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Abstract

The program of matrix product states on tensor powers A⊗Z of C∗-algebras is

carried under the assumption that A is an arbitrary nuclear C*-algebra. For any

shift invariant state ω, we demonstrate the existence of an order kernel ideal Kω,

whose quotient action reduces and factorizes the initial data (A⊗Z, ω) to the tuple

(A,Bω = A⊗N×
/Kω, Eω : A ⊗ Bω → Bω, ω̄ : Bω → C), where Bω is an operator

system and Eω and ω̄ are unital and completely positive maps. Reciprocally, given a

(input) tuple (A, S, E, φ) that shares similar attributes, we supply an algorithm that

produces a shift-invariant state on A⊗Z. We give sufficient conditions in which the so

constructed states are ergodic and they reduce back to their input data. As examples,

we formulate the input data that produces AKLT-type states, this time in the context

of infinite dimensional site algebras A, such as the C∗-algebras of discrete amenable

groups.

Keywords States · Tensor products · C∗-algebras

Mathematics Subject Classification 47L25 · 47N50

1 Introduction andmain statements

Fannes, Nachtergaele and Werner introduced and proved the following statement in

their influential work [16]:

Proposition 1.1 ([16]) Let A be a C∗-algebra with unit, and let ω be a shift-invariant

state on A⊗Z � AL ⊗ AR , where AL = A⊗Z\N×
and AR = A⊗N×

(see Sect. 2.1 for
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the proper definition of these infinite tensor products.). Here, ⊗ refers to the minimal

tensor product. Then the following are equivalent:

(1) The set of functionals {ωx : AR → C, ωx (aR) = ω(x ⊗ aR), x ∈ AL}, generate

a finite dimensional linear subspace of A∗
R .

(2) There are a finite dimensional vector space B, a linear map E from A to the space

of linear maps over B, an element e ∈ B, and a linear functional ρ ∈ B∗, such that

ρ ◦ E1 = ρ, E1(e) = e, and

ω(a1 ⊗ · · · ⊗ an) = ρ(e)−1ρ ◦ Ea1 ◦ · · · ◦ Ean (e). (1.1)

The states displaying this property with B a finite dimensional C∗-algebra were

called C∗-finitely correlated states in [16]. They were shown to form a ∗-weakly

dense convex subset of the set of translation invariant states on A⊗Z, if A is a finite

dimensional C∗-algebra.1 In such cases, the identity (1.1) shows that these states

factorize through the map E and that the evaluation of such state on monomials is

determined by a product of matrices. For this reason, these states are referred to as

matrix-product states in the physics literature [23, 24, 29]. The work [16] sent the

powerful message that any shift-invariant state on A⊗Z has arbitrarily close ∗-weak

approximations that can be generated from the extremely simple data (A,B, E, ρ, e).

Furthermore, one can identify the ergodic states [5][Sec. 4.3] among the shift-invariant

states by a simple examination of the spectral properties of E. These findings had a

profound impact on the research on quantum spin chain systems.

In [16], the authors pointed out that a fixed finitely correlated state ω has a minimal

space Bω among all possible B’s, which is uniquely determined by the state. One of

our observations is that this space can be defined for any state on A⊗Z with A a nuclear

C∗-algebra. Indeed, if we introduce what we call the entanglement kernel of a state

Kω =
⋂

x∈AL

Ker ωx , (1.2)

then it is straightforward to see that Bω = AR/Kω is exactly the minimal space

mentioned in [16], if the state happens to be finitely correlated. Furthermore, our

second observation is that the map E : A ⊗ Bω → Bω can be canonically defined as

the following chain of compositions of maps:

A ⊗ Bω A ⊗ AR A⊗Z ⊗ A⊗Zlift emb.

A⊗Z AR ⊂ A⊗Z Bω,
mult. shift proj.

(1.3)

where A is embedded in AL ⊂ A⊗Z in the most right position. Provided that we can

make a rigorous sense of the above for arbitrary nuclear algebras A, we can try to apply

(1.1) and see if the outcome still reproduces the original state ω. If we can provide

sufficient conditions in which this happens, then we can enlarge the class of examples

1 In Proposition 2.6 of [16] that deals with this aspect, the space B̃ defined there is finite dimensional only

if A is finite dimensional. This detail that was omitted in [16].
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where states over tensor powers A⊗Z can be generated via rudimentary algorithms

from the much simpler set of data (A,Bω, E, ρ, e).

Remark 1.2 The authors of [16] showed us that any state ω can be reproduced by such

an algorithm if we do not insist on the minimality of B. In this work, we do insist that

the data (A⊗Z, ω) is fully reduced in the sense described above. ♦

When A is not finite dimensional, Bω can be infinite dimensional and this can

happen even in some of the simplest scenarios. Indeed, let ω be a C∗-finitely correlated

state over A⊗Z with reduced space Bω and maps E and ρ. Now, let Z′ be a copy of Z

and consider (A⊗Z′
)⊗Z with the state supplied by

(A⊗Z′
)⊗Z (A⊗Z)⊗Z′

C.
∼ ω⊗Z′

(1.4)

Hence, this example is about a vertical stacking of 1-dimensional spin chains. In this

case, the reduced space is B⊗Z′
ω and the map is E⊗Z′

, while ρ is amplified to ρ⊗Z′
. This

example is special because the assumption on Bω of being a finite dimensional C∗-

algebra enables us to make sense of its infinite tensor power B⊗Z′
ω as an AF-algebra.

But we cannot expect this to happen in general cases. Therefore, our first outstanding

task is to understand the structure of the reduced data and we call this phase of our

program the reduction process. As we shall see in Sect. 3, the entanglement kernel is a

kernel order ideal of AR and, as a consequence, the quotient space Bω = AR/Kω is a

matrix order space with an order unit, which can be canonically Archimedeanized [22].

In other words, Bω always inherits an operator system structure from AR . Therefore,

it comes equipped with the Archimedean order unit e = 1 + Kω and, furthermore, if

q is the quotient map AR � Bω, then there exists a unique completely positive and

unital map ω̄ such that ω = ω̄ ◦ q. This map replaces ρ.

The second task in our program is making sense of the sequence (1.3) and character-

izing the resulted map E. As we have already seen, if the whole program is successful,

then the original state factorizes through E and, for this reason, we call this phase of

our program the factorization process. Key to its progress are the results from [21] on

tensor products of operator systems. Specifically, if A is nuclear, Corollary 6.8 in [21]

assures us that the first tensor product seen in (1.3) is unique, yet the operator system

structure on the tensor product can be specified in many equivalent ways. We use the

maximal tensor structure introduced in [21] to prove that E is a unital completely

positive map.

The third task in our program is the investigation of a reconstruction algorithm

based on (1.1), from an input data that shares similar properties with the reduced

data of an actual state. In the context of infinite dimensional algebras, the algorithm

produces products of operators, hence the name operator product states. While we

show in Sect. 5 that such algorithm always produces a shift-invariant state on A⊗Z

from such input data, the so obtained state may reduce to a different set of data than

the input. To avoid such scenarios, we need a criterion to tell when the input data is

actually the reduced data of some state, and such criterion is supplied in Theorems 5.4

and 5.7. We also supply sufficient conditions that ensure that the state is ergodic.
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New examples of ergodic states on tensor powers A⊗Z can be constructed using

just the technology developed in the already mentioned sections. In Sect. 5.2, the

reader will find such example for the case when A is the group C∗-algebra of an

infinite discrete amenable group. The use of Stinespring representations of the E

maps supplies additional routs to produce non-trivial examples of reconstructed states

(see Sect. 6).

2 Entanglement kernel and the reduced space and state

Throughout our presentation, we will oscillate between the categories of operator

spaces and of operator systems, which are both extremely relevant for the program

stated in our introduction. In this section, we first provide the minimal background

needed to introduce the main concepts, formulate goals and sketch the road ahead.

These initial steps can be formalized entirely in the category of operator spaces, hence

we compiled a background material on it, mostly taken from the textbooks by Effros

and Ruan [14], by Blecher and Merdy [4] and by Pisier [30]. It contains relevant

definitions and fundamental statements that will be referenced throughout our presen-

tation. This will will make the exposition self-sufficient and will fix the concepts and

notation.

In the second part, we introduce and exemplify the main objects to be studied,

namely, the algebra of physical observables, which is the tensor power A⊗Z with a

nuclear C∗-algebra A, the entanglement kernel of a given state ω over this algebra

and the quotient space Bω of A⊗Z by this kernel. As we shall see, the latter has the

structure of an operator space and ω descends to a completely contractive functional ω̄

over Bω. We point out, however, that Bω has the potential to carry additional structure,

which anticipates the next steps for moving the program forward.

Before we start, let us lay out our conventions for the notation. The letters

H , K , L, . . ., will be designated for Hilbert spaces. The symbol H (n) will stand for

the direct sum of n identical copies of H , H (n) = H ⊕ . . . ⊕ H . The C∗-algebra of

bounded linear maps between two Hilbert spaces will be denoted by B(H , K ) and,

if H coincides with K , the notation will be simplified to B(H). The letters E , F , G,

etc., will be designated to operator spaces. The matrix amplification of a linear space

will be denoted by Mn(E) and its elements will, most of the time, be indicated as [ei j ]
or [ei j ]. Mn,m(C) will denote the space of linear maps from Cm to Cn , equipped with

the standard norm. The elements of the operator spaces and algebras will be denote

by lowercase letters e, f , g, etc..

2.1 Algebra of physical observables

Let A j , j ∈ Z, be C∗-algebras canonically isomorphic to a fixed unital and separable

C∗-algebra A, referred to as the site algebra. We denote by ³ j : A �� A j the canonical

isomorphism. To avoid unnecessary complications, we assume that A is nuclear, such

that all many possible ways to complete its algebraic tensor powers coincide. We
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introduce the notation

A(m,n) = Am ⊗ Am+1 ⊗ . . . ⊗ An, m < n ∈ Z, (2.1)

and we will use the symbols a(n,m), 1(m,n) and id(m,n) for the generic monomials, the

identity element and identity automorphism of A(m,n), respectively. The natural unital

embeddings

A(−n,n) � A(−n−1,n+1), a(−n,n) �→ 1 ⊗ a(−n,n) ⊗ 1, (2.2)

supply an inductive tower

A0 � A(−1,1) � · · · � A(−n,n) � · · · (2.3)

of unital C∗-algebras, whose direct limit is the unital separable C∗-algebra A⊗Z,

denote here by AZ. This is the algebra of physical observables we are assuming in this

work. It comes with canonical embeddings i(m,n) : A(m,n) � AZ.

Embedded in AZ, are the C∗ algebras A(n,∞) and A(−∞,n) defined by the inductive

towers of A(n,m) and A(m,n) algebras, m → ±∞, respectively. Special symbols will

be used for AR := A(1,∞) and AL := A(−∞,0). We note that AZ = AL ⊗ AR and

also AZ = AL · AR , when the latter are embedded in AZ, as well as that AR (AL )

belongs to the relative commutant of AL (AR) inside AZ.

As is the case for any C∗-algebra, AZ comes equipped with a C∗-norm that enjoys

the special property ‖a∗a‖ = ‖a∗‖ ‖a‖ = ‖a‖2, for any a ∈ AZ. Among many other

things, this property enables one to define a special positive cone

A
+
Z

= {a∗a, a ∈ AZ}, (2.4)

whose order semi-norm (see 3.8) is a (complete) norm and coincides with the C∗-

norm. The state space of AZ consists of all bounded linear functionals ω which map

A
+
Z

into R+, the positive cone of C, and are normalized as ω(1) = 1. We will denote

by A
+
R and A

+
L the positive cones of the corresponding C∗-algebras.

The algebra AZ has a special (outer) automorphism S : AZ �� AZ, which is the

shift acting on monomials as

S(⊗an) = ⊗n∈Z (³n ◦ ³−1
n−1)(an−1). (2.5)

Since S shifts the entries from left to right, it maps AR ⊂ AZ into itself, hence we

can define a shift map SR on AR . A similar C∗-algebra morphism S−1
L can be defined

on AL . The goal of our work is to explore the states ω on AZ that are shift invariant,

ω = ω ◦ S, using the strategy develop in [16].

2.2 Background: concrete and abstract operator spaces

Many classes of subspaces of B(H) can be characterized concretely and abstractly,

and operator spaces are no exceptions.
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Definition 2.1 ([4], p. 5) A concrete (closed) operator space is a (closed) linear sub-

space of B(H) for some Hilbert space H .

Remark 2.2 The attribute “closed” is sometimes included in the definition of a concrete

operator space, such as in [30], and sometimes is not, such as in [14] and [4]. We chose

to side here with the second option and to specify explicitly when the encountered

operator spaces are closed. Note that, in such cases, the operator spaces are actually

complete.♦

Operator spaces are intrinsic structures that are intimately related to matrix ampli-

fications of normed linear spaces:

Definition 2.3 ([14], p. 20) An abstract (closed) operator space is a linear space E

equipped with a system of (complete) matrix norms ‖ ‖n on each Mn(E), n ∈ N×

such that:

R1) For all e ∈ Mm(E) and e′ ∈ Mn(E),

∥

∥

∥

∥

(

e 0

0 e′

)∥

∥

∥

∥

m+n

= max
{

‖e‖n, ‖e′‖m

}

; (2.6)

R2) For all e ∈ Mm(E), ³ ∈ Mn,m(C) and ´ ∈ Mm,n(C),

‖³e´‖n f ‖³‖‖e‖m‖´‖. (2.7)

Theorem 2.4 ([13, 33]) Any abstract operator space can be isometrically embedded

in the B(H) of some Hilbert space H. Conversely, if E can be isometrically embedded

in B(H), then the norms ‖ ‖n inherited by Mn(E) from Mn(B(H)) � B(H (n), H (n))

satisfy R1 and R2.

It is important to expose the fine synergies set in motion by the conditions R1 and

R2, as revealed by the following fact:

Proposition 2.5 ([14], p. 22 and 34) Suppose that E is a linear space, and that we are

provided with mappings ‖ · ‖n : Mn(E) → [0,∞) for all n ∈ N×, satisfying R1 (or

a slightly weaker version) and R2. Then these mappings are seminorms satisfying R1

and R2. If, in addition, ‖ · ‖1 is a (complete) norm, then the same is true for all matrix

seminorms.

Closed linear sub-spaces of an operator space are again operator spaces with the

n-norms induced from the parent operator space. More importantly for us is a funda-

mental result by Ruan that quotients of operator spaces by closed linear sub-spaces

are also operators spaces:

Proposition 2.6 ([4] p. 8, [14] Prop. 3.1.1) If E is an operator space and F is one of

its closed linear subspaces, then E/F is an operator space with norms induced by the

identification Mn(E/F) � Mn(E)/Mn(F). Explicitly, these norms are give by the

formula

‖[ei j + F]‖n = inf
{

‖[ei j + fi j ]‖n, [ fi j ] ∈ Mn(F)
}

, (2.8)
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for any [ei j ] ∈ Mn(E).

Remark 2.7 Clearly, if E is closed, then ‖ · ‖1 defined above is complete. Then Propo-

sition 2.5 assures us that all ‖ · ‖n norms are complete. ♦

Concrete presentations of quotient operator spaces were supplied by Rieffel in [32].

Unfortunately, we were not able to take advantage of them at this point.

2.3 Background: completely bounded linear maps

The morphisms in the category of operator spaces are supplied by the completely

bounded (c.b.) linear maps:

Definition 2.8 ([30] p. 19; [4] p. 4) A linear map u : E → F between two operator

spaces can be amplified to a linear map

un : Mn(E) → Mn(F), un([ei j ]) = [u(ei j )], (2.9)

for all n g 1. The map u is called:

1) Completely bounded if

sup
ng1

‖un‖Mn(E)→Mn(F) < ∞. (2.10)

2) Complete isometry if all un’s are isometries.

3) Complete quotient if each un sends the unit ball of Mn(E) onto the unit ball of

Mn(F).

The set of c.b. maps CB(E, F) is closed under addition and becomes a Banach

linear space when equipped with the norm

‖u‖cb = sup
n∈N

‖un‖Mn(E)→Mn(F). (2.11)

As expected, c.b. linear maps behave well under composition:

Proposition 2.9 ([30] p. 19) If E, F and G are operator spaces and u : E → F and

v : F → G are completely bounded linear maps, then v ◦ u : E → G is a completely

bounded map and ‖v ◦ u‖cb f ‖v‖cb ‖u‖cb.

C.b. linear maps also behave natural under taking quotients:

Proposition 2.10 ([30] p. 42) Let E, F and G be operator spaces such that F ⊂ E,

and let q : E → E/F be the canonical surjection. Then, a linear map u : E/F → G

is completely bounded if and only if u◦q is completely bounded and ‖u‖cb = ‖u◦q‖cb.

Proposition 2.11 ([4] p. 8) If u : E → G is completely bounded and if F is a closed

subspace of E contained in Ker u, then the canonical map ũ : E/F → G induced

by u is also completely bounded, with ‖ũ‖c.b. = ‖u‖c.b.. If F = Ker u, then u is a

complete quotient map if and only if ũ is a complete isometric isomorphism.
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Corollary 2.12 Let E and F be operator spaces with F ⊂ E. Then the canonical

surjection q : E → E/F is a complete quotient map and Ker q = F.

2.4 The entanglement kernel and the reduced state

Let ω be a state on AZ, not necessarily shift invariant. Then, for any x ∈ AL ⊂ AZ ,

define a bounded linear functional

ωx : AR ⊂ AZ → C, ωx (aR) = ω(x aR), (2.12)

which is not positive, in general. Inspired by [16], we introduce:

Definition 2.13 The following subset of AR ,

Kω =
⋂

x∈AL

Ker ωx , (2.13)

will be referred to as the entanglement kernel of ω.

Kω is an intersection of closed linear sub-space, hence it is closed linear sub-space

of the C∗-algebra AR . As such, it is automatically a closed operator subspace and it

enters the exact sequence of closed operator spaces

Kω � AR � Bω = AR/Kω. (2.14)

Indeed, from Proposition 2.6 and Remark 2.7, we know that the quotient space Bω

inherits a natural closed operator space structure. Furthermore, the second map in

(2.14) is the canonical surjection q : AR → AR/Kω, which is a complete quotient

map, as we learned from Corollary 2.12. We will refer to Bω as the ω-reduced operator

space, which can be entirely and abstractly described by the data
(

Bω, {‖ · ‖osp
n }ng1

)

,

with the matrix norms supplied by Proposition 2.6. Its elements will be specified by b,

b′ and so on. Also, the matrix amplifications of q, which are all contractions, will be

denoted by qn . The class of an element aR ∈ AR in Bω = AR/Kω will be indicated

by several symbols, such as

q(aR) = âR = �aR�. (2.15)

The second notation âR is useful when considering matrix amplifications of Bω. The

third notation will be used when aR is given as a long expression.

Proposition 2.14 Let ωR be the state on AR supplied by the restriction of ω. Then ωR

descends to a completely bounded linear functional ω̄ : Bω → C with ωR = ω̄ ◦ q

and ‖ω̄‖cb = 1.

Proof Taking x the unit of AL sub-algebra, we see from the definition (2.13) of Kω

that Kω ⊂ Ker ωR . As such, the map

ω̄ : Bω → C, ω̄(aR + Kω) = ωR(aR), (2.16)
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S = 1 S = P
0

Fig. 1 Spin-1 particles, shown by red bubbles, are arranged in a closed chain of length N . The algebra of

observables is [1]⊗ZN , where [ j] denotes the spin-j algebra. The site algebra [1] is embedded via a map j

into the algebra
[

1
2

]

⊗
[

1
2

]

of two spin- 1
2 particles, shown as pairs of black dots, and the algebra [1]⊗ZN is

embedded into [ 1
2 ]⊗Z2N via j⊗ZN . The tensor power P

⊗ZN
0 of the projection P0 onto the one-dimensional

subspace of the decomposition
[

1
2

]

⊗
[

1
2

]

� [0] ⊕ [1], shown by the segments, generates a rank-one

projection in [1]⊗ZN and a state [1]⊗ZN � M �→ Tr
(

j⊗ZN (M)P
⊗ZN
0

)

. Note that the projections are

applied on the “bonds” shown by the sticks and this is why the shift appears in (2.18)

is well defined. Furthermore, ω̄ ◦ q = ωR and the latter is a completely bounded

functional with c.b. norm 1. According to Proposition 2.10, this can be true if and only

if ω̄ is completely contractive. ��

2.5 Examples of entanglement kernels and reduced spaces

The algebra AR can be reduced (quotiented) in many different ways, but one of the

practical values of the above particular reduction, which is the great insight supplied

by [16], is that Kω and Bω can be computed for a large class of interesting physical

models.

Example 2.15 Let ω0 be a state on A and let ω = ω⊗Z
0 be the product state on AZ. In

this case,

ωx (aR) = ω(x) ω(aR) = ω(x) ωR(aR) (2.17)

for any x ∈ AL and aR ∈ AR , hence, Kω = Ker ωR . Since Ker ωR coincides with

the linear subspace {aR − ωR(aR) · 1, aR ∈ Ar }, it follows that Bω = C · 1 for any

product state on AZ. ♦

Any product state has zero correlation length, in the language introduced in [16].

Of course, the main interest of the physics community is on correlated states. The fol-

lowing example supplies a large class of such states for which Bω is again computable,

at least formally.

Example 2.16 Product states in conjunction with shift maps can be used in creative

ways to generate states with finite correlation length. The following class of states

is modeled after the so call AKLT state for spin-1 system [1], whose construction

is sketched in Fig. 1. In fact, the construction given here covers all dimerized states

introduced in [1](p. 523). For this reason, we refer to the states cover by this example as

AKLT-type. The construction involves a (nuclear) C∗-algebra Ã and a projection p ∈
Ã⊗ Ã. Then the local algebra A is defined as the unital C∗-algebra A = p(Ã⊗ Ã)p,

with p playing the role of the unit. We generate a state ω on AZ via the thermodynamic
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limit N → ∞ of the states ωN on AZN
, supplied by the following sequence of maps

AZN
(Ã ⊗ Ã)ZN

� ÃZ2N
ÃZ2N

�
(

Ã ⊗ Ã
)

ZN
C,

j⊗ZN S ξ
⊗ZN
0

(2.18)

where ξ0 is a positive functional on Ã⊗Ã. The first map is the power of the non-unital

inclusion

A � pâ p �→ j(pâ p) := pâ p ∈ Ã ⊗ Ã, â ∈ Ã ⊗ Ã, (2.19)

and S is the obvious shift map on ÃZ2N
.

If Eq. (2.18) is to supply a state on AZ, the above data must obey the constraint

lim
N→∞

ξ
⊗ZN

0

(

S
(

p⊗ZN
)

)

= 1. (2.20)

For example, this is indeed satisfied if (id ⊗ ξ0)(p ⊗ 1̃) = 1̃ and, in particular, for

the case described in Fig. 1. The limiting procedure is required because p⊗Z is not

an element of (Ã ⊗ Ã)⊗Z, hence the non-unital inclusion j⊗ZN does not make sense

in the thermodynamic limit. Let us specify that, if a unital inclusion is used instead

of j and ξ0 is a state, then all the maps in the sequence (2.18) are well defined in the

thermodynamic limit, but then the state on A is a trivial product state. We will not

investigate the thermodynamic limiting process here because we will re-construct this

class of states via a different path in Example 5.9. We only mention here that these

issues were fully resolved in [1] for the particular case illustrated in Fig. 1.

Now, assuming that the thermodynamic limit of the state exists, we compute the

corresponding operator spaces Kω and Bω. For this, we first note the obvious isomor-

phisms

χR : (Ã ⊗ Ã)R �� Ã ⊗ (Ã ⊗ Ã)R, χL : (Ã ⊗ Ã)L �� (Ã ⊗ Ã)L ⊗ Ã,

(2.21)

which we use to define the maps

	R = (id ⊗ ξ⊗N×
0 ) ◦ χR ◦ j⊗N×

, 	L = (ξ
⊗(Z\N×)
0 ⊗ id) ◦ χL ◦ j⊗(Z\N×),

(2.22)

from AR to Ã and from AL to Ã, respectively. These maps are well defined because

of our assumption that the map ξ⊗Z
0 ◦ S ◦ j⊗Z exists as the thermodynamic limit

of the chain of maps (2.18). Also, there exists a natural isomorphism between AL

and AR , induced by the reflection of Z ⊂ R relative to 1
2

, which sends 	L,R into

	R,L , respectively. From this fact, we deduce that the ranges of 	L and 	R coincide.

Furthermore, we have

ω(aLaR) = ξ0(ãL ⊗ ãR), ãR,L = 	R,L(aR,L). (2.23)
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One immediate conclusion from here is that Ker 	R ⊆ Kω. If, additionally, we choose

ξ0 such that ξ0(ã ⊗ ã) �= 0 when ã samples a dense sub-set of Ã, then Ker 	R =
Kω, because, for each ãR , we can produce an ãL via 	L that coincide with ãR . The

conclusion is that Bω = Range 	R = Ã for such choice of ξ0. ♦

2.6 Additional structures and a look ahead

Let us denote by ω̄n the matrix amplifications of the reduced state ω̄. We want to

point here to a few interesting properties of these maps. Specifically, since Mn(AR)

are again C∗-algebras, we can consider their positive cones and define the subspaces

Dn := Mn(AR)+/Mn(Kω) = qn

(

Mn(AR)+
)

, (2.24)

which can be characterized more explicitly as [22][p. 327]

Dn =
{

[ai j + Kω] ∈ Mn(Bω) | ∃ ki j ∈ Kω s.t . [ai j + ki j ] ∈ Mn(AR)+
}

.

(2.25)

Evidently, we have

ω̄n(Dn) ⊂ R+, n = 1, 2, . . . . (2.26)

This indicates that Bn spaces may carry more structure, perhaps that of an operator

system, but, without a more refined characterization of the entanglement kernel, this

cannot be established. Let us point out that, as of now, the structure of the reduced data

is quite far from the one assumed in [16], where the authors focused on the special

cases where Bω is a C∗-algebra and the reduced state ω̄ is a completely positive map.

As we shall see, in general, Dn’s defined above do not generate an Archimedean matrix

order structure, hence an abstract operator structure. Here are a few things that can go

wrong:

• Dn’s may fail to be closed spaces;

• Dn’s may not be compatible, in the sense that the relation A∗Dn A ⊆ Dm may fail

for A an ordinary n × m matrix;

• The intersections Dn ∩ (−Dn) might contain elements other than 0.

Of course, there are states for which Dn’s do supply Archimedean matrix order struc-

tures and explicit sufficient conditions for this to happen will be supplied in the next

section.

To summarize, the data that we pass to the reduction process is that of an operator

space with extra structure:

{Bω, {‖ · ‖osp
n }ng1, {Dn}ng1, 1 + Kω, ω̄ : Bω → C}. (2.27)
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3 Reduction process

A C∗-algebra comes equipped with an order structure that is compatible with the

topology induced by the C∗-norm (see Remark 3.12). As a closed linear subspace

of C∗-algebra AR , we have seen that Kω inherits a closed operator space structure

and so does its corresponding quotient space Bω. As already hinted, these spaces also

inherit a matrix order structure that can be Archimedeanized to an operator system

structure. The latter induces an order topology on Bω that in general is different from

the operator space topology [22][Sec. 4]. Therefore, a decision must be made about

which of the two inherited structures is more important for the present context. Our

main goal for this section is to expose and characterize the inherited order structures,

which is achieved over the course of several subsections. An additional section will

discuss the relation between the operator space and the operator system structures on

Bω and will give sufficient conditions that assure that the two structures coincide. For

example, this is always the case if the inherited operator system structure is close and,

as such, its matrix order norms are complete. Lastly, a choice will be made in favor of

the operator system structure on Bω and, with that, we can finally describe what we

call the reduced data.

The proof of the existence of a canonical Archimedean matrix order structure on Bω

consists of tying together several concepts and results from the existing literature, due

to Kavruk, Paulsen, Todorov and Tomforde [21, 22, 27, 28]. We will take this opportu-

nity and give a brisk recap of these ideas, which supply the natural framework and the

right tools for the problem at hand, something that we still contemplate with amaze-

ment.2 In the process, one will hear about ordered ∗-vector spaces, (Archimedean)

order units, order semi-norms and topologies, as well as order ideals and their quo-

tients [27]. One will also hear about matrix ordered ∗-vector spaces, (Archimedean)

matrix order units and a conceptual refinement of the order ideal, which is the kernel

introduced in [22]. The later has the remarkable property that its quotient space carries

automatically an ordered ∗-vector space with an Archimedean matrix order unit.

3.1 Background: ordered vector spaces and their order topologies

This material, which is entirely collected from [27], will help us elucidate the structure

of Bω, as induced by the subsets Dn introduced in the previous section.

Definition 3.1 ([27], p. 1322) If V is a real vector space, a cone in V is a nonempty

subset C ⊆ V with the following two properties:

1) av ∈ C whenever a ∈ [0,∞) and v ∈ C;

2) v + w ∈ C whenever v,w ∈ C.

An ordered vector space is a pair (V,V+) consisting of a real vector space V and cone

V+ ⊆ V satisfying V+ ∩ (−V+) = {0}.
Remark 3.2 If (V,V+) is an ordered real vectors space, one writes v g v′ if v − v′ ∈
V+. ♦

2 Specifically, that the pioneering concepts introduced in [16] found their rightful home in a framework

developed two decades later.
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Definition 3.3 ([27], pp. 1323–1324) If (V,V+) is an ordered real vector space, an

element e ∈ V is called an order unit for V if, for each v ∈ V, there exists a real

number r > 0 such that re g v. The order unit e is called Archimedean if whenever

v ∈ V with re + v g 0 for all real r > 0, then v ∈ V+.

Example 3.4 ([27], p. 1353) The real vector space of self-adjoint elements of any unital

C∗-algebra is an ordered vector space with the unit playing the role of Archimedean

order unit. ♦

Of course, our interest is in order structures on complex vector spaces. In this case,

an extra structure is required.

Definition 3.5 ([27], p. 1337) A ∗-vector space consists of a complex vector space

V together with a map ∗ : V → V that is involutive, (v∗)∗ = v for all v ∈ V, and

conjugate linear. If V is a ∗-vector space, then Vh = {v ∈ V | v∗ = v} represents the

set of hermitean elements of V. It carries the structure of a real vector space.

Definition 3.6 ([27], p. 1337) If V is a ∗-vector space, one says that (V,V+) is an

ordered ∗-vector space if (Vh,V
+) is an ordered real vector space. Furthermore, e ∈ V

is an (Archimedean) order unit for (V,V+) if it is an (Archimedean) order unit for

(Vh,V
+).

Definition 3.7 ([27], p. 1337) Let (V,V+) be an ordered ∗-vector space with order

unit e and let (W,W+) be an ordered ∗-vector space with order unit e′. A linear map

ϕ : V → W is positive if v ∈ V+ implies ϕ(v) ∈ W+, and unital if ϕ(e) = e′.

Order structures can be used to generate topologies:

Definition 3.8 ([27], p. 1327) Let (V,V+) be an ordered real vector space with order

unit e. The order semi-norm on V determined by e is defined as:

�v� = inf{r ∈ R | re + v g 0 and re − v g 0}. (3.1)

The order topology on V is the topology induced by the order semi-norm.

The following statement supplies a complete characterization of the order semi-

norm:

Theorem 3.9 ([27], p. 1330) Let (V,V+) be an ordered real vector space with order

unit e. Then the order seminorm �·� is the unique seminorm on V satisfying simulta-

neously the following three conditions:

1) �e� = 1;

2) If −v′ f v f v′, then �v� f �v′�;

3) If f : V → R is a state, then | f (v)| f �v�.

When the order unit is Archimedean, then �·� is actually a norm and the order topol-

ogy is Hausdorff (the reciprocal is not necessarily true [27][p. 1328]). Nevertheless,

the Archimedean case can be characterized as it follows:
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Theorem 3.10 ([27], p. 1330) Let (V,V+) be an ordered real vector space with order

unit e, and let �·� be the order semi-norm determined by e. Then the following are

equivalent:

i) e is Archimedean;

ii) V+ is a closed subset of V in the order topology induced by �·�;

iii) −�v� e f v f �v� e for all v ∈ V.

Remark 3.11 ([27], Sec. 4) The order semi-norm on the hermitean sub-space of an

ordered ∗-vector space with unit can be extend over the entire complex space, in an

essentially unique way. ♦

Remark 3.12 C∗-algebras are extremely special cases where the C∗-norm coincides

with order norm. In particular, this is always the case for B(H) of a Hilbert space. ♦

Definition 3.13 ([27], p. 1341) If (V,V+) is an ordered ∗-vector space, then a subspace

J ⊆ V is called an order ideal if J is self-adjoint (J∗ = J) and, furthermore, v ∈ J∩V+

and 0 f v′ f v implies that v′ ∈ J.

Proposition 3.14 ([27], p. 1342) Let (V,V+) be an ordered ∗-vector space with order

unit e and let J ⊂ V be an order ideal. Then (V/J,V+/J) is an ordered ∗-vector

space with order unit e + J.

3.2 Entanglement kernel is an order ideal

We prove this statement in several steps.

Proposition 3.15 Kω does not contain the unit 1R of AR .

Proof We need to find one element x of AL for which ωx (1R) = ω(x) �= 0. This

element is the identity of AL . ��

Proposition 3.16 The entanglement kernel is self-adjoint: K∗
ω = Kω.

Proof We have

ωx (a
∗
R) = ω(x a∗

R) = ω(aR x∗)∗ = ω(x∗aR)∗, (3.2)

for all x ∈ AL , where for the last equality we use that [AL ,AR] = {0}. Hence, if

aR ∈ Kω, then ω(xa∗
R) = 0 for any x ∈ AL . As a consequence, a∗

R ∈ Kω. ��

Proposition 3.17 The entanglement kernel can be equivalently defined as

Kω =
⋂

x∈A
+
L

Ker ωx . (3.3)

Compared to (2.13), the intersection in (3.3) runs over the (much) smaller space of

positive elements.
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Proof This follows from the fact that any x ∈ AL can be decompose as x = (x+
1 −

x+
2 ) + ı(x+

3 − x+
4 ) in terms of positive elements x+

i ∈ A
+
L . ��

Proposition 3.18 The entanglement kernel is an order ideal of AR .

Proof Consider k+
R from Kω ∩A

+
R and a+

R from A
+
R , such that a+

R f k+
R . Our task is to

show that a+
R is automatically in Kω ∩ A

+
R . For this, consider x+ ∈ A

+
L and note that

x+a+
R and x+k+

R are positive element of AZ, because x+ commutes with any element

from AL , and clearly x+a+
R f x+k+

R . Then:

0 f ω(x+a+
R ) f ω(x+k+

R ) = 0, ∀ x+ ∈ A
+
L . (3.4)

Proposition 3.17 then assures us that a+
R belongs to Kω ∩ A

+
R . ��

From above and Proposition 3.14, we can conclude that (Bω,D1) is an order space

with unit 1 +Kω. As such, Bω can be endowed with an order seminorm �·�. Since the

parent ordered space of Kω is a C∗-algebra, Proposition 3.18 has actually far more

reaching consequences, as explained next.

3.3 Background: operator systems andmatrix ordered ∗-vector spaces

We collect here a number of fundamental concepts and statements related to order

structures on matrix amplifications.

Definition 3.19 ([26] p. 9) A concrete operator system is a self-adjoint linear subspace

of a unital C∗-algebra containing the unit.

Remark 3.20 As in the case of operator spaces, we call an operator system closed if

the linear subspace in Definition 3.19 is closed. ♦

A concrete operator system inherits a full order structure from the embedding unital

C∗-algebra. Indeed, if S ⊆ A is an operator system, then S+ = S ∩ A+ supplies a

positive cone. A matrix amplification of an operator system is again a linear subspace of

a C∗-algebra, which is the matrix amplification of the embedding C∗-algebra. As such,

the matrix amplifications of an operator system come equipped with order structures

too. This tower of order structures puts a sharp distinction between the linear spaces

that can or can not be embedded in C∗-algebras such that they contain the unit. The

mentioned extra structures can be described abstractly and intrinsically.

Definition 3.21 ([26] p. 176) Given a ∗-vector space V, one says that V is matrix-

ordered provided that:

i) For each n, we are given a cone Cn in Mn(V)h;

ii) Cn ∩ (−Cn) = {0} for all n;

iii) For every n, m ∈ N× and A ∈ Mn,m(C), we have A∗Cn A ⊆ Cm .

Definition 3.22 Let (V,V+) be a matrix-ordered ∗-vector space with order unit e. Then

e is called a matrix order unit provided In ⊗ e is an order unit for Mn(V), for each n.

Furthermore, e is called Archimedean matrix order unit if In ⊗ e is an Archimedean

order unit for Mn(V), for each n.
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Definition 3.23 ([26] p. 176) Given two matrix-ordered ∗-vector spaces V and V′ with

cones Cn and C′
n , one calls a linear map ϕ : V → V′ completely positive provided that

[vi j ] ∈ Cn implies that [ϕ(vi j )] ∈ C′
n . One calls ϕ a complete order isomorphism if ϕ

is completely positive and it has an inverse which is also completely positive.

The following result, due to Choi and Effros [7], supplies the abstract characteri-

zation of operator systems.

Theorem 3.24 ([26] p. 177) If V is a matrix-ordered ∗-vector space with an

Archimedean matrix order unit e, then there exists a Hilbert space H, a concrete oper-

ator system S ∈ B(H), and a complete order isomorphism ϕ : V → S with ϕ(e) = IH .

Conversely, every concrete operator system S is a matrix-ordered ∗-vector space with

Archimedean matrix order unit, when equipped with the matrix order inherited from

the embedding C∗-algebra and with the Archimedean matrix order unit e = 1.

Definition 3.25 A linear map between two abstract operator systems is called unital if it

maps the order unit into the order unit. As in [21], we denote by O the category whose

objects are operator systems and whose morphisms are unital completely positive

(u.c.p.) maps.

The following statement supplies an effective criterion for a map to be completely

positive. It will be used here very often.

Proposition 3.26 ([4], p. 18, [26] Prop. 2.11) Let S and S′ be two operator systems

and ϕ : S → S′ be a linear unital map. Then ϕ is completely positive if and only if ϕ

is completely contractive for the order norms.

Remark 3.27 Together with Remark 3.12, Proposition 3.26 implies that the unital com-

plete order embedding of an abstract operator space S in a B(H) supplies also isometric

embeddings of (Mn(S), �·�n) in B(H (n)), for all n ∈ N×. This means (S, �·�) is an

operator space and that its system of matrix norms ‖ · ‖n coincide with �·�n . The

conclusion is that �·�n satisfies Ruan’s axioms. ♦

Stinespring theorem [34], formulated below, supplies the structure of the completely

positive maps when the domain is a C∗-algebra and the codomain is B(H) of some

Hilbert space.

Theorem 3.28 ([4], p. 18) Let A be a unital C∗-algebra. A linear map ϕ : A →
B(H) is completely positive if and only if there is a Hilbert space K , a unital ∗-

homomorphism π : A → B(K ), and a bounded linear map V : H → K such that

ϕ(a) = V ∗π(a)V for all a ∈ A. This can be accomplished with ‖ϕ‖cb = ‖V ‖2. Also,

this equals ‖ϕ‖. If ϕ is unital, then we may take V to be an isometry; in this case we

may view H ⊆ K and have ϕ(a) = PH π(a)|H

Arveson extension theorem [2], formulated below, tells us among many other things

that the above factorization functions also when the domain is an operator system.

Theorem 3.29 ([4], p. 18) If S is an operator subsystem of a unital C∗-algebra A, and

if ϕ : S → B(H) is completely positive, then there exists a completely positive map

ϕ̂ : A → B(H) extending ϕ.
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3.4 The reduced space is a matrix-ordered ∗-space

We have found in Proposition 3.18 that Kω is an order ideal. This, together with the

fact that Kω is a subspace of a C∗-algebra enables us to formulate one of our main

conclusions:

Proposition 3.30 Let ω be any state on A⊗Z and recall the subsets Dn of Bω, intro-

duced in Eq. (2.24). Then the reduced data

(

Bω, {Dn}ng1, 1 + Kω

)

(3.5)

defines a matrix-ordered ∗-space with a matrix-order unit.

Proof We reproduce the discussion in [22](p. 327) from where we learn that, for any

linear self-adjoint subspace of an operator system that does not contain the unit, the

projections of the positive cones are also cones for the matrix amplifications of the

quotient space and, furthermore, they automatically satisfy the compatibility condi-

tions iii) from Definition 3.21. Furthermore, if this linear subspace is an order ideal,

condition ii) from Definition 3.21 is also satisfied. ��

Thus, the images of the positives cones of AR and of its matrix amplifications

through the quotient map q : AR → AR/Kω and its matrix amplifications supply a

matrix-ordered ∗-space structure with a unit on Bω, and this happens for any state ω

on AZ. Our next task is to complete the matrix-ordered structure to an Archimedean

one, to confirm that Bω inherits from its parent C∗-algebra both, an operator space

structure and an operator system structure. This will also help us elucidate the fate of

ω under the reduction process.

3.5 Archimedeanization of the reduced space

There are well understood Archimedeanization processes, which were developed in

[27] for ordered vector spaces and in [28] for matrix amplifications. They typically

involve two stages, of which the first one quotients out the kernels of the matrix

seminorms and the second one expands the positive cones. It was shown in [22] that

this process greatly simplifies if the base space is a quotient by a kernel:

Definition 3.31 ([22], Def. 3.1) A subset J of an operator system S is called a kernel

if there exists a collection {η³}³∈A of states on S such that J = ⋂

³∈A ker η³ .

Proposition 3.32 ([22], Lemma 3.3) Let J be a closed, non-unital order ideal of an

operator system S. Then the order seminorm on S/J is a norm if and only if J is a

kernel.

Quite remarkably, for any state ω on AZ, the entanglement kernel is an order kernel

ideal. We establish this fact in several steps.

Proposition 3.33 Let x ∈ A
+
L such that ω(x) = 0. Then Ker ωx = AR .
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Proof By renormalizing x ∈ A
+
L by its norm in AZ, we can assume ‖x‖ = 1. From

the Cauchy-Schwarz inequality, we have:

|ω(xaR)|2 f ω(x2) ω(a∗
RaR), ∀ aR ∈ AR . (3.6)

Since ‖x‖ f 1, we have (1 − x)x g 0 or x2 f x , hence 0 f ω(x2) f ω(x) = 0.

Then (3.6) assures us that ωx (aR) = 0 for all aR ∈ AR . ��
Corollary 3.34 The entanglement kernel can be equivalently defined as

Kω =
ω(x) �=0
⋂

x∈A
+
L

Ker ωx . (3.7)

Proof Indeed,

⋂

x∈A
+
L

Ker ωx =
(

ω(x) �=0
⋂

x∈A
+
L

Ker ωx

)

⋂

(

ω(x)=0
⋂

x∈A
+
L

Ker ωx

)

(3.8)

=
(

ω(x) �=0
⋂

x∈A
+
L

Ker ωx

)

⋂

AR

and the statement follows. ��
The value of the last statement rests in the observation that all positive functionals

ωx entering in the new definition (3.7) of Kω can be normalized by ωx (1), hence,

transformed into states. More precisely:

Proposition 3.35 The entanglement kernel is a kernel. Explicitly, the entanglement

kernel is the intersection of the kernels of a family of states:

Kω =
ω(x)=1
⋂

x∈A
+
L

Ker ωx . (3.9)

Note that ωx is a state on AR if ω(x) = 1.

Proof We have

ω(x) �=0
⋂

x∈A
+
L

Ker ωx =
⋂

³∈(0,∞)

(

ω(x)=³
⋂

x∈A
+
L

Ker ωx

)

. (3.10)

Obviously, Ker ωx = Ker ω³x for all ³ ∈ (0,∞), hence,

ω(x)=³
⋂

x∈A
+
L

Ker ωx =
ω(x)=1
⋂

x∈A
+
L

Ker ωx , ∀ ³ ∈ (0,∞), (3.11)
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because both, the left and right sides, sample the same subsets of AR . The statement

then follows. ��

We arrive at the main result of the section:

Theorem 3.36 The reduced space Bω = AR/Kω inherits from AR a canoni-

cal Archimedean matrix-order structure, supplied by the Archemedianization of

(Bω, {Dn}ng1). Its positive cones are (see [22](Prop. 3.4) and [28][Prop. 3.16])

Cn = {[ai j
R + Kω] ∈ Mn(Bω) | ∀ ε > 0 ∃ ki j ∈ Kω such that

ε1 ⊗ In + [ai j

R + ki j ] ∈ Mn(AR)+
}

,
(3.12)

and its Archimedean matrix unit is e = 1 + Kω. Furthermore, the quotient map

q : AR → Bω is u.c.p..

Remark 3.37 One important point about the above is that Bω is not being quotiented

because its order norm induced by D1 and unit 1 + Kω was already a norm. Note,

however, that this does not imply that its unit was Archimedean. ♦

The Archimedeanization of Bω we just described enjoys the universal property

described in [22][p. 329], which can be used to characterize the reduced map ω̄:

Proposition 3.38 ([22] Prop. 3.16) Assume that Bω is equipped with operator space

structure as in Theorem 3.36. Let T be an operator system and ϕ : AR → T be a

unital and completely positive map such that Kω ⊆ Ker ϕ. Then the map ϕ̄ : Bω → T

given by ϕ̄(aR + Kω) = ϕ(aR) is unital and completely positive. In particular, ω̄ is a

unital and completely positive map from Bω to C, hence a state.

We, actually, can say much more:

Proposition 3.39 ω̄
(

D1\{0}
)

∩ {0} = ∅.

Proof Let aR ∈ A
+
R , which we can always normalize such that 0 f aR f 1. We will

show that ω̄(âR) = 0 implies aR ∈ Kω. Indeed, take any x from A
+
L . From Cauchy-

Schwarz inequality, we have that ω(xaR)2 f ω(x2)ω(a2
R). Now, with the assumed

normalization, aR(1 − aR) g 0, or aR g a2
R . Then

ω(xaR)2 f ω(x2)ω(a2
R) f ω(x2)ω(aR) = 0, (3.13)

which proves that ω(xaR) = 0 for all x ∈ A
+
L , hence aR ∈ Kω. ��

As in [22], we denote by ‖ · ‖osy
n the order norms on matrix space Mn(Bω), which

obey Ruan’s axioms (see Remark 3.27). From the discussion in [28][p. 37], one learns

that the Cn’s defined above are just the closures of Dn’s in the topology induced by

these order norms. Furthermore, the quotient map q : AR → Bω and its matrix

amplifications are unital and contractive for ‖ · ‖osy
n . An important question we need

to answer is if these norms are complete, which is equivalent to asking if the induced

operator system structure is closed. Below is the answer:
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Proposition 3.40 The norms ‖ · ‖osy
n are complete if and only if they are equivalent

with ‖ · ‖osp
n . If that is the case, then Dn’s coincide with Cn’s, hence, {Bω, {Dn}ng1, e)

is a closed operator system. Furthermore, the reduced state ω̄ is faithful.

Proof As already pointed out in [22] (see also Corollary 3.44), ‖ · ‖osy
n f ‖ · ‖osp

n

and we know that ‖ · ‖osp
n are complete. If ‖ · ‖osy

n is complete, then the identity

map on Mn(Bω) is a continuous map from the Banach space (Mn(Bω), ‖ · ‖osp
n )

to the Banach space (Mn(Bω), ‖ · ‖osy
n ). Since the identity map is surjective, it is

automatically an open map, which means its inverse, mapping (Mn(Bω), ‖ · ‖osy
n ) into

(Mn(Bω), ‖ · ‖osp
n ), is continuous. This imply the existence of finite positive constant

k such that ‖ · ‖osp
n f k‖ · ‖osy

n . The second statement follows from Proposition 3.39.��
In general, the operator space and operator system norms on quotient spaces are

not equivalent (see [22][Sec. 4]). As such, if one has a preference for closed operator

systems, Bω needs to be completed. This can be done straightforwardly using a con-

crete representation. Indeed, complete or not, Choi-Effros Theorem 3.24 assures us

that:

Corollary 3.41 The quotient space with its Archimedean matrix-order structure

(Bω, {Cn}ng1, e) admits a concrete representation as an operator system inside B(H)

of some Hilber space H. The closure of that representation inside B(H) supply the

completion of Bω.

Furthermore, from Stinespring [34] and Arveson Theorems 3.28 and 3.29, respec-

tively, we now can spell out the structure of the reduced map ω̄:

Corollary 3.42 If ρ : Bω → B(H) is the concrete representation of Bω, then there

exists a vector ζ ∈ H such that

ω̄(b) =
〈

ζ, ρ(b)ζ
〉

, b ∈ Bω. (3.14)

Furthermore, the map extends to a completely positive map over the entire B(H) and,

in particular, over the completion of Bω.

3.6 Sufficient conditions for completeness of order norms

We can spell out a simple and explicit condition that ensures that the matrix order norms

are complete. This condition will appear again later in a totally different context.

Proposition 3.43 ([22], Prop. 4.1) The operator space and the matrix order norms on

Bω can be characterized as

‖[ai j
R + Kω]‖osp

n = sup
{

‖[φ(a
i j
R )]‖ | φ : AR → B(H),

φ(Kω) = {0}, φ completely contractive
}

(3.15)

and

‖[ai j
R + Kω]‖osy

n = sup
{

‖[φ(a
i j
R )]‖ | φ : AR → B(H), φ(Kω) = {0},
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φ unital completely positive
}

(3.16)

where, in each of the cases, H runs through all Hilbert spaces.

The following are direct consequences of the above:

Corollary 3.44 ([22], Cor. 4.2) ‖ · ‖osy
n f ‖ · ‖osp

n .

Corollary 3.45 The following inequality

‖[ai j
R + Kω]‖osy

n g ω(x)=1
sup

x∈A
+
L

‖[ωx (a
i j
R )]‖Mn(C) (3.17)

holds for any [ai j
R + Kω] ∈ Mn(Bω).

Proof This follows from Proposition 3.43 because ωx is a state over AR if x ∈ A
+
L is

such that ω(x) = 1. ��
The above prompts us to define:

Proposition 3.46 The map

	 : Bω → [0,∞), 	(aR + Kω) := ω(x)=1
sup

x∈A
+
L

|ωx (aR)|, (3.18)

and its generalizations

	n : Mn(Bω) → [0,∞), 	n([ai j
R + Kω]) := ω(x)=1

sup
x∈A

+
L

‖[ωx (a
i j
R )]‖Mn(C), (3.19)

for n ∈ N×, are well defined, continuous, sub-linear and homogeneous. Furthermore,

	n

(

Mn(Bω) \ {0}
)

⊂ (0,∞). (3.20)

Proof The maps are well defined for, if [bi j

R ] is another element from the class of [ai j

R ],
then b

i j
R − a

i j
R ∈ Ker ωx and ωx (b

i j
R ) = ωx (a

i j
R ), for all x ∈ A

+
L with ω(x) = 1.

Sub-linearity follows from the linearity of each ωx and from the “sub-linearity” of

‖ · ‖Mn(C) and of the sup process. If ³ ∈ (0,∞), then

ω(x)=1
sup

x∈A
+
L

‖[ωx (³a
i j
R )]‖Mn(C) = ω(x)=1

sup
x∈A

+
L

‖[³ωx (a
i j
R )]‖Mn(C)

= ω(x)=1
sup

x∈A
+
L

‖³[ωx (a
i j

R )]‖Mn(C) = ω(x)=1
sup

x∈A
+
L

³‖[ωx (a
i j

R )]‖Mn(C)

(3.21)

and homogeneity follows. Lastly, [ai j
R + Kω] ∈ Mn(Bω)\{0} implies that [ai j

R ] /∈
Mn(Kω), hence, there exists at least one x ∈ A

+
L with ω(x) = 1 and a pair i, j such

that ωx (a
i j
R ) > 0. Then the last statement follows. ��
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We are now ready to supply the sought condition:

Proposition 3.47 If the closure of the image of the unit ball of (Bω, ‖ · ‖osp
1 ) through

the map 	 does not contain the origin of the real axis, then ‖ · ‖osp
n and ‖ · ‖osy

n are all

equivalent and Dn coincides with Cn .

Proof With the stated assumption, there must exist a strictly positive constant c such

that 	(b) g c, for all b ∈ Bω with ‖b‖osp
1 = 1. Since 	 is homogeneous, this is same

as 	(b) g c ‖b‖osp
1 , for all b ∈ Bω. This together with (3.17) and Corollary 3.44 give

‖b‖osp
1 g ‖b‖osy

1 g c ‖b‖osp
1 . (3.22)

This implies ‖ · ‖osy
1 is complete and, from Remark 3.27, we known that ‖ · ‖osy

n satisfy

Ruan’s axioms. Then Proposition 2.5 assures us that all matrix norms ‖ · ‖osy
n are

complete, hence equivalent to ‖ · ‖osp
n . ��

Remark 3.48 In the language introduced in [22](p. 334), the entanglement kernel Kω

becomes completely order proximinal under the conditions of Proposition 3.47. It will

be interesting to establish if these conditions are optimal for Kω to enjoy this property.

One should be aware that these conditions are still not sufficient for the operator space

and system structures to be isometric (see [22][Prop. 4.10]). ♦

Corollary 3.49 If Bω is finite dimensional, then ‖ · ‖osp
n and ‖ · ‖osy

n are equivalent.

Proof Any two norms on a finite dimensional linear space are equivalent. ��

Remark 3.50 The reader should not be deceived by the simplicity of the above state-

ment or of its proof. Indeed, they depend crucially on the fact that ‖ · ‖osy
n are norms

and not mere semi-norms and the latter follows from the deep inside from [22], and

the amazing fact that Kω is a kernel.♦

3.7 Concluding remarks and a look ahead

The work [16] exposed the matrix ordered ∗-space structure of Bω in Lemma A1,

under the assumptions that ω is translation invariant and Bω is finite dimensional.

This, however, is not enough for ‖ ·‖osy
n to be a norm and set Corollary 3.49 in motion,

or, equivalently, to embed Bω with the order structure specified in [16][Lemma A1]

in a C∗-algebra. As indicated in the discussion at page 451 of [16], this is not at all a

concerned if the minimality of Bω is not enforced. As we mentioned at the beginning

of the section, the works of Kavruk, Paulsen, Todorov and Tomforde [21, 22, 27, 28]

provide just the right tools and, in fact, an entire framework to completely settle such

fine points for any state over AZ with A nuclear. What we have learned in this section

is that, without truncation or completion, the quotient linear space Bω = AZ/Kω

inherits a canonical operator system structure from its parent C∗-algebra AZ, with the

positive cones specified in Eq. (3.12). The latter can be different from the images of

the positive cones of AZ through the quotient maps and the induced order topology

can also be different from the quotient topology.
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Proposition 3.47 supplies sufficient conditions for the operator system to be closed.

If Bω is finite dimensional, the unit ball of (Bω), ‖ · ‖osp
1 ) is compact and its image

through 	 is also compact, hence it cannot contain the origin of the real axis. Thus, the

condition in Proposition 3.47 is automatically satisfied for finite dimensional reduced

spaces and, as such, it is reasonable to claim that the situations singled out in Propo-

sition 3.47 are direct generalizations of the cases studied in [16]. Certainly, they are

very interesting cases to study in the future.

Looking forward, we need to make a choice for the reduced data. Our choice is the

Archimedean matrix order ∗-vector space Bω without completion, together with its

matrix order norms and the reduced state. Thus, the tuple

(Bω, {Cn}ng1, ‖ · ‖osy
n , e = 1 + Kω, ω̄) (3.23)

represents our derived reduced data.

4 Factorization Process

The main conclusions of the previous section apply to generic states ω on the algebra of

physical observables AZ. In this section, however, we start by assuming that the state is

shift-invariant, ω◦S = ω. In these conditions, [16] defined a bi-linear map AZ×Bω →
Bω, which proved to be of fundamental importance in the analysis of one dimensional

spin systems, as we already emphasized in our introductory remarks. In this section, we

investigate the properties of this bi-linear map and of its extensions to tensor products.

As for the previous phase of our program, key to this phase is the identification of the

natural framework to work in. If the program was to be advanced inside the category

of operator spaces, then the Haagerup tensor product of operator spaces is the right

fit because of its natural relation with multi-linear forms [30][Ch. 5]. However, we

already made the decision to advance the program inside the category of operator

systems and, as such, we will place our analysis in the framework developed by

Kavruk, Paulsen, Todorov and Tomforde [21], which systematizes the tensor product

structures for operator systems.

4.1 Background: Tensor products of operator systems

Throughout, � denotes the algebraic tensor product of linear spaces.

Definition 4.1 ([21], p. 273) Let (S, {PN }ng1, e1) and (T, {QN }ng1, e1) be operator

systems. An operator system structure on S�T is a family τ = {Cn}ng1, Cn ⊆ S�T,

satisfying:

T1. (S � T, {Cn}ng1, e1 ⊗ e2) is an operator system denoted S ⊗τ T;

T2. Pn � Qm ⊂ Cnm , for all n, m ∈ N×;

T3. If φ : S → Mn(C) and ψ : T → Mm(C) are u.c.p. maps, then φ�ψ : S⊗τ T →
Mnm(C) is a u.c.p. map.
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Definition 4.2 ⊗τ is called functorial if it can be extended to a functor from O × O to

O.

Remark 4.3 Given two operator system structures on S�T, one says that τ1 is greater

than τ2 if the identity map on S � T is a completely positive map from S ⊗τ1 T to

S⊗τ2 T. This is equivalent to Mn(S⊗τ1 T)+ ⊆ Mn(S⊗τ2 T)+ for all n ∈ N×. In such

case, the order norms enter the relation �·�τ2 f �·�τ1 . ♦

Ref. [21] identified one side of the spectrum of operator tensor structures to be:

Definition 4.4 ([21], p. 276) For S an operator system, let

Sn(S) := {φ : S → Mn(C), φ unital completely positive map}. (4.1)

The minimal tensor product S ⊗min T of two operator systems S and T is defined by

the system of positive cones

Cmin
n (S,T) := {[pi j ] ∈ Mn(S � T), [(φ � ψ)(pi j )] ∈ Mnkm(C)+,

φ ∈ Sk(S), ψ ∈ Sm(T), k, m ∈ N
×}.

(4.2)

Theorem 4.5 ([21], Th. 4.4) Let S and T be operator systems and let iS : S → B(H)

and iT : T → B(K ) be embeddings that are unital complete order isomorphisms

onto their ranges. Then min is the operator system structure on S � T arising from

the embedding iS � ıT : S � T → B(H ⊗ K ).

Theorem 4.6 ([21], Th. 4.6) The mapping min : O × O → O sending (S,T) to

S ⊗min T is an injective, associative, symmetric, functorial operator system tensor

product. Moreover, if τ is any other operator system structure on S�T, the τ is larger

then min.

On the other side of the spectrum sits:

Definition 4.7 ([21], p. 276) The maximal tensor product S ⊗max T of two operator

systems S and T is defined by the Archimedeanization of the following system of

positive cones:

Dmax
n (S,T) := {γ ([si j ] � [ti j ])γ ∗, [si j ] ∈ Mk(S)+,

[ti j ] ∈ Mm(T), γ ∈ Mn,km(C), k, m ∈ N
×}.

(4.3)

Theorem 4.8 ([21], Th. 5.5) The mapping max : O × O → O sending (S,T) to

S ⊗max T is a symmetric, associative, functorial operator system product. Moreover,

if τ is any other operator system structure on S � T, then max is larger than τ .

Remark 4.9 From [21]( Lemma 5.1), we learn that the matrix order induced by the

positive cones Dmax
n is larger than any other matrix order satisfying property T2, in

particular, it is larger than S ⊗min T. As such, Remark 4.3 assures us that the order
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seminorm induced by Dmax
n majorizes �·�min, hence, it is actually a norm. In this case,

the Archimedeanization process consists of extending Dmax
n to

Cmax
n (S,T) := {[pi j ] ∈ Mn(S � T), ren + [pi j ] ∈ Dmax

n ∀ r > 0}, (4.4)

and the first stage of the Archimedeanization process is not necessary. ♦

Theorem 4.10 ([21], Corollary 6.8) Let Q be a unital C∗-algebra. Then Q is a nuclear

C∗-algebra if and only if Q ⊗min S = Q ⊗max S for every operator system S.

The above statement assures us that A � Bω carries only one operator structure

structure if A is nuclear, which we denote simply by A ⊗ Bω.

4.2 Generating bi-linear map

The setting here is the same as in section 2.1 but with the major difference that ω is

assumed shift-invariant. In this section, the class aR +Kω in Bω is denoted by âR and

Bω is considered equipped with its canonical operator system structure summarized

in Eq. (3.23). We will continue to denote the quotient map from AR to Bω by q.

Consider the C∗-algebra embeddings

A⊗(p+1) � AZ, ´(n,n+p) := i(n,n+p) ◦ (⊗n+p

j=n ³ j ), (4.5)

for p g 0 and n ∈ Z.

Proposition 4.11 Let k ∈ Kω ⊆ AR ⊂ AZ. Then

S◦(p+1)
(

´(−p,0)(³)k
)

∈ Kω, (4.6)

for any ³ ∈ A⊗(p+1) and p ∈ N.

Proof Let x ∈ AL . Given the shift invariance of ω, we have

ωx

(

S◦(p+1)(´(−p,0)(³)k)
)

= ω
(

S◦(−p−1)(x)´(−p,0)(³)k
)

. (4.7)

Therefore, if we denote by x ′ the element S◦(−p−1)(x)´(−p,0)(³) and observe that

x ′ ∈ AL , then

ωx

(

S◦(p+1)(´(−p,0)(³)k)
)

= ωx ′(k) = 0 (4.8)

and the statement follows. ��

Corollary 4.12 We have well-defined bilinear maps A⊗(p+1) × Bω → Bω,

E
(p+1)
ω (³, âR) := (q ◦ S◦(p+1))

(

´(−p,0)(³)aR

)

, (4.9)

for all p ∈ N.
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We denote the canonical extension of E
(p+1)
ω as a linear map on the algebraic tensor

product A⊗(p+1)�Bω by the same symbol and, for p = 0, we simplify the notation to

Eω. Since all operator system structures on A⊗(p+1)�Bω coincide, we have the liberty

to choose between the various characterizations of this structure. For our purposes,

we found that the max-structure is most efficient:

Proposition 4.13 E
(p+1)
ω : A⊗(p+1) ⊗max Bω → Bω is a completely positive map.

Proof According to [21](Lemma 2.5), it is enough to check if

E
(p+1)
ω,n

(

Dmax
n (A⊗(p+1),Bω)

)

⊆ Mn(Bω)+. (4.10)

For [³i j ] ∈ Mk(A
⊗(p+1))+ and [âi j

R ] ∈ Mm(Bω)+, we have

E
(p+1)
ω,n

(

γ ([³i j ] � [âi j
R ])γ ∗) = γ E

(p+1)

ω,km ([³i j ] � [âi j
R ])γ ∗, (4.11)

for any γ ∈ Mn,km(C), and, by definition,

E
(p+1)

ω,km ([³i j ] � [âi j
R ]) = (qkm ◦ S

◦(p+1)

km )
(

[´i j ] ⊗ [ai j
R ]

)

, (4.12)

where [´i j ] = [´(−p,0)(³i j )] ∈ Mk(AL)+. Note that, on the right, we passed to the

tensor product of C∗-algebras. According to Theorem 3.36, our task is to show that,

for any ε > 0, we can find [Ki j ] ∈ Mkm(Kω) such that

εekm + S
◦(p+1)

km

(

[´i j ] ⊗ [ai j
R ]

)

+ [Ki j ] ∈ Mkm(AR)+. (4.13)

Since [âi j
R ] belongs to Mm(Bω)+, we know that, for any η > 0, there exists [ki j (η)] ∈

Mm(Kω) such that

ηem + [ai j
R + ki j (η)] ∈ Mm(AR)+. (4.14)

Then, if ξ = �³i j �k = �´i j �k �= 0, we choose

[Ki j ] = S
◦(p+1)

km

(

[´i j ] ⊗ [ki j (ε/ξ ]
)

, (4.15)

which is known to belong to Mkm(Kω) by Proposition 4.11. We have

εekm + S
◦(p+1)

km

(

[´i j ] ⊗ [ai j

R ]
)

+ [Ki j ]
= εekm − ε

ξ
S
◦(p+1)

km

(

[´i j ] ⊗ em

)

+ S
◦(p+1)

km

(

[´i j ] ⊗ ( ε
ξ

em + [ai j
R + ki j (ε/ξ)]

)

,

(4.16)

and the elements seen in the last two lines belong to the positive cone Mkm(AR)+.

The case ξ = 0 is evident. ��
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Example 4.14 For the product state from Example 2.15, we found that Bω = C · e and

we have E(a ⊗ e) = ω0(a) · e.♦

Proposition 4.15 The maps satisfy the recursive relations

E
(p+1)
ω = Eω ◦ (id ⊗ E

(p)
ω ), p > 1, (4.17)

and, more general,

E
(q+p)
ω = E

(q)
ω ◦ (id ⊗ E

(p)
ω ), p, q > 1. (4.18)

Proof The statements follow from the identity

S◦(q+p)
(

´(−q−p+1,0)(³ ⊗ ³′)aR

)

= S◦q
(

´(−q+1,0)(³)S◦p
(

´(−p+1,0)(³
′)aR

)

)

,

(4.19)

valid for any ³ ∈ A⊗q , ³′ ∈ A⊗p and aR ∈ AR . ��

Proposition 4.16 Let us consider the unital complete order embeddings3 Jp : A⊗p �

A⊗p ⊗ Bω and jp+k,p : A⊗p � A⊗p ⊗ A⊗k � A⊗(p+k). Then

E
(p+k)
ω ◦ Jp+k ◦ jp+k,p = E

(p)
ω ◦ Jp (4.20)

on A⊗p. As such, the tower of maps

E
(p)
ω ◦ Jp : A⊗p → Bω, (p g 1), (4.21)

has a direct limit E∞
ω ◦ J∞ : A⊗N× � AR → Bω, which coincides with the quotient

map q : AR → Bω.

Proof Eq. (4.20) is a consequence of the identity

S◦p
(

´(−p+1,0)(³)1R

)

= S◦(p+k)
(

´(−p+k+1,0)(³ ⊗ 1⊗k)1R

)

. (4.22)

Eq. (4.20) then assures us that the tower of contractive unital maps respect the structure

maps of the direct limit A⊗N×
, hence E∞ ◦ J∞ is well defined and shares the same

attributes. Lastly,

(E(p)
ω ◦ Jp)(³) = q

(

´(1,1+p)(³)
)

, ∀ ³ ∈ A⊗p, (4.23)

which proves the last statement. ��

3 The operator system structures on the tensor products are injective.
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4.3 Ergodic states

Shift-invariant states form a convex subset of the state space of AZ. The extremals

among shift-invariant states, i.e. those states that can not be decomposed among the

shift-invariant states, are called ergodic states [5, Sec. 4.3]. In this subsection, we

investigate the synergy between the ergodic states and a dynamical system on Bω,

canonically induced by the shift-invariant state ω. In particular, we supply sufficient

conditions for the state ω to be ergodic.

Let πω : AZ → B(Hω) be the GNS-representation induced by the shift-invariant

state ω. Then it is known that shift map S is implemented by a conjugation with a

unitary operator Uω, πω

(

S(³)
)

= Uωπω(³)U∗
ω. The following is a useful though

somewhat abstract characterization of the ergodic states:

Proposition 4.17 ([5], Th. 4.3.17) A shift-invariant state ω is ergodic if and only if the

C∗-algebra generated by πω(AZ) ∪ Uω inside B(Hω) is irreducible on Hω.

A more practical criterion to identify ergodic states relies on asymptotic tests:

Definition 4.18 We say that the shift-invariant state ω on AZ has the asymptotic clus-

tering property if the sequence

sup
{

∣

∣ω
(

aL · S◦r (aR)
)

− ω(aL)ω(aR)
∣

∣, aL ∈ AL ⊂ AZ, ‖aL‖ = 1
}

(4.24)

converges to zero as r → ∞, for any aR ∈ AR ⊂ AZ.

Proposition 4.19 ([5], Th. 4.3.22) If a shift-invariant state displays the asymptotic

cluster property then the state is ergodic.

Remark 4.20 The formulation of clustering property in Definition 4.18 seems stronger

than the standard formulation (see [5, Sec. 4.3.2]), in that it requires a uniform conver-

gence w.r.t. the aL entry. Note, however, that aL and aR are constrained on opposite

half-sides of the chain in 4.24, in which case the formulation becomes equivalent with

the standard one (see also Proposition 4.21). The reason for our preference towards

the formulation in Definition 4.18 will become apparent in Proposition 4.26. ♦

From Proposition 4.17, we see that factor states are ergodic. In such cases, we can

demonstrate that our formulation of clustering property can be indeed derived:

Proposition 4.21 If πω(AZ)′′ is a factor, then ω satisfies the cluster property as for-

mulated in Definition 4.18.

Proof We will follow closely the example 4.3.24 in [5], with a few improvements. The

proof rests on the observation that AZ displays the asymptotic abelienness

lim
r→∞

‖[S◦(−r)(³), ´]‖ = 0, ∀ ³, ´ ∈ AZ, (4.25)

in a uniform fashion, provided ³ = aL is chosen from AL . Indeed, for any ε > 0,

there exist N and aN ∈ A[−N ,N ] such that ‖´ − aN‖ f ε. Then

‖[S◦(−r)(aL), ´]‖ = ‖[S◦(−r)(aL), ´ − aN ]‖ f 2ε‖aL‖, (4.26)
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for all r > N + 1. As a consequence,

lim
r→∞

sup
{

‖[S◦(−r)(aL), ´]‖, aL ∈ AL , ‖aL‖ = 1
}

= 0. (4.27)

From here on, we can repeat the arguments from [5, Example 4.3.24], which we do

for completeness. Let �ω be the cyclic vector of πω. Since �ω and η = (πω(aR) −
ω(aR)I )�ω are orthogonal in Hω, there exists a self-adjoint operator T on Hω such that

T �ω = �ω and T η = 0. Taking aR self-adjoint and with C = (πω(aR)−ω(aR)I )T ,

we have C�ω = η and C∗�ω = 0, as well as

ω
(

aL S◦r (aR)
)

− ω(aL)ω(aR) = ω
(

S◦(−r)(aL)(aR − ω(aR)1))

= 〈�ω, [πω(S◦(−r)(aL)), C]�ω〉.
(4.28)

Next, one observes that, since πω(A⊗Z)′′ is a factor, the algebra generated by πω(AZ)∪
πω(AZ)′ is irreducible on Hω, hence Kadison’s transitivity theorem applies and C can

be chosen from this algebra. In particular, for each ε > 0, there exist ´i ∈ AZ and

Bi ∈ πω(AZ)′, with i in a finite set and such that

‖C −
∑

i
πω(´i )Bi‖ f ε. (4.29)

Then

〈�ω, [πω(S◦(−r)(aL)), C]�ω〉 f 2ε‖aL‖ +
∑

i

‖Bi‖‖[S◦(−r)(aL), ´i ]‖ (4.30)

and the statement follows from Eq. (4.27). The case when aR is not self-adjoint is

obvious. ��

We now investigate how ergodicity is related to the characteristics of a dynamical

system on Bω canonically induced by the state ω. Indeed, the shift map descends on

Bω:

Definition 4.22 We call the shift map on Bω the map

S̄ : Bω → Bω, S̄ = Eω ◦ L̄, (4.31)

with L̄ being the unital complete order embedding

L̄ : Bω → A ⊗ Bω, L̄(b) = 1 ⊗ b. (4.32)

Proposition 4.23 As a composition of u.c.p. maps, S̄ is u.c.p. and, furthermore, it

satisfies the following relation S̄ ◦ q = q ◦ SR . As a consequence, the reduced state is

also shift invariant, ω̄ ◦ S̄ = ω̄.
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Proposition 4.24 The shift-invariant state ω displays the asymptotic clustering prop-

erty if and only if the reduced state ω̄ displays a similar reduced clustering property,

lim
r→∞

sup
{∣

∣

∣
ω̄

(

E
(p)
ω

(

³ ⊗ S̄◦r (b)
)

)

− ω̄
(

E
(p)
ω

(

³ ⊗ e
)

)

ω̄(b)

∣

∣

∣

}

= 0, (4.33)

where the supremum is over p g 1 and ³ ∈ A⊗p with ‖³‖ = 1.

Proof If ´ = ´(−p+1,0)(³) ∈ AL ⊂ AZ and b = âR for some aR ∈ AR ⊂ AZ, we

have

E
(p)
ω

(

³ ⊗ S̄◦r (b)
)

= q
(

S◦p
(

´S◦r (aR)
))

. (4.34)

Therefore, taking into account the shift invariance of ω,

ω̄
(

E
(p)
ω

(

³ ⊗ S̄◦r (b)
))

= ω
(

´ ⊗ S◦r (aR)
)

. (4.35)

Then

ω̄
(

E
(p)
ω

(

³ ⊗ (S̄◦r (b) − ω̄(b)e)
)

)

= ω
(

´ ⊗ S◦r (aR)
)

− ω
(

´
)

ω
(

aR

)

(4.36)

and, from this identity, the statement follows in both directions because
⋃

p ´[−p,0]
(A⊗p) is dense in AL . ��

Remark 4.25 The asymptotic clustering property ensures the decay of correlation func-

tions. For example, a 2-site correlation function refers a quantity of the type

C(a, a′; r) = ω(· · · ⊗ 1 ⊗ a ⊗ 1⊗r ⊗ a′ ⊗ 1 ⊗ · · · ), a, a′ ∈ A. (4.37)

This correlation function can also computed as

C(a, a′; r) = ω̄ ◦ E
(r+2)
ω (a ⊗ 1⊗r ⊗ a′ ⊗ e) = (ω̄ ◦ Eω)

(

a ⊗ S̄◦r (â′)
)

, (4.38)

and the clustering property assures us that C(a, a′; r) − ω(a)ω(a′) converges to zero

as the “distance” r goes to infinity. ♦

The next statement identifies specific conditions in which we can establish a direct

relation between the dynamical system (Bω, S̄) and the asymptotic clustering prop-

erty of the state. For this, we recall the functional 	 : Bω → [0,∞) defined in

Propostion 3.46. Then:

Proposition 4.26 Assume that

	(b) g c‖b‖osp
1 , ∀ b ∈ Bω, (4.39)

for some strictly positive constant c. Then the following are equivalent:

1. ω displays the asymptotic clustering property.
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2. The linear sub-space generated by e is the only attractor of the map S̄,

lim
r→∞

S̄◦r (b) = ω̄(b) e, ∀ b ∈ Bω, (4.40)

where the limit is in the order topology of Bω.

Proof “1 ⇒ 2” From the asymptotic clustering property (4.24), we have

lim
r→∞

sup
{∣

∣

∣ω
(

x · S◦r
(

aR − ω(aR) 1R

)

)∣

∣

∣, x ∈ AL ⊂ AZ, ‖x‖ = 1
}

= 0,(4.41)

for all aR ∈ AR ⊂ AZ, which translates to

	
(

S̄◦r (âR − ω(aR) e)
)

→ 0 as r → ∞. (4.42)

Since the unit is invariant for S̄ and ‖ · ‖osp
1 g ‖ · ‖osy

1 , condition (4.39) implies

∥

∥S̄◦r (âR) − ω̄(âR) e
∥

∥

osy

1
→ 0 as r → ∞, (4.43)

which proves the first claim.

“2 ⇒ 1” This is a direct consequence of Proposition 4.24. ��

Remark 4.27 The above statement can be regarded as a direct generalization of point

(3) of Proposition 3.1 in [16]. ♦

Corollary 4.28 In the conditions of Proposition 4.26, there is one and only one shift-

invariant state on Bω, which can be detected via (4.40).

Remark 4.29 Note that (4.39) is exactly the same condition that ensures that the oper-

ator system norm on Bω is complete (see Proposition 3.47). ♦

Proposition 4.30 Assume that the statement in Eq. (4.40) holds. Then the map Eω is

full, in the sense that

⋃

pg1

⋃

x∈A⊗p
E

(p)
ω (x ⊗ b) = Bω, ∀ b ∈ Bω. (4.44)

Proof The statement is true for b = e because E∞
ω ◦ J∞ = q, as we have seen in

Proposition 4.16. Now, fix a generic element b and let ³p ∈ A⊗p be a uniformly

bounded sequence such that E
(p)
ω (³p ⊗ e) converges in order topology to another

element b′ ∈ Bω as p → ∞. Then

E
(2p)
ω

(

(³p ⊗ 1⊗p) ⊗ b
)

= E
(p)
ω

(

³p ⊗ S̄◦p(b)
)

. (4.45)
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Rewriting the right side as

E
(p)
ω

(

³p ⊗ S̄◦p(b)
)

= ω̄(b)E(p)
ω (³p ⊗ e) + E

(p)
ω

(

³p ⊗ (S̄◦p(b) − ω̄(b)e)
)

,

(4.46)

and, by using the fact that E
(p)
ω are all contractions, we obtain

‖E
(2p)
ω

(

(³p ⊗ 1⊗p) ⊗ b
)

− ω̄(b)b′‖osy
1

f |ω̄(b)|‖E
(p)
ω (³p ⊗ e) − b′‖osy

1 + ‖³p‖‖S̄◦p(b) − ω̄(b)e)‖osy
1 .

(4.47)

Since the left side of the inequality goes to zero as p → ∞, we can conclude that

the left hand side of Eq. (4.44) contains the linear space generated by b′. Since b′ was

arbitrary, the statement follows. ��

4.4 Concluding remarks and a look ahead

The reduction and factorization processes described in this section produced the data

consisting of the following:

(1) The local nuclear C∗-algebra A.

(2) The reduced space Bω with the structure of an operator system.

(3) The u.c.p. map Eω : A ⊗ Bω → Bω.

(4) The u.c.p. functional ω̄ : Bω → C.

It is certainly appropriate to say that the initial data (AZ, ω) was reduced and factorized

to the data (A,Bω, Eω, ω̄).

We have also seen that questions related to the ergodicity of the state ω can be

answered if the reduced data displays specific characteristics. Furthermore, our inves-

tigation of the ergodic states led us naturally to the concept of a full E map and a

connection was made between this concept and a condition that assures that the state

is ergodic. This property will appear again, in an essential way, in the reconstruction

phase of our program, investigated next.

5 Reconstruction Process

In this section, we consider a set of data that shares the same attributes as the reduced

data of a state over AZ. As we shall see, such data always produces a state on AZ

by a straightforward algorithm. However, the reduced data corresponding to the so-

constructed state may not coincide with the initial data supplied as the input for the

algorithm. The discussion at page 451 in [16] where Bω is taken as AR supplies such

an example. In such cases, we cannot draw any conclusions about the ergodicity of the

state by simply examining the initial data. For this reason it is imperative to identify

input data that leads to states that reduce back to the input data, which will then enable

us to apply the results obtained in subsection 4.3. These issues are explored to the

fullest in this section.
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5.1 Reconstruction algorithm

Here we prove one of our main results.

Theorem 5.1 Assume:

◦ A unital nuclear C∗-algebra A;

◦ An Archimedean matrix-ordered space (S, e);

◦ A u.c.p. map E : A ⊗ S → S;

◦ A u.c.p. functional φ on S.

Then:

i) Let E(p) : A⊗p ⊗ S → S be the systems of maps defined iteratively as in Propo-

sition 4.15, specifically,

E
(1) = E, E

(p+1) = E ◦ (id ⊗ E
(p)), p g 1. (5.1)

Then the tower of linear functionals

ω(p) : A⊗p → C, ω(p) = φ ◦ E
(p) ◦ Jp, p g 1, (5.2)

define a state ωR on A⊗N× � AR , where Jp’s are the unital complete order

embeddings Jp : A⊗p � A⊗p ⊗ Bω.

ii) Suppose φ ◦ S̄ = φ, where S̄ is defined as in Proposition 4.24, specifically,

S̄ : S → S, S̄ = E ◦ L̄, (5.3)

with L̄ being the unital complete order embedding L̄ : S → A ⊗ S. Then there

exists a unique shift-invariant state ω on AZ extending ωR derived at point i).

Proof i) As compositions of u.c.p. maps (recall point T3 of Definition 4.1), the maps

E(p) are u.c.p. and the maps Jp are as well u.c.p. As such, ω(p) are u.c.p., hence states

on A⊗p. Furthermore, if jq,p : A⊗p � A⊗p ⊗ A⊗(q−p) = A⊗q are the standard

C∗-algebra embeddings for q g p, then ω(q) ◦ jq,p = ω(p) for any q g p and, as such,

the tower of states respects the structure maps of the directed tower of C∗-algebras

and, as such, it defines a state on the inductive limit, which is A⊗N× � AR .

ii) We denote by ωR the inductive limit of states from point i), and let SR : A⊗N× →
A⊗N×

be the C∗-algebra morphism aR �→ 1⊗aR . Then, for any p g 1 and ³ ∈ A⊗p,

we have

(ωR ◦ SR)
(

j(∞,p)(³)
)

= ω(p+1)

(

1 ⊗ ³
)

=
(

φ ◦ E
(p+1)

)(

(1 ⊗ ³) ⊗ e
)

. (5.4)

Using the very definition of E(p), we find

(ωR ◦ SR)
(

j(∞,p)(³)
)

= (φ ◦ E)
(

1 ⊗ E
(p)(³ ⊗ e)

)

, (5.5)
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and, after invoking the definition of L̄ ,

(ωR ◦ SR)
(

j(∞,p)(³)
)

= (φ ◦ E ◦ L̄)
(

E
(p)(³ ⊗ e)

)

. (5.6)

Since E ◦ L̄ = S̄ and φ ◦ S̄ = φ, we must have ωR ◦ SR = ωR . Any state with such

property can be uniquely extended to a shift-invariant state over AZ. ��

Let (A,Bω, Eω, ω̄) be the reduced data for the state produced via Theorem 5.1 from

the input (A, S, E, φ) with φ shift-invariant. As already stated, without additional

information about the input data, there is no reason to assume that the two sets of

data coincide. It is imperative to find out when the two actually coincide. A related

problem is the identification of states that can be produced with the algorithm from

Theorem 5.1, for some input data. The two mentioned issues are actually related:

Proposition 5.2 Ifω andω′ are shift invariant states and the data (AZ, ω)and (AZ, ω′)
both reduce to the same data (A,B, E, φ), then necessarily ω = ω′.

Proof Let ωR be the restriction of ω on AR . From Proposition 2.14, we know that

ωR = φ ◦ q and, from Proposition 4.16, we know that q is completely determined by

E. Since the same arguments apply for ω′, the conclusion is that ωR and ω′
R coincide

on a dense subspace of AR , hence on the whole AR . Due their shift-invariance, they

must also coincide on the whole AZ. ��

Corollary 5.3 Let ω be a state over AZ and (A,Bω, Eω, ω̄) be its reduced data. Then

the algorithm from Theorem 5.1 with input (A,Bω, Eω, ω̄) generates back the state

ω.

The following statement supplies sufficient conditions for an input data set

(A, S, E, φ) to be the reduced data of some state over AZ

Theorem 5.4 Assume the conditions of Theorem 5.1 and, additionally, that φ is shift

invariant and E is full,

⋃

pg1

⋃

x∈A⊗p
E(p)(x ⊗ s) = S, ∀ s ∈ S, s �= 0. (5.7)

Let ω be the shift-invariant state produced by the algorithm from Theorem 5.1 from

the input data (A, S, E, φ). Then the data (AZ, ω) reduces back to the input data

(A, S, E, φ). In particular, this is the case if S̄ satisfies relation (4.40).

Proof We first note that (E(q) ◦ Jq) ◦ jq,p = E(p) ◦ Jp for any q g p and, as such,

we have a direct limit map E(∞) ◦ J∞ : A⊗N× → S. Note that E(∞) ◦ J∞ is unital

and contractive and continues to enjoy Markov’s property (4.18). We define the closed

subset

K = Ker
(

E
(∞) ◦ J∞

)

⊂ A⊗N×
. (5.8)
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We will show that K coincides with the entanglement kernel Kω of the state ω. For

x = ´(−p+1,0)(³) with ³ ∈ A⊗p, we have

ω(x · aR) = φ
(

E
(p)

(

³ ⊗ (E∞ ◦ J∞)(aR)
)

)

, ∀ aR ∈ A⊗N× � AR . (5.9)

As such, if aR ∈ K, then ωx (aR) = 0 for x in a dense subset of AL , hence for all x in

AL because of the continuity of the state. This proves that K ⊆ Kω. The reciprocal is

also true in the stated conditions. Indeed, if aR ∈ Kω, then necessarily

φ
(

E
(p)

(

³ ⊗ (E∞ ◦ J∞)(aR)
)

)

= 0 (5.10)

for any ³ ∈ A⊗p and p g 1, which is a direct consequence of the identity (5.9). Let

s = (E∞ ◦ J∞)(aR) ∈ S and assume that s �= 0. In this case, since E is full,

⋃

pg1

⋃

³∈A⊗p
E(p)(³ ⊗ s) = S, (5.11)

and (5.10) can be true only if φ = 0. This contradiction proves that s = 0 or, in other

words, that aR ∈ K.

We have established that the entanglement kernel Kω of ω coincide with the kernel

Ker(E(∞) ◦ J∞). Then the projection q : AR → AR/Kω coincides with E(∞) ◦ J∞.

Our last task is to show that E given at the start of the reconstruction process coincides

with the map defined in Eq. (4.9) for the reconstructed state ω. Specifically, we need

prove that

E
(

a ⊗ (E(∞) ◦ J∞)(aR)
)

= (E(∞) ◦ J∞)
(

S(´(0,0)(a)aR)
)

, (5.12)

for all a ∈ A and aR ∈ A⊗N×
. For any ³ ∈ A⊗p, we have

E

(

a ⊗
(

E
(∞) ◦ J∞

)(

j∞,p(³)
)

)

= E

(

a ⊗
(

E
(p) ◦ Jp

)

(³)
)

= E
(p+1)

(

(

a ⊗ ³
)

⊗ e
)

.
(5.13)

The last line can be cast as (E(∞) ◦ J∞)
(

j∞,p+1(a ⊗ ³)
)

and j∞,p+1(a ⊗ ³) can be

seen to coincide with S(´(0,0)(a)aR), under the isomorphism A⊗N× � AR . As such,

the relation (5.12) holds for a dense subset of S, hence on the whole S. ��

Example 5.5 It is easy to exemplify how the statement in Theorem 5.4 fails if the

full-ness condition is not satisfied. Indeed, let E : A ⊗ S → S be full as stated.

Consider

Ê : A ⊗ S ⊗ B → S ⊗ B, Ê = E ⊗ id, (5.14)
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where B is an auxiliar operator system. A short calculation shows that

Ê
(p)

(³ ⊗ s ⊗ b) = E
(p)(³ ⊗ s) ⊗ b, (5.15)

hence it is evident that Ê fails to be full. Now, consider the state ω̂ = ω̄ ⊗ ξ over

S⊗B, with ξ any state on B. Then (Ê, ω̂) produces the same state ω over AZ through

the reconstruction process, but (AZ, ω) reduces to S and not to S ⊗ B. ♦

Corollary 5.6 Assume the conditions of Theorem 5.1 and, additionally, that φ ◦ S̄ = φ,

that the map E is full and that the input data displays the asymptotic clustering property

lim
r→∞

sup
{∣

∣

∣φ
(

E
(p)

(

³ ⊗ S̄◦r (s − φ(s) e)
)

)∣

∣

∣

}

= 0, ∀ s ∈ S, (5.16)

where the supremum is over all n g 1, ³ ∈ A⊗p with ‖³‖ = 1. Then the reconstructed

state ω displays the asymptotic clustering property and, as such, it is ergodic.

Proof In the stated conditions, the reduced data (A,Bω, Eω, ω̄) for reconstructed

state ω coincides with the input data (A, S, E, φ). Then we can apply the results of

subsection 4.3 and the statement follows from Proposition 4.24. ��

We now put forward the ideal scenario that will sought for in all our examples:

Theorem 5.7 Let (A, S, E, φ) be as in Theorem 5.1 and suppose that

lim
r→∞

S̄◦r (s) → φ(s) e, ∀ s ∈ S, (5.17)

checks for the input data. Then:

(i) φ is shift invariant, φ ◦ S̄ = φ;

(ii) The map E is full and, as such, the data (AZ, ω), with ω the shift-invariant state

generated by the algorithm form Theorem 5.1, reduces back to the input data

(A, S, E, φ);

(iii) The state ω displays the asymptotic clustering property and, as such, it is ergodic.

Proof (i) is evident. (ii) follows from the same argument as in Proposition 4.30. (iii)

follows from Proposition 4.24, which applies to the present context due to (ii). ��

5.2 Examples of reconstructed states

Below, we give examples of ergodic states derived with the algorithm described in

Theorem 5.1.

Example 5.8 Let us consider the product state discussed in Examples 2.15 and 4.14,

where we found Bω = C · e and Eω(a ⊗ e) = ω0(a) · e. Hence, Eω is obviously full

and there is only one state on Bω, ω̄(e) = 1. As such,

ω(1)(a) := ω̄
(

E(a ⊗ e)
)

= ω0(a) (5.18)
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and

ω(2)(a1 ⊗ a2) := ω̄
(

E
(2)(a1 ⊗ a2 ⊗ e)

)

= ω̄
(

E
(

a1 ⊗ E(a2)
))

= ω0(a1)ω0(a2).

(5.19)

Iterating further, one finds

ω(n)(a1 ⊗ · · · ⊗ an) = ω0(a1) · · ·ω0(an), (5.20)

which confirms that the product state ω⊗Z
0 is indeed reproduced by the reconstruction

algorithm. ♦

Example 5.9 We reconsider here the class of AKLT states introduced in Example 2.16,

which we now can analyze to the fullest, without assuming any convergence of periodic

approximants. We recall that the setting was that of a nuclear C∗-algebra Ã, of a

projection p from Ã ⊗ Ã, and of a a positive map ξ0 : Ã ⊗ Ã → C. Both operator

systems A and S are defined in terms of this data, namely A = p(Ã ⊗ Ã)p, with

p standing for the unit of A, and S = Ã. We let j : pÂp → Â be the non-unital

embedding that takes p into p rather than into the unit of Â. As a C∗-algebra morphism,

j is a c.p. map. Lastly, we define E as

E : p(Ã ⊗ Ã)p ⊗ Ã → A, E = (id ⊗ ξ0) ◦ (j ⊗ id), (5.21)

which, as a composition of two c.p. maps,4 is a c.p. map. This map is also unital,

provided

(id ⊗ ξ0)(p ⊗ 1̃) = 1̃. (5.22)

Therefore, whenever p and ξ0 fulfill this constraint, an AKLT-type state can be recon-

structed from the data

AKLT =
(

A := p(Ã ⊗ Ã)p, S := Ã, E := (id ⊗ ξ0) ◦ (j ⊗ id), φ
)

, (5.23)

where φ is a shift invariant state on Ã. This machinery now works equally for finite

and infinite dimensional nuclear C∗-algebras A. Below, we give two examples where

the AKLT data satisfies the conditions of Theorem 5.7. ♦

Remark 5.10 The particular case studied in [1], illustrated in Fig. 1 and partially ana-

lyzed in Example 2.16, corresponds to Ã = M2(C), hence Â = M2(C) ⊗ M2(C) �
M4(C), and p is the rank-3 projection

p = 3
4

σ0 ⊗ σ0 + 1
4

3
∑

i=1

σ i ⊗ σ i ∈ M4(C), (5.24)

4 Property T3 in Definition 4.1 assures us that this is indeed the case.
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such that A = pM4(C)p � M3(C). Above, σi , i = 1, 2, 3, are Pauli’s matrices and

σ0 is the identity of M2(C). Furthermore,

ξ0(m) = 4
3

Tr
(

mp0

)

, m ∈ M4(C), (5.25)

with p0 being the rank-1 projection

p0 = 1
4

σ0 ⊗ σ0 − 1
4

3
∑

i=1

σ i ⊗ σ i ∈ M4(C). (5.26)

In this case, (5.21) takes the following concrete form:

E

(

p
(

γ ⊗ γ ′)p ⊗ γ ′′
)

= 4
3

3
∑

³,´=0

g³g´Tr
(

(

σ³γ ′σ ´ ⊗ γ ′′)p0

)

σ³γ σ ´ , (5.27)

where g0 = 3
4

and gi = 1
4

for i = 1, 3 and γ, γ ′, γ ′′ ∈ M2(C). We then find

E(p ⊗ σ0) = σ0, E(p ⊗ #³ · #σ) = − 1
3

#³ · #σ , (5.28)

where ³ ∈ C3 and #³ · #σ = ∑3
i=1 ³i σi . Hence, the data satisfy the constraint mentioned

in Example 5.9. Furthermore, since any s ∈ M2(C) can be written uniquely as s =
³0 σ0 + #³ · #σ , we have

S̄◦r (s) = E(p ⊗ E(. . . E(p ⊗ s) . . .)) = ³0 σ0 +
(

− 1
3

)r #³ · #σ , (5.29)

hence S̄ satisfies relation (4.40). As a consequence, there is only one S̄-invariant

functional ω̄ on M2(C), which is

ω̄(³0 σ0 + #³ · #σ) = ³0, (5.30)

and the reconstructed state ω is ergodic. Two-site correlation functions can be also

computed explicitly, by following Example 4.25:

C(a, a′; r) = (ω̄ ◦ E)
(

a ⊗ S̄◦r (â′)
)

= ω(a)ω(a′) +
(

− 1
3

)r
(ω̄ ◦ E)(a, #³ · #σ),

(5.31)

where #³ · #σ = E(a′ ⊗ σ0) − ω(a′) and ω(a) = (ω̄ ◦ E)(a ⊗ σ0). For given specific

entries a and a′, the calculation can be completed by applying (5.27). ♦

Example 5.11 We can take a page from the above example and produce an AKLT data

with A infinite dimensional. For this, we want to engage the full C∗-algebra C∗G

of an infinite amenable discrete group G,5 but, typically, such algebras are poor in

5 For amenable groups, the full and reduced group C∗-algebras coincide and are nuclear [25].
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projections, unless we tensor them with a matrix algebra. For this reason, the AKLT

construction requires a slight generalization, which we now explain. We start with a

projection p̃ ∈ MN (C) ⊗ C∗G. The group morphism G � g �→ g × g ∈ G × G

lifts canonically to an algebra morphism MN (C) ⊗ C∗G → MN (C) ⊗ (C∗G ⊗
C∗G), hence, the image of p̃ through this map is still a projection, which we take

as the projection p in the AKLT construction. The latter can be presented as a norm

convergent series

p =
∑

g∈G

cg · g ⊗ g, cg ∈ MN (C), cg−1 = c∗
g. (5.32)

We now can specify half of the input data:

A = p(MN (C) ⊗ C∗G ⊗ C∗G)p, S = C∗G. (5.33)

Next, we choose a positive element q̃0 from C∗G with ‖q0‖ f 1, and push it through

the same morphism into MN (C) ⊗ (C∗G ⊗ C∗G). If

q0 =
∑

g∈G
dg · g ⊗ g, dg ∈ C, dg−1 = d∗

g , (5.34)

is the result of that action, then we define the positive map

C∗G ⊗ C∗G � σ �→ ξ0(σ ) = (T ⊗ T)(
√

q0 σ
√

q0) = (T ⊗ T)(σq0) ∈ C,

(5.35)

where T is the standard trace on C∗G, T(
∑

g λg · g) = λe. Lastly, we define

E : A ⊗ S → S, E = (tr ⊗ id ⊗ ξ0) ◦ (j ◦ id), (5.36)

where tr is the trace state on MN (C) and j is the non-unital C∗-algebra embedding

A � MN (C) ⊗ C∗G ⊗ C∗G. As a composition of c.p. maps, E is a c.p. map.

Furthermore, if s = ∑

g∈G sg · g ∈ S, then we have

(tr ⊗ id ⊗ ξ0)(p ⊗ s) = (tr ⊗ id ⊗ T ⊗ T)
(
∑

f ,g,h∈G cgshd f · g ⊗ g f ⊗ h f
)

(5.37)

and, by using the fact that T(g) = δg,e, we find

S̄(s) = E(p ⊗ s) =
∑

g∈G
d∗

g tr(cg)sg · g. (5.38)

Therefore, if we choose the coefficients of q0 such that

de = 1/tr(ce), |dg| < 1/|tr(cg)| for g �= e, (5.39)
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which we can always do, then E(p ⊗ e) = e and

S̄◦r (s) =
∑

g∈G

(

d∗
g tr(cg)

)r
sg · g → se · e, as r → ∞, ∀ s ∈ S. (5.40)

The conclusion is that the reconstruction algorithm for the modified AKLT data

mAKLT=
(

A := p(MN (C) ⊗ Ã ⊗ Ã)p, S := Ã, E := (tr ⊗ id ⊗ ξ0) ◦ (j ⊗ id)
)

,

(5.41)

produces an ergodic state ω on A⊗Z. ♦

Remark 5.12 The last example can be given the physical interpretation of the thermo-

dynamic limit of states for N distinguishable quantum particles hopping on the Cayley

graph of G, where the states are invariant against circular permutation of the identities

of the particles. ♦

6 Stinespring representations of operator product states

The goal of this section is to appeal to the Stinespring representation of map E and

derive a possibly simpler set of input data for a reconstruction algorithm (see Propo-

sition 6.22). It is argued that this new type of input data samples densely the space

of input data introduced in the previous section, provided S can be embedded in a

postliminal C∗-algebra.

6.1 Background: types of C∗-algebras and their spectra

When appealing to the Stinespring representation of the map E, one immediately

encounters the space of representations of the C∗-algebras involved. As we shall see,

the generic representation of E engages many if not all irreducible representations of

an embedding C∗-algebra for Bω. This calls for a brief overview of the spaces where

the representations of C∗-algebras live.

A representation of a C∗-algebra Q is a C∗-algebra morphism π : Q → B(H) for

some Hilbert space H . Both the C∗-algebras and the Hilbert spaces will be assumed

separable in this section. When referring to a specific representation π , we will use

the symbol Hπ for the associated Hilbert space. We recall that two representations

are called equivalent if there exists a unitary map between the corresponding Hilbert

spaces intertwining the two representations.

Definition 6.1 A representation π of a C∗-algebra Q is called topologically irreducible

if 0 and Hπ are the only closed subspaces invariant for the action of the algebra Q.

The set of equivalence classes of irreducible representations defines the spectrum of

the algebra, typically indicated by a hat as in Q̂.

The spectrum of a C∗-algebra accepts a canonical topology, which can be introduced

in a multitude of distinct ways (see [10] Ch. 3, [15] Ch. VII, [31] Ch. A). We want to

describe this topology here.
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Definition 6.2 ([10], Sec. 3.1) A closed double-sided ideal of a C∗-algebra Q is called

primitive if it is the kernel of an irreducible representation of Q. The set of primitive

ideals is usually specified as Prim(Q).

Proposition 6.3 ([10], Sec. 3.1) For each subset T ⊆ Prim(Q), one lets I (T ) be the

intersection of the elements of T and considers the set T of all primitive ideals of Q

containing I (T ). Then there exists a unique topology on Prim(Q) such that T is the

topological closure of T .

Definition 6.4 The topology defined by Proposition 6.3 is called the Jacobson topol-

ogy. The Prim space is endowed with this natural topology.

Remark 6.5 The naturality stems from the observation that the closed subsets of

Prim(Q) and the closed double-sided ideals of A are in a bijective relation, estab-

lished by the map Prim(Q) � T = T �→ ⋂{J , J ∈ T }. In other words, the lattice of

ideals of Q can be derived from the Jacobson topology of Prim(Q). ♦

Definition 6.6 Since the kernels of equivalent representations coincide, there exist a

natural surjective map Q̂ � [π ] �→ ker π ∈ Prim(Q) and the topology of Q̂ is defined

to be the pull-back topology through this map.

The pure states over a C∗-algebra Q supply irreducible representations. If P(Q)

stands for the set of pure states, then this set comes equipped with the weak-∗ topology

inherited from the dual of Q.

Proposition 6.7 ([10] 3.4.12) The topology of Q̂ introduced in Definition 6.6 coincides

with the quotient topology of the topology of P(Q) for the canonical surjective map

P(Q) → Q̂.

A topological space is called a T0-space if for any two distinct points of the space

there is a neighborhood of one of the points which does not contain the other. While

Prim spaces are always T0 [10][Prop. 3.1.3], this is not always the case for the spectra.

When this does happen, we have:

Proposition 6.8 ([10], Prop. 3.1.6) The following three conditions are equivalent:

(i) Q̂ is a T0-space.

(ii) Two irreducible representations of Q with the same kernel are equivalent.

(iii) The canonical map Q̂ → Prim(Q) is a homeomorphism.

The simplest spectrum is that consisting of a single point. The separable C∗-algebras

displaying such spectra are precisely the elementary ones, that is, the ones that are

isomorphic to the algebra of compact operators over some Hilbert space (finite or

infinite dimensional). These were exactly the C∗-algebras engaged in the study of

finitely-correlated states in [16], and they remain very relevant for the more general

context considered here (see Example 6.28). All finite dimensional C∗-algebras have

finite Hausdorff spectra [6][Corollary 8]. Next up in the ladder of complexity come

the dual C∗-algebras [20] (see also [10][4.7.20] for a brisk characterization), which all

have discrete spectra. The C∗-algebras of compact groups are dual [20] and, in fact,
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this property characterizes completely the compact groups among the locally compact

groups [3, 12]. Liminal and postliminal C∗-algebras [10][Ch. 4] also have a fairly com-

plete characterization of their spectra. In particular, postliminal C∗-algebras have only

type I representations and satisfy the equivalent properties stated in Proposition 6.8

[18]. Furthermore:

Proposition 6.9 ([10], Ch. 4) Let Q be a separable postliminal C∗-algebra. Let π be

a non-degenerate representation of Q on a separable Hilbert space. Then there exist

mutually singular positive measures µ1, µ2, …, µ∞ on Q̂, such that

π �
∫ ⊕

Q̂

dµ1(ξ) ξ ⊕ 2

∫ ⊕

Q̂

dµ2(ξ) ξ ⊕ · · · ⊕ ℵ0

∫ ⊕

Q̂

dµ∞(ξ) ξ, (6.1)

where the coefficients in front of the integral signs indicate the multiplicities. The

system of measures {µi } is fixed by π up to measure equivalence.

Remark 6.10 In general, the integration and disintegration of representations of a C∗-

algebra is developed over the quasi-spectrum of the algebra equipped with its natural

Mackey-Borel structure. For a separable postliminal C∗-algebra, however, the spec-

trum endowed with the topological Borel structure coincides with the Mackey-Borel

structure [11] (see also [10][Ch. 7]). ♦

All commutative C∗-algebras are postliminal. C∗-algebras of type-I topologi-

cal groups are also sources of postliminal C∗-algebras (see [17][Theorem 7.8] and

[9][Example 8.5.1] for explicit lists of type-I groups). In particular, a discrete group

is of type-I if and only if it contains an abelian subgroup of finite index. In particular,

the C∗-algebra of the space-groups engaged in crystallography (i.e. the lattices of the

Euclidean group) are postliminal.

We will restrict our discussion of the operator-product presentation of a state over

AZ to the situations where the operator system Bω can be embedded in a postliminal

C∗-algebra. Besides all the above nice features, the class of postliminal C∗-algebras

has the following special property:

Theorem 6.11 ([31], Th. B.45) Let A and B be nuclear C∗-algebras. Then the map

(π, η) �→ π ⊗ η induces a homeomorphism of Â × B̂ onto its range in Â ⊗ B.

Furthermore, if either A or B is postliminal, then this homeomorphism is surjective.

There are alternative tools to the disintegration theory summarized in Proposi-

tion 6.9. For example, Fell and Doran describe in section VI.14 of [15] the notion of

discretely decomposable ∗-representations. Such a representation accepts an essen-

tially unique direct decomposition in irreducible representations. Another useful and

related concept is that of approximately equivalent representations.

Definition 6.12 ([8], pg. 57) Two representations π and η of a C∗-algebra Q are said

to be approximately unitary equivalent, written as π ∼a η, if there exists a sequence

of unitary transformations Un : Hπ → Hη such that

π(q) = lim
n→∞

U∗
n η(q) Un, ∀ q ∈ Q, (6.2)
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where the limit is in the norm topology of B(Hπ ). Note that the difference π(q) −
U∗

n η(q)Un can be arranged to be in K (Hπ ) if π ∼a η.

Approximately unitary equivalence fits our purposes because of the following:

Proposition 6.13 ([8] Corollary II.5.9) Every representation of a separable C∗-

algebra on a separable Hilbert space is approximately unitarily equivalent to a direct

countable sum of irreducible representations.

Proposition 6.14 Let � : Q → B(H) be a u.c.p. map and �(q) = V ∗π(q)V be a

Stinespring representation of � as in Theorem 3.28.6 Let Un : Hπ → ∑⊕
[ζ ] Hζ be the

unitary transformations implementing the approximate unitary equivalence mentioned

in Proposition 6.13, where the direct sum runs over a countable subset of Q̂. Then

�n : A → B(H), �n(q) := V ∗
n

(

∑⊕
[ζ ] ζ(q)

)

Vn, Vn := Un V , (6.3)

converges in the weak-∗ topology to �.

Proof Let η = ∑⊕
[ζ ] ζ be the representation mentioned in the statement, in which case

�n(q) = V ∗U∗
n η(q)Un V . Then the statement follows from the facts that the limit

in (6.2) holds in norm topology of B(Hπ ) and V is a bounded map. ��

Corollary 6.15 The set of u.c.p. maps of the form

Q � q �→
∑

[ζ ] V ∗
ζ ζ(q)Vζ ∈ B(H), (6.4)

where the sum runs over a countable subset of Q̂ and Vζ are bounded linear maps

from H to Hζ , is weak-∗ dense in the space of all u.c.p. maps from Q to B(H).

Remark 6.16 While weak approximations of states have deficiencies, e.g. they are not

powerful enough to resolve spectral features of the exact state, they serve perfectly

well the purpose of computing correlation functions. ♦

Since this will be our main device for deriving new example of operator product

states using Stinespring representations, we present the following example:

Example 6.17 Let X be a compact subset of R and ρ a cyclic representation of C(X)

on a separable Hilbert space. In the first part of the exercise, we derive for ρ an approx-

imately unitary equivalent representation made out of a countable set of irreducible

representations of C(X). In the second part of the exercise, we show how the latter

generates a weakly-∗ converging sequence of convex combinations of a fix countable

set of pure states of C(X), with the limit state matching to the cyclic representation ρ.

From [8][Th. II.1.1], we know that ρ is equivalent to the representation that sends

f ∈ C(X) to the multiplication operator M f by f on Hρ = L2(X , μ), for some

reqular Borel probability measure on X . Furthermore, if T = Mx is the multiplication

6 Hπ can be chosen separable when both Q and H are separable [26](pg. 45).
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operator by the identity function f (x) = x , then ρ(C(X)) can be identified with

the C∗-algebra generated by T in B(Hρ). By Weyl-von Neumann theorem, T is an

arbitrarily small compact perturbation of a diagonalizable operator. We need some

elements from the proof, which we borrow from [19][2.2.5]. Consider a sequence of

partitions of X by Borel subsets, such that the diameters of the subsets in the n-th

partition are equal or less than ε 2−n−3, and the (n + 1)-th partition refines the n-th.

If Pε
n denotes the projection onto the finite dimensional linear subspace of L2(X , μ)

generated by the characteristic functions of the Borel sets of the n-th partition, then

Qε
n = Pε

n − Pε
n−1 are projections too, Qε

n are mutually orthogonal,
∑

n Qε
n converges

strongly to identity, and ‖Qε
nT − T Qε

n‖ f ε2−n . Now,

T =
∑

n

Qε
nT Qε

n −
∑

n

(Qε
nT − T Qε

n)Qε
n, (6.5)

with both sums converging in strong topology, and the first one is a direct sum of

self-adjoint operators over finite dimensional spaces, while the second one is a com-

pact operator of norm smaller than ε. The conclusion is that there exists a diagonal

operator Dε on
∑⊕

n Qε
n Hρ , a unitary transformation Uε : Hρ → ∑⊕

n Qε
n Hρ such

that T = U∗
ε DεUε up to a compact operator of norm smaller than or equal to ε. Fur-

thermore, it can be arranged to have the spectrum of Dε contained in the set X . Note

that the unitary transformation Uε is a direct sum of finite unitary matrices that can be

explicitly computed. Now, by Lemma II.4.3 from [8], all Dε operators are approxi-

mately unitarily equivalent. Then, by fixing an ε0, there exists a unitary transformation

Vε0,ε : ∑⊕
n Qε

n Hρ → ∑⊕
n Q

ε0
n Hρ such that Dε = V ∗

ε,ε0
Dε0 Vε0,ε plus a compact per-

turbation whose norm can be taken arbitrarily small, e.g. smaller than ε. By piecing

together the parts, we see that T = W ∗
ε0,ε

Dε0 Wε0,ε plus a compact correction of norm

smaller than or equal to 2ε, where Wε0,ε = Vε0,εUε . Turning now our attention back

to the representation ρ(C(X)) � C∗(T ), we have

f (T ) − f (W ∗
ε0,ε

Dε0 Wε0,ε) = f (T ) − W ∗
ε0,ε f (Dε0)Wε0,ε → 0 as ε → 0, (6.6)

for any continuous function f over X . The irreducible representations of C(X) consist

of the evaluations at the points of X , f �→ evx ( f ) := f (x). If {xε0

k } are the diagonal

entries of Dε0 , which is a countable set, then

f (Dε0) �
∑⊕

k
ev

x
ε0
k

( f ), (6.7)

hence (6.6) materializes the statement of Proposition 6.13 in the present context.

For the second part of the exercise, we proceed as follows:

∫

dμ(x) f (x) = μ〈1|M f |1〉μ = lim
ε→0

μ〈1|Wε0,ε f (Dε0)W ∗
ε0,ε

|1〉μ

= lim
ε→0

∑

k

f (x
ε0

k ) μ〈1|Wε0,ε P{xε0
k }W

∗
ε0,ε

|1〉μ.
(6.8)
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where |1〉μ is the class of the (properly normalized) constant function in L2(X , μ)

and P{·} are the projections corresponding to the specific diagonal entries of Dε0 . As

promised, the approximate unitary equivalence (6.6) produced a sequence of convex

combinations of a fixed set of pure states of C(X), and this sequence converges weakly-

∗ to the state corresponding to ρ. ♦

6.2 Examples produced via Stinespring representations

The plan is to start from an input data (A, S, E, φ) and apply the reconstruction algo-

rithm, but this time engaging Stinespring representations. To start, we need some

preparation. First, we embed S in a C∗-algebra B and extend the u.c.p. map E over

A ⊗ B.

Remark 6.18 Throughout this section, we assume that B is postliminal.♦

Next, we point out that Stinespring’s representation engages a positive map with

values in B(H) for some Hilbert space H . For this, we can compose E with a repre-

sentation of B, but, since any representation desintegrates as in Proposition 6.1, it is

fruitful to examine first the families

Eξ : A ⊗ B → B(Hξ ), Eξ := ξ ◦ E, (6.9)

of u.c.p maps indexed by [ξ ] ∈ B̂. Of course, each Eξ accepts a representation of the

form

Eξ (a ⊗ b) = V ∗
ξ πξ (a ⊗ b)Vξ ∈ B(Hξ ), (6.10)

where Vξ : Hξ → Hπξ
is an isometry. As the notation suggests, the representation π

appearing in the above Stinespring representation depends on the chosen representa-

tion ξ of B.

Proposition 6.19 The representation πξ is approximately unitarily equivalent to a

representation of the type

πξ ∼a

∑⊕
[ζ ] πζ,ξ ⊗ ζ, (6.11)

where πζ,ξ ’s are representations of A and the direct sum seen in the right side is over

a countable subset of B̂.

Proof Proposition 6.13 states that every representation of A ⊗ B is approximately

unitarily equivalent to a direct sum of irreducible representations of A⊗B. Since B is

assumed postliminal, then Theorem 6.11 assures us that each irreducible representation

of A⊗B takes the form γ ⊗ ζ , where both γ and ζ are irreducible representations for

A and B, respectively. Lastly, any direct sum of terms γ ⊗ ζ can be organized over

the irreducible representations of B, hence it can be brought to the stated form, which

incorporates in πζ,ξ the possible multiplicities over ζ . ��
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Corollary 6.20 Every Eξ can be weakly-∗ approximated by an expression

Ẽξ (a ⊗ b) =
∑

[ζ ] V ∗
ζ,ξ

(

πζ,ξ (a) ⊗ ζ(b)
)

Vζ,ξ , (6.12)

where the sum runs over a countable subset of B̂ and Vζ,ξ : Hξ → Hπζ,ξ
⊗ Hζ are

isometries.

Our next task is to resolve the structure of the isometries. For this, it will be conve-

nient to fix basis sets {ψμ(ζ, ξ)}μ and {ϕ j (ξ)} j for the separable Hilbert spaces Hπζ,ξ

and Hξ , respectively.

Proposition 6.21 Any isometry Vζ,ξ : Hξ → Hπζ,ξ
⊗ Hζ can be reduced to the form

Vζ,ξ |ϕ(ξ)〉 =
∑

μ

|ψμ(ζ, ξ)〉 ⊗ Wμ(ζ, ξ)|ϕ(ξ)〉, (6.13)

where Wμ(ζ, ξ)’s are bounded linear maps from Hξ to Hζ . Similarly, the adjoint

V ∗
ζ,ξ : Hπζ,ξ

⊗ Hζ → Hξ takes the form

V ∗
ζ,ξ |ψ(ζ, ξ)〉 ⊗ |ϕ(ζ )〉 =

∑

μ

〈ψμ(ζ, ξ)|ψ(ζ, ξ)〉 W ∗
μ(ζ, ξ)|ϕ(ζ )〉, (6.14)

where W ∗
μ(ζ, ξ) is the conjugate of Wμ(ζ, ξ). Reciprocally, any family of linear oper-

ators {Wμ(ζ, ξ)}μ satisfying the constraints

∑

μ

Wμ(ζ, ξ)∗Wμ(ζ, ξ) = IHξ
(6.15)

produces an isometry Hξ → Hπζ,ξ
⊗ Hζ via Eq. (6.13).

Proof Since Vζ,ξ is a linear bounded map, there exist complex coefficients {Aμ;i, j (ζ, ξ)}
such that

Vζ,ξ |ϕi (ξ)〉 =
∑

μ, j

Aμ;i, j (ζ, ξ) |ψμ(ζ, ξ)〉 ⊗ |ϕ j (ζ )〉

=
∑

μ

|ψμ(ζ, ξ)〉 ⊗
∑

j

Aμ;i, j (ζ, ξ)|ϕ j (ζ )〉.
(6.16)

Then Wμ(ζ, ξ) is the linear map from Hξ to Hζ defined by the matrix elements

Aμ;i, j (ζ, ξ) in the obvious basis sets. Furthermore, one can manually check that

(

|ψ(ζ, ξ)〉 ⊗ |ϕ(ζ )〉, Vζ,ξ |ϕ(ξ)〉
)

=
(

V ∗
ζ,ξ |ψζ 〉 ⊗ |ϕζ 〉, |ϕξ 〉

)

, (6.17)

if we use the action seen in Eq. (6.14). For the last statement, one can check manually

that constraint (6.15) implies V ∗
ζ,ξ Vζ,ξ = IHξ

. Note that this constraint automatically

implies that each Wμ is bounded. ��
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Proposition 6.22 Eξ can be weakly-∗ approximated by an expression of the form

Ẽξ (a ⊗ b) =
∑

[ζ ]

∑

μ,ν

〈ψμ(ζ, ξ)|πζ,ξ (a)|ψν(ζ, ξ)〉 W ∗
μ(ζ, ξ) ζ(b) Wν(ζ, ξ).(6.18)

Reciprocally, for any collections of:

◦ Representations {πζ,ξ , [ζ ], [ξ ] ∈ B̂} of A;

◦ Basis sets {ψμ(ζ, ξ)} ⊂ Hπζ,ξ
;

◦ Bounded maps {Wμ(ζ, ξ) : Hξ → Hζ , [ζ ], [ξ ] ∈ B̂} satisfying (6.15),

expression (6.18) defines u.c.p. maps Ẽξ from A ⊗ B to B(Hξ ).

Proof The direct implication is a simple consequence of Corollary 6.20 and Proposi-

tion 6.21. For the reverse implication, if we set πξ = ⊕

ζ πζ,ξ ⊗ζ and Vξ = ∑⊕
[ζ ] Vζ,ξ ,

then expression (6.18) can be assembled back as V ∗
ξ πξ (a ⊗ b)Vξ , hence a u.c.p. map.

��

Remark 6.23 We want to draw attention to two extremal cases for expression (6.18).

On one end of the complexity spectrum sits the case where only one irreducible

representation ζ is engaged. As we shall see below, iterations of Ẽ then involve only

this representation ζ . At the other extreme is the case where the sum over ζ degenerates

to an integral
∫

B̂
dµξ (ζ ) for some regular Borel measure with full support. This case

is difficult to iterate and this is the reason we prefer to work with weak-∗ approximants

that only involve countable sums. ♦

Proposition 6.24 The system of maps from Proposition 6.22 can be iterated:

Ẽ
(p)

ξ (³ ⊗ b) =
∑

〈ψμ1(ζ1, ξ)|πζ1,ξ (a1)|ψν1(ζ1, ξ)〉
· · · 〈ψμp (ζp, ζp−1)|πζp,ζp−1(ap)|ψνp (ζp, ζp−1)〉

W ∗
μ1

(ζ1, ξ) · · · W ∗
μp

(ζp, ζp−1)ζp(b)Wνp (ζp, ζp−1) · · · Wν1(ζ1, ξ),

(6.19)

where ³ = a1 ⊗ · · · ⊗ ap ∈ A⊗p and the sum is over all ζ ’s, μ’s and ν’s.

Proof The first iteration of Ẽ looks as follows:

Ẽξ

(

a1 ⊗ Ẽ(a2 ⊗ b)
)

=
∑

[ζ1],μ1,ν1

〈ψμ1(ζ1, ξ)|πζ1,ξ (a1)|ψν1(ζ1, ξ)〉

W ∗
μ1

(ζ1, ζ0)ζ1

(

Ẽ(a2 ⊗ b)
)

Wν1(ζ1, ξ).

(6.20)

Since

ζ1

(

Ẽ(a2 ⊗ b)
)

= (ζ1 ◦ Ẽ)(a2 ⊗ b) = Ẽζ1(a2 ⊗ b), (6.21)
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we can continue

Ẽ
(2)

ξ (a1 ⊗ a2 ⊗ b) =
∑

〈ψμ1(ζ1, ξ)|πζ1,ζ0(a1)|ψν1(ζ1, ξ)〉
〈ψμ2(ζ2, ζ1)|πζ2,ζ1(a2)|ψν2(ζ2, ζ1)〉

W ∗
μ1

(ζ1, ξ)W ∗
μ2

(ζ2, ζ1)ζ2(b)Wν2(ζ2, ζ1)Wν1(ζ1, ξ).

(6.22)

It is then clear that p iterations lead to expression (6.19). ��

Corollary 6.25 The shift map of Ẽ on B takes the form

ξ ◦ S̄◦p(b) =
∑

W ∗
μ1

(ζ1, ξ) · · ·W ∗
μp

(ζp, ζp−1)ζp(b)

Wμp (ζp, ζp−1) · · · Wμ1(ζ1, ξ).
(6.23)

Remark 6.26 The conditions of Th. 5.7 are satisfied if ξ ◦ S̄◦p converges to 1B(Hξ ) as

p → ∞, for each [ξ ] ∈ B̂. The right side of (6.23) should help us decide if that is the

case or not. ♦

Our last task is to evaluate the constructed state:

ω(³) =
(

φ ◦ E
(p)

)

(³ ⊗ 1), ³ ∈ A⊗p, p g 1. (6.24)

By embedding B into
∑⊗

ξ B(Hξ ), we finally have:

Proposition 6.27 Every shift-invariant state over AZ can be weakly-∗ approximated

as

A⊗p � ³ �→ ω̃(³) =
∑

ξ

(

φξ ◦ Ẽ
(p)

ξ

)

(³ ⊗ 1), (6.25)

where {φξ } is a system of c.p. maps on {B(Hξ )}, ξ ∈ B̂.

Example 6.28 Consider A = C([0, 1]), the algebra of continuous functions over the

closed interval [0, 1]. Then AZ coincides with C
(

[0, 1]×Z
)

, the C∗-algebra of contin-

uous functions over the Hilbert cube. The shift-invariant states over AZ are one on one

with the shift-invariant normalized Radon measures over [0, 1]×Z. Our theory says

that ergodic measures can be generated via the reconstruction process from a reduce

data
(

A = C([0, 1]), S, E, φ), provided we can verify the conditions of Theorem 5.7.

We supply here an example of such data. For this, we take the embedding C∗-algebra

of S to be M2(C), whose spectrum consists of a single point, corresponding to the

identity representation. Thus, the sum over ζ in expression (6.18) disappears and we

only need to fix a single representation π of A. If P is a probability measure over

the interval [0, 1], we take π to be the GNS representation corresponding to the state

a �→
∫

dP(t) a(t). The Hilbert space of this representation is Hπ = L2([0, 1], dP)

and the functions from A act by multiplication on the square integrable functions from
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L2([0, 1], dP). We fix a basis {ψμ} for Hπ and, for μ = 0, 1, 2, 3 and d < 1/
√

3, we

pick

W0 =
√

1 − 3d2 σ0, Wμ = d σμ, μ = 1, 2, 3, (6.26)

where σ0 is the unit matrix and the rest of the σ ’s are Pauli’s matrices. We set Wμ = 0

for the remaining values of μ. With these choices,
∑

μ W ∗
μWμ = σ0 and, as such, the

map

E(a ⊗ b) =
3

∑

μ,ν=0

∫

dP(t) ψ̄μ(t)ψν(t)a(t) W ∗
μ b Wν (6.27)

is u.c.p.. Furthermore, if we express b ∈ M2(C) as b = b0σ0 + #b · #σ , we have

S̄(b) = E(1 ⊗ b) =
3

∑

μ=0

W ∗
μ b Wμ = b0σ0 + λ#b · #σ , (6.28)

where λ = (1 − 4d2) is a number of absolute value strictly smaller than 1. Therefore,

S̄◦n(b) converges as n → ∞ to tr(b)σ0, where tr is the unique trace state over M2(C).

As a consequence, we are in the conditions of Th. 5.7, hence we know for sure that the

reduced space of the constructed state in M2(C) and, furthermore, that the only choice

for a S̄-invariant state is φ(b) = tr(b). Lastly, if ´ is the embedding of a1 ⊗1⊗p ⊗a2 ∈
A⊗(p+2) in AR , we can compute the correlation function

ω(´) = (tr ◦ E)(a1 ⊗ S̄◦p(E(a2 ⊗ e))) (6.29)

explicitly as

ω(´) = ω(´1)ω(´2) + λp
∑

μ,ν

∫

dP(t) ψ̄μ1(t)ψν1(t)a1(t)

∫

dP(t) ψ̄μ2(t)ψν2(t)(a2(t) − ω(a2))

tr(W ∗
μ1

W ∗
μ2

Wν2 Wν1),

(6.30)

where ´1,2 are (any) embeddings of a1,2 in AZ. To conclude, we have constructed a

Radon measure 	 over the Hilbert cube that has a known correlation decay law, in the

sense that

λ−p
[

∫

d	({t j })a1(tn)a2(tn+p) −
∫

d	({t j })a1(tn)

∫

d	({t j })a2(tn+p)
]

(6.31)

converges to a constant for p → ∞.

This example demonstrates that, even though we are dealing with a commutative

C∗-algebra AZ, the reduced space Bω does not necessarily have to be embedded into
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a commutative C∗-algebra.7 If we replace the interval [0, 1] by a finite set of points, it

is known that S can be always taken a finite dimensional commutative C∗-algebra (see

example 7.1 in [16]). Things are different for the present context because, in general,

we cannot choose a basis for L2([0, 1], dP) such that all matrix elements seen in (6.19)

are diagonal. ♦
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