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The nontrivial topology of spin systems such as skyrmions in real space can promote complex electronic states.

Here, we provide a general viewpoint at the emergence of topological spectral gaps in spin systems based on the

methods of noncommutative K-theory. By realizing that the structure of the observable algebra of spin textures

is determined by the algebraic properties of the noncommutative torus, we arrive at a unified understanding of

topological electronic states which we predict to arise in various noncollinear setups. The power of our approach

lies in an ability to categorize emergent topological states algebraically without referring to smooth real- or

reciprocal-space quantities. This opens a way towards an educated design of topological phases in aperiodic,

disordered, or nonsmooth textures of spins and charges containing topological defects.
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I. INTRODUCTION

Noncollinear magnetism is central to many ideas in the

field of spintronics and future information technology [1,2].

Recently, a diverse class of so-called multi-q magnets—

characterized by a phase-coherent superposition of multiple

spin-spirals—has received particular attention [3–7]. Ex-

perimentally established examples include one-dimensional

(1D) helicoids in chiral magnets [8,9], the two-dimensional

skyrmion crystal of MnSi [10], and the three-dimensional

hedgehog lattice (HL) in MnGe [11]. The interest in multi-q

states is fueled by their connection to emergent electromag-

netic fields, which leads the way to rich electronic physics

[12,13] and can drive the opening of topological band gaps

in the electronic spectrum [14–16]. In the adiabatic limit of

smooth magnetization textures and strong coupling, this effect

can be attributed to the real-space topology of the magne-

tization texture [17,18]. For example, a magnetic skyrmion

will carry a quantized magnetic flux proportional to its topo-

logical charge [19]. The mechanism by which a lattice of

skyrmions can open a band gap can therefore be interpreted

as the formation of Landau levels. It is, however, unclear to

what extent this interpretation can be upheld as the adiabatic

approximation loses validity, e.g., the lattice constant of the

HL phase in MnGe is only of the order of 3 nm. Furthermore,

certain 3q antiferromagnets possess topological band gaps,
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even though no topological index can be associated to the

real-space texture [20,21].

In this paper, we demonstrate that the emergence of topo-

logical electronic states in multi-q magnets is related to a

fundamental restriction on the quantum mechanical observ-

able algebra imposed by the magnetic texture. Our approach,

which is based on noncommutative K-theory, encompasses

the adiabatic limit and its semiclassical theory as a special

case [22], but extends to arbitrary dimensions and makes sense

for periodic as well as aperiodic spin arrangements on the

atomic scale. We reveal that the observable algebra of multi-q

states is given by the universal C∗-algebra of the so-called

noncommutative torus. As we show based on an effective

model, this has a profound effect on the emergence of a wealth

of topological electronic states in multi-q textures, which can

be categorized and understood in a unified manner. In particu-

lar, we relate the emergent topology to proper flavors of Chern

numbers which do not rely on the smoothness of spin dis-

tribution in space, thus unraveling exotic higher-dimensional

quantum Hall physics of noncollinear spin systems. We be-

lieve that our results point a way towards a controlled design

of topological states in various spin textures, whose character

can be probed through the associated edge states and their

dynamics arising in response to changes brought to textures

experimentally in the laboratory.

II. THE OBSERVABLE ALGEBRA OF MULTI-Q MAGNETS

A. Tight-binding model

We consider a class of Hamiltonians which assume the

form of the following nearest-neighbor tight-binding model

on a d-dimensional Bravais lattice, given by

H = t
∑

〈i,j〉∈Z2d

|i〉 〈j| + �xc

∑

i∈Zd

(n̂(xi) · σ) |i〉 〈i| , (1)
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where 〈〉 indicates the restriction to nearest-neighbor hoppings

of strength t . The vector field n̂ : R
d → S2 describes the

coupling of the electronic states to a magnetic texture via the

exchange term proportional to �xc. To each site label i ∈ Z
d ,

we assign a real-space position xi =
∑d

l=1 ilal ∈ R
d in a Bra-

vais lattice spanned by {ai}. The reciprocal lattice is defined

accordingly via bi · a j = 2πδi j . There is a natural action of

the translation group G = Z
d on the d-dimensional lattice

defined as T̂m |k, σ 〉 = |k + m, σ 〉. While the hopping term is

invariant under this operation, the exchange term is generally

not. The loss of translational symmetry renders the situation

hopeless, as the space of possible spectra of the Hamiltonian

is too large to allow for sensible classification.

There is an important subclass of realistic magnetic tex-

tures whose spectra are completely characterized by the

topological properties of their observable algebras, namely, it

is not uncommon that such a magnetic texture is described

by one or more phase factors through which the real-space

dependence will enter the Hamiltonian. These are generally

known as multi-q states and encompass 1D textures such

as spin spirals, but also magnetic skyrmion lattices such as

the famous A phase of MnSi [10]. Each multi-q texture is

characterized by the presence of r distinct vectors qi with

i = 1, · · · , r expressed in terms of the reciprocal lattice as

qi =
∑d

j=1 θi jb j . The dependence on the q vectors enters the

magnetization texture n̂ via the phase factors

ωi(xk ) ≡ (xk · qi/(2π ) + ϕi ) mod 1, (2)

where ϕi ∈ R represents a constant phase shift, implying that

instead of n̂(x) one can write n̂(ω(x)). Since ωi ∈ [0, 1) ∼=
R/Z ∼= T 1, where T 1 is the 1D torus, a multi-q texture is

really a composition of maps,

R
d ω→ T r n̂→ S2, (3)

where T r is the r-dimensional torus. By inserting the Bravais

lattice expansion, one obtains

ωi(xk ) = (k · θi + ϕi ) mod 1, (4)

where θi is the ith row vector of θi j . There is also a natural

action τ of the translation group G = Z
d on these phase

factors, given by

τmωi(xk ) = ωi(xk ) − (m · θi mod 1), (5)

with m ∈ Z
d and where the result is to be understood with re-

spect to mod 1. This means that the pattern of phase factors

is completely specified by defining the phases φ ≡ ω(x0) ∈
T r at one arbitrary, but fixed reference point x0 ∈ R

d . The

collection of all phase factors which are realized in the system

defines the hull of the magnetic pattern [23]:


 = Gφ = {τmφ | m ∈ Z
d} ⊂ T r . (6)

If at least one θi j is irrational, 
 forms a dense subset of T r .

B. The noncommutative torus

The Hamiltonian H from Eq. (1) can now be rewritten in

a way that makes the observable algebra apparent. The basic

idea is to distill the generators of the algebra by formulating

H in terms of these. This can be achieved by casting H into

the form

H =
∑

i∈Zd

T̂i

∑

j∈Zd

hi(φ + θ j) |j〉 〈j| , (7)

where h : T r → Mat2×2(C2), the sum over j visits all lattice

sites, and the sum over i all neighbors. A detailed deriva-

tion can be found in Appendix A. Similar reformulations are

known from the Hofstadter model

HHF = t
∑

〈i,j〉∈Z2×Z2

eiaij |i〉 〈j| , (8)

describing electrons in a uniform magnetic field [24], where

aij is the integral of the magnetic vector potential from site xi

to site xj. One can rewrite

HHF = Ŝ1 + Ŝ2 + Ŝ
†
1 + Ŝ

†
2 (9)

in terms of the magnetic translation operators Ŝi = eiai+1,i T̂i

[25], where T̂i represents a unit lattice translation in direction

i. These operators obey Ŝ1Ŝ2 = e2π in� Ŝ2Ŝ1, where n� is the

number of magnetic flux quanta per unit cell. The knowl-

edge of this algebraic structure completely characterizes the

topological properties of the associated Hofstadter spectrum

[24,26,27]. It is known that in the limit of smooth textures

and strong coupling, the more general Hamiltonian of Eq. (7)

can be effectively mapped onto the Hofstadter Hamiltionian

[14,22].

Equation (7) demonstrates that the observable algebra of

the aperiodic spin system is completely determined (or gen-

erated) by the lattice translation operators and the space of

continuous, matrix-valued functions on the torus. In other

words, any observable can be written in the same generic

form as Eq. (7). We can narrow down the minimal set of

generators: By Fourier decomposition, scalar complex func-

tions on the torus T r are generated by the complex phase

factors uk = e2π iφk , where φ ∈ T r . Consider τi to be a unit

lattice translation in direction i. Following the previous def-

inition of the translation operator, we have τlφk = φk − θkl

and find the commutation relations [τi, τ j] = 0, [ui, u j] = 0

and τluk = e−2π iθkl ukτl . A short derivation of these commuta-

tion relations can be found in Appendix B. By defining α =
(τ1, . . . , τd , u1, . . . ur ), these relations can be summarized to

αlαk = e2π i�lk αkαl , where

� =
(

0 −θT

θ 0

)

. (10)

The observables of the system can therefore be characterized

by the universal C∗ algebra given by the presentation:

A� = 〈α1, · · · , αr+d | αlαk = e2π i�lk αkαl〉. (11)

The defining equation uses a common shorthand notation

whereby the elements before the |-sign are the abstract gen-

erators of the algebra and the terms following the |-sign are

relations these generators have to fulfill. This algebra A�

is known as the noncommutative torus in r + d dimensions

[28–30]. It can be interpreted as a generalization of the al-

gebra describing the Hofstadter model, where �lk describes

generalized magnetic fluxes in the higher-dimensional space

with r artificial extra dimensions associated to the q vectors
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[31,32]. For the C∗-algebraic details, we refer to Refs. [27,33].

Appendix C gives a brisk overview for convenience.

C. Topological classification

K-theory classifies projection operators which can arise

from this observable algebra [29,34,35]. Loosely speaking,

two projection operators P and P′ belong to the same equiva-

lence class [P] if they are related by a unitary transformation

P′ = UPU †. The set of all [P] defines the so-called K0 group

of the algebra A�. Equivalently, one could say that P and

P′ are equivalent if there exists a continuous path between

them. We refer also to Appendix D for a more nuanced look

into the mathematics involved. For the case of A�, the K-

theoretical properties are well-understood [27]. In particular,

one has K0(A�) = Z
2r+d−1

, which is a compact way of saying

that any class of topologically equivalent projection opera-

tors [P] can be written as a linear combination of generators

[P] =
∑

J nJ [EJ ], labelled by even-cardinality subsets J of

I = {τ1 · · · , τd , u1 · · · , ur} (there are precisely 2r+d−1 such

subsets). Loosely speaking, the coefficients nJ ∈ Z count how

often the generator EJ occurs in P up to unitary equivalence.

Once all nJ are known, the class of P in K0(A�) is completely

determined. An explicit knowledge of the projections EJ is not

necessary to compute all nJ . Rather, this can be done via the

noncommutative mth Chern numbers [33,36]. If J ′ ⊆ I with

|J ′|/2 = m, then

ChJ ′ (g) =
(2π i)|J

′|/2

(|J ′|/2)!

∑

σ∈S|J′ |

(−1)σT

⎛

⎝P
∏

j∈J ′

∂σ j
P

⎞

⎠ (12)

is an mth Chern number of the gap g with spectral projection

P. T is the trace per unit volume and S|J ′| is the symmetric

group of order |J|. What appears suggestively in the notation

of derivatives ∂σ j
are so-called derivations on the observable

algebra (which is the proper algebraic generalization of the

concept). The way to construct these derivations is by first

observing that the commutation relations of A� are left invari-

ant with respect to α j → λ jα j where λi ∈ C with |λi| = 1.

If we expand A ∈ A� in terms of the algebra generators,

A =
∑

q∈Zr+d aq α
q1

1 . . . α
qr+d

r+d
, we can then construct a map

ρλ(A) =
∑

q∈Zr+d

aq λ
q1

1 . . . λ
qr+d

r+d
α

q1

1 . . . α
qr+d

r+d
∈ A�. (13)

This can be used to finally define ∂iA = iρλ(A)|λ→1 (see also

Appendix E). The best way to gain intuition into this tech-

nical construction is to observe what happens in conventional

lattice periodic systems. The Bloch functions can be generated

from plane waves eik·x and the operation which sends eik·x →
ixeik·x is nothing but the k derivative. One can therefore think

of ∂τi
as a generalization of ∂ki

to the noncommutative setting.

Since we have found that the underlying observable algebra

is the noncommutative torus, the possible Chern numbers have

many interrelations and fulfill [27]

ChJ ′ (g) =
|J| even
∑

J⊆I

nJ (g) ChJ ′ (EJ ), (14)

where ChJ ′ (EJ ) = 1 if J = J ′, ChJ ′ (EJ ) = 0 if J �⊆ J ′ and

ChJ ′ (EJ ) = Pf(�J\J ′ ) otherwise. The operation Pf denotes the

Pfaffian and �J\J ′ is the representation of � in the reduced in-

dex set J \ J ′. The integer coefficients nJ (g) are exactly those

that correspond to the decomposition of the gap projection

into K-theory generators, i.e., [P(g)] =
∑

J nJ (g)[EJ ]. If all

possible ChJ ′ (g) would be computed via Eq. (12), this would

determine all integer invariants nJ (g) through Eq. (14). Based

on Eq. (14), Tables I, II, III, and IV of the appendix give all

Chern number interrelations relevant for the context of this

paper. We want to single out two relevant special cases of the

expressions above that the reader might be familiar with and

which have a clear physical interpretation. The first one is the

case of empty subset J ′ = ∅, for which

Ch∅(g) = T (P) (15)

represents the integrated density of states (IDS). The second

important case corresponds to J ′ = {τi, τ j}, where

Ch{τi,τ j}(g) = (2π i)T (P[∂τi
P.∂τ j

P]). (16)

Based on the analogy of ∂τ j
with the momentum space deriva-

tive in the lattice periodic setting, one could guess that this

Chern number corresponds to the anomalous Hall conductiv-

ity σi j of a band insulator in units of e2/h. This is in fact the

case [26]. When a periodic supercell can be chosen and the

magnetic texture is smooth, all the higher-order Chern num-

bers can be obtained through integrals over Berry curvature

expressions [22,31,37]. In Appendix F, we show exactly how

the Berry curvature approach is contained in our more general

framework.

III. RESULTS

A. Superposition of spin spirals

The simplest example of all possible Chern numbers,

Ch∅(g), represents the IDS and we can use it to map out

some possible Chern numbers that are realized by the Hamil-

tonian in Eq. (1). To illustrate this point, we start with

investigating the following superposition of two helicoidal

spin spirals (r = 2): n̂(ω(xk )) =
∑2

i=1(cos(2πωi(xk ))ey +
sin(2πωi(xk ))ez ), defined on a 1D lattice (d = 1) implying

ωi(xk ) = kθi + ϕi. This system could be realized physically

via the proximity coupling of a 1D electronic system to two

independent atomic spin spirals, each stabilizing a spin helix

(one could also view it as a noncollinear spin density wave).

We consider the special case of θ2 = 2θ1, i.e., θ1 and θ2 are ra-

tionally dependent. Other relations between θ1 and θ2 could be

considered, but will not change the qualitative results, except

for θ1 = θ2, where the spectrum is trivial. For this situation,

the orbit of the lattice translation group generates a dense, 1D

subspace on the 2-torus: 
 ∼= T 1 ⊂ T 2 which is the hull (see

Fig. 1). For the numerical analysis, we consider a finite system

of N = 1024 atoms with periodic boundary conditions. The

spectrum {εn} is then calculated by exact diagonalization for

different values of θ1, sampled at rational values q/N with

q ∈ N and q � N . In a first step, we consider the density

of states at the chemical potential μ, given by DOS(μ) =
∑2N

n=1 ∂μ f (εn − μ), where f (ε) = 1/(exp{ε/(kBT )} + 1) is

the Fermi-Dirac distribution. The result is shown in Fig. 1 for

different values of μ, and reveals a characteristic Hofstadter

butterfly. As the value of θ1 is varied, multiple gaps open and

close in the spectrum, some of which we label by the colored
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FIG. 1. Fractal spectrum of a spin helix superposition. (a) illustrates the superposition of two spin helix states with θ1 = 2θ2. The evolution

of phase factors (ω1, ω2) along the lattice generates a path on the 2-torus T 2. In (b), we calculate the DOS at kBT = 0.01t and �xc/t = −1 for

a system with N = 1024 sites and periodic boundary conditions, with θ1 = q/N and q ∈ N, q � N . As θ1 increases from zero, the spectrum

branches into a fractal shape reminiscent of the Hofstadter butterfly. Gaps open in the system; some of them are labeled by the colored bullet

points. Each gap can be characterized from the IDS in (c): Discontinuities in the color map correspond to gaps in (b). The emerging line

features are the characteristic fingerprints of the underlying K-theory description.

bullet points. The topological nature of these gaps can be

investigated by the means of K-theory. Since the θ -matrix is

simply given by θ = (θ1, 2θ1)T , the evaluation of the Pfaffian

leads to the prediction

IDS(g) = n∅(g) + nτu(g) θ1, (17)

with nτu(g) = −n{τ1,u1}(g) − 2n{τ1,u2}(g), where the coeffi-

cients can be identified with the first Chern numbers

Ch{τi,ui} = n{τi,ui}. This result can be verified by plotting the

IDS versus θ1, color-coded by μ in Fig. 1. Since the IDS is

constant within a gap, the color exhibits discontinuous jumps

which makes it possible to track the evolution of IDS for a

specific gap as a function of θ1. The result is in perfect agree-

ment with Eq. (17), and makes it possible to assign a unique

label (n∅, nτu) to each gap g. Since the gaps with nτu �= 0 are

characterized by the first Chern number, the superposition of

spin helices leads to a topologically nontrivial spectrum.

B. Skyrmion and vortex crystals

One way to interpret the � matrix is to think of it as

a generalized magnetic flux. This is similar to the emer-

gent field of smooth magnetic skyrmions [12,38], but is

a far-reaching generalization of this concept, which also

makes sense for discrete systems. To investigate the transi-

tion into the conventional emergent field picture, we consider

a triangular lattice with a1 = a(1, 0)T , a2 = a(1/2,
√

3/2)T

and reciprocal lattice vectors b1 = 2π (1,−1/
√

3)T /a, b2 =

2π (0, 2/
√

3)T /a. With respect to this lattice, we devise a

θ -matrix θ = θ1((0, 1), (1, 0), (−1,−1)), which corresponds

to the coherent superposition of three spin spirals. Technical

aspects of the construction of this magnetic texture can be

found in Appendix G. This gives rise to a 3q skyrmion lattice

shown in Fig. 2(a) with the K-theory prediction

IDS(g) = n∅(g) + nτu(g) θ1 + nτ 2u2 (g) θ2
1 , (18)

where nτu = −n{τ1,u2} + n{τ1,u3} − n{τ2,u1} + n{τ2,u3} and

nτ 2u2 = n{τ1,τ2,u1,u2} − n{τ1,τ2,u1,u3} + n{τ1,τ2,u2,u3}. We proceed

similarly as for the spin helices and calculate DOS(θ1) and

IDS(θ1) for different system sizes. A series of topological

gaps appear in Fig. 2(b) as θ1 is increased away from 0,

which can be classified by the label (n∅, nτu, nτ 2u2 ). The θ2
1

dependence of the gap sizes has been theoretically observed

for the skyrmion lattice [14] and now finds its explanation

as a fingerprint of the underlying K-theory. According to

the classification of Fig. 2(c), these gaps correspond to a

quantization of nτ 2u2 with nτu = 0. Naively, this seems to

indicate that the first Chern numbers are zero which would

be in contradiction to the known quantized topological

Hall effect in this system. However, the anomalous Hall

effect picks up the different Chern number Ch{τ1τ2} ∼ n{τ 2u2}
[39] which is not visible in the IDS. In the adiabatic limit

�xc/t → ∞ and θ1 → 0, it can be shown that Ch{τ1τ2} = nτ 2u2

(see Appendix H), and the apparent contradiction is resolved.

Note that these results persist as θ1 approaches the scale
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FIG. 2. Topological spectrum of 3q states. (a) shows an example for skyrmionic 3q states on the triangular lattice with N = 400, θ1 =
3/

√
N and periodic boundary conditions. The DOS at kBT = 0.01t , �xc/t = −5 is calculated by combining all system sizes

√
N ∈ [19, 79] ∩

N with
√

Nθ1 ∈ Z. A series of gaps opens in the spectrum (some of them labeled with bullet points) whose topological character is revealed in

the IDS plot of (c). This procedure is repeated for the 3q spin vortex crystal in (d). Again, the DOS in (e) reveals gaps of topological character,

as confirmed in (f). The visible vertical features in (e) are due to a reduced sampling density in θ1 at those points.

of the underlying lattice, since the respective gaps can be

continuously connected to the limit of θ1 → 0. Here (and, in

particular, for gaps which are not connected to the adiabatic

limit), any arguments based on the smoothness of the texture

fail, while the K-theory description can still be upheld.
To further underline this point, we perform the same cal-

culation after replacing the superposition of spin spirals by a
superposition of spin density waves which gives rise to the
spin texture in Fig. 2(d). It is not obvious what the emer-
gent field language would predic and, in fact, the emergent
magnetic field in the continuous limit Bem = n̂ · (∂xn̂ × ∂yn̂)
is zero for this texture. With the K-theory description, no such
conceptual problems arise. The θ matrix is not changed as
compared to the previous case and the prediction for the IDS
as the marker of topologically nontrivial electronic states in
this system is valid. It is thus of no surprise that topological
gaps are visible in the DOS in Fig. 2(d), while the asso-
ciated IDS in Fig. 2(e) is again in perfect agreement with
the K-theory of multi-q order. This serves to show that the
generalized fluxes � can provide a connecting theme which
extends to more exotic magnetic phases such as vortex crystals
in frustrated magnets [40].

C. The cubic hedgehog lattice

Lastly, we would like to show which predictions K-theory
could make for three-dimensional textures such as the cubic
HL found in MnGe [11]. In this case, one deals with three
linearly independent, mutually orthogonal q vectors: qi = qei.
This means that the θ matrix is just the identity matrix in
d = 3 dimensions: θ = θ1id3. A detailed list with all Chern
number relations for the cubic HL can be found in Table IV
of the appendix. Here, K-theory tells us that the IDS of a gap

g should behave as a third-degree polynomial in θ1, with the
highest order term controlled by third Chern number, i.e.,

IDS(g) = n∅ − nτuθ1 − nτ 2u2θ2
1 + nτ 3u3θ3

1 , (19)

with the shorthand notation

nτu = n{τ1u1} + n{τ2u2} + n{τ3u3}, (20)

nτ 2u2 = n{τ1τ2u1u2} + n{τ1τ3u1u3} + n{τ2τ3u2u3}, (21)

nτ 3u3 = n{τ1τ2τ3u1u2u3}. (22)

The latter can be identified with the top-level Chern number:

Ch{τ1τ2τ3u1u2u3} = n{τ1τ2τ3u1u2u3}. (23)

Finding a model which realizes this high-dimensional Chern
number is left for future research.

IV. CONCLUSION

In summary, we put forward a method to characterize

electronic topological states emerging in real-space spin tex-

tures based on the K-theory of C∗ algebras. In contrast to

conventional methods of topological characterization based

on smooth Berry phase properties—whose meaning is lost in

aperiodic, disordered, or nonsmooth textures—the K-theory

analysis can be used to predict and understand the appear-

ance of nontrivial gaps beyond this limitation. As such, the

K-theory categorization bears great promise for unraveling

and shaping the hybrid topological properties of complex

spin textures in real materials. Particular exciting aspects to

address in the future are the topology of three-dimensional

textures which have the potential to harvest six-dimensional
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physics (as we have shown, nontrivial third Chern numbers

are a theoretical possibility for the 3q cubic HL) as well as

the K-theory topological interpretation of spin fluctuations,

dynamical excitations of real-space spin systems, and the as-

sociated edge-state physics. It would be further interesting to

trace the evolution of topological invariants across topological

magnetic phase transitions in real space and to determine

the physical observables capable of detecting this change in

electronic topology.

The open source code used to generate the results of this

paper is available from Ref. [41].
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APPENDIX A: BRINGING THE HAMILTONIAN

INTO ITS COVARIANT FORM

We demonstrate how the Hamiltonian can indeed be
written in the canonical form presented in the paper. For
simplicity, we consider a primitive hypercubic lattice for the
derivation. For the hopping term, one finds

Ht = t
∑

〈k,l〉∈Z2d

|k〉 〈l|

= t
∑

k∈Zd

d
∑

l=1

(|k〉 〈k + el | + |k + el〉 〈k|)

= t
∑

k∈Zd

d
∑

l=1

(T̂l + T̂
†

l
) |k〉 〈k|

=
d

∑

l=1

(T̂l + T̂
†

l
)

∑

k∈Zd

t |k〉 〈k|

= t

d
∑

l=1

(T̂l + T̂
†

l
), (A1)

where T̂l is a unit translation in the direction el ∈ Z
d . It

is therefore invariant under translations: T̂mHt T̂
†

m = Ht . The
exchange term is given by

Hxc = �xc

∑

k∈Zd

(n̂(ω(xk )) · σ ) |k〉 〈k| . (A2)

It is not invariant under lattice translations, but transforms as

T̂mHxcT̂ †
m = �xc

∑

k∈Zd

(n̂(ω(xk )) · σ) |k + m〉 〈k + m|

= �xc

∑

k∈Zd

(n̂(ω(xk−m)) · σ ) |k〉 〈k|

= �xc

∑

k∈Zd

(n̂(τmω(xk )) · σ ) |k〉 〈k| . (A3)

With the definition φ = ω(x0), the exchange term can there-

fore also be written as

Hxc(φ) = �xc

∑

k∈Zd

(n̂(τ−kφ) · σ ) |k〉 〈k|

= �xc

∑

k∈Zd

(n̂(φ + θk) · σ) |k〉 〈k| , (A4)

and the translation of the Hamiltonian H = Ht + Hxc(φ) can

be expressed in the compact, covariant form

T̂mH (φ)T̂ †
m = H (τmφ), (A5)

or, alternatively,

T̂ †
mH (φ)T̂m = H (φ + θm). (A6)

Combining the results above, the Hamiltonian can finally be

cast into the form

H =
∑

n∈Zd

T̂n

∑

m∈Z

hn(φ + θm) |m〉 〈m| , (A7)

with the definition

hn(φ) ≡

§

¨

©

�xc(n̂(φ) · σ ), n = 0

t id2, ∃l ∈ {1, · · · , d} : n = ±el

0, otherwise.

(A8)

APPENDIX B: DERIVATION OF THE TORUS

COMMUTATION RELATION

The covariant form of the Hamiltonian demonstrates that it

fits into a generic form which combines the action of the trans-

lation operator with matrix-valued functions on the r-torus T r .

A continuous function f : T r → C can be decomposed into a

Fourier series as

f (φ) =
∑

n

fn e2π iφ·n

=
∑

n

fn e2π iφ1n1 · · · e2π iφr nr

=
∑

n

fn (e2π iφ1 )n1 · · · (e2π iφr )nr

≡
∑

n

fn u
n1

1 · · · unr

r . (B1)

In other words, the algebra of continuous functions on the

torus is generated by uk = e2π iφk . One can condense this result

into the presentation

C(T r ) = 〈u1, . . . , ur | [ui, u j] = 0〉. (B2)

The commutation relation between the unit lattice translation

τl and the Fourier factor uk can be derived as

τluk = exp{2π i(τlφk )}τl

= exp{2π i((φk − (el · θk mod 1)) mod 1)}τl

= exp{2π i(φk − (el · θk mod 1))}τl

= exp{−2π i(el · θk mod 1)}ukτl
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= exp{−2π i(el · θk )}ukτl

= exp{−2π iθkl}ukτl , (B3)

which leads to the relation presented in the paper.

APPENDIX C: A MORE PRECISE DESCRIPTION

OF THE NONCOMMUTATIVE TORUS

The following Appendix is adapted from Ref. [33].

By defining α = (τ1, . . . , τd , u1, . . . ur ), the commutation

relations can be summarized to αlαk = e2π i�lk αkαl , where

� =
(

0 −θT

θ 0

)

. (C1)

The paper summarizes the observable algebra of a multi-q

texture as the universal C∗ algebra given by the presentation

A� = 〈α1, · · · , αdeff
| αlαk = e2π i�lk αkαl〉, (C2)

with deff = r + d . �lk is considered as an antisymmetric

deff × deff matrix with entries from R/Z. A generic element

of the algebra can be presented in the form

a =
∑

q∈Zdeff

aqαq, αq = α
q1

1 . . . α
qdeff

deff
, aq ∈ Mat2×2(C)

=
∑

q∈Zd

a(φ, q) α
q1

1 . . . α
qd

d
, (C3)

where a(φ, q) is a continuous function T r × Z
d →

Mat2×2(C) with compact support. The noncommutative

torus accepts the trace

T

⎛

⎝

∑

q∈Zdeff

aq αq

⎞

⎠ = tr a0. (C4)

We define a representation of the noncommutative torus πφ :

A� → B(�2(Zd ⊗ C
2)) via the matrix elements

〈q, α|πφ(a)|q′, β〉 = aαβ (τ−qφ, q′ − q). (C5)

Constructed in this way, the representation fulfills the covari-

ance condition

T̂mπφ(a)T̂ †
m = πτmφ(a), (C6)

which we previously confirmed to hold for the Hamiltonian.

Additionally, an involution is defined by

a∗(φ, q) = a(τ−qφ,−q)†. (C7)

The C∗ algebra associated to A� is then given by the comple-

tion with respect to the norm

‖a‖ = sup
φ∈T r

‖πφa‖. (C8)

APPENDIX D: SOME GENERAL ELEMENTS OF

K-THEORY

The following Appendix is adapted from Ref. [33].

The general goal of the K-theory of operator algebras is

to supply all independent topological invariants that can be

associated to projections and unitary elements of an algebra.

In particular, the K-theory group K0(A�) classifies the projec-

tions

p ∈ M∞ ⊗ A�, p2 = p∗ = p, (D1)

with respect to the von Neumann equivalence relation

p ∼ p′ iff p = vv
′ and p′ = v

′
v (D2)

for some partial isometries v and v
′ with vv

′, v′
v ∈ M∞ ⊗

A�. MN is the algebra of N × N matrices with complex

entries and M∞ is the direct limit of these algebras. For

any p from M∞ ⊗ A�, there exists N ∈ N such that p ∈
MN ⊗ A�, hence we do not really need to work with infinite

matrices. However, MN can be canonically embedded into

M∞ and this is convenient because it enables N to take

flexible values. There are two further equivalence relations for

projections which could be used, and which lead to the same

group K0(A�) [34, p. 18]:

(1) Similarity equivalence:

p ∼u p′ iff p′ = upu∗ (D3)

for some unitary element u from M∞ ⊗ A�;

(2) Homotopy equivalence:

p ∼h p′ iff p(0) = p and p(1) = p′ (D4)

for some continuous function p : [0, 1] → M∞ ⊗ A�, which

always returns a projection.

Homotopy equivalence is the topological equivalence as

understood by condensed matter physicists. The equivalence

class of a projection p will be denoted by [p], i.e., [p] is the

set

[p] = {p′ ∈ M∞ ⊗ A� , p′ ∼ p}. (D5)

If p ∈ MN ⊗ A� and p′ ∈ MM ⊗ A� are two projections,

then (
p 0

0 p′) is a projection from MN+M ⊗ A� and one can

define the addition

[p] ⊕ [p′] =
[(

p 0

0 p′

)]

, (D6)

which provides a semigroup structure on the set of equiva-

lence classes. Then K0(A�) is its enveloping group [35] and,

for the noncommutative deff torus,

K0(A�) = Z
2deff −1

, (D7)

regardless of � and where deff = r + d . As such, there are

2deff −1 generators [EJ ], which can be uniquely labeled by the

subsets of indices J ⊆ {1, . . . , d} of even cardinality [27].

Equation (D7) assures us that, for any projection p from

M∞ ⊗ A�, one has

[p] =
|J|=even
∑

J⊆{1,...,deff }

nJ [EJ ], (D8)

where the coefficients nJ are integer numbers that do not

change as long as p is deformed inside its K0 class. Specif-

ically, two homotopically equivalent projections will display

the same coefficients, hence {nJ}|J|=even represents the com-

plete set of topological invariants associated to the projection

p. Furthermore, two projections that display the same set of

coefficients are necessarily in the same K0 class.
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APPENDIX E: DIFFERENTIAL CALCULUS ON THE

NONCOMMUTATIVE TORUS

As a preliminary step to the calculation of Chern numbers

on the noncommutative torus, a differential calculus needs to

be established. Let λi ∈ C, |λi| = 1 and observe that commu-

tation relations of A� are invariant with respect to

α j �→ λ jα j . (E1)

As such, we can define a deff -torus action,

T
deff � λ = (λ1, . . . , λdeff

) �→ ρλ : A� → A�, (E2)

where the latter is the algebra automorphism:

A =
∑

q∈Zdeff

aq α
q1

1 . . . α
qdeff

deff

�→
∑

q∈Zdeff

aq λ
q1

1 . . . λ
qdeff

deff
α

q1

1 . . . α
qdeff

deff
. (E3)

Then, the generators of the torus action

∂i(A) = i∂λi
ρλ(A)|λ→1 =

∑

q∈Zdeff

iqiaq α
q1

1 . . . α
qdeff

deff
(E4)

provide derivations on the noncommutative deff torus. We

again define our indices with respect to the index set I =
{τ1 · · · , τd , u1 · · · , ur}. Since

∂φk
e2π iφ·n = 2π inke2π iφ·n, (E5)

one finds that the u derivations are just given by the partial

derivatives

∂uk
A = (2π )−1∂φk

A. (E6)

For the τ derivations, the representation on the Hilbert space

evaluates to

πφ(∂τk
A) = i[X̂k, πφ(A)], (E7)

where X̂ =
∑

q∈Zd xq |q〉 〈q| is the position operator on the

Hilbert space.

APPENDIX F: RELATION TO BERRY CURVATURE

If the multi-q texture is commensurate with the lattice,

a Bloch basis can be chosen. We introduce the new basis

notation for the orbital wave functions:

|R, q, α〉 = |R + xq, α〉 . (F1)

Here R describes the lattice of the superstructure. The lattice

Fourier transform (Wannier basis) is given by

|R, q, α〉 =
1

√
N

∑

k∈1.BZ

e−ik·R |ψkqα〉 , (F2)

where N is now the number of primitive cells in the system.

Let Â now represent a translationally invariant operator (with

respect to the superstructure), i.e.,

Â =
∑

R,R′

∑

q,q′,α,β

A
α,β,q,q′

R−R′ |R, q, α〉 〈R′, q′, β|

=
1

N

∑

k,k′∈1.BZ

∑

R,R′

∑

q,q′,α,β

A
α,β,q,q′

R−R′

× e−ik·Re+ik′·R′ |ψkqα〉 〈ψk′q′β |

=
∑

k,k′∈1.BZ

∑

q,q′,α,β

A
α,β,q,q′

k,k′ |ψkqα〉 〈ψk′q′β | , (F3)

where

A
α,β,q,q′

k,k′ =
1

N

∑

R,R′

A
α,β,q,q′

R−R′ e−ik·Re+ik′·R′

=
1

N

∑

R,R′

A
α,β,q,q′

R e−ik·Re−ik·R′
e+ik′·R′

= δk,k′

∑

R

A
α,β,q,q′

R e−ik·R

≡ δk,k′ (Ak )α,β,q,q′ . (F4)

This means that the trace of any operator product of trans-

lationally invariant operators is given by

T (Â1 · · · Â j ) =
1

V
lim

N→∞

1

N

∑

k∈1.BZ

tr A1
k · · · A

j

k

=
∫

1.BZ

dd k

(2π )d
tr A1

k · · · A
j

k, (F5)

where V is the volume of the primitive unit cell and the trace tr

includes the internal lattice degrees of freedom within the unit

cell (in the addition to the spin degree). Take now a covariant

operator

Â =
∑

R

∑

αβ

∑

q

Aα,β (τ−qφ) |R, q, α〉 〈R, q, β| , (F6)

and therefore

(Ak )α,β,q,q′ = δq,q′ (Ak(τ−qφ))α,β . (F7)

We split the trace in two parts tr = trqtrσ according to the

atomistic degrees of freedom and the spin degree of freedom.

By carrying out the operator product of covariant operators,

one finds

T (Â1 · · · Â j ) =
∫

1.BZ

dd k

(2π )d
trqtrσ A1

k · · · A
j

k

=
∑

q

∫

1.BZ

dd k

(2π )d
trσ A1

k(τ−qφ) · · · A
j

k(τ−qφ)

→
∫

1.BZ

dd k

(2π )d

∫




drφ trσ A1
k(φ) · · · A

j

k(φ).

(F8)

Here, the limit → indicates the transition to a smooth mag-

netic texture, which is supported by a larger and larger amount

of atomic sites in the primitive cell of the superstructure. As a

further ingredient, one needs that the action of the translation

operator is ergodic on 
 in the smooth limit.

Assuming Â is diagonal in q (as is the case for the covariant

operators):

i[X̂i, A] =
∑

R,R′

∑

q,α,β

i(R − R′)iA
α,β,q

R−R′ |R, q, α〉 〈R′, q, β|

=
∑

k∈1.BZ

∑

q,α,β

∑

R

iRi A
α,β,q

R e−ik·R |ψkqα〉 〈ψkqβ |
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= −
∑

k∈1.BZ

∑

q,α,β

∂ki

∑

R

A
α,β,q

R e−ik·R |ψkqα〉 〈ψkqβ |

=
∑

k∈1.BZ

∑

q,α,β

(−∂ki
Ak )α,β,q |ψkqα〉 〈ψkqβ | . (F9)

For covariant operators, we therefore have the correspondence

dictionary for the covariant Bloch representation

πφ(A) → Ak(φ), (F10)

πφ(∂u j
A) → ∂φ j

Ak(φ)/(2π ), (F11)

πφ(∂τ j
A) → −∂k j

Ak(φ), (F12)

T →
∫

1.BZ

dd k

(2π )d
trσ

∑

q

τq�, (F13)

where τq� denotes the action:

τq � A1(φ) · · · A j (φ) ≡ A1(τ−qφ) · · · A j (τ−qφ). (F14)

And, in the limit of smooth textures and ergodic action,

∑

q

τq� →
∫




drφ. (F15)

Now that the differential calculus on the torus is estab-

lished, the Chern numbers can be defined. The Chern number

of a projection P to gap g and associated to a subset of indices

J of even cardinality is given by

ChJ ′ (g) =
(2π i)|J

′|/2

(|J ′|/2)!

∑

σ∈S|J′ |

(−1)σT

⎛

⎝P
∏

j∈J ′

∂σ j
P

⎞

⎠, (F16)

where for J = ∅, we define Ch∅(P) = T (P). The structure

of the noncommutative torus imposes relations on the Chern

numbers. These can be found by studying the values of the

Chern numbers on the K0 generators of A�, which can be

found in Ref. [27] (p. 141):

ChJ ′[EJ ] =

§

¨

©

0 if J ′ � J

1 if J ′ = J

Pf(�J\J ′ ) if J ′ ⊂ J,

(F17)

where J, J ′ ⊂ {1, . . . , deff}. Since the Chern numbers are

also linear maps, their values on the gap projection [PG] =
∑

J nJ [eJ ] can be straightforwardly computed from Eq. (F17):

ChJ ′ (g) = nJ ′ (g) +
∑

J ′�J

nJ (g) Pf(�J\J ′ ). (F18)

The K-theory of the noncommutative torus therefore imposes

relations among the various Chern numbers. The top Chern

number corresponding to J ′ = {1, . . . , deff} is always an inte-

ger, but the lower Chern numbers may not be.

To illustrate the special case of a commensurate texture,

consider the special case of d = r = 2 and deff = d + r = 4.

Via the correspondence dictionary, we find the top Chern

number provided by the expression (for J = {τ1, τ2, u1, u2})

ChJ (g) = −
1

2

∫

1.BZ

dd k

(2π )d

∑

q

τq �

∑

σ∈S4

(−1)σ

× trσ Pk(φ)
∏

j∈J

∂σ j
Pk(φ), (F19)

where the representations of Eqs. (F10) and (F11) have al-

ready been inserted. We identify the Berry curvature

Fσ1,σ2
(k,φ) = iPk(φ)[∂σ1

Pk(φ), ∂σ2
Pk(φ)] (F20)

and write
∑

σ∈S4

(−1)σ trσ Pk(φ)
∏

j∈J

∂σ j
Pk(φ) (F21)

= εαβγ δtrσ Pk(φ)∂σα
Pk(φ)∂σβ

Pk(φ)∂σγ
Pk(φ)∂σδ

Pk(φ)

= −
1

4
εαβγ δtrσ Fαβ (k,φ)Fγ δ (k,φ). (F22)

Inserting this result into the expression for the Chern number

gives

ChJ (g) =
1

8

∑

q

∫

1.BZ

dd k

(2π )d
εαβγ δ

× trσ Fαβ (k, τ−qφ)Fγ δ (k, τ−qφ)

=
1

32π2

∑

q

∫

1.BZ

dd k εαβγ δtrσ Fαβ

× (k, τ−qφ)Fγ δ (k, τ−qφ). (F23)

Taking the limit of smooth textures of this expression, one

then obtains

→
1

32π2

∫




drφ

∫

1.BZ

dd k εαβγ δtrσ Fαβ (k,φ)Fγ δ (k,φ)

=
1

32π2

∫

T deff

ddeff λ εαβγ δtrσ Fαβ (λ)Fγ δ (λ), (F24)

which is the familiar expression for the second Chern number

in terms of the Berry curvature [37]. Repeating the same

calculation for the case of d = r = 1 and deff = d + r = 2,

with J = {τu}, one finds

ChJ (g) = −
1

2π

∑

q

∫

1.BZ

dd k trσ Fτu(k, τ−qφ)

→ −
1

2π

∫




drφ

∫

1.BZ

dd k trσ Fτu(k,φ))

= −
1

2π

∫

T deff

ddeff λ trσ Fτu(λ), (F25)

which, in this case, represents the usual expression for the first

Chern number in terms of the Berry curvature [37].

APPENDIX G: THE � MATRIX FOR 3q STATES ON THE

TRIANGULAR LATTICE

In this Appendix, we discuss the construction of the

skyrmion 3q state on the triangular lattice as it appears in

the main text. Real- and reciprocal space lattice vectors are

introduced via

a1 = (1, 0)T , (G1)

a2 = (1/2,
√

3/2)T , (G2)

b1 = 2π (1,−1/
√

3)T , (G3)

b2 = 2π (0, 2/
√

3)T . (G4)
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TABLE I. Chern number expansion for a 2q state in d = 1 di-

mensions with θ = (θ1, θ2 )T (e.g., the 2q helicoids).

J ′ ChJ ′

{} −θ1n{τ1,u1} − θ2n{τ1,u2} + n{}
{τ1, u1} n{τ1,u1}
{τ1, u2} n{τ1,u2}
{u1, u2} n{u1,u2}

With respect to these lattice vectors, the q vectors of the

texture are given by

q1 = θ1b2, (G5)

q2 = θ1b1, (G6)

q3 = θ1(−b1 − b2). (G7)

One can confirm that these vectors form the vertices of an

equilateral triangle and that
∑

i qi = 0. From the definition, it

TABLE II. Chern number expansion for a 2q state in d = 2

dimensions with θ = θ1((0, 1), (1, 0)) (an example would be the 2q

skyrmion lattice).

J ′ ChJ ′

{} θ2
1 n{τ1,τ2,u1,u2} − θ1n{τ1,u2} − θ1n{τ2,u1} + n{}

{τ1, τ2} n{τ1,τ2}
{τ1, u1} n{τ1,u1}
{τ1, u2} −θ1n{τ2,u1} − θ1n{τ1,τ2,u1,u2} + n{τ1,u2}
{τ2, u1} −θ1n{τ1,u2} − θ1n{τ1,τ2,u1,u2} + n{τ2,u1}
{τ2, u2} n{τ2,u2}
{u1, u2} n{u1,u2}
{τ1, τ2, u1, u2} n{τ1,τ2,u1,u2}

follows that the θ matrix is given by

θ = θ1

⎛

⎝

0 1

1 0

−1 −1

⎞

⎠. (G8)

As initial phases, we take φ = (0, 0, π ). The respective Chern

number decomposition can be found in Table III (the anal-

ogous case for a 2q state in d = 1 and d = 2 is shown in

Tables I and II, respectively). Let Rz
2π/3 represent a −2π/3

rotation around the z axis. Then we write

n̂SkX(x) =
3

∑

i=1

(

Rz
2π/3

)i−1
n̂hx

(((

Rz
2π/3

)i−1
q1

)

· x/(2π ) + φi

)

, (G9)

n̂XY−V(x) =
3

∑

i=1

(

Rz
2π/3

)i−1
n̂sdw

(((

Rz
2π/3

)i−1
q1

)

· x/(2π ) + φi

)

. (G10)

Here, the skyrmion lattice n̂SkX is therefore constructed from a

coherent superposition of three spin helices (hx), and the vor-

tex lattice n̂XY−V is constructed from a coherent superposition

of spin density waves (sdw). Respectively, these are defined

by

n̂hx(ψ ) = (0, sin(ψ ), cos(ψ ))T , (G11)

n̂sdw(ψ ) = (sin(ψ ), 0, 0)T . (G12)

For the SkX state, the result of the formula is always normal-

ized by n̂SkX(x) → n̂SkX(x)/‖n̂SkX(x)‖, while for the XY − V

state, one scales the result such that

sup
x

‖n̂XY−V(x)‖ = 1. (G13)

As the exact diagonalization of the Hamiltonian is computa-

tionally more demanding in d = 2 dimensions compared to

the d = 1 case, we combine the spectra of different linear

system sizes N ∈ [19, 79] (i.e., there are N lattice unit cells

per dimension). The θ1 are sampled again at rational values

θ1 = m/N with m ∈ Z and 0 � m � N . Since N is not nec-

essarily prime, some θ1 values would be sampled multiple

times. When this occurs for two different values of N , we

always choose the larger system size to obtain a better spectral

resolution.

APPENDIX H: DISCUSSION OF THE RELATION TO

EMERGENT MAGNETIC FIELDS

In the adiabatic limit of smooth textures and strong ex-

change coupling, our theory should reduce to the well-known

language of emergent magnetic fields. To discuss the adiabatic

limit, we introduce the unitary transformation:

U †(x)(n̂(x) · σ)U (x) = σz. (H1)

By parameterizing the magnetization vector in polar coor-

dinates n̂ = n̂(θ, φ) in spherical coordinates, this transfor-

mation can be formulated explicitly as U = n̂(θ/2, φ) · σ ≡
m · σ. The discretization on the lattice is given by

U (x̂) =
∑

k∈Zd

U (xk ) |k〉 〈k| . (H2)

Applying the transformation to the Hamiltonian, one finds

U (x̂)†HU (x̂) =
∑

〈k,l〉∈Z2d

tkl |k〉 〈l| + �xc

∑

k∈Zd

σz |k〉 〈k| ,

(H3)
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TABLE III. Chern number expansion for θ = θ1((0, 1), (1, 0), (−1, −1)) (the 3q triangular skyrmion lattice).

J ′ ChJ ′

{} θ2
1 n{τ1,τ2,u1,u2} − θ2

1 n{τ1,τ2,u1,u3} + θ2
1 n{τ1,τ2,u2,u3} − θ1n{τ1,u2} + θ1n{τ1,u3} − θ1n{τ2,u1} + θ1n{τ2,u3} + n{}

{τ1, τ2} n{τ1,τ2}
{τ1, u1} θ1n{τ2,u3} + θ1n{τ1,τ2,u1,u3} + n{τ1,u1}
{τ1, u2} −θ1n{τ2,u1} + θ1n{τ2,u3} − θ1n{τ1,τ2,u1,u2} + θ1n{τ1,τ2,u2,u3} + n{τ1,u2}
{τ1, u3} −θ1n{τ2,u1} − θ1n{τ1,τ2,u1,u3} + n{τ1,u3}
{τ2, u1} −θ1n{τ1,u2} + θ1n{τ1,u3} − θ1n{τ1,τ2,u1,u2} + θ1n{τ1,τ2,u1,u3} + n{τ2,u1}
{τ2, u2} θ1n{τ1,u3} + θ1n{τ1,τ2,u2,u3} + n{τ2,u2}
{τ2, u3} −θ1n{τ1,u2} − θ1n{τ1,τ2,u2,u3} + n{τ2,u3}
{u1, u2} θ1n{τ1,u3} + θ1n{τ2,u3} + θ1n{τ1,u1,u2,u3} + θ1n{τ2,u1,u2,u3} + n{u1,u2}
{u1, u3} −θ1n{τ1,u2} − θ1n{τ1,u1,u2,u3} + n{u1,u3}
{u2, u3} −θ1n{τ2,u1} − θ1n{τ2,u1,u2,u3} + n{u2,u3}
{τ1, τ2, u1, u2} n{τ1,τ2,u1,u2}
{τ1, τ2, u1, u3} n{τ1,τ2,u1,u3}
{τ1, τ2, u2, u3} n{τ1,τ2,u2,u3}
{τ1, u1, u2, u3} n{τ1,u1,u2,u3}
{τ2, u1, u2, u3} n{τ2,u1,u2,u3}

TABLE IV. Chern number expansion for the 3q cubic hedgehog lattice in three dimensions with θ = θ1id3.

J ′ ChJ ′

{} θ3
1 n{τ1,τ2,τ3,u1,u2,u3} − θ2

1 n{τ1,τ2,u1,u2} − θ2
1 n{τ1,τ3,u1,u3} − θ2

1 n{τ2,τ3,u2,u3} − θ1n{τ1,u1} − θ1n{τ2,u2} − θ1n{τ3,u3} + n{}
{τ1, τ2} −θ1n{τ3,u3} − θ1n{τ1,τ2,τ3,u3} + n{τ1,τ2}
{τ1, τ3} −θ1n{τ2,u2} − θ1n{τ1,τ2,τ3,u2} + n{τ1,τ3}
{τ1, u1} −θ2

1 n{τ2,τ3,u2,u3} − θ2
1 n{τ1,τ2,τ3,u1,u2,u3} − θ1n{τ2,u2} − θ1n{τ3,u3} − θ1n{τ1,τ2,u1,u2} − θ1n{τ1,τ3,u1,u3} + n{τ1,u1}

{τ1, u2} −θ1n{τ3,u3} − θ1n{τ1,τ3,u2,u3} + n{τ1,u2}
{τ1, u3} −θ1n{τ2,u2} − θ1n{τ1,τ2,u2,u3} + n{τ1,u3}
{τ2, τ3} −θ1n{τ1,u1} − θ1n{τ1,τ2,τ3,u1} + n{τ2,τ3}
{τ2, u1} −θ1n{τ3,u3} − θ1n{τ2,τ3,u1,u3} + n{τ2,u1}
{τ2, u2} −θ2

1 n{τ1,τ3,u1,u3} − θ2
1 n{τ1,τ2,τ3,u1,u2,u3} − θ1n{τ1,u1} − θ1n{τ3,u3} − θ1n{τ1,τ2,u1,u2} − θ1n{τ2,τ3,u2,u3} + n{τ2,u2}

{τ2, u3} −θ1n{τ1,u1} − θ1n{τ1,τ2,u1,u3} + n{τ2,u3}
{τ3, u1} −θ1n{τ2,u2} − θ1n{τ2,τ3,u1,u2} + n{τ3,u1}
{τ3, u2} −θ1n{τ1,u1} − θ1n{τ1,τ3,u1,u2} + n{τ3,u2}
{τ3, u3} −θ2

1 n{τ1,τ2,u1,u2} − θ2
1 n{τ1,τ2,τ3,u1,u2,u3} − θ1n{τ1,u1} − θ1n{τ2,u2} − θ1n{τ1,τ3,u1,u3} − θ1n{τ2,τ3,u2,u3} + n{τ3,u3}

{u1, u2} −θ1n{τ3,u3} − θ1n{τ3,u1,u2,u3} + n{u1,u2}
{u1, u3} −θ1n{τ2,u2} − θ1n{τ2,u1,u2,u3} + n{u1,u3}
{u2, u3} −θ1n{τ1,u1} − θ1n{τ1,u1,u2,u3} + n{u2,u3}
{τ1, τ2, τ3, u1} n{τ1,τ2,τ3,u1}
{τ1, τ2, τ3, u2} n{τ1,τ2,τ3,u2}
{τ1, τ2, τ3, u3} n{τ1,τ2,τ3,u3}
{τ1, τ2, u1, u2} −θ1n{τ3,u3} − θ1n{τ1,τ2,τ3,u3} − θ1n{τ1,τ3,u1,u3} − θ1n{τ1,τ3,u2,u3} − θ1n{τ2,τ3,u1,u3} − θ1n{τ2,τ3,u2,u3} − θ1n{τ3,u1,u2,u3} −

θ1n{τ1,τ2,τ3,u1,u2,u3} + n{τ1,τ2,u1,u2}
{τ1, τ2, u1, u3} n{τ1,τ2,u1,u3}
{τ1, τ2, u2, u3} n{τ1,τ2,u2,u3}
{τ1, τ3, u1, u2} n{τ1,τ3,u1,u2}
{τ1, τ3, u1, u3} −θ1n{τ2,u2} − θ1n{τ1,τ2,τ3,u2} − θ1n{τ1,τ2,u1,u2} − θ1n{τ1,τ2,u2,u3} − θ1n{τ2,τ3,u1,u2} − θ1n{τ2,τ3,u2,u3} − θ1n{τ2,u1,u2,u3} −

θ1n{τ1,τ2,τ3,u1,u2,u3} + n{τ1,τ3,u1,u3}
{τ1, τ3, u2, u3} n{τ1,τ3,u2,u3}
{τ1, u1, u2, u3} n{τ1,u1,u2,u3}
{τ2, τ3, u1, u2} n{τ2,τ3,u1,u2}
{τ2, τ3, u1, u3} n{τ2,τ3,u1,u3}
{τ2, τ3, u2, u3} −θ1n{τ1,u1} − θ1n{τ1,τ2,τ3,u1} − θ1n{τ1,τ2,u1,u2} − θ1n{τ1,τ2,u1,u3} − θ1n{τ1,τ3,u1,u2} − θ1n{τ1,τ3,u1,u3} − θ1n{τ1,u1,u2,u3} −

θ1n{τ1,τ2,τ3,u1,u2,u3} + n{τ2,τ3,u2,u3}
{τ2, u1, u2, u3} n{τ2,u1,u2,u3}
{τ3, u1, u2, u3} n{τ3,u1,u2,u3}
{τ1, τ2, τ3, u1, u2, u3} n{τ1,τ2,τ3,u1,u2,u3}
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where tkl = tU †(xk )U (xl). In the limit �xc/t → ∞, one can

project onto the eigenstates σ = ±1 of σz to arrive at the

effective Hamiltonian

Hσ
eff =

∑

〈k,l〉∈Z2d

t eff
kl,σ |k〉 〈l| , (H4)

where t eff
kl,σ = t 〈σ |U †(xk )U (xl)|σ 〉. In the continuous case, a

vector potential can be defined as Ai = −ih̄U †∂iU/e, which

has the adiabatic projection

A±
i = ±

h̄

e
(m × ∂im)z. (H5)

From this, one obtains the emergent magnetic field:

B±
z = (∇ × A±)z = ±

h̄

2e
n̂ · (∂xn̂ × ∂yn̂). (H6)

For an isolated skyrmion of topological charge,

Q =
1

4π

∫

R2

dx n̂ · (∂xn̂ × ∂yn̂) ∈ Z (H7)

is quantized. The emergent flux in this case is

�± =
∫

R2

dx B±
z

= ±
h̄

2e

∫

R2

dx n̂ · (∂xn̂ × ∂yn̂)

= ±2π
h̄

e
Q. (H8)

Applying the translation operator to the previously defined

unitary operator, we find

T̂mU (x̂)T̂ †
m =

∑

k

U (xk ) |k + m〉 〈k + m|

=
∑

k

U (xk−m) |k〉 〈k|

= U (x̂ − xm), (H9)

from which one can obtain the relation T̂mU (x̂) = U (x̂ −
xm)T̂m. Within the changed frame of reference, the new unit

translation operator is given by

Ŝi ≡ U †(x̂)T̂iU (x̂)

= U †(x̂)U (x̂ − ai )T̂i. (H10)

We now assume that n̂ is given by a multi-q state in d = 2

dimensions, characterized by a single pitch variable θ1. For a

smoothly varying texture (limit of small θ1), the prefactor can

be expanded:

U †(x)U (x − ai ) = id2 − U †(x)(ai · ∇)U (x) + O
(

θ2
1

)

= id2 + ie ai · A/h̄ + O
(

θ2
1

)

= id2 +
ie

h̄

∫ x+ai

x

dr A + O
(

θ2
1

)

= exp

(

ie

h̄

∫ x+ai

x

dr A

)

+ O
(

θ2
1

)

, (H11)

where we have implicitly used the adiabatic projection into a

spin subspace. Introducing the shorthand notation

↑x+a
x ≡ exp

(

ie

h̄

∫ x+ai

x

dr A

)

, (H12)

↓x+a
x ≡ exp

(

−
ie

h̄

∫ x+ai

x

dr A

)

, (H13)

and, using this notation, one can derive the commutation rela-

tions

S1S2 =↑x+a1

x T1 ↑x+a2

x T2

=↑x+a1

x ↑x+a2−a1

x−a1
T2T1

=↑x+a1

x ↑x+a2−a1

x−a1
T2 ↓x+a1

x S1

=↑x+a1

x ↑x+a2−a1

x−a1
↓x+a1+a2

x+a2
T2S1

=↑x+a1

x ↑x+a2−a1

x−a1
↓x+a1+a2

x+a2
↓x+a2

x S2S1. (H14)

Since

↑x+a2−a1

x−a1
=↑x+a2+a1

x+a1
+O

(

θ2
1

)

, (H15)

the combination of integrals amounts to clockwise line inte-

gral around the unit cell anchored at x. We change this to a

counter-clockwise orientation and apply the Stokes theorem

to write the emergent flux as

�(x) =
∮

∂uc(x)

dr · A =
∫

uc(x)

d2r (∇ × A)z. (H16)

We therefore find the commutation relation

S1S2 = e−ih̄�(x)/eS2S1 + O
(

θ2
1

)

. (H17)

For the lattice of skyrmions with charge Q = 1, the emer-

gent flux per magnetic unit cell is quantized, i.e., it is given by

|e�sk/h̄| = 2π . On average, the flux per unit cell of the lattice

is therefore given by

〈�(x)〉 =
2π

〈Nuc〉
, (H18)
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where 〈Nuc〉 is the average number of lattice unit cells within

a magnetic unit cell. In d = 2 dimensions, one has 〈Nuc〉 =
1/θ2

1 . The algebra can then be approximated by replacing the

exact flux �(x) per lattice unit cell by this average and one

obtains the commutation relation

S1S2 ≈ e−i2πθ2
1 S2S1, (H19)

while at same time, Si commutes with the Fourier factors since

the noncollinear magnetism has been transformed away. All

possible Chern numbers are then summarized by the table

J ′ ChJ ′

{} −θ2
1 n{s1,s2} + n{}

{s1, s2} n{s1,s2}

(H20)

Consequently, the IDS in the gap g for the effective system is

given by the expansion

IDS(g) = n∅(g) − ns1,s2
(g)θ2

1 . (H21)

By matching the coefficients, of the two limits, one therefore

finds

n{s1,s2}(g) ∼ nt2u2 (g), for |�xc/t | → ∞, θ1 → 0. (H22)

Further, the left-hand side can also be calculated directly as

Chern number, since

Ch{s1,s2}(g) = n{s1,s2}(g). (H23)

Since the Chern number is invariant under unitary transforma-

tions of the Hamiltonian, this then leads to

Ch{t1,t2}(g) ∼ Ch{s1,s2}(g) ∼ nt2u2 (g), (H24)

for |�xc/t | → ∞ and θ1 → 0. This means that the presence

of a quantum anomalous Hall effect can be deduced from the

IDS [where nt2u2 (g) can be extracted]. To rephrase this result:

The relation holds, because we have shown that the physics of

the asymptotic limit is described by a two-dimensional sub-

algebra of the full (2 + r)-dimensional noncommutative torus

generated by Ŝi = 〈σ |U †(x̂)U (x̂ − ai )|σ 〉 T̂i. This subalgebra

is completely characterized by two topological integers n{}
and n{s1,s2}, which can be directly extracted from the IDS.

[1] E. Y. Vedmedenko, R. K. Kawakami, D. D. Sheka, P.

Gambardella, A. Kirilyuk, A. Hirohata, C. Binek, O.

Chubykalo-Fesenko, S. Sanvito, B. J. Kirby et al., The 2020

magnetism roadmap, J. Phys. D: Appl. Phys. 53, 453001

(2020).

[2] C. Back, V. Cros, H. Ebert, K. Everschor-Sitte, A. Fert, M.

Garst, T. Ma, S. Mankovsky, T. L. Monchesky, M. V. Mostovoy

et al., The 2020 skyrmionics roadmap, J. Phys. D: Appl. Phys.

53, 363001 (2020).

[3] T. Okubo, S. Chung, and H. Kawamura, Multiple-q states and

the skyrmion lattice of the triangular-lattice Heisenberg antifer-

romagnet under magnetic fields, Phys. Rev. Lett. 108, 017206

(2012).

[4] R. Takagi, J. White, S. Hayami, R. Arita, D. Honecker, H.

Rønnow, Y. Tokura, and S. Seki, Multiple-q noncollinear mag-

netism in an itinerant hexagonal magnet, Sci. Adv. 4, eaau3402

(2018).

[5] M. Hirschberger, T. Nakajima, S. Gao, L. Peng, A. Kikkawa,

T. Kurumaji, M. Kriener, Y. Yamasaki, H. Sagayama, H.

Nakao et al., Skyrmion phase and competing magnetic or-

ders on a breathing kagomé lattice, Nat. Commun. 10, 5831

(2019).

[6] Y. Fujishiro, N. Kanazawa, T. Nakajima, X. Yu, K. Ohishi, Y.

Kawamura, K. Kakurai, T. Arima, H. Mitamura, A. Miyake

et al., Topological transitions among skyrmion-and hedgehog-

lattice states in cubic chiral magnets, Nat. Commun. 10, 1059

(2019).

[7] S. Okumura, S. Hayami, Y. Kato, and Y. Motome, Magnetic

hedgehog lattices in noncentrosymmetric metals, Phys. Rev. B

101, 144416 (2020).

[8] T. Adams, A. Chacon, M. Wagner, A. Bauer, G. Brandl, B.

Pedersen, H. Berger, P. Lemmens, and C. Pfleiderer, Long-

wavelength helimagnetic order and skyrmion lattice phase in

Cu2OSeO3, Phys. Rev. Lett. 108, 237204 (2012).

[9] M. Janoschek, M. Garst, A. Bauer, P. Krautscheid, R. Georgii,

P. Böni, and C. Pfleiderer, Fluctuation-induced first-order phase

transition in Dzyaloshinskii-Moriya helimagnets, Phys. Rev. B

87, 134407 (2013).

[10] A. Neubauer, C. Pfleiderer, B. Binz, A. Rosch, R. Ritz, P. G.

Niklowitz, and P. Böni, Topological Hall effect in the A phase

of MnSi, Phys. Rev. Lett. 102, 186602 (2009).

[11] T. Tanigaki, K. Shibata, N. Kanazawa, X. Yu, Y. Onose, H. S.

Park, D. Shindo, and Y. Tokura, Real-space observation of

short-period cubic lattice of skyrmions in MnGe, Nano Lett. 15,

5438 (2015).

[12] K. Bliokh and Y. Bliokh, Spin gauge fields: From Berry phase

to topological spin transport and Hall effects, Ann. Phys. 319,

13 (2005).

[13] T. Fujita, M. B. A. Jalil, S. G. Tan, and S. Murakami, Gauge

fields in spintronics, J. Appl. Phys. 110, 121301 (2011).

[14] K. Hamamoto, M. Ezawa, and N. Nagaosa, Quantized topolog-

ical Hall effect in skyrmion crystal, Phys. Rev. B 92, 115417

(2015).

[15] B. Göbel, A. Mook, J. Henk, and I. Mertig, Unconventional

topological Hall effect in skyrmion crystals caused by the topol-

ogy of the lattice, Phys. Rev. B 95, 094413 (2017).

[16] B. Göbel, A. Mook, J. Henk, and I. Mertig, The family of

topological Hall effects for electrons in skyrmion crystals, Eur.

Phys. J. B 91, 179 (2018).

[17] P. Bruno, V. K. Dugaev, and M. Taillefumier, Topological Hall

effect and Berry phase in magnetic nanostructures, Phys. Rev.

Lett. 93, 096806 (2004).

[18] K. Everschor-Sitte and M. Sitte, Real-space Berry phases:

Skyrmion soccer, J. Appl. Phys. 115, 172602 (2014).

[19] N. Nagaosa and Y. Tokura, Topological properties and dynam-

ics of magnetic skyrmions, Nat. Nanotechnol. 8, 899 (2013).

[20] P. B. Ndiaye, A. Abbout, V. M. L. D. P. Goli, and A. Manchon,

Quantum anomalous Hall effect and Anderson-Chern insulating

regime in the noncollinear antiferromagnetic 3Q state, Phys.

Rev. B 100, 144440 (2019).

[21] W. Feng, J.-P. Hanke, X. Zhou, G.-Y. Guo, S. Blügel, Y.

Mokrousov, and Y. Yao, Topological magneto-optical effects

013102-13



LUX, GHOSH, PRASS, PRODAN, AND MOKROUSOV PHYSICAL REVIEW RESEARCH 6, 013102 (2024)

and their quantization in noncoplanar antiferromagnets, Nat.

Commun. 11, 118 (2020).

[22] Y. Su, S. Hayami, and S.-Z. Lin, Dimension transcendence and

anomalous charge transport in magnets with moving multiple-q

spin textures, Phys. Rev. Res. 2, 013160 (2020).

[23] J. Bellissard, D. Herrmann, and M. Zarrouati, Hull of aperiodic

solids and gap labelling theorems, in Directions in Mathe-

matical Quasicrystals (AMS, Providence, 2000), Vol. 13 pp.

207–258.

[24] D. R. Hofstadter, Energy levels and wave functions of Bloch

electrons in rational and irrational magnetic fields, Phys. Rev. B

14, 2239 (1976).

[25] J. Zak, Magnetic translation group, Phys. Rev. 134, A1602

(1964).

[26] J. Bellissard, A. van Elst, and H. Schulz-Baldes, The noncom-

mutative geometry of the quantum Hall effect, J. Math. Phys.

35, 5373 (1994).

[27] E. Prodan and H. Schulz-Baldes, Bulk and Boundary Invariants

for Complex Topological Insulators (Springer, Cham, 2016).

[28] M. Rieffel, C*-algebras associated with irrational rotations,

Pacific J. Math. 93, 415 (1981).

[29] A. Connes, Noncommutative Geometry (Springer, San Diego,

1994).

[30] E. Prodan and Y. Shmalo, The K-theoretic bulk-boundary prin-

ciple for dynamically patterned resonators, J. Geom. Phys. 135,

135 (2019).

[31] Y. E. Kraus, Z. Ringel, and O. Zilberberg, Four-dimensional

quantum Hall effect in a two-dimensional quasicrystal, Phys.

Rev. Lett. 111, 226401 (2013).

[32] S. Ma, Y. Bi, Q. Guo, B. Yang, O. You, J. Feng,

H.-B. Sun, and S. Zhang, Linked Weyl surfaces and

Weyl arcs in photonic metamaterials, Science 373, 572

(2021).

[33] Y. Liu, L. F. Santos, and E. Prodan, Topological gaps in

quasiperiodic spin chains: A numerical and K-theoretic anal-

ysis, Phys. Rev. B 105, 035115 (2022).

[34] E. Park, Complex Topological K-theory (Cambridge University

Press, Cambridge, UK, 2008), Vol. 111.

[35] B. Blackadar, K-theory for Operator Algebras (Cambridge Uni-

versity Press, Cambridge, UK, 1998), Vol. 5.

[36] E. Prodan, B. Leung, and J. Bellissard, The non-commutative

nth-Chern number (n � 1), J. Phys. A: Math. Theor. 46, 485202

(2013).

[37] X.-L. Qi, T. L. Hughes, and S.-C. Zhang, Topological field

theory of time-reversal invariant insulators, Phys. Rev. B 78,

195424 (2008).

[38] T. Schulz, R. Ritz, A. Bauer, M. Halder, M. Wagner, C. Franz,

C. Pfleiderer, K. Everschor, M. Garst, and A. Rosch, Emergent

electrodynamics of skyrmions in a chiral magnet, Nat. Phys. 8,

301 (2012).

[39] E. Prodan, A Computational Non-commutative Geometry Pro-

gram for Disordered Topological Insulators (Springer, Cham,

Switzerland, 2017), Vol. 23, p. 45.

[40] Z. Wang, Y. Kamiya, A. H. Nevidomskyy, and C. D. Batista,

Three-dimensional crystallization of vortex strings in frustrated

quantum magnets, Phys. Rev. Lett. 115, 107201 (2015).

[41] https://github.com/luxfabian/noncommutative_torus_in_spin_

systems.

013102-14


