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Abstract – Re-configurable materials and meta-materials can jump between space symmetry
classes during their deformations. Here, we introduce the concept of singular symmetry enhance-
ment, which refers to an abrupt jump to a higher symmetry class accompanied by an un-avoidable
reduction in the number of dispersion bands of the excitations of the material. Such phenomenon
prompts closings of some of the spectral resonant gaps along singular manifolds in a parameter
space. In this work, we demonstrate that these singular manifolds can carry topological charges.
As a concrete example, we show that a deformation of an acoustic crystal that encircles a p11g-
symmetric configuration of an array of cavity resonators results in an adiabatic cycle that carries a
Chern number in the bulk and displays Thouless pumping at the edges. This points to a very gen-
eral guiding principle for recognizing cyclic adiabatic processes with high potential for topological
pumping in complex materials and meta-materials, which rests entirely on symmetry arguments.

editor’s  choice Copyright c© 2024 EPLA

It has been recently recognized that the space symme-
try of materials can be a rich source of topological ef-
fects. For example, in topological quantum chemistry, the
materials are divided in homotopy classes such that two
systems from two different classes cannot be continuously
deformed into each other without closing a bulk spectral
gap or breaking the space symmetries associated with the
classes [1–4]. It has also been recognized that robust topo-
logical bulk-boundary correspondences can be induced by
space symmetries under adiabatic pumping conditions [5].
Space symmetries also play a central role in the topological
effects observed in higher-order topological insulators [6]
and in other manifestations of bulk-boundary correspon-
dences, such as in topological corner modes [7] and topo-
logical screw dislocations [8].

Our present work opens another perspective on space
symmetries, specifically, on cyclic deformations of materi-
als in the presence of symmetries. As is well known [9], an
adiabatic cycle can generate non-trivial topology in the
bulk of a material and a topological spectral flow at its
boundaries. The prototypical source of such phenomena is
the Rice-Mele model [10] of polyacetylene [C2H2]n. It has
two parameters that quantify the fluctuations of the hop-
ping coefficients and an ensuing staggered potential under
possible dimerizations of the ideal chain. The model dis-
plays a gapless energy spectrum at a singular point, where

(a)E-mail: vincent.laude@femto-st.fr (corresponding author)

Fig. 1: Ball-and-stick model of un-dimerized polyacetylene.

the two parameters are zero, and a gapped spectrum oth-
erwise. A closed loop encircling this singular point of the
parameter space supports a non-trivial Chern number [9].
This is often invoked as an example where the symmetry
is irrelevant and where the principles at work are entirely
topological. We argue here that this is a very narrow
point of view, which misses a wider picture that can be
very revealing when it comes to identifying materials that
support similar topological effects.

To open the discussion, we point out the glide-reflection
symmetry of the un-dimerized polyacetylene chain, which
is quite evident from its structure reproduced in fig. 1. The
singular point in the parameter space of the Rice-Mele
model, which carries the topological charge, exists pre-
cisely because of this symmetry. Away from this singular
point, the glide-reflection symmetry of the polyacetylene
chain is removed, so that only discrete translations re-
main (p1 symmetry) and the energy spectrum is gapped.
Thus, we are dealing with a parameter space with predom-
inantly p1 symmetry and with one singular point where
the symmetry is enhanced. The main point we want to
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communicate is that, even without a tight-binding model
for a material or metamaterial, we can still identify cyclic
adiabatic processes with potential for topological pump-
ing, based entirely on symmetry principles. Indeed, we
will show in this work that the topological adiabatic cycle
in polyacetylene is not an isolated occurrence and that, in
fact, topological cycles are prone to occur and very easy to
identify around the sub-manifolds of the parameter space
that carry enhanced symmetries.

To formulate the latter more precisely, let us place
the discussion in the context of the seven frieze groups,
which are the discrete space groups of planar strips [11],
hence appropriate for the investigation of periodic quasi 1-
dimensional physical systems. We also switch from molec-
ular systems to meta-materials, for which we generate
symmetric patterns where the positions, orientations and
shapes of the resonators all influence the dynamics of the
collective resonant modes [12]. Specifically, starting from
one or more seeding shapes, later regarded as seeding res-
onators, we apply all plane transformations contained in
a particular frieze group and generate patterns displaying
a desired symmetry. In regards to the complexity of their
symmetries, at one end stands the p1 group, which in-
cludes only the discrete translations of the primitive cell.
At the opposite end stands the p2mm group, which incor-
porates the maximal set of allowed discrete symmetries,
that is, horizontal translations and horizontal/vertical re-
flections. Regardless of their complexity, all symmetric
patterns can be generated with the p1 group, when the
latter acts on an appropriate set of seeding resonators
forming the primitive cell, as illustrated in fig. 2(a). How-
ever, if the seeding resonators have particular shapes, lo-
cations and orientations as in fig. 2(b), the symmetry of
the pattern can be enhanced to other frieze groups and a
smaller set of seeding resonators is needed, as illustrated
in fig. 2(c) for the case of the glide-reflection symmetry
(frieze group p11g). Under the slightest generic perturba-
tion of the position, shape or orientation of resonators, the
pattern falls back to the p1 symmetry. The point we want
to make is that the patterns with symmetries other than
p1 form isolated manifolds in the space of symmetric pat-
terns, and these manifolds are surrounded and connected
by the space of p1-symmetric patterns. We demonstrate
here that some of these isolated manifolds carry topologi-
cal charges.

A decisive factor that must be taken into account is
the number of distinct energy bands that can be pro-
duced with a given number of seeding resonators. If
each resonator carries one resonant mode, then the p1-
symmetric pattern seen in fig. 2(a) produces two gapped
resonant energy bands, generically. In contrast, the p11g-
symmetric pattern seen in fig. 2(c) can produce only a sin-
gle resonant energy band, regardless of the couplings [13].
Thus, the spectrum will be ungapped along a manifold
of parameters carrying the p11g symmetry. However, not
every enhancement/reduction of symmetry leads to the
phenomena advertised here. If we start with four arbitrary

Fig. 2: (a) Symmetric pattern generated by acting with p1
group on the two seeding shapes shown in color, i.e., using only
discrete lattice translations. a is the lattice constant. (b) Same
as (a), but with the seeding shapes being glide-reflection images
of each other. (c) Pattern (b) is reproduced by acting with p11g
group on a single seeding shape, i.e., by repeatedly applying a
half-shift followed by a glide-reflection.

seeding resonators, we can generate a p1-symmetric pat-
tern with four resonators in the primitive cell. By con-
tinuously changing the shape, orientation and locations of
the seeding resonators, we can achieve the p2mm symme-
try, in which case the pattern can be generated from a
single seeding resonator. Yet, both cases can display four
separated energy bands, a counting that is based on the
K-theories of these space groups (see, e.g., fig. 7.3 in [12]).
In this case, the symmetry enhancement does not display
a singular character. In contradistinction, the enhance-
ment from frieze group p1m1 (vertical reflection) to p2mg
(vertical reflection and glide-reflection) does, because the
analysis here is very similar to the one for p1 → p11g
enhancement: p1m1 and p2mg belong to the same iso-
morphism class, hence they have identical K-theories, but
the number of needed seeding resonators drops by one for
p2mg. Hence, the number of energy bands that can be pro-
duced by a p2mg-symmetric pattern is necessarily lower

than that produced by a p1m1-symmetric one. While a
more thorough analysis will be reported elsewhere, we can
already state the general guiding principle at work here,
namely, the reduction in the number of energy bands that
can be produced with a given pattern when the symmetry
enhancement occurs.

Once we identified a symmetry enhancement that leads
to a singular manifold in the space of parameters, the
next step is to construct adiabatic cycles that encircle
this manifold. They can all be obtained by deforming
the seeding resonators. In general, a seeding resonator
has an infinite dimensional configuration space, so there
are many opportunities to engineer deformation spaces of
different topologies and dimensions. In the present study,
however, we restrict ourselves to lower dimensional defor-
mation spaces, by only allowing specific actions on the
resonators. In fig. 3, for example, we consider a pair of
spherical seeding resonators, the first one with constant
radius r0 and the second one initially of same radius
r0 and fixed to the glide-reflection symmetric position
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Fig. 3: Adiabatic deformations of the materials described in
this work can be generated by modifications of position (hence
x, y coordinates) and size (hence scaling by a parameter s)
of a seed resonator. When going around the reference p11g-
symmetric configuration, shown in gray and corresponding to
the origin of the parameter space ∆x = ∆y = ∆s = 0: (a) an
adiabatic cycle generated only with displacements inherently
intersects the singular manifold shown in green; (b) whereas
an adiabatic cycle generated with displacements plus scalings
can encircle the critical manifold. The shapes in these diagrams
represent self-coupling resonators. In blue, we show a contin-
uous sequence of configurations indexed by the adiabatic pa-
rameter Ψ. The diagrams on the right depict the corresponding
loops in parameter space. Configurations drawn with starred
yellow centers are p11g-symmetric. Note that, in (b), the adi-
abatic loop goes behind at the top and in front at the bottom
of the singular manifold, hence avoiding these p11g-symmetric
configurations.

(see the gray configuration in fig. 3). From this p11g-
symmetric reference configuration, we allow displacements
and scalings (by parameter s) of the second seeding res-
onator. Thus, the configuration space (∆x, ∆y, ∆s) is
3-dimensional. We then see that the space of p11g-
symmetric patterns is 1-dimensional and is represented
by (0, ∆y, 0), or the vertical dashed line in fig. 3(a).
Any closed loop (∆x(Ψ), ∆y(Ψ), 0) around the reference
point (0, 0, 0), composed of displacements only, will in-
tersect the singular manifold at least twice. As shown
in fig. 3(b), however, we can encircle the p11g-symmetric
phase by using displacements and scalings with a closed
loop (∆x(Ψ), ∆y(Ψ), ∆s(Ψ)) that never crosses the singu-
lar manifold and actually encircles it. Note that parameter
space is represented in fig. 3 as (∆x, ∆y, ∆s) so that the
reference configuration (∆x = 0, ∆y = 0, ∆s = 0 sits at
the origin.

Another example is shown in fig. 4, where the shapes
and sizes of the seeding resonators are matched and fixed,
but we allow displacements and rotations ∆ϕ of the sec-
ond seeding resonator. This produces again a closed loop
(∆x(Ψ), ∆y(Ψ), ∆ϕ(Ψ)) in the 3-dimensional configura-
tion space that encircles the critical manifold without
crossing it. Again, the origin of parameter space repre-
sents the p11g-symmetric reference phase.

The big claim of our work is that, at least in the
case when the seed resonators carry a single mode
each, the topologically non-trivial cycles described above

Fig. 4: Same as fig. 3 but with scalings replaced by rota-
tions. (a) An adiabatic cycle generated only with displace-
ments inherently intersects the singular manifold shown in
green; (b) whereas an adiabatic cycle generated with dis-
placements plus rotations (by parameter ∆ϕ) can encircle the
critical manifold. The shapes in these diagrams represent self-
coupling resonators. The configuration shown in gray is the
p11g-symmetric configuration at the origin of parameter space,
or ∆x = ∆y = ∆ϕ = 0. In blue, we show a continuous se-
quence of configurations indexed by the adiabatic parameter
Ψ. The diagrams on the right depict the corresponding loops
in parameter space. Configurations drawn with starred yellow
centers are p11g-symmetric.

automatically translate into Thouless pumpings, provided
the system displays a gap in its resonant spectrum, and
no tight-binding models are needed to understand this
phenomenon. Indeed, in the proposed scenario, the cou-
pling matrices between the resonators are functions of only
the three specified parameters, but their functional depen-
dence can be arbitrary. Now, during an adiabatic cycle,
the collective resonant states can be resolved over the adi-
abatic variable Ψ and quasi-momentum k, which both live
on circles. Thus, the collective resonant states with fre-
quencies below the spectral gap supply a vector bundle
over the 2-torus. Such bundles are generated by acting
with a 2 × 2 projection matrix P (Ψ, k) on the fixed space
C

2 (see, e.g., eq. (2) for an explicit expression). Every
projection obeys the constraints P = P † = P 2 and, as a
result, they take the form

P =

(

α
√

α(1 − α)eiφ

√

α(1 − α)e−iφ 1 − α

)

, (1)

where α is a real parameter from the interval [0, 1] and φ is
also a real parameter from the interval [0, 2π). Key here is
that, with our 3-dimensional deformation space and with
the freedom to choose the functional dependence of the
coupling matrices, we can sample any desired projection,
which requires only two parameters, as seen in eq. (1).
Now, consider one configuration with gapped spectrum,
which can be always expanded into a small adiabatic loop
of configurations without closing the gap. The resulting
bundle over the 2-torus is obviously trivial, hence it car-
ries a Chern number zero. Consider now an adiabatic loop
that encircles the singular manifold carrying the p11g sym-
metry. We claim that the resulted bundle over the 2-torus

16004-p3



J. A. Iglesias Mart́ınez et al.

is topologically distinct from the first bundle we previ-
ously constructed. Indeed, if we can modify the functional
dependence of the couplings between the resonators such
that the second bundle is deformed into the first one, then
we should be able to contract the second adiabatic loop
to a point, without closing the gap. But this is impossi-
ble because, in the process, we will necessarily touch the
singular manifold where there is only one spectral band
in the spectrum. Thus, the second bundle must carry a
nontrivial Chern number.

Once we established that the vector bundle supported
by the loop encircling the p11g singular manifold car-
ries a non-trivial Chern number, given the robustness
of the latter, we can consider additional deformations of
the resonators as well as turning on additional degrees of
freedom. As long as the spectral gap remains open for
the entire adiabatic cycle, none of the above actions can
destroy the topological character of the loop. This conclu-
sion is definitely aided by the particular setting we started
with. If the resonators would have carried more than one
degree of freedom, then it is very likely that some of the
bands or composite bands will not carry a Chern number
under the proposed scheme. Therefore, we want to be clear
that we are not announcing a theorem here, but rather a
guiding principle for detecting cyclic adiabatic processes
with high potential for implementing topological pumps.
In general, a check will still be necessary to confirm the
sought properties.

We will confirm the topological nature of the cycle from
fig. 4 using both tight-binding and continuum media sim-
ulations. The pattern of resonators discussed so far has
two modes per repeating cell, hence the Hilbert space of
the resonating modes is spanned by the vectors ξ ⊗ |n〉,
with ξ a column vector with two complex entries and
n ∈ Z. This particular Hilbert space is usually denoted as
C

2 ⊗ �2(Z). The precise distribution of these vectors on
the resonators is shown in fig. 5(a). In figs. 5(b)–(e), we
list the nearest-neighbor couplings and their contributions
to the dynamical matrix. According to those couplings,
the dynamical matrix H which determines the resonant
pulsations H |Ë〉 = Ì2|Ë〉 of the resonator pattern can be
approximated as

H = E0 + aσ1 ⊗ I + a′ (σ− ⊗ S + σ+ ⊗ S†) + b σ3 ⊗ I

+
c

2
σ0 ⊗ (S + S†) +

d

2
σ3 ⊗ (S + S†),

where S|n〉 = |n + 1〉 is the shift operator, E0 is the aver-
age resonant energy of the two seeding resonators, σ0 is the
2 × 2 identity matrix and the other σ’s are Pauli’s matri-
ces. The terms included encompass intra-cell couplings as
well as inter-cell couplings up to the nearest neighbor. The
terms left out involve second- and higher-nearest-neighbor
couplings, which are relatively small. We pass to the mo-
mentum space using the substitution S±1 → e±ık, to find
two energy bands

E±(k) = E0 + c cos(k) ±
√

(b + d cos(k))2 + |a + a′eık|2

Fig. 5: (a) The vectors of the Hilbert space C
2 ⊗ �2(Z) cor-

responding to the resonant modes carried by the two res-
onators; (b)–(e) the dominant coupling matrices for a generic
p1-symmetric pattern with two resonators per primitive cell.
a and a′ are intra- and inter-cell cross-couplings, respectively.
E0±b are the on-site self-energies. c±d are inter-cell couplings
for each site.

separated by a gap. When the symmetry of the pattern is
enhanced to p11g, then necessarily a = a′ and b = d = 0;
E±(k) = E0 + (c ± 2a) cos(k) and the band spectrum is
gapless. We recall that this closing of the energy gap is
un-avoidable and that it does not depend on the simplified
Hamiltonian we used. Under an adiabatic cycle parame-
terized by Ψ ∈ S

1, the Bloch Hamiltonian depends on
two parameters (Ψ, k) that live on torus T2, hence we can
evaluate a Chern number as

Ch(P ) =

∫

T2

dΨ dk F (Ψ, k),

where P is the spectral projector onto the lower dispersion
band, which can be conveniently computed as

P (Ψ, k) =
H(Ψ, k) − E+(Ψ, k) I2×2

E−(Ψ, k) − E+(Ψ, k)
, (2)

and F (Ψ, k) is the Berry curvature,

F (Ψ, k) =
ı

2π
Tr(P (Ψ, k)[∂ΨP (Ψ, k), ∂kP (Ψ, k)]).

Note that parameter c does not enter in any of the last
three equations because its corresponding contribution to
H(Ψ, k) just shifts E±(Ψ, k) by the same amount. Thus,
we are effectively dealing with a 4-dimensional parameter
space and, as such, the critical manifold a−a′ = b = d = 0
has dimension 1. Now, with these tools, we can verify that
any loop that encircles the 1-dimensional critical manifold
carries a non-trivial Chern number. Due to the topological
character of the statement, it is enough to check this state-
ment for one loop and this is confirmed in fig. 6, where a
parametrization consistent with the process illustrated in
fig. 4 is considered.

We now demonstrate how our guiding principle unfolds
for an actual acoustic crystal. Its building elements are the
C-shaped Helmholtz resonators with the unit cell shown
in fig. 7(a) and full crystal shown in fig. 8(b)–(e). The
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Fig. 6: Resonant spectrum (a) and Berry curvature (b) for
the loop a = 1.0 + 0.4 cos(Ψ), a′ = 1.0 + 0.4 sin(Ψ), b = 0,
c = 0.4 + 0.1 cos(Ψ − π/4) and d = −0.1 cos(Ψ − π/4). The
expressions of parameters are consistent with the loop in fig. 4,
where b = 0 because the resonators are identical and c + d is a
constant because the top row is not modified. The π/4 phase
is an arbitrary choice that makes no difference.

Fig. 7: Tuning the resonating structure: (a) unit cell of the
p11g-symmetric configuration of a chain of C-shaped acoustic
resonators. The gray region indicates the domain of the acous-
tic wave propagation. Hard-wall boundary conditions are ap-
plied at the top and bottom of the cell, as well as on the walls of
the C-shape. In units of a, the values of the marked parameters
are b = 0.85a, d = 0.15a, r = 0.3a, and R = 0.4a. The glide
parameter g is fixed at a/2. (b) Bulk dispersion as a function
of the resonator orientations. (c) Bulk dispersion of the tuned
structure, with a mark showing the targeted band splitting.
The simulations were generated with COMSOL MultiPhysics
software.

out-of-page dimension of the resonators is small such that
the low-frequency resonant modes are all uniform in the
direction perpendicular to the page. We hope the reader
will agree with us that, a priori, it is not clear what cyclic
actions on such acoustic crystal will result in Thouless
pumping. According to our guidelines, the first task is
to optimize its p11g-symmetric configuration such that a
breaking of the p11g symmetry produces a complete gap in
the dispersion spectrum. In fig. 7(b), we show the evolu-
tion of the dispersion bands as a function of the orientation
of resonators in p11g-symmetric configurations and, from
that data, we chose the angle ϕ = 54◦ giving the dispersion
shown in fig. 7(c). The touching of the dispersion bands
marked there is protected by the p11g symmetry and the
loss of this protection will open a local spectral gap. The
particular geometry of the dispersion bands then assures
us that this local band splitting develops into a complete
spectral gap.

Next we define the deformation path as

g = a/2 − a/5 sin(Ψ), ϕ = 54◦ + 20◦ cos(Ψ).

Fig. 8: (a) Spectral flow of the resonant spectrum against the
pumping parameter Ψ for a finite acoustic crystal with 31 unit
cells. The cycle parametrized by pumping parameter Ψ encir-
cles the glide symmetric point in parameter space (g, φ), as the
left inset depicts. Topological edge modes are seen crossing
the bulk gap of the dispersion diagram. Their localization, as
measured by the center of mass 〈X〉 of the modes, is encoded
in color. Right inset: resonant spectrum of the infinite acous-
tic crystal (compare with fig. 6(a)). (b)–(e) Samples of spatial
profiles of modes, reported as the pressure field p̂, collected at
the arrows indicated in panel (a).

This encloses the singular p11g-manifold and it leads to
the gapped bulk dispersion spectrum shown in the inset
of fig. 8(a). According to our prediction, this loop supports
a Chern number +1 and, as such, the bulk-boundary cor-
respondence principle [14] assures us of the emergence of
topological edge states in a finite geometry, which display
a topological spectral flow with the pumping parameter Ψ.
This is confirmed in the COMSOL simulations reported in
fig. 8(a), where two chiral edge bands located at the oppo-
site ends of finite crystal are clearly visible. Furthermore,
samples of the modes as well as a computation of their
center of mass confirm their expected localization. In con-
trast, if the pumping cycle does not encircle the singular
p11g-manifold, as fig. 9 exemplifies, then the topological
edge state inside the band gap always remains localized
on one of the sides of the finite chain of resonators and
never crosses the band gap.

In conclusion, we announced a guiding principle that
enables one to identify adiabatic cycles with high poten-
tial for Thouless pumping, without making appeal to any
analytic tight-binding model. Indeed, the topological cy-
cles described in figs. 3 and 4 were produced using only
geometric considerations. Shunting the need of analytic
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Fig. 9: (a) Spectral flow of the resonant spectrum against the
pumping parameter Ψ for a finite acoustic crystal with 31 unit
cells. The cycle parametrized by pumping parameter Ψ does
not encircle the glide symmetric point in parameter space
(g, φ), as the inset depicts. The localization of topological edge
modes, as measured by their center of mass 〈X〉, is encoded in
color. (b), (c): samples of spatial profiles of modes, reported
as the pressure field p̂, collected at the arrows indicated in
panel (a).

calculation can have great practical implications. For ex-
ample, our extremely simple topological adiabatic cycle
for the C-shaped resonators (see the supplementary video
EdgeMode.avi for an animation) would have been hard to
guess from an analytic model, yet we discover it without
much effort using the new geometric principles. We antic-
ipate that our guiding principle will be fruitful as well for
wallpaper groups and crystallographic groups in 3 dimen-
sions, and even for finite highly symmetric molecules. The
principle may be also relevant to the electron-phonon cou-
pling in quantum materials. For example, deformations of
the crystalline or molecular structures that encircle mani-
folds of enhanced symmetries may supply mechanisms for
quantized charge transfers across extended systems.
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