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ABSTRACT

Frieze groups are discrete subgroups of the full group of isometries of a flat strip. We investigate here the dynamics of specific architected
materials generated by acting with a frieze group on a collection of self-coupling seed resonators. We demonstrate that, under unrestricted
reconfigurations of the internal structures of the seed resonators, the dynamical matrices of the materials generate the full self-adjoint sec-
tor of the stabilized group C∗-algebra of the frieze group. As a consequence, in applications where the positions, orientations and internal
structures of the seed resonators are adiabatically modified, the spectral bands of the dynamical matrices carry a complete set of topological
invariants that are fully accounted by the K-theory of the mentioned algebra. By resolving the generators of the K-theory, we produce the
model dynamical matrices that carry the elementary topological charges, which we implement with systems of plate resonators to showcase
several applications in spectral engineering. The paper is written in an expository style.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0127973

I. INTRODUCTION

It has been long recognized that there is a reciprocal relation between an underlying discrete geometric pattern and the collective dynam-
ical processes supported by that pattern, when the latter is populated with identical self-coupling resonators. It was Bellissard who formalized
this statement very precisely, when he introduced C∗-algebras and their K-theories to the condensed matter community8 in the context of
atomic systems. His observation was that a material always carries a C∗-algebra, which, quite generally, can be defined as the enveloping
C∗-algebra of the Hamiltonians generating the dynamics of material’s degrees of freedom (both classical and quantum) under a precise set of
specified experimental conditions. This C∗-algebra is often completely determined by the underlying discrete physical pattern. For example,
Bellissard showed in Ref. 8 that, for a material at finite temperature where thermal disorder breaks all crystalline symmetries, the Hamiltonians

describing the low energy physics of the electrons can all be drawn from the stabilization57 of a crossed product by Rd, where d is the effective
dimension of the material. Reciprocally, any self-adjoint element from this C∗-algebra can serve as the generator for the electrons’ dynamics
inside the material. Substantial contributions to this ingenious program were supplied by Kellendonk, who provided further insight into these
intrinsic C∗-algebras.35,58

An architected material is a synthetic material built with full control over their classical degrees of freedom, including their couplings.
In this context, we can choose how to define specific classes of materials as well as the set of experimental conditions the materials will be
subjected to. For example, often in the typical applications, identical resonators are placed in a give architecture and their internal structures
(i.e., mode shapes and force fields) are unrestrictedly modified in order to explore or exploit all dynamical effects offered by the underlying
architecture. In such conditions, the minimal C∗-algebra covering the dynamical matrices supported by an architecture can be explicitly
computed39 in the form of a groupoid C∗-algebra built entirely and canonically from the architecture of the material. Now, if the C∗-algebras
of two architected materials are found to be isomorphic, then any dynamical feature observed for one material can be reproduced with the
other. In other words, from the dynamical point of view, the two architectures are identical. When the architected materials are approached
from this angle, the following simple but deep principle emerges: Discovering new dynamical patterns in metamaterials amounts to exploring
different stably isomorphic59 classes of C∗-algebras (see Ref. 39 for more on this point of view). The present work advances this program by
investigating classes of patterns associated with the discrete groups of symmetries of a strip, known as frieze groups16 (see Sec. II).
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The operator algebraic approach with its K-theoretic tools introduced by Bellissard hasmuchmore to offer.8–12 Indeed, stably isomorphic
orMorita equivalent C∗-algebras have identical K-theories. Therefore, the K-theoretic groups can be regarded as topological invariants for the
deformations of architected materials within one class. Thus, after restricting to a well defined class of architected materials and experimental
conditions, therefore to a fix algebra of dynamical matrices, each connected component of the spectrum of a dynamical matrix, aka spectral
band, can be labeled by an element of the K0-group of the algebra. This element represents the complete topological invariant associated
to the corresponding spectral projection, called band projection from now on. When the Abelian K0-group is presented in a basis, then the
complete topological invariant breaks down into a finite set of topological charges (see Sec. IV). If these topological charges are found to
be identical for all band projections of two different dynamical matrices, then we can be sure that the two dynamical matrices can be stably
deformed into each other, inside the fixed algebra, without changing the topology of the spectrum (as a subspace of the real axis). However,
if the topological charges are found to be different, then the topology of the spectrum must change during the deformations and, as such,
some of the spectral gaps must close, regardless how hard we try to avoid this phenomenon. This supplies a very simple, robust and practical
principle for resonant spectrum engineering of metamaterials, because it supplies the means to close and open spectral gaps on demand,
without fine-tuning. Furthermore, it gives us insight into the dynamical features that can be achieved with a material from a given a class and
in a given set of experimental conditions, in the sense that all such materials deliver wave-channels that carry a finite number of topological
charges that are conserved when bands collide or split as a result of continuous deformations of the material. In fact, if one is interested only
in dynamical effects that are robust against continuous deformations of the materials, referred to here as topological dynamics, then all such
dynamical effects can be reproduced by stacking elementary models that carry the fundamental topological charges.

To put the above principles at work in real world applications, one needs to:

N1. Specify the protocol generating the class of materials;
N2. Specify the allowed deformations of the materials;
N3. Compute the corresponding unique C∗-algebra of dynamical matrices;
N4. Compute the K0-group of this algebra, together with an explicit basis;
N5. Supply the model dynamical matrices corresponding to this basis.

If all these components are in place, then a theorist can advise an experimental research group on how to reconfigure a meta-material to
produce dynamical effects that are stable against deformations of the materials, such as spectral flows that close and open specific spectral
gaps. In a different scenario, one may be dealing with a complicated dynamical matrix coming from a laboratory, in which case one will be
interested to resolve the complete topological invariant of the band projections. In this scenario, one needs:

N6. A practical algorithm to compute the K-theoretic labels.

The structures of the frieze groups are relatively simple and the program outlined above can be completed in its entirety. This created
for us the opportunity to present here a model of analysis that could be of some guidance for mathematical physicists seeking collaborations
with metamaterial engineers and, reciprocally, for material engineers seeking inspiration from this type of works. Along the way, we intend
to advertise several tools specific to operator algebras, which not only offer effective vehicles for computations but also natural frameworks
that self-explain the purpose of a calculation and, in the same time, guide one with what needs to be computed. Specifically: (N1 and N2) We
introduce an algorithm that generates a well defined class of architected materials by acting with the space transformations of a frieze group on
a set of seeding resonators. (N3) Under the assumption that the interactions between pairs of resonators are fully determined by their relative
geometric configuration, as it is always the case if the physics involved in the coupling of the resonators is Galilean invariant, we show that
the dynamical matrices governing the collective dynamics of the resonators belong to the stabilized group C∗-algebra of the corresponding
frieze group. Reciprocally, in experimental conditions where the internal structures, positions and orientations of the seed resonators are
unrestrictedly modified, than the self-adjoint sector of this algebra is fully sampled by the dynamical matrices of the architected materials.
(N4 and N5) We supply a complete account of the K0-theory of this algebra for all seven classes of frieze groups, together with explicit sets of
generators of the K0-groups, as well as model dynamical matrices. In the process, we advertise the Baum–Connes machinery.3–7 (N6) For a
generic dynamical matrix, we also supply a numerical algorithm for computing the complete set of K-theoretic labels of the band projectors. In
the process, we advertise Kasparov’s bivariant K-theory and its internal product33,34 as the natural framework to conceptualize the process of
resolving the K-theoretic labels. The resulting algorithm never makes appeal to a Bloch decomposition since it is entirely developed inside the
real-space representation. Among other things, we believe this approach can handle disordered perturbations. (7) Additionally, we implement
the model dynamical matrices using phononic crystals and we use COMSOL60 simulations to demonstrate various topological spectral flows
generated with the principles discussed above. Let us emphasize that we make no attempts to enforce any of the fundamental symmetries, that
is, the time-reversal, particle-hole or chiral symmetries, which require special experimental conditions (see Ref. 2).

We now discuss the relation between our work and the existing literature. We start with a brief survey of the physics literature. The
first indication that a space symmetry can enrich the topological dynamics of a material appeared in Ref. 25. The first indication that a
space symmetry alone can stabilize topological phases in a material came from Refs. 32 and 50. Prior to these works, a topological phase
was synonymous with a non-trivial (strong) bulk-boundary correspondence, but an alternative definition was put forward in Refs. 32 and
50 saying that a band insulator is in a topological phase if it cannot be adiabatically deformed to its atomic limit. This concept evolved
in what is today known as topological quantum chemistry,14,15,43,51 which perhaps can be defined as the science of identifying topological
bands in stoichiometric condensed substances. It comes with fine tools that have been combined with first-principle computer simulations
of quantum solids to assess the topology of the energy bands in large classes of stoichiometric materials.22,52,53,54,55 The topological criterium
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in these works is the pure homotopy equivalence of the bands, while ours is stable homotopy. The latter allows new degrees of freedom to
participate in the deformation processes of the models and, as a result, our predictions hold even when the physical systems interact with
external structures, such as supporting frames. We want to make it clear, though, that we are not interested here in the classification of
topological phases but rather in the dynamics of small well defined classes of materials. More precisely, we want to make ourself useful to
the metamaterial community by developing bottom-up design approaches that deliver specific topological dynamics in concretely specified
experimental conditions, as an alternative to the top-bottom approach in Refs. 22, 52, 53, 54, and 55 where large libraries of existing materials
were scrutinized for topological bands..

We now turn our attention to the mathematical physics literature, specifically to the works by Shiozaki et al.,45–47 which initiated the
systematic applications of topological K-theoretic methods to systems with space group symmetry. These works include the enrichment by
the fundamental symmetries and treat all Wyckoff positions at once. It is shown there that, after a Bloch decomposition, the spectral bands
are classified by twisted equivariant K-theories (as introduced in Ref. 24; see also Ref. 26) over the Brillouin torus w.r.t. to actions of the point
group. These K-theories are carefully formulated in generic setting and Ref. 47 explicitly computes them for all wallpaper groups in class A
and class AIII. The results revealed an extremely rich landscape of topologically distinct phases, which can be a great source of inspiration not
only for electronic materials but also for metamaterials where dynamics is carried by classical degrees of freedom. Refinements, extensions
and subtle new point of views have been further provided in Refs. 27–29 and 48, just to mentioned a few works from a rapidly growing
body of rigorous publications (see also Ref. 49 for an impressive tour de force). Certainly, the field is at a point where massive and effective
deployment of these abstract predictions might be witness in laboratories in the coming years (see the frieze acoustic crystals in Ref. 41). The
purpose of our paper is precisely to demonstrate how this could happen in the context of architected materials. As already inferred in our list
N1–N6, accent is put on what kind of information and tools are needed to make that happen and what could be the practical issues that need
attention at the fundamental level. For example, one such issue is the stability of the predictions in the presence of fabrication imperfections.
We foresee the operator algebras and operator K-theory, as opposed to topological K-theory, as the vehicles to put this issue under control.
Furthermore, as projected by our list N1–N6, establishing the isomorphism classes of the K-groups is only a small piece of the information
needed to produce results in a laboratory. Even for the simple case of frieze groups, the second part of N4, N5 and N6 are missing or are
scattered in the published literature.

The pure mathematics literature abounds with results on the K-theories of group C∗-algebras. One of the most effective tools of com-
putations is the Baum–Connes assembly map,3–7 which more often than not reduces the task to computing equivariant K-homologies of
topological spaces (see Ref. 1 for a status report and Ref. 29 for a direct application related to ours). Davis and Lück21 have unified several
existing assembly maps, which then enabled Lück and Stamm37 to formally derive the K-theories of all crystallographic groups in arbitrary
dimensions and, explicitly, the K-theories of all wallpaper groups (see also Ref. 56). While we hope that these results and methods will soon
become a major source of inspiration in materials science, we will use them here only as a reference, as we will showcase simpler but less
powerful computations based on the equivariant Chern character5,36 (see Theorem 6.1 of Ref. 40), which can only resolve the non-torsion
component of the K0-groups.61 As already pointed out in Ref. 23, the Baum–Connes machinery is not always an effective tools in this respect.
For crystallographic groups of low dimensions, the methods based on non-commutative CW-complexes developed in Ref. 38 are capable to
deliver both the K0-groups and sets of generators. Other more direct methods for specific crystallographic groups can be found in Refs. 17
and 30. We will use some of these sources when listing the generator of the K0-groups of the frieze group C

∗-algebras. While this is sufficient
for the simple frieze groups invoked by our study, more systematic methods for resolving the bases of the K0-groups are yet to be developed
for the space groups in higher dimensions.

II. A CLASS OF ARCHITECTED MATERIALS

A strip is a quasi one-dimensional slice of the Euclidean plane, such as S ∶= R × [−1, 1], equipped with the inherited Euclideanmetric. Its
complete group of isometries is generated by continuous translations along the long axis and reflections relative to the horizontal and vertical
axes. This continuous group of isometries accepts seven distinct discrete subgroups, the frieze groups.16 This section supplies a brisk review
of the frieze groups and introduces our specific algorithm that creates architected materials using actions of the frieze groups. The section also
analyzes the dynamical matrices of these materials.

A. Discrete symmetries of a strip

The seven discrete subgroups of the full group of isometries of the strip are all listed in Table I, together with their isomorphism classes,
sets of generators, and actions on the strip. In this table, Ä is the translation by one unit along the strip, while Ãh and Ãv are the reflections
against the horizontal and vertical axes of the strip, respectively.

The structure of the frieze groups can be summarized in a concise form by presenting each of them in terms of their generators and
relations:

1. p1 = ⟨uð,u = Ä;
2. p11g = ⟨uð, u = Ä 1

2
Ãv ;

3. p1m1 = ⟨u, v1 ∣ v
2
1 , (uv1)

2ð, u = Ä, v1 = Ãv ;
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TABLE I. List of the frieze groups, their isomorphism classes, generators and
actions on the plane.

Iso. class Γ Generators Orbifold

Z∞ p1 Ä

p11g Ä1/2Ãv

Dih∞ p1m1 Ä, Ãv

p2 Ä, ÃhÃv

p2mg Ä1/2Ãh, Ãv

Z∞ ×Dih1 p11m Ä, Ãh

Dih∞ ×Dih1 p2 mm Ä, Ãh, Ãv

4. p2 = ⟨u, v1 ∣ v21 , (uv1)2ð, u = Ä, v1 = ÃhÃv ;
5. p2mg = ⟨u, v1 ∣ v21 , (uv1)2ð, u = Ä1/2Ãh, v1 = Ãv ;
6. p11m = ⟨u, v2 ∣ v22 , uv2u−1v2ð, u = Ä, v2 = Ãh;
7. p2 mm = ⟨u, v1, v2 ∣ v2j , (v1v2)2, (uv1)2,uv2u−1v2ð, u = Ä, v1 = Ãv , v2 = Ãh.

Thus, the discrete subgroups fall into four isomorphism classes, as already indicated in Table I. Furthermore, we can use a uniform notation
to specify an element of any of the frieze groups as unv³11 v

³2
2 := unv³, where it is understood that, for example for p1m1 group, ³2 takes only

value 0. Here ³ = (³1,³2) and v
³
= v

³1
1 v

³2
2 . In this presentation, the composition rule is simply

(unv³) ⋅ (umv´) = un+(−1)³1m v
(³+´)mod 2

, (2.1)

and inversion (unv³)−1 = u(−1)³1 v³. (2.2)

The above rules supply a practical way to encode the tables of the frieze groups, which will be employed by our numerical simulations as
explained in Sec. VI.

B. The class of architectures and the assumed experimental conditions

The protocol that defines the architected materials we want to investigate consists of the following steps:

P1. Start with a finite number Ns of seeding discrete resonators, placed in a strip at desired non-overlapping locations and with desired
orientations;

P2. Apply a plane transformation from a chosen frieze group to each of the seed resonators.
P3. Replenish the seed resonators and repeat step two for all the plane transformations contained in the frieze group.
P4. Adjust the seeds if steps 1–3 result in overlapings and repeat the process.

Examples of symmetric architectures generated from three seed triangles are shown in Fig. 1.

Remark II.1. There are several observations to be made about our class of materials. Firstly, the resulting architectures are symmetric
w.r.t. the frieze group engaged by the protocol. However, as stated in our last rule, we will be avoiding those particular seed configurations
that lead to overlappings and, as such, the seeds are always placed at general Wyckoff positions (i.e., those points of the strip that are fixed
only by the action of the identity operation of the frieze group). Of course, since the number of seeds can be arbitrarily large, a finite number
of them can assemble into a super-seed with center at a special Wyckoff position. Still, this is a special situation because the site group of that
Wyckoff position acts freely on the local modes. The bottom line is that, by choice, there are symmetric architectures that are not included in
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FIG. 1. Examples of architectures generated from three seed resonators.

our class of materials. If we insist in including those, then the algebra of dynamical matrices, for those particular cases, drops from a group to
a groupoid C∗-algebra.39 ï

We also need to specify the experimental conditions. For this, note that any of the proposed architected materials is completely deter-
mined by the shape, position, orientation and internal structures of the seeding resonators. We will assume that the configuration space
defined by the factors we just listed is fully and unrestrictidely explored during the experimental applications, within the bounds imposed by
the protocol P1–P4.

C. Dynamical matrices

The resonators can be steel plates embedded in an elastic medium, acoustic cavities, or magnetized solid bodies (see Example 2.6
in Refs. 39 and 41 and Sec. VII for concrete examples). Each resonator in the architecture can be conveniently and uniquely labeled by(i, f ) ∈ {1, . . . ,Ns} × F, where i corresponds to the seed resonator on which the transformation f was applied. We emphasize that this is a
consequence of our decision to exclude any overlap of the resonators. Each resonator carries a finite number K of relevant internal resonant
modes. These modes will always be observed, measured and quantified in a frame rigidly attached to the resonator. As a result, these observa-
tions and measurements are insensitive to the Euclidean transformations applied on the resonators and this enables us to choose the bases for
the internal spaces of resonators in a coherent fashion. Specifically, for the seed resonator i, we choose once and for all a basis for its space of
internal resonant modes, which we denote by ∣³, i, eð, with ³ = 1,K and e the neutral element of the frieze group F. When the seed resonator is
acted with a plane transformation f from the frieze group and placed to its rightful configuration in the architectures, the internal space can
be rendered in the basis ∣³, i, fð, ³ = 1,K, which coincides with the modes ∣³, i, eð when observed from the intrinsic frame.

Remark II.2. This coherent labeling of the modes always exist for our special class of materials. For atomic systems, however, the
orbitals are always observed and quantified in the laboratory frame, hence quite differently from what we are proposing here for classical
resonators. ï

The collective dynamics of a pattern of resonators takes place inside the Hilbert space CN
⊗ ℓ

2(F), N = NsK, spanned by the vectors
À ⊗ ∣ fð with À ∈ Spann{∣³, ið, ³ = 1,K, i = 1,Ns} ≃ CN and f ∈ F. Given our convention, a plane transformation from the frieze group acts as

T f ′(À ⊗ ∣ f ð) = À ⊗ ∣ f ′ f ð. (2.3)

It is important to note that the vector À is not acted on by the transformation. Now, like any bounded operator over CN
⊗ ℓ

2(F), a dynamical
matrix assumes the generic form

H = ∑
f , f ′∈F

wf , f ′ ⊗ ∣ f ð⟨ f ′∣, wf , f ′ ∈MN(C), (2.4)

whereMN(C) denotes the algebra ofN ×N matrices with complex entries. As an experimental fact, the couplingmatrixw f , f ′ becomes weaker

as the distance between a pair ( f , f ′) of resonators is increased and in fact the coupling matrix cannot be experimentally resolved beyond a
certain separation distance. Thus, for typical experiments, it is justified to assume that there is a finite number of terms in Eq. (2.4) involving
one f ∈ F.

If the physical processes involved in the coupling of resonators are Galilean invariant, then the coupling matrices must satisfy the
following symmetry constraints

wg⋅ f ,g⋅ f ′ = wf , f ′ , ∀ f , f
′
, g ∈ F. (2.5)

It is quite important to understand that this is not an assumption but rather a physical reality. Indeed, for self-coupling resonators, the
dynamical matrices are fully determined by the material’s architecture, hence there is a well defined map L↦ {wf , f ′(L)} that associate to
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each admissible architecture L a family of coupling matrices. Then, if g is any Euclidean transformation, we must have

wg⋅ f ,g⋅ f ′(g ⋅ L) = wf , f ′(L), (2.6)

because any instrumentation rigidly attached to the frame of the resonators will not be able to sense the Euclidean drift g of the entire platform.
Now, if g belongs to the frieze group that produced the pattern in the first place, then g ⋅ L = L and the Eq. (2.5) follows.

Remark II.3. As opposed to atomic systems, no additional conjugation with a representation of g on the space CN is needed in Eq. (2.5),
because the pair of resonators and their resonant modes are rigidly rotated by g and themodes are observed and quantified from frames rigidly
attached to the resonators. Another way to justify the absence of such conjugation is via the specific action (2.3) of the plane transformations
on our basis. ï

As a direct consequence of Eq. (2.5), any dynamical matrix over one of our symmetric patterns can be always reduced to the following
particular form

H = ∑
f , f ′∈F

w1, f −1 ⋅ f ′ ⊗ ∣ f ð⟨ f ′∣. (2.7)

This is already a strong indication that the dynamical matrices of our patterns of resonators form a sub-algebra of the bounded operators over
C

N
⊗ ℓ

2(F). Computing this sub-algebra is the subject of the next section.

Remark II.4. The algebra B(ℓ2(F)) of bounded operators over ℓ2(F) is very large and it has a trivial K-theory. Thus, in order to predict
topological phenomena in the dynamics of the resonators, it is paramount to demonstrate that the algebra of dynamical matrices is actually a
separable C∗-subalgebra of B(ℓ2(F)). ï

III. THE C ∗-ALGEBRAS OF DYNAMICAL MATRICES

This section establishes the connection between the abstract C∗-algebra of the frieze groups and the algebra of dynamical matrices of the
class of architected materials introduced in the previous section.

A. Group C ∗-algebras: Elementary facts and notations

There will be several groups involved in our analysis and, for this reason, we want to introduce some uniform notation that can be used
exchangeably among the groups. The standard material of this subsection can be found, for example, in Ref. 20 (Chap. VIII).

Henceforth, given a generic discrete group G, its group algebra CG consists of formal series

q =∑
g∈G

³g g, ³g ∈ C, (3.1)

where all but a finite number of terms are zero. The addition and multiplication of such formal series are defined in the obvious way, using
the group and algebraic structures of G and C, respectively. In addition, there exists a natural ∗ -operation

q
∗
=∑

g∈G

³∗g g
−1
, (q∗)∗ = q, (³q)∗ = ³∗q∗, ³ ∈ C. (3.2)

Hence, CG is a ∗ -algebra in a natural way.
We denote by e the neutral element of G. Then the map

T : CG→ C, T (q) = ³e (3.3)

defines a faithful positive trace on CG and a pre-Hilbert structure on CG via

⟨q, q′ð := T (q∗q′), q, q
′
∈ CG. (3.4)

The completion of the linear space CG under this pre-Hilbert structure supplies the Hilbert space ℓ2(G), spanned by ∣gð, g ∈ G, which form
an orthonormal basis

⟨g, g′ð = ¶g,g′ , g, g
′
∈ G. (3.5)
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The left action of CG on itself can be extended to the action of a bounded operator on ℓ
2(G), and this supplies the left regular representation

ÃL of CG inside the algebra B(ℓ2(G)) of bounded operators. Specifically,

ÃL(q)∣gð = ∑
g′∈G

³g′ ∣g′gð = ∑
g′∈G

³g′g−1 ∣g′ð, q ∈ CG, g ∈ G, (3.6)

where q = 3g′∈G³g′ g
′ with ³g′ ∈ C. The completion of CG with respect to the norm

∥q∥ := ∥ÃL(q)∥B(ℓ2(G)) (3.7)

supplies the reduced group C∗-algebra C∗r (G) of G.
Remark III.1. As we shall see, the stabilization of this group algebra represents the space where the dynamical matrices live and are

deformed. The norm (3.7) puts a topology on this space, which gives a rigorous meaning to the wording “continuous deformations” used up
to this point in an intuitive but very imprecise mode. ï

Remark III.2. For any state on a ∗ -algebra, there are left and right Gelfand–Naimark–Segal (GNS) representations. The right GNS
representation ÃR corresponding to T has the same Hilbert representation space, but the elements act from the right [see Eq. (3.11)].

Remark III.3. The following detail is worth mentioning. If the group G is finite, then

T (q) = 1

∣G∣ Tr (ÃL(q)) =
1

∣G∣ Tr (ÃR(q)), (3.8)

which can be seen straight from (3.6). ï

Since we only deal here with discrete amenable groups, the reduced and full group C∗-algebras coincide. This is important because the
relation between the group and its C∗-algebra is functorial only for the latter. So, in the present context, we have the following simple but
essential statement:

Proposition III.4 (Ref. 42). Let G and H be discrete amenable groups and Ä : G→ H be a group morphism. Then Ä lifts to a C∗-algebra
morphism C∗r (G)→ C∗r (H), extending the map between group algebras

CG ∋∑
g∈G

³g g ↦∑
g∈G

³g Ä(g) ∈ CH. (3.9)

B. Symmetry and structure of dynamical matrices

As we have seen, the group G acts on itself via an action either from the left or from the right. The symmetry operations associated to the
group elements are implemented via the left-regular representation:

U : G→ B(ℓ2(G)), Ug ∣g′ð := ÃL(g)∣g′ð = ∣gg′ð. (3.10)

The right regular representation of the group algebra acts as

ÃR(q)∣g′ð :=∑
g∈G

³g ∣g′g−1ð =∑
g∈G

³g−1g′ ∣gð, q ∈ CG, g
′
∈ G. (3.11)

Since the left and right group actions commute, we automatically have that

U
∗

g ÃR(q)Ug = ÃR(q), q ∈ C
∗

r (G), g ∈ G. (3.12)

Hence, the group C∗-algebra supplies models that are naturally symmetric w.r.t. the group G, via a mechanism that rests entirely on the
associative property of the group multiplication.

Remark III.5. The following simple observation establishes a useful link between projections and representations. Suppose p is a
projection from C∗r (G). Then ÃR(p)ℓ2(G) is an invariant subspace for the group symmetries

Ug[ÃR(p)ℓ2(G)] = ÃR(p)ℓ2(G), ∀ g ∈ G. (3.13)
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As such, g ↦ ÃL(g)ÃR(p) supplies a representation of G on the subspace ÃR(p)ℓ2(G). This simple observation will be exploited here quite
often. ï

We now specialize the discussion to the case when G is the frieze group generating a class of architected materials. The right regular
representations of C∗r (F),

ÃR
⎛
⎝∑f ³ f f

⎞
⎠ = ∑f , f ′∈F ³ f −1 f ′ ∣ f ð⟨ f ′∣, (3.14)

can be naturally extended to a representation of the algebraMN(C)⊗ C∗r (F) over the Hilbert spaceCN
⊗ ℓ

2(F). Specifically, an element from
MN(C)⊗ C∗r (F) takes the same form3 f ³ f f , but with coefficients ³ f fromMN(C), and the extension of the right regular representation is

ÃR
⎛
⎝∑f ³ f f

⎞
⎠ = ∑f , f ′∈F ³ f −1 f ′ ⊗ ∣ f ð⟨ f ′∣. (3.15)

Similarly, the group symmetries U f can be lifted as I ⊗U f on the Hilbert space CN
⊗ ℓ

2(F) by letting F act trivially on C
N .

Now, comparing the generic form Eq. (2.7) of the dynamical matrices for Galilean invariant theories with the right regular representation
(3.15), we see that the two coincide if we take wf , f ′ = ³ f −1 f ′ . Furthermore, when this correspondence is applied on elements from CF, it

supplies dynamical matrices with finite coupling ranges. The important conclusion is that all dynamical matrices of the patterns of resonators
proposed by us can be generated from the right regular representation of MN(C)⊗ C∗r (F), for some finite but otherwise arbitrary N, and,
reciprocally, the dynamical matrices that can be engineered in a laboratory densely sample the self-adjoint sector ofK⊗ C∗r (F). Furthermore,
we can be sure that our allowed deformations of the physical systems, which involve changing the shapes, positions and orientations, as well
as the internal structures of the seeding resonators, take place inside the stabilization of the C∗-algebra C∗r (F).

Remark III.6. Throughout, we will reserve the symbols ÃR, T and U for the objects introduced in this section, making sure that the
group G can be clearly read off from the context. In fact, since the left regular representation is only used in tandem with U, we simplify the
notation for the right regular representation to Ã. ï

For the practical purposes of this paper, it is useful to merge the general discussion and the specifics of the frieze groups presented in
Subsection II A. Using the uniform notation introduced there, the elements ofMN(C)⊗ C∗r (F) can be presented as norm-convergent infinite
series

∑
n∈Z

∑
³∈{0,1}2

w(n,³)unv³, (3.16)

with coefficients w(n,³) from MN(C). Given the rule (3.11), the right regular representation of an element h as in Eq. (3.16) has matrix
elements

⟨i,(umv´) ⋅ (unv³)−1∣Ã(h)∣j,umv´ð = wij(n,³). (3.17)

By sampling all allowed values of the labels i, j, (n,³) and (m,´), Eq. (3.17) returns all the matrix elements of the element h.

IV. TOPOLOGICAL DYNAMICS BY K -THEORY

In K0-theory, two projections from K⊗ C∗r (F) are declared equivalent if one can find a continuous family of projections inside the
same algebra, interpolating between the two projections. Note that, during this interpolation, the number of engaged local degrees of freedom
can change and, as such, the mentioned interpolations are rightfully called stable homotopies. Almost tautologically, the equivalence class[P]0 of a projection P ∈ K⊗ C∗r (F) defines the complete topological invariant associated to the projection relative to stable homotopies. Any
projection fromK⊗ C∗r (F) derives from the spectral projection of a dynamical matrix for a material from the class introduced in Sec. II and,
reciprocally, any projection from K⊗ C∗r (F) can serve as the band projection of a properly designed material from the same class. Thus, the
complete topological invariants associated to the band projections of dynamical matrices are account for by theK0-theory of C

∗

r (F). The latter
accepts a natural Abelian semigroup structure and its enveloping group often admits a small number of generators. As already advertised in
our introductory remarks, by identifying these generators, one gains complete knowledge and control of the dynamical features supported by
our class of architected materials that are robust against the allowed deformations of the materials.

The goal of this section is to advertise the Baum–Connes machinery,3–6 which is one of the most efficient tools available for mapping the
K-theories of group C∗-algebras. This will help us to map the isomorphism classes of the K0-groups of the frieze group algebras. Additionally,
we will collect results scattered in the literature in order to supply concrete presentations of the generators K0-groups.
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TABLE II. Summary of the K-theoretic calculations.

Iso. class Abstract generators SF K0(C∗r F)
Z∞ u e Z

Dih∞ u, v1 e, v1,uv1 Z
3

Z∞ ×Dih1 u, v2 e, v2 Z
2

Dih∞ ×Dih1 u, v1, v2 e, v1, v2, v1v2,uv1,uv1v2 Z
6

A. K -theories by Baum–Connes machinery

The Baum–Connes assembly map ¾makes the connection

K
F
0 (EF) ¾

Ð→K0(C∗r (F)) (4.1)

between the equivariant K-homology of a universal space EF for proper actions of the frieze group F6 and the K0-group of the group C∗-
algebra of F. The map ¾ in Eq. (4.1) is a group isomorphism because the frieze groups are amenable and every countable amenable discrete
group is a-T-menable, in which case the Baum–Connes conjecture is known to hold.31

Our first task is to decide on a model for EF. The full group Iso(S) of isometries of the strip is the Lie group given by the semidirect
product of the Lie groupR of translations and the finite group Z2 × Z2 generated by the two reflections against the two axes of the strip. It has
a finite number of connected components. Then, according to Ref. 6 (p. 8), the space of the left cosets

Iso(S)/Z2 × Z2 := {s ⋅ Z2 × Z2, s ∈ Iso(S)} ≃ R (4.2)

can serve as a universal space for proper actions of Iso(S) and also for any of its discrete subgroups. Therefore, EF can be chosen as R, with
the action of F induced from its left action on Iso(S)/Z2 × Z2. Specifically, Ä and Ãv act as expected while Ãh acts as the identity map.

Our next task is to compute the Abelian groups KF
0 (EF) and the main tool here is the equivariant Chern character,5,36 which supplies the

isomorphism described in the following statement:

Theorem IV.1 (Theorem 6.1, Ref. 40). Let X be a proper F-CW complex. Then

K
F
0 (X)⊗Q ≅⊕

r∈N
⊕
µ∈SF

H2r(Xµ/Z(µ);Q), (4.3)

where SF is a set of representative members: one for each conjugacy class for each finite order element in F. Xµ is the space of fix points of X under
the action of µ and Z(µ) is the centralizer of µ. The groups appearing on the right are the ordinary homology groups of spaces with constant
coefficients inQ.

Remark IV.2. As already stressed in our introduction, the tensoring with Q washes out the torsion part of KF
0 (X). However, for our

concrete context, we know from other sources that the K0-groups, hence also KF
0 (EF), are torsion free. In this case, Eq. (4.3) holds without

tensoring byQ and the K-homology groups can be taken with coefficients in Z. ï

Based on the above observation and the fact that ¾ is an isomorphism in our specific context, we conclude

K0(C∗r (F)) ≅⊕
r∈N
⊕
µ∈SF

H2r(EFµ/Z(µ)). (4.4)

As we shall see, the resulting fix point spaces EFµ (EF = R as topological space) in our applications of the Baum–Connes machinery are
homeomorphic either to S1 or to spaces contractible to a point, hence it is useful to recall that

Hk(S1) =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Z, k = 0;

Z, k = 1;

0, otherwise.

Hk(●) =
⎧⎪⎪⎨⎪⎪⎩
Z, k = 0;

0, otherwise.
(4.5)

The computations of the right-hand side of Eq. (4.3) are detailed below and the results are summarized in Table II. These computations
are complemented with explicit lists of generators of the K0-groups.
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1. Z∞ isomorphism class

The groups p1 and p11g are both isomorphic to the infinite cyclic group Z∞ = ⟨uð ≅ Z. There are no non-trivial finite order elements
since um = 1 impliesm = 0. For both p1 and p11g, we have EF1/Z(1) = R/Z ≅ S1 and Eq. (4.4) together with (4.5) give

K0(C∗r (p1)) ≅ K0(C∗r (p11g)) ≅ Z. (4.6)

The generators of the K0-groups can be represented by the identity element of the group C∗-algebras.

2. Dih∞ isomorphism class

The groups p1m1, p2 and p2mg are all isomorphic to the infinite dihedral group Dih∞. Their K0-groups will thus be isomorphic as well.
We recall the presentation

Dih∞ = ⟨u, v1∣v21 , (uv1)2ð, (4.7)

and the fact that every group element can be written as µn,m = u
n
v
m
1 , where n ∈ Z and m ∈ {0, 1}. Using the composition rule from Eq. (2.1),

we obtain

µ2n,m = u
n
v
m
1 u

n
v
m
1 = u

n+(−1)mn
v
2m mod 2
1 =

⎧⎪⎪⎨⎪⎪⎩
u
2n
, m = 0

e, m = 1
(4.8)

Therefore, µn,m is of finite order wheneverm = 0 and n = 0 or whenm = 1 for arbitrary n. In those cases, we have µ0,0 = e and µn := µn,1 = u
n
v1.

Furthermore,

µ−1p,qµnµp,q = v
−q
1 u

−p
u
n
v1u

p
v
q
1

= v
q
1u

n−2p
v
q+1
1

= u
(−1)q(n−2p)

v1. (4.9)

In particular, this means that we have the equivalence by conjugacy

µn > µn+2m. (4.10)

Therefore, every finite order element is either conjugate to 1, to µ0 or to µ1, and so S(Dih∞) = {e, µ0 = v1, µ1 = uv1}. For q = 0, µp,q is in the

centralizer of µn only if p = 0, while for q = 1, µp,q is in the centralizer of µn only if p = n. Therefore,

Z(µn) = {e, µn} ≅ Z2. (4.11)

The fixed point spaces are EFe
= R, EFµ0 = {0}, EFµ1 = {1/2}, as for the quotient spaces we have EFe/Z(e) = [0, 1/2] ≅ {●} and obviously

this is also true for the rest of them, EFµ0/Z(µ0) ≅ EFµ1/Z(µ1) ≅ {●}. Lastly, Eqs. (4.4) and (4.5) give

K0(C∗r (Dih∞)) ≅ Z3
. (4.12)

The computation of the above K0-group and its generators appeared in Ref. 17 as an application of the methods developed for
free products, given that C∗r (Dih∞)) = C∗r (Z2) ⋆ C∗r (Z2). These generators have been also identified in Ref. 30 by more direct methods.
They are:

p1 = e, p2 =
1

2
(e − v1), p3 = 1

2
(e − uv1). (4.13)

3. Z∞ ×Dih1 isomorphism class

Only the group p11m belongs to this isomorphism class. We recall the presentation

Z∞ ×Dih1 = ⟨u, v2∣v22 ,uv2u−1v2ð. (4.14)

Every group element can be written as µn,m = u
n
v
m
2 , where n ∈ Z andm ∈ {0, 1}. Via Eq. (2.1), we now obtain

µ2n,m = u
n
v
m
2 u

n
v
m
2 = u

2n
v
2m
2 = u

2n
. (4.15)

Therefore, µn,m is of finite order only if n = 0, and we have

S(Z∞ ×Dih1) = {e, v2}. (4.16)
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Furthermore, we find
µ−1p,qv2µp,q = v

−q
2 u

−p
v2u

p
v
q
2 = v

−q
2 v2v

q
2 = v2, (4.17)

which implies that Z(v2) = Z∞ ×Dih1. Since EFe
= EFv2

= R, we obtain

EF
e/Z(e) = EFv2/Z(v2) = S1. (4.18)

Again, employing Eqs. (4.4) and (4.5), we find

K0(C∗r (Z∞ ×Dih1)) ≅ Z2
. (4.19)

The generators of this K0-group can be represented by

p1 = e, p2 =
1

2
(e − v2). (4.20)

4. Dih∞ ×Dih1 isomorphism class

Only the group p2 mm belongs to this isomorphism class, and we have the presentation

Dih∞ ×Dih1 = ⟨u, v1, v2 ∣ v2j , (v1v2)2, (uv1)2,uv2u−1v2ð (4.21)

Every group element can be written in the form µk,l,m = u
k
v
l
1v

m
2 , where k ∈ Z and l,m ∈ {0, 1}. In this case, we find

µ2k,l,m =
⎧⎪⎪⎨⎪⎪⎩
u
2k
, l = 0

e, l = 1.
(4.22)

Thus, µ2k,l,m = e if either (i) l = 1 for arbitrary k and m or (ii) l = 0 and k = 0 for arbitrary m. First, we take a look at case (i) and determine the
conjugacy classes and centralizers. Similar to before, we have

µ−1p,q,rµk,1,mµp,q,r = µ(−1)q(k−2p),1,m. (4.23)

Therefore, we again obtain a conjugacy equivalence of the form

µk,1,m > µ±(k−2p),1,m (4.24)

We select k = 0 and k = 1 as representative elements and obtain the centralizers

Z(µ0,1,m) = {1, v1, v2, v1v2}, Z(µ1,1,m) = {1,uv1, v2,uv1v2}. (4.25)

Both are isomorphic to the Klein 4-group. The fix-point sets are

EF
µ0,1,0
= EF

µ0,1,1
= {0}, EF

µ1,1,0
= EF

µ1,1,1
= {1/2}. (4.26)

In each case, the quotient space EFµ/Z(µ) is contractible to a point.
Next, we turn to case (ii) and find

µ−1p,q,rµ0,0,mµp,q,r = µ0,0,m, (4.27)

and so Z(µ0,0,m) = Dih∞ ×Dih1. The fix-point set are
EF

µ0,0,0
= EF

µ0,0,1
= R, (4.28)

such that
EF

µ0,0,0/Z(µ0,0,0) = EFµ0,0,1/Z(µ0,0,1) = [0, 1]. (4.29)

Both quotient spaces are contractible to a point.
In summary, we have found

S(Dih∞ ×Dih1) = {1, v1, v2, v1v2,uv1,uv1v2} (4.30)

and all quotient spaces EFµ/Z(µ) are contractible to a point for µ ∈ S(Dih∞ ×Dih1). Then Eqs. (4.4) and (4.5) give

K0(C∗r (Dih∞ ×Dih1)) ≅ Z6
. (4.31)
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The six generators of the K0-group can be chosen as

p1 = e, p2 =
1

2
(e − v1), p3 = 1

2
(e − uv1),

p4 =
1

2
(e + v2), p5 = p2(e − p4), p6 = p3(e − p4).

(4.32)

This can be seen by applying Künneth Theorem13 (Theorem 23.1.2) to C∗r (Dih∞ ×Dih1) ≃ C∗r (Dih∞)⊗ C∗r (⟨e, v2ð).
V. ALGORITHM FOR COMPUTING THE K-THEORETIC LABELS

Given a band projection Ã(p), its class in K0-theory can be expressed in one of the bases {pa} listed in the previous section, [p]0
= 3a na[pa]0, na ∈ Z. From general considerations, we can be sure that two band projections fall into the same topological class if their
K-theoretic labels {na} all coincide. Our goal for this section is to supply practical algorithms for computing the K-theoretic labels of a
band projection, generated by an arbitrary dynamical matrix. For this, we employ Kasparov’s bivariant K-theory and in particular Kasparov’s
product33,34 for guidance and as a convenient book-keeping instrument, as well as to illustrate a model calculation that can be repeated for
other group C∗-algebras. We use standard notation, e.g., as in Ref. 13, and a brief review of the concepts is supplied below.

A. General considerations

For ungraded C∗-algebras A and B, the elements of Kasparov’s Abelian group KK0(A,B) can be presented as the homotopy class of a
pair of morphisms ϕ̄ = (ϕ1,ϕ2) from A to End∗(ℓ2(N,B)) with the property that ϕ1 − ϕ2 takes values in K⊗ B.18 In particular, KK0(C,A)
coincides with the K-group K0(A) and any morphism È : A→ B supplies an element of KK0(A,B). Furthermore, if A, B, C are C∗-algebras,
there is an associative product

KK0(A,B) × KK0(B,C)→ KK0(A,C) (5.1)

with quite exceptional properties.19 In particular, if È : A→ B and È′ : B→ C are C∗-algebra morphisms, then

[È] × [È′] = [È′ ○ È]. (5.2)

This particular case will actually cover all applications considered here.
Now, let F be any of the frieze groups. In the KK-language, our task is to construct all pairings of the type

KK0(C,C∗r (F)) × KK0(C∗r (F),C)→ KK0(C,C) ≃ Z, (5.3)

such that

[pa]0 × [ϕ̄b] = Λ ¶a,b, Λ ∈ N
×
, (5.4)

where {[pa]} is one of the K-theoretic bases listed in the previous section. If [p]0 = 3a na[pa]0, na ∈ Z, is the decomposition of the K0-class
of a projection in such basis, then

Λ
−1 [p]0 × [ϕ̄a] = na (5.5)

and this will supply an algorithm to map the K-theoretic labels {na}, hence, all the topological invariants associated to a projection p ∈
K⊗ C∗r (F).

Our strategy is to construct the pairings (5.3) in two steps,

(KK(C,C∗r (F)) × KK(C∗r (F),C∗r (F̃))) × KK(C∗r (F̃),C)→ Z, (5.6)

where F̃ is a finite group. The reasoning behind the stated strategy is that the pairings in the big parentheses land in KK(C,C∗r (F̃)) and
the pairings KK(C,C∗r (F̃)) × KK(C∗r (F̃),C) are essentially known and computable once the representation theory of the finite group F̃ is

resolved. Hence, the task reduces to finding appropriate Kasparov cycles from KK(C∗r (F),C∗r (F̃)). As we shall see, this cycle will take the
form of a simple morphism.

B. Explicit pairings

As we have seen in Sec. II, all frieze groups can be derived from generators and relations. In particular, they all have Z, generated by the
element u in our notation, as a normal subgroup.

Proposition V.1. Let F be any of the frieze groups and let kZ be the subgroup of F generated by uk for some fixed k g 2. Then kZ is a normal
subgroup of F.

J. Math. Phys. 65, 063502 (2024); doi: 10.1063/5.0127973 65, 063502-12

Published under an exclusive license by AIP Publishing



Journal of

Mathematical Physics
ARTICLE pubs.aip.org/aip/jmp

Proof. We can treat all frieze groups at once by using the conventions stated in Subsection II A. Indeed, given the multiplication rule
(2.1), we have

(unv³)−1uk(unv³) = v³ukv³ = u(−1)³1 k ∈ kZ, (5.7)

which shows that, indeed, kZ is indeed a normal subgroup. ◻

Corollary V.2. There exist the group morphisms F → F/kZ from the infinite frieze groups to finite groups. The latter correspond to adding

the relation uk = 1 to the defining relations of the frieze groups.

Remark V.3. The above statements will also be relevant for our numerical applications. Indeed, the quotient F/kZ supplies a finite
group and a canonical morphism F → F/kZ, which deliver convenient finite size approximations for the infinite lattice models (see
Subsection VI B). ï

According to Proposition III.4, these morphisms lift to morphisms Æk : C
∗

r (F)→ C∗r (F/kZ) of C∗-algebras, hence they supply Kasparov
cycles [Æk] ∈ KK(C∗r (F),C∗r (F/kZ)).
For elements from ℓ

1(F), the morphism Æk can be written down explicitly as

∑
n∈Z

∑
³

c(n,³)unv³ ↦ k−1

∑
m=0

∑
³

(∑
r∈kZ

c(m + r,³))ũm
ṽ
³
, (5.8)

where ũ and ṽ j are the classes of u and vj’s in F/kZ. Below is an alternative characterization of the morphism Æk:

Proposition V.4. Let Tk be the canonical trace on CF/kZ. Then Tk ○ Æk supplies a positive trace on CF. Let (Hk,Ãk) be the right GNS
representation of C∗r (F) for this tracial state. Then the image Ãk(CF) in B(Hk) coincides with the right regular representation of C∗r (F/kZ).
Hence, Æk can be identified with the map Ãk.

Proof. First, let us point out that the trace Tk generates the right regular representation of C∗r (F/kZ) and, since Æk is surjective, Hk

coincide with ℓ
2(F/kZ), the Hilbert space of the right regular representation. Then a direct computation shows that Ãk( f ) = Ã(Æk( f )) for

any f ∈ CF, where Ã is the right regular representation of F/kZ. ◻

For us, the relevant finite group is F̃ := F/2Z. Now, given a finite groupG, any of its finite-dimensional representations supply amorphism
C∗r (G)→ K, hence a cycle from KK(C∗r (G),C). On the other hand, the K0-theory of C

∗

r (G) can be read off from the ring of representations

of the group G37 (Theorem 3.2). Then we have canonical pairings KK(C,C∗r (G)) × KK(C∗r (G),C)→ Z, which in the present context work
as follows:

Proposition V.5. Let F be any of the frieze groups and F̃ be as above. If p̃ is a projection from MN(C)⊗ C∗r (F̃), then the map

F̃ ∋ f̃ ↦ Uf̃ ∣Ã(p̃)[CN
⊗ℓ

2(F̃)]
(5.9)

supplies a representation of F̃ by linear maps on the invariant sub-space Ã(p̃)[CN
⊗ ℓ

2(F̃)]. Let {Äa}
a=1,∣F̃∣

be a complete set of irreducible repre-

sentations of F̃. Then {Äa} extend to morphisms fromK⊗ C∗r (F̃) toK that generate a basis for Kasparov’s group KK(C∗r (F̃),C). Furthermore,
the pairings

ña := [p̃]0 × [Äa] = 1

∣F̃∣∑
f̃ ∈F̃

Tr(Uf̃ Ã(p̃)) Tr (Äa( f̃ )) ∈ Z, (5.10)

supply a full set of K-theoretic labels for p̃. Above, “×” refers to the Kasparov product

KK(C,C∗r (F̃)) × KK(C∗r (F̃),C)→ KK(C,C) ≃ Z. (5.11)

Proof. Any projection p̃ can be seen as a C∗-algebra morphism from C toMN(C)⊗ C∗r (F̃). Indeed, the map

C ∋ c↦ c p̃ ∈MN(C)⊗ C
∗

r (F̃) (5.12)

preserve multiplication precisely because of the idempotency of p̃,

c1c2 ↦ (c1p̃)(c2p̃) = c1c2 p̃ 2
= c1c2 p̃. (5.13)
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We denote this morphism by the same symbol p̃. We claim that Eq. (5.10) is nothing else but the trace of (id⊗ Äa) ○ p̃. According to our
observation at the beginning of the previous subsection, (id⊗ Äa) ○ p̃ encodes the Kasparov product [p̃]0 × [Äa], which lands in KK0(C,C),
and the trace applied on (id⊗ Äa) ○ p̃ is simply the isomorphism mapping KK0(C,C) to Z. Thus, the proof is complete if we can confirm the

above claim. Now, suppose first that p̃ is from C∗r (F̃). Then, if p̃ = 3f̃ p̃f̃ f̃ , the coefficients of this expansion are given by (see Remark III.3)

p̃f̃ = T (f̃ −1 p̃) = 1

∣F̃∣ Tr(Uf̃ Ã(p̃)). (5.14)

More generally, if p̃ is fromMN(C)⊗ C∗r (F̃), then the coefficients p̃f̃ are fromMN(C) and p̃f̃ = (id⊗ T )(f̃ −1p̃). Consequently,
Tr (p̃f̃ ) = 1

∣F̃∣ Tr(Uf̃ Ã(p̃)). (5.15)

Then

Tr ((id⊗ Äa)(p̃)) = Tr⎛⎜⎝∑f̃ ∈F̃ p̃f̃ ⊗ Äa(f̃ )
⎞⎟⎠ =

1

∣F̃∣∑
f̃ ∈F̃

Tr(Uf̃ Ã(p̃))Tr (Äa( f̃ )), (5.16)

and this completes the proof. ◻

Remark V.6. The representations Äa generate a complete set of mutually orthogonal central projections44 (p. 50)

p̃a =
da∣F̃∣∑

f̃ ∈F̃

Tr (Äa( f̃ )) f̃ −1, da = dim Äa, (5.17)

for which

C
∗

r (F̃) =⊕
a

p̃aC
∗

r (F̃)p̃a ≃⊕
a

Äa(C∗r (F̃)) =⊕
a

Mda(C) (5.18)

and a basis ofK0(C∗r (F̃)) is obtained by choosing a rank-1-projection from each block. The K-theoretic labels ña in Eq. (5.3) are the expansion
coefficients of a projection with respect to such a basis. ï

Remark V.7. The right side of Eq. (5.10) returns the power na in the decomposition ⊕a Ä
na
a of the representation (5.9) in the irreducible

representations. The Kasparov groups and product are used here to place these algebraic relations in a topological context. Indeed, when
phrased as above, the pairings communicate much more, specifically, that the K-theoretic labels are invariant against continuous stable
deformations of p̃. The Kasparov groups and product also supplies a very convenient book keeping instrument. Lastly, they enable us to
place this and the following computations in a framework that can supply guidance in many other situations. ï

Now, according to Proposition V.4, Æ2 lands exactly in the right regular representation of F̃. Hence Æ2 can be seen as a cycle from

KK(C∗r (F),C∗r (F̃)). The following statement, together with the explicit checks of the assumptions, carried out in the next subsection, assures
us that Æ2 is the actual sought cycle, mentioned in our discussion of the general strategy:

Theorem V.8. Let F be any of the frieze groups and {pa} be the basis of the K0-group of C
∗

r (F), as listed in the previous section. If there is

a complete set of irreducible representations {Äb} of F̃ = F/2Z such that the map,

K0(C∗r (F)) ∋ [pa]0 ↦ {[pa]0 × [Æ2] × [Äb]} ∈ Z×∣F̃ ∣, (5.19)

is injective, then we can find a set of representations {Ça} and corresponding classes {[Ça]} ¢ KK(C∗r (F̃),C) resolving the K-theoretic labels, in
the sense that

[pa]0 × [Æ2] × [Çb] = Λ¶a,b, Λ ∈ N
×
. (5.20)

Consequently, the full set of K-theoretic labels of a projection p fromK⊗ C∗r (F) can be computed as

na =
1

Λ∣F̃∣∑
f̃ ∈F̃

Tr(Uf̃Æ2(p)) Tr (Ça( f̃ )) ∈ Z. (5.21)
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Proof. Consider the matrix R with integer entries Rba = ([pa]0 × [Æ2]) × [Äb], describing a homomorphism K0(C∗r (F)) ≃ ZN
→ Z

∣F̃ ∣,
where N is the dimension of the corresponding K0-group. By assumption on the injectivity, R has a left inverseM with rational entries and,
as such, we can find Λ ∈ N

× and a matrix M̃ with integer entries such that3c M̃bcRca = Λ ¶ab. Setting

Ç̃b( f ) = Λ−1∑
c

Tr (Äc( f ))M̃bc =∑
c

Tr (Äc( f ))Mbc, (5.22)

then, for any projection p > p⊗naa , one has

1

∣F̃∣∑
f̃ ∈F̃

Tr(Uf̃Æ2(p)) Ç̃b(f̃ ) = 1

∣F̃∣∑
f̃ ∈F̃

na Tr(Uf̃Æ2(pa)) Ç̃b( f̃ )

=
1

∣F̃∣∑
f̃ ∈F̃

na Tr(Uf̃Æ2(pa)) Ç̃b( f̃ )

=
1

∣F̃∣∑
f̃ ∈F̃

na Tr(Uf̃Æ2(pa))∑
c

Tr (Äc( f ))Mbc

=∑
c

naRcaMbc = na¶ab.

Lastly, if we set Çb = ⊕cÄ
M̃bc
c as the desired representations, then

Ç̃b(f̃ ) = Λ−1 Tr (Çb( f̃ )) (5.23)

and the statement follows. ◻

VI. NUMERICAL EXPERIMENTS

A. The generating dynamical matrices

One refers to a set of dynamical matrices as generating models if their band projections supply a complete basis of the K0-group. Of
course, one can always start from hj = −pj with {pj} a basis of the K0-group, but sometime this fails because pj’s may involve an infinite

number of coefficients in their expansion, i.e., they don’t have finite range. The latter is essential for laboratory implementations of the
models. While this will not be the case here, let us recall that, in such cases, one simply truncates the series, making sure that the truncation
does not close the spectral gap. This opening paragraph serves as a brief reminder of the well known fact that a successful computation of the
K0-group and of its generators is equivalent to finding all relevant topological models supported by the algebra of dynamical matrices. Any
other dynamical matrix can be deformed into a stack of elementary models from this generating set.

The present context is special because all model Hamiltonians can be generated directly from the basis of the K0-groups. For example,
for the group p2 mm, the generating dynamical matrices are hj = −pj, where pj’s are the projections listed in Eq. (4.32). Explicitly,

h1 = −e, h2 =
1

2
(v1 − e), h3 = 1

2
(uv1 − e), h4 = −1

2
(e + v2) (6.1)

and

h5 =
1

4
(v1v2 − v1 − v2 + e), h6 = 1

4
(uv1v2 − uv1 − v2 + e) (6.2)

Their right regular representations can be computed by repeatedly applying the following rule

Ã(ukv´)∣unv³ð = ∣un−(−1)³1+´1 kv³+´ð. (6.3)

These same rules can be easily adopted for the other isomorphism classes of frieze groups, by simply restricting the range of the ³ coefficients.
In fact, focusing on the group p2 mm is enough because all the other groups can be embedded in it. In particular, we can list the generating
models for the other isomorphism classes: {h1} for Z∞; {h1,h2,h3} for Dih∞; {h1,h4} for Z∞ ×Dih1.

For the reader’s convenience, we report in Fig. 2(a) graphical illustration of the right regular representations of some key algebra
elements that cover all first nearest-neighbor couplings. These diagrams can guide the experimental scientists on how to create model
dynamical matrices that belong to a specific topological class. For example, after examining the expressions of the projections (4.32), one
should conclude that making the blue couplings in the top-left panel dominant will produce a dynamical matrix from the class of h3.
Similarly, for h2, and h4. For a dynamical matrix from the topological class of h5, one should include the couplings shown in the bottom
panels and in the top-right panel, hence three types of connections of approximately equal strength. For guidance, we exemplify these
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FIG. 2. The right regular representations of key elements from C∗r (F), F = p2 mm. The resonators of the patterns are labeled by the group elements of p2 mm and a line
between two resonators labeled by f and f ′ represents the hopping operator ∣ fð⟨ f ′∣. The right regular representations are the sums of hopping operators displayed in the
corresponding panel. In the top-left panel, the elements and the corresponding connections are color coded.

FIG. 3. Generating dynamical matrices produced from actual patterns, with the resonators assumed to interact as e−2∣ f ⋅0− f ′⋅0∣∣ fð⟨ f ′∣, i.e., with a coupling strength that
decays exponentially with the distance between their centers. The values of the six topological invariants associated with the bottom spectral band are displayed in each
panel.

ideas in Fig. 3. Realistic resonating structures will be supplied in Sec. VII. The Mathematica code used to generate Fig. 3 is available from
https://www.researchgate.net/profile/Emil-Prodan.

B. Numerical algorithm for the K-theoretic labels

We generate finite-size models that can be handled on a computer from the group algebra C∗R(F/kZ), for some large even integer k.
As we already stated, the subgroup kZ is normal in F, hence the quotient of a self adjoint element h from F to F/kZ preserves the resolvent
spectrum

R/Spec(h) ¦ R/Spec(h ⋅ kZ). (6.4)

In other words, the spectral gaps of h are not contaminated by our finite volume approximations.
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First, we need to acknowledge a few practical book keeping details. The group F/kZ is manipulated on the computer by mapping it in
a convenient model group. This model group is simply a subgroup of the permutation group of ∣F/kZ∣ objects. For F = p2 mm, for example,
this map is implemented by labeling the group elements as

u
n
v
³1
1 v

³2
2 ↦ fj , j = 4n + 2³2 + ³1 + 1, n = 0, k − 1, ³j = 0, 1, (6.5)

which gives rise to a map F/kZ→ {1, 2, . . . , ∣F/kZ∣}. Then the group table can be encoded in a two-index array

(j, j ′)↦ Prodj,j ′ ∈ {1, . . . , ∣F/kZ∣}, (6.6)

by using the rule (2.1). Obviously, the relation stated in Eq. (6.6) assigns a unique permutation to each element f j ∈ F/kZ, acting as
fj(j ′) = Prodj,j ′ , j

′
∈ {1, . . . , ∣F/kZ∣}. (6.7)

The basis ∣i, f ð of the Hilbert space corresponding to the right regular representation of F/kZ is labeled using the scheme

∣i, fjð↦ ∣wð, w = i +Nsj, i = 1,Ns, j = 1, ∣F/kZ∣, (6.8)

and the matrix elements of the representations Ã( f ) are stored using the rule (3.17), which is applied using the labels and the array Prod
introduced above. In both rules (2.1) and (3.17), the sums involving the index n are computed modulo k. By setting k = 2, the above schemes
can and are applied to the group F̃ too.

Now, the first challenge for us is how to implement the map Æ2. The solution rests on using the spectral projections of the reduced
element u ∈ F/kZ:

Pj =
1

k

k−1

∑
n=0

e
−ı2Ãjn/kÃ(u)n, j = 0, k − 1. (6.9)

Then we define Æ2 by projecting
F/kZ ∋ f ↦ Æ2( f ) = ΠÃ( f )Π, Π := P0 ⊕ Pk/2. (6.10)

Equation (6.10) is justified by the following relations:

Ã(um)Π = ΠÃ(um) = Ã(u)m mod 2
Π, Ã(vj)Π = ΠÃ(vj), (6.11)

which enable us to evaluate

Π∑
³

k−1

∑
n=0

c(n,³)Ã(unv³) = Π∑
m=0,1

∑
³

(∑
r∈2Z

c(m + r,³))Ã(u)mÃ(v)³ (6.12)

and confirm that Eq. (6.10) is equivalent with Eq. (5.8), once we make the identifications

ũ := ΠÃ(u)Π, ṽj := ΠÃ(vj)Π. (6.13)

The second and last challenge is how to evaluate the trace Tr(Uf̃Æ2(p)). Switching the order of the operators inside the trace, we have

Tr(Æ2(p)Uf̃ ) =
Ns

∑
i=1

∑
f̃ ′∈F̃

⟨i, f̃ ′∣Æ2(p)Uf̃ ∣i, f̃ ′ð =
Ns

∑
i=1

∑
f̃ ′∈F̃

⟨i, f̃ ′∣Æ2(p)∣i, f̃ f̃ ′ð. (6.14)

Next, we connect with what was said above and represent the elements f̃ ′ of F̃ as Π f with f from F/kZ, in which case,

Tr(Uf̃Æ2(p)) =
Ns

∑
i=1

∑
f ∈F/kZ

⟨i, f ∣ΠÃ(p)Π∣i, f̃ f ð, (6.15)

where the sum is taken over all elements of F/kZ. Here, f̃ ∈ F/2Z is seen as an element of F/kZ via the canonical section of the morphism
F/kZ→ F/2Z. To verify that the normalization constants are properly fixed, we have checked that Tr (U1̃Æ2(1)) = 8, the dimension of the
right regular representation of F̃ when Ns is set to one.

We now have the numerical tools to examine the map defined in Eq. (5.19). We use the numerical formula

[pa]0 ↦ 1

∣F̃∣∑
f̃ ∈F̃

Äb(f̃ ) Ns

∑
i=1

∑
f ∈F/kZ

⟨i, f ∣ΠÃ(pa)Π∣i, f̃ f ð (6.16)
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and the eight independent one dimensional irreducible representations of F̃ enumerated below:

Ä := [Äa(f̃ b)]a,b=1,8 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1

1 −1 1 −1 1 −1 1 −1

1 1 1 1 −1 −1 −1 −1

1 −1 1 −1 −1 1 −1 1

1 1 −1 −1 1 1 −1 −1

1 −1 −1 1 1 −1 −1 1

1 1 −1 −1 −1 −1 1 1

1 −1 −1 1 −1 1 1 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (6.17)

They come from the presentation of F̃ as the direct product ⟨ṽ1ð × ⟨ṽ2ð × ⟨ũð and from the tensor products of the standard representations of

the constituent Z2 subgroups. In particular, all Äa representations are one dimensional. As a check, we can confirm that Ä ⋅ ÄT = I8×8.
The result for R is

[Rba] = [[pa]0 × [Æ2] × [Äb]]
b = 1, 8

a = 1, 6

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 1 0 0

1 1 1 1 0 0

1 0 1 1 0 0

1 1 0 1 0 0

1 0 0 0 0 0

1 1 1 0 1 1

1 0 1 0 0 1

1 1 0 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6.18)

and the rank of this matrix is six, hence equal to the dimension of the K0-group. This confirms that the assumption in Theorem V.8 holds.
It also reassures us that the six generators {pa} listed in Eq. (4.32) are indeed independent. Furthermore, we can produce the left inverse M

= (RT
⋅ R)−1 ⋅ RT of R and define the linear maps {Ç̃a} introduced in Eq. (5.22),

[Ç̃a( f̃ b)]
a = 1, 6

b = 1, 8

=M ⋅ Ä =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 −1 −1 0 1 0 −1

0 −2 0 −2 0 0 0 0

0 0 0 0 0 −2 0 −2

0 0 2 2 0 0 0 2

0 0 0 4 0 0 0 0

0 0 0 0 0 0 0 4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (6.19)

which deliver the desired pairings. Lastly, the K-theoretic labels of a projection p are computed numerically via

na =
1

∣F̃∣∑
f̃ ∈F̃

Ç̃b( f̃ ) N

∑
i=1

∑
f ∈F/kZ

⟨i, f ∣ΠÃ(p)Π∣i, f̃ f ð. (6.20)

We want to point out that this numerical formula can be canonically adapted to space groups in arbitrary dimensions, once the finite
subgroup is identified.

C. Computations of K-theoretic labels

We first validate our numerical algorithm by computing the K-theoretic labels for the band projections of the model dynamical matri-
ces listed in Eqs. (6.1) and (6.2). To make it somewhat more challenging, we actually added a perturbation ¶h, which was generated by
populating the series (3.16) with random entries up to ∣n∣ f 2 (hence 24 random terms). Figure 4 reports the spectra of these dynami-
cal matrices, together with evaluations of the parings (6.20) for the gap projections corresponding to the indicated spectral gaps. As one
can see, the numerical results confirm the statement made in Eq. (5.21). The Mathematica code used to generate Fig. 4 is available from
https://www.researchgate.net/profile/Emil-Prodan.

Next, we want to demonstrate observable physical effects predicted with the tools developed by our work. For this, let ei be the matrix
with entry 1 at position (i, i). We then generate Hamiltonians fromM6(C)⊗ C∗r (F) using the scheme

h =
6

∑
i=1

Λi ei ⊗ hÀ(i) (6.21)
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FIG. 4. Spectrum of perturbations of the generating dynamical matrices listed in Eqs. (6.1) and (6.2), together with the topological invariants na, a = 1, 6, as computed with
Eq. (6.20) for the gap projections.

where the coefficients Λi are chosen such that h displays a desired number of bands and À is a permutation of the indices, which will enable us
to shuffle the bands and to engineer interesting K-theoretic labels.

Figure 5 reports spectra of dynamical matrices generated with the scheme outlined above, together with the computed K-theoretic labels.
Figure 5 also illustrates how a linear interpolation between models with different K-theoretic labels prompts the predicted topological spectral
flow. The Mathematica code used to generate Fig. 5 is available from https://www.researchgate.net/profile/Emil-Prodan.

FIG. 5. Demonstrations of topological spectral flow generated by linear interpolation between models displaying bands with distinct K-theoretic labels. The spectra of the
interpolated dynamical matrices are shown on the right, together with the six topological invariants of the seen spectral bands.

J. Math. Phys. 65, 063502 (2024); doi: 10.1063/5.0127973 65, 063502-19

Published under an exclusive license by AIP Publishing



Journal of

Mathematical Physics
ARTICLE pubs.aip.org/aip/jmp

VII. TOPOLOGICAL SPECTRAL FLOWS WITH PLATE RESONATORS

In this section, we illustrate how the discrete models discussed so far can be implemented with physical resonating structures. Figure 6(a)
describes a pattern of coupled steel plates, generated with the frieze group p2 mm from one seed resonator. The basic plate resonator and its
physical characteristics are presented in Fig. 6(b), together with its first ten resonant modes. We focus on the dynamical features generated
from the first flexural mode of the plate, indicated in Fig. 6(b) by the star. Note that the geometry of the plate was chosen such that this mode
is well separated in frequency from all the other resonant modes. As such, the collective dynamics of the plates in the regime of weak couplings
and in a frequency domain around the frequency of this particular mode can be accurately quantified using a discrete model with one resonant
mode per resonator.

Couplings between the resonators are implemented by thin metal bridges that respect the p2 mm symmetry. The strength of these
couplings can be controlled by the position of these bridges: A bridge placed closer to a node (anti-node) of the resonant mode produces a
weaker (stronger) coupling [see the mode’s spatial profile in Fig. 6(b)]. The strength of the couplings can be further adjusted by modifying the
Young modulus E of the metal bridges. Thus, our space of adjustable parameters consists of five parameters (h1,h2,h3,E1,E2) [see Fig. 6(c)].

In Fig. 3, we indicated how the resonators are to be coupled in order to reproduce the fundamental model dynamical matrices. However,
in practice, we found that it is much easier to implement dynamical matrices K i, i = 1, 5, from the topological classes of the self-adjoint
elements presented in Fig. 2. Indeed, for each of those elements, we only need to ensure one specific dominant coupling and this can be
achieved with the configurations shown in Fig. 7. We have computed the K-theoretic labels of the lowest spectral bands of K i dynamical
matrices, based on the assumption that they indeed belong to topological class of the algebra elements indicated in Fig. 7. The results are:
K1 → (0, 1, 0, 0, 0, 0), K2 → (0, 0, 1, 0, 0, 0), K3 → (1, 0, 0,−1, 0, 0), K4 → (1, 1, 0,−1,−2, 0), K5 → (1, 0, 1,−1, 0,−2), hence they are all distinct
from each other. The Mathematica code used to generate these topological labels is available from https://www.researchgate.net/profile/Emil-
Prodan.

Remark VII.1. Among other things, the above K-theoretic labels assures us that actually K i together with K0 = 1 can serve as
an alternative generating set of model dynamical matrices. In many respects, this set is more natural than the one we originally
considered. ï

Each of the resonating structures seen in Fig. 7 corresponds to a point in the five-dimensional parameter space (h1,h2,h3,E1,E2). Based
on the K-theoretic labels computed above, we predict that, no matter how we interpolate between two of these five points, we cannot avoid
the closing of the gap in the resonant spectrum. This phenomenon should be extremely robust because the K-theory predicts that the gap
closing cannot be avoided even if the structure is connected to external frames built by similar protocols or if the higher frequency modes
seen in Fig. 6(a) become activated, provided this connection does not change the topological class of the initial and final resonating structures.
Furthermore, we conjecture that the topological spectral flows are robust against disorder.

The five topologically distinct resonating structures from Fig. 7 can be pairwise interpolated in ten different ways, as specified there. Each
of these interpolations will produce distinct topological spectral flows that can find different practical applications. In Fig. 8, we report the
COMSOL-simulated resonant spectra for the ten interpolations between different (i, j) pairs from Fig. 7, where the parameters were varied

FIG. 6. (a) A resonating structure of coupled steel plates, generated with the frieze group p2 mm. (b) The seed resonator, together with its physical characteristics and a
representation of its first ten resonant modes. (c) Details of the couplings, notations and values of the fixed parameters.
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FIG. 7. Configurations of the couplings generating dynamical matrices from the topological class of the algebra elements mentioned in Fig. 2. The Young modulus of the metal
bridges was fixed at E1 = E2 = 0.1 GPa, except for the two cases indicated in the diagram. The diagram also shows and labels the ten distinct ways in which the physical
systems can be interpolated.

FIG. 8. (a) Spectral flow of the resonant spectrum when the configuration of the coupled plate resonators is deformed [see Eq. (7.1)] along the ten distinct interpolations
shown in Fig. 7.

linearly as

(h1(s),h2(s),h3(s),E1(s),E2(s)) =(1 − s)(hi1,hi2,hi3,Ei
1,E

i
2)

+ s(h j
1,h

j
2,h

j
3,E

j
1,E

j
2). (7.1)

These simulations fully confirm the K-theoretic predictions and serve as a demonstration of how spectral engineering can be achieved with
plate resonators generated by space groups.
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