7). Neglecting the evolution of the temperature of the

phases is thus an acceptable assumption for bubbly magmas at low

frequencies (f<∼1 Hz in Fig. 4) given the uncertainty on the ther-

modynamic properties of the constituents. At higher frequencies,

the isothermal assumption results in a large underestimation of the

P-wave velocity in a bubbly magma (of ∼200 m s–1 in andesite

with φg ≈ 0.10; Fig 7f). On the contrary, in the absence of exsolved

volatiles, the isothermal assumption results in a significant under-

estimation of the speed of sound (∼50 m s–1 in Fig. 6f) compared

with the isentropic case at any frequency.

Other relationships account for the thermal effects during the

propagation of an acoustic wave. The model proposed by Kief-

fer (1977) predicts P-wave velocity between the upper and lower

bounds but does not capture the dispersion of the sound (Fig. 8a). In

this model, while the temperature changes are accounted for in the

gas phase, they are neglected in the liquid. As a result, the compres-

sion and decompression are isentropic in the gas and isothermal in

the liquid, which explains why this model predicts speed of sounds

between those predicted with eqs (42) and (45). The lack of sound

dispersion results from the absence of heat exchange between the

phases in this model.

The relationship proposed by Commander & Prosperetti (1989)

and employed by Chouet (1996), Kumagai & Chouet (2000) and

Morrissey & Chouet (2001) accounts for the exchange of heat from

the bubbles to the liquid and captures the increase of the speed of

sound at approximatively the same range of frequencies as eq. (35)

(Fig. 8a). The evolution of the temperature in the liquid is, however,

neglected in this model. Consequently, it predicts sound speeds

slower than eq. (35) for all frequencies < 103 Hz. This model also

considers the dynamics of the interface between the gas bubbles

and surrounding liquid, a phenomenon not accounted for in our

model. The dynamics of the bubbles are expected to cause a sudden

increase in sound speed at a resonance frequency, which depends on

the bubble radius (Commander & Prosperetti 1989; Chouet 1996)

and which is not captured in eq. (35) (Fig. 8b). In magmas, the

resonance frequency of bubbles is on the order of the kHz (Chouet

1996). This is above the frequencies usually used in geophysics and

can be ignored for most applications.

It should be noted that another increase in the speed of sound is

expected for each discrete phase at higher frequencies than explored

herein (Temkin 2000). These velocity jumps result from the trans-

lational relative motions between the liquid and the discrete phases.

As for heat, the constituents of the suspension exchange momentum

during the propagation of an acoustic perturbation because of their

relative motions. The rates of momentum transfer in the suspension

depend on the coefficients of momentum exchange given by eqs

(24) and (25). The evolution of the relative velocity between the

carrier and suspended phases is (here between the liquid and the

gas):

∂t (u − w) + νlg (u − w) = 0 (53)

where ν lg is the critical frequency above which translational effect

cannot be neglected. It is defined as the inverse of the characteristic

time needed for the relative velocity between the gas and liquid

phases to vanish:

νlg = βlg

(

1

φlρl

+
1

φgρg

)

(54)
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Figure 8. (a) Comparison of sound speeds predicted by various model in a suspension of gas bubbles in water for 10–3 ≤ f ≤ 103 Hz. (b) Comparison of the

speed of sound computed with eq. (35) and with eq. (41) in Commander & Prosperetti (1989) for 103 ≤ f ≤ 106. The properties of the fluid are the same as

in (a). The density of the water and gas were calculated following eqs (8) and (9) in Kieffer (1977). The bulk modulus and coefficient of thermal expansion,

Kg = P, αg = 1/T. The heat capacity of the gas is calculated as CPg = (γ /(γ−1))R/Mg, where γ is the heat capacity ratio (γ = 1.4), R is the ideal gas constant

and Mg is the molar mass of the gas.

Similarly, the critical frequency for translational relative motion

between the solids and liquid, ν ls, is:

νlg = βls

(

1

φlρl

+
1

φsρs

)

(55)

When f > max(ν ls,ν lg) the magnitude of the relative velocity be-

tween the carrier liquid and discrete phases becomes significant

and cannot be ignored when computing the speed of sound in the

suspension. At these frequencies, the assumption of homogeneity

required to express eq. (36) is violated such that eq. (45) cannot

be employed to estimate the velocity of compressional waves. The

relative motions between the phases cause the increase in the speed

of sound predicted by eq. (35) observed in Fig. 8(b). The critical

frequency for translational effects is inversely proportional to the

dynamic viscosity of the liquid phases. For magmas, ν lg and ν ls are

far above (>1 MHz) the maximum frequencies considered here.

The influence of the translational relative motions on the speed of

sound can thus be safely neglected in magmas for most geophysical

applications.

4.2 Limit of validity of the model

In a suspension, the initiation of interactions between the discrete

solid particles marks the onset of rigidity and the transition from

liquid- to solid-like elastic body. In our model, while contacts are

neglected, we accounted for the exchange of momentum between

neighbouring crystals through lubrication forces. The initiation of

lubricated interactions between neighbouring particles has been

suggested to result in an increase in the speed of sound, marking the

onset of rigidity in the suspensions (Esquivel-Sirvent et al. 1995).

The experiment from these authors was performed at frequencies

of the order of MHz, which are far above those considered in our

model. Equation (21) shows that for identical solid volume fraction,

Iss varies as a function of ηk2/ρs. For magmas and perturbations in

the range of frequency used in geophysics, ∼10–9<ηk2/ρs<∼101,

so that the influence of lubrication on the speed of sound is negli-

gible (Fig. 6b). As a result, the sharp increase of the velocity of the

compressional waves and the emergence of shear waves (Caricchi

et al. 2008) caused by the initiation of contact between the crystals

have negligible precursory velocity increase due to lubrication.

Since the influence of the contact between the solids is beyond

the scope of our model, the initiation of a fragile contact network

(Bergantz et al. 2017) between the crystals at magma/mush tran-

sition represents the limit of its applicability. We can neverthe-

less qualify how the transition to rigidity may occur. The volume

fraction at which a continuous contact network forms (at random

loose packing) in a magma depends on the sizes, shapes, orienta-

tions and roughnesses of the crystals. It can be significantly larger

than φl ≈ 0.36, the minimum random close packing calculated for

frictionless and monodisperse spheres (Bergantz et al. 2017). The

difference between random loose and close packings is expressed

in the coordination numbers (average number of particle–particle

contacts per particle), which is larger at random close packing than

at random loose packing. The transition between the two packings

occurs as a consequence of the reorganization of the crystal network

due to contact sliding and particle non-affine motions. The increase

in the coordination number raises the rigidity of the suspension and

the speed of sound. Thus, the rigidity modulus is expected to in-

crease progressively with the decreases of φf between the random

loose and close packings. Contacts between solids are implicitly

accounted for in the effective medium theory (e.g. Kuster & Toksöz
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1974; Berryman 1980) and the Hertz–Mindlin contact theory. In

dense suspensions where solids are in cohesionless contact, the

bulk and rigidity moduli also depend on the confining pressure and

amplitude of the perturbation, which affects the non-affine motions

of the crystals, contact slidings and shear dilatancy (e.g. Makse et

al. 2004; Brum et al. 2019). Such phenomena may induce either

strengthening or weakening of the rigidity of the suspension be-

cause of the changes in the contact network (Van den Wildenberg

et al. 2013). The effective medium theory is not able to account

for the relaxations associated with changes in the contact network

and usually overestimates the shear modulus (Makse et al. 2004).

As a result, the applicability of methods based on the effective

medium theory to compute the speed of sound between the ran-

dom loose and random close packing is uncertain given the prone-

ness of the crystal network to structural reordering and non-affine

motions.

In addition to the absence of contact between particles, we made

assumptions when deriving the conservation equations that may

affect the calculated sound speed. We neglected the mass trans-

fers associated with the precipitation or melting of crystals and the

growth, dissolution or nucleation of gas bubbles. The importance

of the mass transfers on the acoustic properties of a suspension

depends on the rates of mass exchange between the constituents

(Fuster & Montel 2015). In magmas, the exsolution or dissolution

of the volatiles depends on the changes in their solubility in the

melt phase, which is mainly controlled by the pressure changes.

The nucleation of bubbles is expected to occur during a short pe-

riod (Toramaru 1995) and requires a large supersaturation pressure

(> 5 MPa) even in the presence of crystals (Hurwitz & Navon

1994; Shea 2017). In our model, we considered small perturbations

and the magma being initially at thermodynamic equilibrium (no

steady mass or heat transfers). Thereby, the small amplitudes of the

perturbations in pressure are not expected to trigger the nucleation

of bubbles, which requires large amplitude waves (Rothery et al.

2007). The rate of the exchange of mass between the dissolved and

exsolved volatiles is controlled by the bubbles sizes and the diffu-

sion coefficient of the volatiles species in the melt phase (Toramaru

1995). The competition between diffusion and the rate of pressure

change can be measured by the ratio of the diffusive timescale over

the decompression timescale (Lensky et al. 2004). The diffusivity

coefficient of water (the most common volatile in magma) is low

(between ∼10–13 and ∼10–10 m2 s–1; Zhang & Behrens 2000) so that

mass transfer between the melt and gas phases is negligible (i.e. the

diffusive ratio is > 1) when changes in pressure are faster than

∼10–2–10–4 Hz for bubbles of 10–100 μm in radius, respectively.

Similarly, the rates of the precipitation or melting of the crystals in

magmas are small (e.g. ∼10–13 and 10–12 m s–1 for crystal growth;

Hawkesworth et al. 2004) so that we do not expect the mass transfer

between the liquid and solid phases to have a significant influence

on the velocity of a compressional wave in magma.

Heat and mass exchanges between the phases are controlled by

the coupling terms (β ls, β lg, γ ls and γ lg), which are based on empir-

ical correlations. The choice for the correlations employed to calcu-

late the coefficients of momentum exchange, β ls and β lg, influences

the two critical frequencies, ν ls and ν lg, at which the translational

relative velocities between the suspended and carrier phases start to

significantly influence sound speed (when f > 105 Hz in Fig. 8b).

Here, we considered the creeping and steady flow of the liquid

around the discrete phases because of the dynamic viscosity of the

melt allowing us to neglect inertial and unsteady terms. We em-

ployed a Stokes law for high porosity (φl > ∼0.893) as usually used

in the coupled phase theory (e.g. Harker & Temple 1988; Atkinson

& Kytömaa 1992; Evans & Attenborough 1997). For lower porosity

(φl < ∼0.893), we used a Kozeny–Carman relationship instead of

the Stokes law to account for the influence of the presence of the

surrounding crystals and the associated decrease in permeability.

The maximum difference between the momentum exchanges coef-

ficients predicted by the Stokes and Kozeny–Carman relationships

occurs at the maximum packing fraction and reaches ∼1 order of

magnitude. Therefore, account for the Stokes law instead of the

Kozeny–Carman law would result in a decrease of the critical fre-

quencies, β ls and β lg, of ∼1 order of magnitude at maximum. The

two critical frequencies, β ls and β lg, calculated considering a Stokes

law remain above the range of frequency considered (10–3–103 Hz).

As a result, in the range of the frequency considered here, the choice

of the law for the exchange of momentum has a negligible influence

on the calculated speed of sound in magma.

Similarly, the choice of the empirical relationship employed to

predict Nusselt number in the coefficient of heat transfer between

the phases, γ ls and γ lg, impacts the critical frequencies at which the

transition between thermal equilibrium and disequilibrium regimes

occurs. We used the correlation proposed by Gunn (1978) to obtain

an expression depending on the porosity of the suspension. This

expression also accounts for the influence of the relative velocity

between the carrier and suspended phases. We showed that within

the range of frequency considered, the relative velocity between the

constituents is negligible. As a result, the influence of the relative

motion between the constituents on the rates of heat exchange is

weak and can be neglected. Furthermore, other empirical relation-

ships predicting the Nusselt number exist (e.g. Ranz 1952; Li &

Mason 2000) but often reduce to Nu = 2 in the absence of relative

flow between the constituents, which is the same Nu as predicted

by eq. (31) when φl = 1. At the minimum porosity (φl = 0.36), eq.

(31) predicts Nu = ∼4. As a result, employing another empirical

correlation to calculate the Nusselt number will tend to decrease

the two critical frequencies, τ g
–1 and τ g

–1, by a factor of 2 at maxi-

mum. The two theoretical maximum and minimum wave velocities

(eqs 45 and 47) remain unchanged since the correlation of the Nus-

selt number only affects the rate of the heat exchanges but not the

equilibrium temperature predicted by eq. (46).

4.3 Implication in volcanology

Our results have implications for the interpretation of seismic

signals recorded around volcanoes. Long period (LP) events are

thought to result from the acoustic excitation of cracks (e.g. Chouet

1986; Kumagai & Chouet 2000) or in the volcanic conduits filled

with fluid (magmas, water, gas, etc., e.g. Jousset et al. 2003, 2004)

with the surrounding solid rock. The velocity of compression waves

in the magma located in the cracks or conduit affects the resonance

frequency, radiation attenuation. Our model shows that compres-

sional waves propagate faster at high frequency (>100 Hz) than

at low frequency (< 1 Hz) when the magma contains exsolved

volatiles. Consequently, the resonance frequency of a crack filled

with bubbly magma will be higher (and the radiation attenuation

lower) at a high frequency than at a low one. This effect accentuates

the dispersive behavior of the crack and tube waves that propagate

in volcanic cavities (Chouet 1986; Ferrazzini & Aki 1987).

The detection of exsolved volatiles and estimation of their volume

fraction in magma is important to assess volcanic hazards. Tomogra-

phy images of seismic waves velocity are an interesting tool to map

compositional changes in magma reservoirs. Our model provides a

way to assess how the speed of sound in magma depends on both
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Figure 9. Evolution of the compressional wave velocity as a function of the

solid volume fraction. The red and blue curves were computed with φg = 0

and 0.01, respectively. The solid curves, dashed and dotted–dashed curves

correspond to frequencies of 1, 10 and 100 Hz, respectively (when φg = 0,

the three curves collapse because of the vertical resolution). The material

properties of the constituents are indicated in Table 2.

the crystal and the exsolved volatiles contents. Crystals increase the

velocity of compressional waves but weakly affect the dispersion

of sound in the magma (Fig. 9). The presence of gas bubble greatly

decreases compressional wave velocity and induces the dispersion

of sound. The difference between the speed of sound at high and

low frequencies is proportional to the gas volume fraction (Fig. 7).

Consequently, the comparison of tomography images computed for

different frequencies at low and high frequencies might help in

highlighting the presence of gas when mapping magma reservoirs.

5 C O N C LU S I O N

We developed an analytical model to estimate the speed of sound in

magmas consisting of a suspension of solids and/or gas bubbles in a

viscous liquid. Our model shows that the velocity of compressional

waves in a magma varies nonlinearly with frequency between two

asymptotic bounds. The nonlinearity is caused by two successive

speed increases as frequency increases caused by increasing levels

of thermal disequilibrium between the phases. These two bounds

correspond to the speed of sound when all the constituents of the

magma are in thermal equilibrium (lower bound) and when the heat

exchanges between the phases are neglected (upper bound). Our

results show that below 103 Hz, lubrication forces have a negligible

influence on the speed of sound (δv < 10–4 m s–1). We simulated the

cooling of three magmas representative of the diversity of compo-

sitions commonly encountered in arc magmatism and applied our

model to calculate corresponding the speed of sound. Results show

that the presence of gas in a magma yields a sharp decrease in the

velocity of sound and enhances significantly its dispersion. The ex-

istence of crystals in a magma increase P-wave velocity but does

not affect significantly its dispersion. We found that the exchanges

of heat between the constituents may be neglected in crystal-bearing

magmas, but that they cannot be ignored once a gas phase is present.

Finally, we compared the speed of sound in a water–gas mixture that

is predicted by our model to those given by other relationships usu-

ally used by authors for magmas or water in the range 10–3–103 Hz.

The difference between our model of the velocity of compressional

waves and literature values results from the simplifications and as-

sumptions made when considering the evolution of the temperature

of the phases and the heat exchanges. In water, these differences

typically range from 0.5 to 8 per cent and are largest at frequen-

cies > 10 Hz.
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