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The nontrivial topology of spin systems such as skyrmions in real space can promote complex electronic states.
Here, we provide a general viewpoint at the emergence of topological spectral gaps in spin systems based on the
methods of noncommutative K-theory. By realizing that the structure of the observable algebra of spin textures
is determined by the algebraic properties of the noncommutative torus, we arrive at a unified understanding of
topological electronic states which we predict to arise in various noncollinear setups. The power of our approach
lies in an ability to categorize emergent topological states algebraically without referring to smooth real- or
reciprocal-space quantities. This opens a way towards an educated design of topological phases in aperiodic,
disordered, or nonsmooth textures of spins and charges containing topological defects.
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I. INTRODUCTION

Noncollinear magnetism is central to many ideas in the
field of spintronics and future information technology [1,2].
Recently, a diverse class of so-called multi-q magnets—
characterized by a phase-coherent superposition of multiple
spin-spirals—has received particular attention [3-7]. Ex-
perimentally established examples include one-dimensional
(1D) helicoids in chiral magnets [8,9], the two-dimensional
skyrmion crystal of MnSi [10], and the three-dimensional
hedgehog lattice (HL) in MnGe [11]. The interest in multi-q
states is fueled by their connection to emergent electromag-
netic fields, which leads the way to rich electronic physics
[12,13] and can drive the opening of topological band gaps
in the electronic spectrum [14—16]. In the adiabatic limit of
smooth magnetization textures and strong coupling, this effect
can be attributed to the real-space topology of the magne-
tization texture [17,18]. For example, a magnetic skyrmion
will carry a quantized magnetic flux proportional to its topo-
logical charge [19]. The mechanism by which a lattice of
skyrmions can open a band gap can therefore be interpreted
as the formation of Landau levels. It is, however, unclear to
what extent this interpretation can be upheld as the adiabatic
approximation loses validity, e.g., the lattice constant of the
HL phase in MnGe is only of the order of 3 nm. Furthermore,
certain 3q antiferromagnets possess topological band gaps,
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even though no topological index can be associated to the
real-space texture [20,21].

In this paper, we demonstrate that the emergence of topo-
logical electronic states in multi-q magnets is related to a
fundamental restriction on the quantum mechanical observ-
able algebra imposed by the magnetic texture. Our approach,
which is based on noncommutative K-theory, encompasses
the adiabatic limit and its semiclassical theory as a special
case [22], but extends to arbitrary dimensions and makes sense
for periodic as well as aperiodic spin arrangements on the
atomic scale. We reveal that the observable algebra of multi-q
states is given by the universal C*-algebra of the so-called
noncommutative torus. As we show based on an effective
model, this has a profound effect on the emergence of a wealth
of topological electronic states in multi-q textures, which can
be categorized and understood in a unified manner. In particu-
lar, we relate the emergent topology to proper flavors of Chern
numbers which do not rely on the smoothness of spin dis-
tribution in space, thus unraveling exotic higher-dimensional
quantum Hall physics of noncollinear spin systems. We be-
lieve that our results point a way towards a controlled design
of topological states in various spin textures, whose character
can be probed through the associated edge states and their
dynamics arising in response to changes brought to textures
experimentally in the laboratory.

II. THE OBSERVABLE ALGEBRA OF MULTI-Q MAGNETS
A. Tight-binding model

We consider a class of Hamiltonians which assume the
form of the following nearest-neighbor tight-binding model
on a d-dimensional Bravais lattice, given by

H=1t Y [i){l+ A Y 0x)-0) i), (1)

(i,j eZ* iezZd
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where () indicates the restriction to nearest-neighbor hoppings
of strength ¢. The vector field f: RY — S describes the
coupling of the electronic states to a magnetic texture via the
exchange term proportional to A.. To each site label i € Z¢,
we assign a real-space position X; = 27:1 i;ja; € R in a Bra-
vais lattice spanned by {a;}. The reciprocal lattice is defined
accordingly via b; - a; = 27 §;;. There is a natural action of
the translation group G = Z¢ on the d-dimensional lattice
defined as Ty |k, o) = |k + m, o). While the hopping term is
invariant under this operation, the exchange term is generally
not. The loss of translational symmetry renders the situation
hopeless, as the space of possible spectra of the Hamiltonian
is too large to allow for sensible classification.

There is an important subclass of realistic magnetic tex-
tures whose spectra are completely characterized by the
topological properties of their observable algebras, namely, it
is not uncommon that such a magnetic texture is described
by one or more phase factors through which the real-space
dependence will enter the Hamiltonian. These are generally
known as multi-q states and encompass 1D textures such
as spin spirals, but also magnetic skyrmion lattices such as
the famous A phase of MnSi [10]. Each multi-q texture is
characterized by the presence of r distinct vectors q; with
i=1,---,r expressed in terms of the reciprocal lattice as
q = 27:1 0;jb;. The dependence on the q vectors enters the
magnetization texture i via the phase factors

wi(X) = (X - q;i/(27) + ¢;) mod I, @)

where ¢; € R represents a constant phase shift, implying that
instead of fi(x) one can write fi(w(x)). Since w; € [0, 1) =
R/Z = T!, where T! is the 1D torus, a multi-q texture is
really a composition of maps,

RS 7 A §2, 3)

where T is the r-dimensional torus. By inserting the Bravais
lattice expansion, one obtains

wi(x) = (k- 0; +¢;) mod 1, “

where 6; is the ith row vector of 6;;. There is also a natural
action 7 of the translation group G = Z? on these phase
factors, given by

Tmi(Xk) = wi(Xx) — (m-6§; mod 1), (5)

with m € Z¢ and where the result is to be understood with re-
spectto mod 1. This means that the pattern of phase factors
is completely specified by defining the phases ¢ = w(xy) €
T" at one arbitrary, but fixed reference point xo € R¢. The
collection of all phase factors which are realized in the system
defines the hull of the magnetic pattern [23]:

Q=G¢p={tm¢p|meZ)cCT". (6)

If at least one 6;; is irrational, €2 forms a dense subset of 7.

B. The noncommutative torus

The Hamiltonian H from Eq. (1) can now be rewritten in
a way that makes the observable algebra apparent. The basic
idea is to distill the generators of the algebra by formulating
H in terms of these. This can be achieved by casting H into

the form

H=7Y"TY mh@é+6)ll, (7)

ieZd  jeZ

where 4 : T" — Mat,,»(C?), the sum over j visits all lattice
sites, and the sum over i all neighbors. A detailed deriva-
tion can be found in Appendix A. Similar reformulations are
known from the Hofstadter model

Hyg =1t Z

(i,j)eZ?xZ?

¢ [i) (], )

describing electrons in a uniform magnetic field [24], where
aij is the integral of the magnetic vector potential from site x;
to site x;. One can rewrite

HHF:§1+S‘2+S‘T+S§ 9
in terms of the magnetic translation operators S; = ¢'@+1i7;
[25], where T; represents a unit lattice translation in direction
i. These operators obey 818, = ¥ 8,8, where ng is the
number of magnetic flux quanta per unit cell. The knowl-
edge of this algebraic structure completely characterizes the
topological properties of the associated Hofstadter spectrum
[24,26,27]. It is known that in the limit of smooth textures
and strong coupling, the more general Hamiltonian of Eq. (7)
can be effectively mapped onto the Hofstadter Hamiltionian
[14,22].

Equation (7) demonstrates that the observable algebra of
the aperiodic spin system is completely determined (or gen-
erated) by the lattice translation operators and the space of
continuous, matrix-valued functions on the torus. In other
words, any observable can be written in the same generic
form as Eq. (7). We can narrow down the minimal set of
generators: By Fourier decomposition, scalar complex func-
tions on the torus 7" are generated by the complex phase
factors u; = "%, where ¢ € T". Consider 7; to be a unit
lattice translation in direction i. Following the previous def-
inition of the translation operator, we have 7;¢x = ¢ — O
and find the commutation relations [7;, ;] =0, [u;, u;] =0
and Tju; = e 2"y, ;. A short derivation of these commuta-
tion relations can be found in Appendix B. By defining « =

(t1, ..., Ta, U1, ... u,), these relations can be summarized to
ooy = e Ok, where
0 67
® = . 10
(6 ) (10)

The observables of the system can therefore be characterized
by the universal C* algebra given by the presentation:

Ag = (o, - -+

Qg | ooy = e ayay). (11)

The defining equation uses a common shorthand notation
whereby the elements before the |-sign are the abstract gen-
erators of the algebra and the terms following the |-sign are
relations these generators have to fulfill. This algebra Ag
is known as the noncommutative torus in r 4+ d dimensions
[28-30]. It can be interpreted as a generalization of the al-
gebra describing the Hofstadter model, where ®;; describes
generalized magnetic fluxes in the higher-dimensional space
with r artificial extra dimensions associated to the q vectors
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[31,32]. For the C*-algebraic details, we refer to Refs. [27,33].
Appendix C gives a brisk overview for convenience.

C. Topological classification

K-theory classifies projection operators which can arise
from this observable algebra [29,34,35]. Loosely speaking,
two projection operators P and P’ belong to the same equiva-
lence class [P] if they are related by a unitary transformation
P’ = UPUT. The set of all [P] defines the so-called K group
of the algebra Ag. Equivalently, one could say that P and
P’ are equivalent if there exists a continuous path between
them. We refer also to Appendix D for a more nuanced look
into the mathematics involved. For the case of Ag, the K-
theoretical properties are well-understood [27]. In particular,
one has Ky(Ae) = Z*""", which is a compact way of saying
that any class of topologically equivalent projection opera-
tors [P] can be written as a linear combination of generators
P1=> ;ny[E;], labelled by even-cardinality subsets J of
I={ty---,T4, U1 ,u} (there are precisely 2"+?~! such
subsets). Loosely speaking, the coefficients n; € Z count how
often the generator E; occurs in P up to unitary equivalence.
Once all n; are known, the class of P in Ky(Ag) is completely
determined. An explicit knowledge of the projections E; is not
necessary to compute all n;. Rather, this can be done via the
noncommutative mth Chern numbers [33,36]. If J' C Z with
|J'|/2 = m, then

Qi)

@) ="

YoeT(P]o,P| (2

oeSy, jeJ'

is an mth Chern number of the gap g with spectral projection
P. T is the trace per unit volume and Sy is the symmetric
group of order |J|. What appears suggestively in the notation
of derivatives d,, are so-called derivations on the observable
algebra (which is the proper algebraic generalization of the
concept). The way to construct these derivations is by first
observing that the commutation relations of Ag are left invari-
ant with respect to o; — Ajo; where A; € C with |A;] = 1.
If we expand A € Ap in terms of the algebra generators,

A=) ez aqal .. el we can then construct a map

41 qr+d 111 q:+d
D aghlt . alialt el e Ao, (13)
qeZr+d

This can be used to finally define 9,A = ipy(A)|»—1 (see also
Appendix E). The best way to gain intuition into this tech-
nical construction is to observe what happens in conventional
lattice periodic systems. The Bloch functions can be generated
from plane waves e’** and the operation which sends ¢™*
ixe’®* is nothing but the k derivative. One can therefore thmk
of 9, as a generalization of 9y, to the noncommutative setting.
Since we have found that the underlying observable algebra
is the noncommutative torus, the possible Chern numbers have

many interrelations and fulfill [27]

Pr(A) =

|J| even
> ny(g)Chy(E), (14)
JCT
where Chy(Ej) =1 if J=J', Chy(E;) =0 if J £ J' and
Chy (E;) = Pf(©,\y) otherwise. The operation Pf denotes the

Chy(g) =

Pfaffian and ®\ ;- is the representation of ® in the reduced in-
dex set J \ J'. The integer coefficients n;(g) are exactly those
that correspond to the decomposition of the gap projection
into K-theory generators, i.e., [P(g)] = ZJ ny(gIE;]. If all
possible Chy/(g) would be computed via Eq. (12), this would
determine all integer invariants n;(g) through Eq. (14). Based
on Eq. (14), Tables I, I, III, and IV of the appendix give all
Chern number interrelations relevant for the context of this
paper. We want to single out two relevant special cases of the
expressions above that the reader might be familiar with and
which have a clear physical interpretation. The first one is the
case of empty subset J' = @, for which

Chy(g) = T(P) as)

represents the integrated density of states (IDS). The second
important case corresponds to J' = {r;, 7;}, where

Chigr)(8) = i) T (P[3,P.3y, P]). (16)

Based on the analogy of d;; with the momentum space deriva-
tive in the lattice periodic setting, one could guess that this
Chern number corresponds to the anomalous Hall conductiv-
ity o;; of a band insulator in units of €% /h. This is in fact the
case [26]. When a periodic supercell can be chosen and the
magnetic texture is smooth, all the higher-order Chern num-
bers can be obtained through integrals over Berry curvature
expressions [22,31,37]. In Appendix F, we show exactly how
the Berry curvature approach is contained in our more general
framework.

III. RESULTS
A. Superposition of spin spirals

The simplest example of all possible Chern numbers,
Chy(g), represents the IDS and we can use it to map out
some possible Chern numbers that are realized by the Hamil-
tonian in Eq. (1). To illustrate this point, we start with
investigating the following superposition of two helicoidal
spin spirals (r = 2): f(w(x)) = Zle(cos(ani(xk))ey +
sin(2w w;(x;))e;), defined on a 1D lattice (d = 1) implying
w;(xx) = kB; + ¢;. This system could be realized physically
via the proximity coupling of a 1D electronic system to two
independent atomic spin spirals, each stabilizing a spin helix
(one could also view it as a noncollinear spin density wave).
We consider the special case of 6, = 26, i.e., 6; and 6, are ra-
tionally dependent. Other relations between 6 and 8, could be
considered, but will not change the qualitative results, except
for 6, = 6,, where the spectrum is trivial. For this situation,
the orbit of the lattice translation group generates a dense, 1D
subspace on the 2-torus: @ = T'! C T? which is the hull (see
Fig. 1). For the numerical analysis, we consider a finite system
of N = 1024 atoms with periodic boundary conditions. The
spectrum {€,} is then calculated by exact diagonalization for
different values of 6, sampled at rational values g/N with
g€ N and ¢ < N. In a first step, we consider the density
of states at the chemical potential u, given by DOS(u) =
Ziﬁl 0, f(en — ), where f(e)=1/(exp{e/(kgT)}+1) is
the Fermi-Dirac distribution. The result is shown in Fig. 1 for
different values of w, and reveals a characteristic Hofstadter
butterfly. As the value of 6, is varied, multiple gaps open and
close in the spectrum, some of which we label by the colored
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FIG. 1. Fractal spectrum of a spin helix superposition. (a) illustrates the superposition of two spin helix states with 8; = 26,. The evolution

of phase factors (w;, w,) along the lattice generates a path on the 2-torus T2.1n (b), we calculate the DOS at kg T
1024 sites and periodic boundary conditions, with 8; = ¢/N and g € N, g < N. As 6, increases from zero, the spectrum

a system with N =

= 0.017 and A,./t = —1 for

branches into a fractal shape reminiscent of the Hofstadter butterfly. Gaps open in the system; some of them are labeled by the colored bullet
points. Each gap can be characterized from the IDS in (c): Discontinuities in the color map correspond to gaps in (b). The emerging line
features are the characteristic fingerprints of the underlying K -theory description.

bullet points. The topological nature of these gaps can be
investigated by the means of K-theory. Since the #-matrix is
simply given by 6 = (6, 261)7, the evaluation of the Pfaffian
leads to the prediction

IDS(g) = ny(g) + nzu(g) b1, a7

with n.,(8) = —n{r,u,}(8) — 2n(r,,u,)(g), Where the coeffi-
cients can be 1dent1ﬁed with the first Chern numbers
Chyz, u;) = nyr,u;)- This result can be verified by plotting the
IDS versus 0y, color-coded by w in Fig. 1. Since the IDS is
constant within a gap, the color exhibits discontinuous jumps
which makes it possible to track the evolution of IDS for a
specific gap as a function of ;. The result is in perfect agree-
ment with Eq. (17), and makes it possible to assign a unique
label (ny, n,,) to each gap g. Since the gaps with n,, # 0 are
characterized by the first Chern number, the superposition of
spin helices leads to a topologically nontrivial spectrum.

B. Skyrmion and vortex crystals

One way to interpret the ® matrix is to think of it as
a generalized magnetic flux. This is similar to the emer-
gent field of smooth magnetic skyrmions [12,38], but is
a far-reaching generalization of this concept, which also
makes sense for discrete systems. To investigate the transi-
tion into the conventional emergent field picture, we consider
a triangular lattice with a; = a(1,0)", a, = a(1/2, v/3/2)"
and reciprocal lattice vectors by = 2= (1, —1/ \/§)T /a, by =

277(0,2/+/3)" Ja. With respect to this lattice, we devise a
f-matrix 6 = 6,((0, 1), (1,0), (—1, —1)), which corresponds
to the coherent superposition of three spin spirals. Technical
aspects of the construction of this magnetic texture can be
found in Appendix G. This gives rise to a 3q skyrmion lattice
shown in Fig. 2(a) with the K-theory prediction

IDS(g) = ny(g) + nu(g) 61 + ny2,2(9) 07, (18)
where Neu = — Mgy uw) T M us) — M) T Mopuw) and
N2 = Moy mun,u) — Moo} T R, ou,us)- We  proceed

similarly as for the spin helices and calculate DOS(6;) and
IDS(6,) for different system sizes. A series of topological
gaps appear in Fig. 2(b) as 0, is increased away from 0,
which can be classified by the label (ny, nyy, n,2,2). The 912
dependence of the gap sizes has been theoretically observed
for the skyrmion lattice [14] and now finds its explanation
as a fingerprint of the underlying K-theory. According to
the classification of Fig. 2(c), these gaps correspond to a
quantization of n,2,2 with n;, = 0. Naively, this seems to
indicate that the first Chern numbers are zero which would
be in contradiction to the known quantized topological
Hall effect in this system. However, the anomalous Hall
effect picks up the different Chern number Chyq, ¢,y ~ 12,2
[39] which is not visible in the IDS. In the adiabatic limit
Axc/t = oo and 8y — 0, it can be shown that Ch(,,} = 12,2
(see Appendix H), and the apparent contradiction is resolved.
Note that these results persist as 6; approaches the scale
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FIG. 2. Topological spectrum of 3q states. (a) shows an example for skyrmionic 3q states on the triangular lattice with N = 400, 6, =
3/ /N and periodic boundary conditions. The DOS at kg7 = 0.01¢, A/t = —5 is calculated by combining all system sizes VN € [19,79] N
N with ~/N6, € Z. A series of gaps opens in the spectrum (some of them labeled with bullet points) whose topological character is revealed in
the IDS plot of (c). This procedure is repeated for the 3q spin vortex crystal in (d). Again, the DOS in (e) reveals gaps of topological character,
as confirmed in (f). The visible vertical features in (e) are due to a reduced sampling density in 6, at those points.

of the underlying lattice, since the respective gaps can be
continuously connected to the limit of 6; — 0. Here (and, in
particular, for gaps which are not connected to the adiabatic
limit), any arguments based on the smoothness of the texture
fail, while the K-theory description can still be upheld.

To further underline this point, we perform the same cal-
culation after replacing the superposition of spin spirals by a
superposition of spin density waves which gives rise to the
spin texture in Fig. 2(d). It is not obvious what the emer-
gent field language would predic and, in fact, the emergent
magnetic field in the continuous limit Bey, = fi - (9,fi x dyf)
is zero for this texture. With the K-theory description, no such
conceptual problems arise. The 6 matrix is not changed as
compared to the previous case and the prediction for the IDS
as the marker of topologically nontrivial electronic states in
this system is valid. It is thus of no surprise that topological
gaps are visible in the DOS in Fig. 2(d), while the asso-
ciated IDS in Fig. 2(e) is again in perfect agreement with
the K-theory of multi-q order. This serves to show that the
generalized fluxes ® can provide a connecting theme which
extends to more exotic magnetic phases such as vortex crystals
in frustrated magnets [40].

C. The cubic hedgehog lattice

Lastly, we would like to show which predictions K-theory
could make for three-dimensional textures such as the cubic
HL found in MnGe [11]. In this case, one deals with three
linearly independent, mutually orthogonal q vectors: q; = ge;.
This means that the 6 matrix is just the identity matrix in
d = 3 dimensions: 6§ = 0id3. A detailed list with all Chern
number relations for the cubic HL can be found in Table IV
of the appendix. Here, K-theory tells us that the IDS of a gap

g should behave as a third-degree polynomial in 6;, with the
highest order term controlled by third Chern number, i.e.,

IDS(g) = ng — 1,0 — N2 07 + 3,363, (19)

with the shorthand notation

Ny = My} T M) + Nzyus) s (20)
N2 = Nonuun) T Moz} T Mot (21
n‘[3u3 = n{'[['[zf:;u[uzu:;}' (22)

The latter can be identified with the top-level Chern number:

Chizy tyry 1003} = My mo 3y} - (23)

Finding a model which realizes this high-dimensional Chern
number is left for future research.

IV. CONCLUSION

In summary, we put forward a method to characterize
electronic topological states emerging in real-space spin tex-
tures based on the K-theory of C* algebras. In contrast to
conventional methods of topological characterization based
on smooth Berry phase properties—whose meaning is lost in
aperiodic, disordered, or nonsmooth textures—the K-theory
analysis can be used to predict and understand the appear-
ance of nontrivial gaps beyond this limitation. As such, the
K-theory categorization bears great promise for unraveling
and shaping the hybrid topological properties of complex
spin textures in real materials. Particular exciting aspects to
address in the future are the topology of three-dimensional
textures which have the potential to harvest six-dimensional
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physics (as we have shown, nontrivial third Chern numbers
are a theoretical possibility for the 3q cubic HL) as well as
the K-theory topological interpretation of spin fluctuations,
dynamical excitations of real-space spin systems, and the as-
sociated edge-state physics. It would be further interesting to
trace the evolution of topological invariants across topological
magnetic phase transitions in real space and to determine
the physical observables capable of detecting this change in
electronic topology.

The open source code used to generate the results of this
paper is available from Ref. [41].
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APPENDIX A: BRINGING THE HAMILTONIAN
INTO ITS COVARIANT FORM

We demonstrate how the Hamiltonian can indeed be
written in the canonical form presented in the paper. For
simplicity, we consider a primitive hypercubic lattice for the
derivation. For the hopping term, one finds

H=t Y [k

(k.DyezZ

d
=1 Y (k) (k+el+ |k+e) (k|)

keZd 1=1

d
=1y Y @i+ 1K) (k|

keZd 1=1
d

=Y Ti+11) ) t]k) (k|

1=1 keZ4
(A1)

where 7; is a unit translation in the direction e; € Z¢. It
is therefore invariant under translations: 7,,H, TnTl = H,. The
exchange term is given by

Hie = Axe Y (A(0(x0)) - 0) [K) (k.

keZ4

(A2)

It is not invariant under lattice translations, but transforms as

TmHye Ty = A Y (B(@(x)) - 0) [k +m) (k +m|
keZ4

= Ax ) (B(@(Xk_m)) - 0) [K) (K|

keZd

= Axe Y (A(Tmo(x1)) - 0) [K) (K| .

keZd

(A3)

With the definition ¢ = @(X(), the exchange term can there-
fore also be written as

He($) = Axe Y (B(1$) - o) [K) (K|

keZd
= Axe Y (A( +0K) - o) [K) (K|,
keZ4

and the translation of the Hamiltonian H = H, + H,.(¢) can
be expressed in the compact, covariant form

(A4)

TuH ($)Th = H(tm), (AS)
or, alternatively,
TIH(¢)Tm = H(p + 6m). (A6)

Combining the results above, the Hamiltonian can finally be
cast into the form

H=Y T,) ha(¢+6m)jm)m|, (A7)
neZd meZ
with the definition
Axc(B(@)-0), n=0
() = { tidy, e{l, - ,d}:n=+e
0, otherwise.
(A8)

APPENDIX B: DERIVATION OF THE TORUS
COMMUTATION RELATION

The covariant form of the Hamiltonian demonstrates that it
fits into a generic form which combines the action of the trans-
lation operator with matrix-valued functions on the r-torus 7.
A continuous function f : T" — C can be decomposed into a
Fourier series as

f(@) = an G2migm
n
= an eZni¢1n1 L e2”i¢’r’lr
n
L

n
=l u.
n

In other words, the algebra of continuous functions on the
torus is generated by u; = ¢**'%. One can condense this result
into the presentation

C(T") = (uy, ..

B

Sy | [u, ui]l =0). (B2)

The commutation relation between the unit lattice translation
7; and the Fourier factor u;, can be derived as

Ty = exp{2mi(Tigi)} T
= exp{2mi((dr — (e - Ok
= exp{2mi(¢ — (e - O
= exp{—2mi(e; - b;

mod 1)) mod 1)}
mod 1))}t

mod 1)}u,
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= exp{—2mi(e; - Ox)}uxT;
= eXp{—ZT[ile}Mle, (B?’)

which leads to the relation presented in the paper.

APPENDIX C: A MORE PRECISE DESCRIPTION
OF THE NONCOMMUTATIVE TORUS

The following Appendix is adapted from Ref. [33].
By defining & = (7y, ..., T, Uy, - - . u,)? the commutation
relations can be summarized to ;o = €2 %15, where

0 -o7
0= <9 ‘ )
The paper summarizes the observable algebra of a multi-q

texture as the universal C* algebra given by the presentation

Ag = {(ag, - (C2)

(CDH

27fi®[k

k] adeff |alak =e€ akal)a

with degr = r 4+ d. Oy is considered as an antisymmetric
degs X degr matrix with entries from R/Z. A generic element
of the algebra can be presented in the form

_ _ 4 Gdegy
a= E aq0q, g = @ ... 0y, dq € Mat,,»(C)
qEZ %t

- Z a(@, q)af ...al,

qeZ?

(C3)

where a(¢,q) is a continuous function 7' x Z¢ —
Mat,4»(C) with compact support. The noncommutative
torus accepts the trace

T| > aqaq | =trap. (C4)

qeZdtt

We define a representation of the noncommutative torus g :
Ag — B(2(Z4 @ C?)) via the matrix elements

(@, @l7p (@I, B) = aup(t—q$, 4" — Q). (C5)

Constructed in this way, the representation fulfills the covari-

ance condition
Tump (@)1 = 7r,9(a), (C6)

which we previously confirmed to hold for the Hamiltonian.
Additionally, an involution is defined by

a* (¢, q) = a(t_qp, —q)".

The C* algebra associated to Ag is then given by the comple-
tion with respect to the norm

(C7)

llall = sup |Izgall. (C8)

¢eT"

APPENDIX D: SOME GENERAL ELEMENTS OF
K-THEORY

The following Appendix is adapted from Ref. [33].

The general goal of the K-theory of operator algebras is
to supply all independent topological invariants that can be
associated to projections and unitary elements of an algebra.

In particular, the K-theory group Ky(Ag ) classifies the projec-
tions

PeEMu®Ao, p*=p"=p, (D1)
with respect to the von Neumann equivalence relation
p~p iff p=vv and p =v'v (D2)

for some partial isometries v and v’ with vv’, Vv € My ®
Ag. My is the algebra of N x N matrices with complex
entries and M, is the direct limit of these algebras. For
any p from My ® Ag, there exists N € N such that p €
My ® Ag, hence we do not really need to work with infinite
matrices. However, My can be canonically embedded into
Mo and this is convenient because it enables N to take
flexible values. There are two further equivalence relations for
projections which could be used, and which lead to the same
group Ko(Ap) [34, p. 18]:
(1) Similarity equivalence:

p~,p iff p=upu* (D3)
for some unitary element u from My, ® Ag;
(2) Homotopy equivalence:
p~np iff p0)=pand p()=p (D4

for some continuous function p : [0, 1] > My ® Ag, which
always returns a projection.

Homotopy equivalence is the topological equivalence as
understood by condensed matter physicists. The equivalence
class of a projection p will be denoted by [p], i.e., [p] is the
set

[pl={p e M ® Ao. P ~ p}. (D5)

If pe My ® Ag and p' € My ® Ag are two projections,

then (g 1?,) is a projection from My ® Ae and one can
define the addition

P& (p] = [(g S)}

which provides a semigroup structure on the set of equiva-
lence classes. Then Ky(Ag) is its enveloping group [35] and,
for the noncommutative d.¢ torus,

Ko(Ao) = 22",

(D6)

D7)

regardless of ® and where d.st = r + d. As such, there are
24ei=1 generators [E,], which can be uniquely labeled by the
subsets of indices J C {1, ...,d} of even cardinality [27].
Equation (D7) assures us that, for any projection p from
M ® Ag, one has

|J|=even

pl= ),

J{1,... desr}

ny [Ey], (D8)

where the coefficients n; are integer numbers that do not
change as long as p is deformed inside its Ky class. Specif-
ically, two homotopically equivalent projections will display
the same coefficients, hence {n;}7|=cven represents the com-
plete set of topological invariants associated to the projection
p. Furthermore, two projections that display the same set of
coefficients are necessarily in the same K class.
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APPENDIX E: DIFFERENTIAL CALCULUS ON THE
NONCOMMUTATIVE TORUS

As a preliminary step to the calculation of Chern numbers
on the noncommutative torus, a differential calculus needs to
be established. Let A; € C, |A;| = 1 and observe that commu-
tation relations of Ag are invariant with respect to

o) = )»J'Otj . (El)
As such, we can define a d.g-torus action,

T 35X =1, ..., ) — ot Ao — Ao, (E2)

where the latter is the algebra automorphism:
— q 4d,
A= Z dq all ) adetf“
qudelT
— Z aq )ﬂl ‘Iden aZd;n ) (E3)
qudgff
Then, the generators of the torus action
. . 94,
0i(A) = i, Mhr = ) igiagal ..ot (E4)
qu‘[clT

provide derivations on the noncommutative deg torus. We
again define our indices with respect to the index set 7 =
{t1---, T4, uy---,u.}. Since

2wig-n — zninkezni(ﬁ-n’ (ES)

3¢k e

one finds that the u derivations are just given by the partial
derivatives

3, A = (2m) ' 94A. (E6)

For the t derivations, the representation on the Hilbert space
evaluates to

74 (35,A) = i[ Xy, e (A)], (E7)

where X = quzd Xq 1q) {(q| is the position operator on the
Hilbert space.

APPENDIX F: RELATION TO BERRY CURVATURE

If the multi-q texture is commensurate with the lattice,
a Bloch basis can be chosen. We introduce the new basis
notation for the orbital wave functions:

IR,q,a) = |R+xq,a). (F1)

Here R describes the lattice of the superstructure. The lattice
Fourier transform (Wannier basis) is given by

R.q o) =—= Y ™ |ypg), (F2)

1
VN kel.BZ

where N is now the number of primitive cells in the system.
Let A now represent a translationally invariant operator (with
respect to the superstructure), i.e.,

i=3" 3 AYRIR qe) (R

RR q.q" 2,8

Yy Y a

k.k'el.BZR,R' q.,q",0,8

.q, B

X e_ik'Re+ik R |qua> <Wk’q’ﬁ|
DD ALY Yige) Wieqpl . (F3)
k.k'el.BZq,q,a,B
where

aﬁqq o A‘Yﬁqll —ik-R +zk’R’
kk’ - R-R’
RR’

1 ;. I
_ E A;t{,ﬁ,q,q e*lk-Refzk-R e+lk R

R,R’

-
— S Y AP kR
R

= Sk k (AK)e,8,q,q - (F4)

This means that the trace of any operator product of trans-
lationally invariant operators is given by

Al Jy — = 1
TA' .. A= N1me Z trAL
kel.BZ
d’k 1, J
=] Gy ——— AL A (F5)

where V is the volume of the primitive unit cell and the trace tr
includes the internal lattice degrees of freedom within the unit
cell (in the addition to the spin degree). Take now a covariant
operator

A=3">"3 Aus(t_q$) R.q.@) (R.q. 8.  (F6)

and therefore

(Ak)a,ﬂ,q,q’ = sq,q’(Ak(quqs))a,& (F7)
We split the trace in two parts tr = trqtr, according to the
atomistic degrees of freedom and the spin degree of freedom.
By carrying out the operator product of covariant operators,
one finds

T(Al...Aj)zf
1

d

1 J
7 W tI'th'(, Ak . .Ak

d’k 1 J
-y /1 e AL AL )
o

o [ [ g Al Al
1.8z 1) Jg 7K ke
(F8)

Here, the limit — indicates the transition to a smooth mag-
netic texture, which is supported by a larger and larger amount
of atomic sites in the primitive cell of the superstructure. As a
further ingredient, one needs that the action of the translation
operator is ergodic on €2 in the smooth limit.

Assuming A is diagonal in q (as is the case for the covariant
operators):

iX, A=) > iR -R)AZ R, q,0) (R

RR q.a,8

D0 DT iRART e R Yiga) (Vg

kel.BZq,2,p R

. q, Bl
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== > 3 0 Y AR Yige) (Vg

kel.BZ q,o,B8 R
= > > %Aupg Vige) (Vigpl . (F9)
kel.BZ q.,a.B

For covariant operators, we therefore have the correspondence
dictionary for the covariant Bloch representation

7g(A) = Ax(9), (F10)
7$(0,,A) — 35,Ak(9)/(21), (F11)
7y(05;A) = — 0 Ax(¢), (F12)
d’k
T — —tr, Tq> (F13)
1.8z (2)? Zq: 4
where 740> denotes the action:
> AN @) AP =A (1 qh)- AT qp).  (F14)
And, in the limit of smooth textures and ergodic action,
(F15)

Zq:rq>—>/gd’¢.

Now that the differential calculus on the torus is estab-
lished, the Chern numbers can be defined. The Chern number
of a projection P to gap g and associated to a subset of indices
J of even cardinality is given by

(27-”')|J’|/2
Chy(e) =~ Y (T P[Tos,P ). (F16)
V2 s, jer

where for J = ¢, we define Chy(P) = 7 (P). The structure
of the noncommutative torus imposes relations on the Chern
numbers. These can be found by studying the values of the
Chern numbers on the K generators of .A4g, which can be
found in Ref. [27] (p. 141):

0ifJ ¢ J

1ifJ' =J
Pf(®n,)if J' CJ,

Chy[E/) = (F17)

where J,J' C {1, ...,de}. Since the Chern numbers are
also linear maps, their values on the gap projection [Pg] =
>, ny les] can be straightforwardly computed from Eq. (F17):

Chy(g) =ny(g) + Z ny(g) PI(®p ). (F18)
ICy

The K-theory of the noncommutative torus therefore imposes
relations among the various Chern numbers. The top Chern
number corresponding to J' = {1, ..., des} is always an inte-
ger, but the lower Chern numbers may not be.

To illustrate the special case of a commensurate texture,
consider the special case of d = r =2 and def =d +r = 4.
Via the correspondence dictionary, we find the top Chern
number provided by the expression (for J = {11, 10, Uy, ur})

1
=3, oy UL
% trg P(@) [ | 06, (@), (F19)
jeJ

where the representations of Eqs. (F10) and (F11) have al-
ready been inserted. We identify the Berry curvature

Fo, .0, (K, @) = iP($)[05, Pic(D), 35, Pic(P)] (F20)
and write
D (=1)tr, Pu(9) [ ] 96, Pc(9) (F21)
eSS, jeJ

= GQﬁy(Stra Pk(¢)aanpk(¢)affﬂpk(¢)aayPk(¢)aa5pk(¢)
_ _%eaﬂrétro Fos(k, )F,5(K. §). (F22)

Inserting this result into the expression for the Chern number

gives
$ 2
1.BZ (27T)d
Xt Fop (K, T_q@)Fys(K, T_q@)
1
= — dk *P70tr, F,
32772 ;/I.BZ < el

x (k, T_q®)Fys(k, T_q8).

Taking the limit of smooth textures of this expression, one
then obtains

1
— | a d?k Pt F 5K, @)F, 5(K,
_)327_[2‘/9 ¢/;,BZ € T atﬂ( ¢) yS( ¢)

1

327T2 Tdcfl'

Chy(g) =
(F23)

d%ry €*PYotr, Fog(M)F, s (L), (F24)
which is the familiar expression for the second Chern number
in terms of the Berry curvature [37]. Repeating the same
calculation for the case of d =r=1and degg =d +1r = 2,
with J = {tu}, one finds

1
Chy(g) = —=— / dKtr, Fry(K, T_q@)
27 ; 1.BZ ! d

1
—_ = — dr¢ ddktra Fru(ka ¢))
27 Jo 1.BZ
1
- d%r ) try Fp (M), (F25)
2 Tdeft

which, in this case, represents the usual expression for the first
Chern number in terms of the Berry curvature [37].

APPENDIX G: THE © MATRIX FOR 3q STATES ON THE
TRIANGULAR LATTICE

In this Appendix, we discuss the construction of the
skyrmion 3q state on the triangular lattice as it appears in
the main text. Real- and reciprocal space lattice vectors are
introduced via

a; = (1,0)7, (G1)

a, = (1/2,v/3/2)7, (G2)

by =27(1, —1//3)7, (G3)
b, = 27(0,2//3)". (G4)
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TABLE 1. Chern number expansion for a 2q state in d = 1 di-
mensions with 8 = (6, 6,)7 (e.g., the 2q helicoids).

J Chy

{ =017y ) — Oory ) + 1y
{1, w1} Nz up)

{t1, un} Ay,ur}

{uy, up} Muy,up)

With respect to these lattice vectors, the q vectors of the
texture are given by

qi = 01by, (G5)
q2 = 61by, (G6)
q3 = 61(=b; — by). (G7)

One can confirm that these vectors form the vertices of an
equilateral triangle and that ). q; = 0. From the definition, it

J

3

fsx(X) = Y (Rs, ) (RS, 5) " 1) - x/Q20) + ).

i=1
3
1

ﬁXva(X) = Z (Rénﬂ)l; ﬁsdw

i=1

Here, the skyrmion lattice figkx is therefore constructed from a
coherent superposition of three spin helices (hx), and the vor-
tex lattice fixy_v is constructed from a coherent superposition
of spin density waves (sdw). Respectively, these are defined
by

fin (V) = (0, sin(¥), cos(y))", (GID)

fiaw () = (sin(y), 0, 0)". (G12)

For the SkX state, the result of the formula is always normal-
ized by figix (X) — fgkx (X)/|[fiskx (X)||, while for the XY — V
state, one scales the result such that

sup |Aixy_v(x)| = 1. (G13)

As the exact diagonalization of the Hamiltonian is computa-
tionally more demanding in d = 2 dimensions compared to
the d = 1 case, we combine the spectra of different linear
system sizes N € [19, 79] (i.e., there are N lattice unit cells
per dimension). The 6, are sampled again at rational values
6y =m/N with m € Z and 0 < m < N. Since N is not nec-
essarily prime, some 6; values would be sampled multiple
times. When this occurs for two different values of N, we

TABLE II. Chern number expansion for a 2q state in d =2
dimensions with 8 = 6,((0, 1), (1, 0)) (an example would be the 2q
skyrmion lattice).

J' Ch,

{} 071y vy ) — Oy ) — Oy ) + 11y
{t1, &} Nz 1}

{ti, w1} ey )

{71, u2} —011y0) — O11zy 100000} T Iy )

{r2, w1} =01y 0y — 011y 1y 10} + Pz}

{12, us} ryur)

{1, up} Muy,up)

{t1, T2, U1, un} Nz, vy ,up,up)

follows that the 6 matrix is given by
(G8)

As initial phases, we take ¢ = (0, 0, 7). The respective Chern
number decomposition can be found in Table III (the anal-
ogous case for a 2q state in d = 1 and d = 2 is shown in
Tables I and II, respectively). Let R /3 represent a —27 /3
rotation around the z axis. Then we write

(G9)

(R5:5) ') - x/2) + ). (G10)

(

always choose the larger system size to obtain a better spectral
resolution.

APPENDIX H: DISCUSSION OF THE RELATION TO
EMERGENT MAGNETIC FIELDS

In the adiabatic limit of smooth textures and strong ex-
change coupling, our theory should reduce to the well-known
language of emergent magnetic fields. To discuss the adiabatic
limit, we introduce the unitary transformation:

U (x)(A(x) - 0)U(X) = o.. (H1)

By parameterizing the magnetization vector in polar coor-
dinates fi = (A, ¢) in spherical coordinates, this transfor-
mation can be formulated explicitly as f = h(6/2,¢) -0 =
m - ¢. The discretization on the lattice is given by

UR)= ) U IK) (K|.

keZd

(H2)

Applying the transformation to the Hamiltonian, one finds

URHURK) = ) nalk) (Il + Ay Y o [k) (K],

24 d
(k,1)eZ keZ (H3)
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TABLE III. Chern number expansion for 8 = 0,((0, 1), (1, 0), (—1, —1)) (the 3q triangular skyrmion lattice).

T Chy
{} Olzn(rl,rz,ul,uz) - elzn(rl,rz,ul,ug) + olzniflvfzyuzyua) = 01111y )+ 011y ) — Oy ) + O 71y ) + 11y
{t1, o} Mz, 5)
{t1, w1} 91"(12 ) T O1nr 1) T )
{t1, up} =01 ryuy) F Oy u3) — Oy 2puy 0} T OV 2 3) T ey )
{r1, us} =01y uyy = O11ey g ) F Py )
{r2, u1} _91"{11 u} T Oln(rl,us) - gln(n.fz,ul.uz) + gln{TI-TZJ‘lv“S) + My
{12, 2} O110r ) + Oy 1y i0.05) T+ M)
{2, us} =010y ) = Oy y.3) F Py
{uy, uy} 91"{1 sy T eln(fz,llg) + gln(rl,ul.uz,lq} + Oln(fz.ul.uz-uﬂ + Py )
{uy, uz} —01 11, 1) — 01”(‘[[,141,!42,“3) + Ny u3)
{ua, us} —011(5y00) = O1 ey iy iy i3) T Py )
{t1, T2, u1, up} My, rp,up,)
{T1, v, uy, us} Ny vy,u1,3)
{t1, 12, ua, u3} ey, 7,up,u3)
{T1, w1, ua, uz} My uyup,u3)
{ }

{7:27 u, u25M3} Ny uy,uy, u3

TABLE IV. Chern number expansion for the 3q cubic hedgehog lattice in three dimensions with 6 = 6,id;.

J/ Chj/

{} 0%"“%'52,1%“]#2,%3) - elznlfmz‘ul,uz) - elznlfmyuhll}] - Glzn(fz,ryuz‘u;} — 010, uy) — 010y un) — 01n(r31u3] + ng

{t1, 1} _eln(r3,ll3) - 91”{r1,12,13,u3) + Rz 1)

{1, 3} —011(2y,u0) — O11x) 1, 73.0) F Pry 1)

{1, w1} —9211 (r2,73,u0,u3} — 02” (T1,72, 73,11, U243} — eln(fzyuz) - 01”(1'3«“3} - 91"[71,72‘”17“2) - elnlflvﬁv“l'“ﬂ + ey )

{t1, u2} _eln(rs uzl T 01” {T1,73,u2,u3} + Ny up)

{t1, u3} —91}1(,2 u} gln{n.fz,uz.uz) + Rz )

{‘L’z, ‘173} _an(rl eln(fl 72,73,U1 } + Mzy,73)

{r2, w1} —anm uz} = 01” (o maurush T Pizyu)

{2, up} 91 Mty 73,u1,u3) 92" {r1. 72, 73,01, 10,43} eln(fl.ul) - 91"“3-“3) - eln(flvﬁ-”l-”ﬂ - 911’1(12,13.,42,,43) + My )

{7:27 M3} _an(rl‘ul 91}’[ {t1,70,u1,u3} + N{zy,u3}

{r3, uy} _an(rz u} 6l"‘(tz typuz) T Mgy

{73, ua} =011 ) = O11y 30y F ey

{73, u3} len(n T, U112} 92” (ot as) — O ) — 01000 — 010 o) — 01w 1.03) T Peya)

{M], uz} _an(m uz} 01” {w3.u1.up,u3} + Muyu)

{u1, us} =011y — O30y iy} F Py ay)

{uz, us} =011y gy — OV ey g i) F iz}

{t1, T2, T3, U1} ey, 1y, 73,11}

{71, 72, T3, U2} My vy,03.)

{t1, 72, T3, U3} Mz, 73,73,u3)

{t1, T2, Uy, us} =011 03 — O11ey o my3) = Oy i) — O1ey ) — O1 ey oy 3y — 01y c30.03) — Oy 0y 33y —
01Nz, 3 vy 3} + ey oy}

{t1, v, uy, us} Mty 5y u1,u3)

{t1, T2, Ua, uz} Mzy,13,uz,u3)

{71, 3, w1, up} My w310}

{t1, T3, Uy, us)} _an(rzwuz) — gln{rl,rz,rz,tle - 91}1(,1’,2,“],“2) — 91}1(”‘12,,,2,”3} — 91n(f2,r3,u|,u2} - 9]"{r2,13,u2,u3) — Hlﬂ[rz,tll,uz,usl _
eln(fl.fz,fs.uhuz,usl + ey 3 .0)

{71, 13, U2, us} My w303

{1, uy, ua, uz} Py uy,up,u3)

{72, T3, U1, ur} My, t3,u1,12)

{72, T3, U1, us} My, 73,11 ,u3)

{2, 13, w2, u3} =011z ) — Oy mp) — Oy ) — O170 ey ) — O1 ey oy a0y — OV ey ) — Oy 33y —
eln(fl.fz,fs.uhuz,usl + Moy 13.00.5)

{72, w1, uo, uz} My uyuy,u3)

{t3, w1, up, uz} Ms,up,up,u3)

{t1, T2, T3, U1, Uz, u3} Moy vy, 73,01 ,12,13)
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where tiy = tUT(xi)U (x1). In the limit A,./t — o0, one can
project onto the eigenstates 0 = £1 of o, to arrive at the
effective Hamiltonian

ff
Hg = Y 10, k),
(k,l)eZZd

(H4)

where #&l =1 (o |U(xx)U (x1)|0). In the continuous case, a

vector potential can be defined as A; = —ihUd;U /e, which
has the adiabatic projection

B
AF = :I:Z(m X 9;m),. (H5)

From this, one obtains the emergent magnetic field:

i
BX = (VxA*),=+—n- (3 x dyn).  (H6)
2e

For an isolated skyrmion of topological charge,

1
Q:—/ dxfi- (o x dh) € Z H7)
R2

4

is quantized. The emergent flux in this case is

o* :/ de;t
RZ

h
=4+

dxfi- (9,fi x 9,f1)
2e R2 :

— 10 (H8)
e

Applying the translation operator to the previously defined
unitary operator, we find

TnU T =Y Uxo) [k +m) (k +m|
k

= U(xk-m) k) (k|
k

=U®R — Xm), (H9)

from which one can obtain the relation T,,U(X) = U (X —
Xm)Tm. Within the changed frame of reference, the new unit
translation operator is given by
8, =UT®TU %)
=U'R)U K — a)T;. (H10)

We now assume that fi is given by a multi-q state in d = 2
dimensions, characterized by a single pitch variable 0;. For a
smoothly varying texture (limit of small 6,), the prefactor can
be expanded:

UTx)U (x — a;) = id, — U (x)(a; - V)U (x) + O(67)
=id, +iea; - A/l + O(6])

ie X+a;
=idy + E/ dr A+ 0(67)

ie X+a; )
=exp( drA )+ 0(67), (H11)
X

where we have implicitly used the adiabatic projection into a
spin subspace. Introducing the shorthand notation

x+a e e
N =expl| — drA |,
hJx
. X+a;
I3 =exp (—E/ dr A),
o Jx

and, using this notation, one can derive the commutation rela-
tions

(H12)

(H13)

Si1S =" T A7™ D
=T§+a] Tx+azfal T2T1

X—ap
ta,—
=R RS
+ X+ap—a; | Xx+a;+a
=t e a2 TS,
+a,— +a;+
=PRI R SS. HIY
Since
+a— +ap+ 2
RT=RET 0 (6), (H13)

the combination of integrals amounts to clockwise line inte-
gral around the unit cell anchored at x. We change this to a
counter-clockwise orientation and apply the Stokes theorem
to write the emergent flux as

d(x) :§£ dr-A :/ d’r(V x A).. (H16)
duc(x) uc(x)

We therefore find the commutation relation

818y = e "*Mes, 8, 4+ 0(67). (H17)

For the lattice of skyrmions with charge Q = 1, the emer-
gent flux per magnetic unit cell is quantized, i.e., it is given by
le®g /h| = 2m. On average, the flux per unit cell of the lattice
is therefore given by

; (H18)
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where (N,.) is the average number of lattice unit cells within
a magnetic unit cell. In d = 2 dimensions, one has (Ny.) =
1/ 912. The algebra can then be approximated by replacing the
exact flux ®(x) per lattice unit cell by this average and one
obtains the commutation relation

8§18, ~ e 20 8,8, | (H19)
while at same time, S; commutes with the Fourier factors since

the noncollinear magnetism has been transformed away. All
possible Chern numbers are then summarized by the table

7 | Ch,
{} 07 15,52} + 1y (H20)
{51, 52} As,.s5,)

Consequently, the IDS in the gap g for the effective system is
given by the expansion

IDS(g) = ny(g) — ny, 5, (8)6; - (H21)

By matching the coefficients, of the two limits, one therefore
finds

Mg, 5,1 (8) ~ M2,2(g), for [Aye/t] — 00,6, — 0. (H22)

Further, the left-hand side can also be calculated directly as
Chern number, since

Ch{sl,xz}(g) = n{s.,SQ}(g)- (H23)

Since the Chern number is invariant under unitary transforma-
tions of the Hamiltonian, this then leads to

Chy,.1,)(8) ~ Chyy, 5,1(8) ~ n2,2(8),

for |Ax./t| = oo and 6; — 0. This means that the presence
of a quantum anomalous Hall effect can be deduced from the
IDS [where n,2,2(g) can be extracted]. To rephrase this result:
The relation holds, because we have shown that the physics of
the asymptotic limit is described by a two-dimensional sub-
algebra of the full (2 + r)-dimensional noncommutative torus
generated by S; = (o|UT(X)U (X — a;)|o) T;. This subalgebra
is completely characterized by two topological integers 7y
and ny, ,,}, which can be directly extracted from the IDS.

(H24)
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