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Abstract

The program of matrix product states on tensor powers A®Z of C*-algebras is
carried under the assumption that A is an arbitrary nuclear C*-algebra. For any
shift invariant state w, we demonstrate the existence of an order kernel ideal K,,,
whose quotient action reduces and factorizes the initial data (A®Z ) to the tuple
A, By = A®N /Ko, Ep : A® By = By, ® : B, — C), where B, is an operator
system and E,, and @ are unital and completely positive maps. Reciprocally, given a
(input) tuple (A, 8, E, ¢) that shares similar attributes, we supply an algorithm that
produces a shift-invariant state on A®%. We give sufficient conditions in which the so
constructed states are ergodic and they reduce back to their input data. As examples,
we formulate the input data that produces AKLT-type states, this time in the context
of infinite dimensional site algebras A, such as the C*-algebras of discrete amenable
groups.

Keywords States - Tensor products - C*-algebras

Mathematics Subject Classification 47125 - 47N50

1 Introduction and main statements

Fannes, Nachtergaele and Werner introduced and proved the following statement in
their influential work [16]:

Proposition 1.1 ([16]) Let A be a C*-algebra with unit, and let w be a shift-invariant
state on A% ~ A; @ Ag, where A = ABL\N® gng Ar = A®N (see Sect. 2.1 for
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the proper definition of these infinite tensor products.). Here, ® refers to the minimal
tensor product. Then the following are equivalent:

(1) The set of functionals {wy : Ag — C, wy(ag) = w(x @ ag), x € AL}, generate
a finite dimensional linear subspace of A’.

(2) There are a finite dimensional vector space B, a linear map E from A to the space
of linear maps over B, an element e € B, and a linear functional p € B*, such that
polE; =p, Ei(e) = e, and

w(@ ®- - Qay) = ple) ' poEy o 0Eq,(e). (1.1)

The states displaying this property with B a finite dimensional C*-algebra were
called C*-finitely correlated states in [16]. They were shown to form a x-weakly
dense convex subset of the set of translation invariant states on A%®%, if A is a finite
dimensional C*-algebra.! In such cases, the identity (1.1) shows that these states
factorize through the map E and that the evaluation of such state on monomials is
determined by a product of matrices. For this reason, these states are referred to as
matrix-product states in the physics literature [23, 24, 29]. The work [16] sent the
powerful message that any shift-invariant state on A®% has arbitrarily close %-weak
approximations that can be generated from the extremely simple data (A, B, E, p, e).
Furthermore, one can identify the ergodic states [5][Sec. 4.3] among the shift-invariant
states by a simple examination of the spectral properties of E. These findings had a
profound impact on the research on quantum spin chain systems.

In [16], the authors pointed out that a fixed finitely correlated state w has a minimal
space B,, among all possible B’s, which is uniquely determined by the state. One of
our observations is that this space can be defined for any state on A®% with A a nuclear
C*-algebra. Indeed, if we introduce what we call the entanglement kernel of a state

K, = m Ker w,, (1.2)

XEAL

then it is straightforward to see that B, = Ag/X, is exactly the minimal space
mentioned in [16], if the state happens to be finitely correlated. Furthermore, our
second observation is that the map E : A ® B, — B,, can be canonically defined as
the following chain of compositions of maps:
A®B, M AQAg L0 AS7 @ AL
1.3)

mlty g@7 shift g~ g0Z P g

where A is embedded in A; C A®Z in the most right position. Provided that we can
make arigorous sense of the above for arbitrary nuclear algebras A, we can try to apply
(1.1) and see if the outcome still reproduces the original state w. If we can provide
sufficient conditions in which this happens, then we can enlarge the class of examples

' Proposition 2.6 of [16] that deals with this aspect, the space B defined there is finite dimensional only
if A is finite dimensional. This detail that was omitted in [16].
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where states over tensor powers A®% can be generated via rudimentary algorithms
from the much simpler set of data (A, B, E, p, e).

Remark 1.2 The authors of [16] showed us that any state w can be reproduced by such
an algorithm if we do not insist on the minimality of B. In this work, we do insist that
the data (A®Z, w) is fully reduced in the sense described above. ¢

When A is not finite dimensional, B,, can be infinite dimensional and this can
happen even in some of the simplest scenarios. Indeed, let w be a C*-finitely correlated
state over A®Z with reduced space B,, and maps [E and p. Now, let Z’ be a copy of Z
and consider (A®Z/)®Z with the state supplied by

(ABZ)BZ (822 o (1.4)

Hence, this example is about a vertical stacking of 1-dimensional spin chains. In this
case, the reduced space is B%Z/ and the map is E®Z, while p is amplified to ,o®Z/. This
example is special because the assumption on B, of being a finite dimensional C*-
algebra enables us to make sense of its infinite tensor power B%Z/ as an AF-algebra.
But we cannot expect this to happen in general cases. Therefore, our first outstanding
task is to understand the structure of the reduced data and we call this phase of our
program the reduction process. As we shall see in Sect. 3, the entanglement kernel is a
kernel order ideal of A g and, as a consequence, the quotient space B, = Ar/XK,, is a
matrix order space with an order unit, which can be canonically Archimedeanized [22].
In other words, B,, always inherits an operator system structure from A . Therefore,
it comes equipped with the Archimedean order unit e = 1 + X, and, furthermore, if
q is the quotient map Ar — B, then there exists a unique completely positive and
unital map @ such that w = @ o g. This map replaces p.

The second task in our program is making sense of the sequence (1.3) and character-
izing the resulted map [E. As we have already seen, if the whole program is successful,
then the original state factorizes through E and, for this reason, we call this phase of
our program the factorization process. Key to its progress are the results from [21] on
tensor products of operator systems. Specifically, if A is nuclear, Corollary 6.8 in [21]
assures us that the first tensor product seen in (1.3) is unique, yet the operator system
structure on the tensor product can be specified in many equivalent ways. We use the
maximal tensor structure introduced in [21] to prove that E is a unital completely
positive map.

The third task in our program is the investigation of a reconstruction algorithm
based on (1.1), from an input data that shares similar properties with the reduced
data of an actual state. In the context of infinite dimensional algebras, the algorithm
produces products of operators, hence the name operator product states. While we
show in Sect. 5 that such algorithm always produces a shift-invariant state on A®%
from such input data, the so obtained state may reduce to a different set of data than
the input. To avoid such scenarios, we need a criterion to tell when the input data is
actually the reduced data of some state, and such criterion is supplied in Theorems 5.4
and 5.7. We also supply sufficient conditions that ensure that the state is ergodic.

) Birkhauser
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New examples of ergodic states on tensor powers A®% can be constructed using
just the technology developed in the already mentioned sections. In Sect. 5.2, the
reader will find such example for the case when A is the group C*-algebra of an
infinite discrete amenable group. The use of Stinespring representations of the E
maps supplies additional routs to produce non-trivial examples of reconstructed states
(see Sect. 6).

2 Entanglement kernel and the reduced space and state

Throughout our presentation, we will oscillate between the categories of operator
spaces and of operator systems, which are both extremely relevant for the program
stated in our introduction. In this section, we first provide the minimal background
needed to introduce the main concepts, formulate goals and sketch the road ahead.
These initial steps can be formalized entirely in the category of operator spaces, hence
we compiled a background material on it, mostly taken from the textbooks by Effros
and Ruan [14], by Blecher and Merdy [4] and by Pisier [30]. It contains relevant
definitions and fundamental statements that will be referenced throughout our presen-
tation. This will will make the exposition self-sufficient and will fix the concepts and
notation.

In the second part, we introduce and exemplify the main objects to be studied,
namely, the algebra of physical observables, which is the tensor power A®% with a
nuclear C*-algebra A, the entanglement kernel of a given state w over this algebra
and the quotient space B,, of A®Z by this kernel. As we shall see, the latter has the
structure of an operator space and w descends to a completely contractive functional @
over B,,. We point out, however, that B, has the potential to carry additional structure,
which anticipates the next steps for moving the program forward.

Before we start, let us lay out our conventions for the notation. The letters
H,K,L,..., will be designated for Hilbert spaces. The symbol H ) will stand for
the direct sum of » identical copies of H, H W — H@...® H. The C*-algebra of
bounded linear maps between two Hilbert spaces will be denoted by B(H, K) and,
if H coincides with K, the notation will be simplified to B(H). The letters E, F, G,
etc., will be designated to operator spaces. The matrix amplification of a linear space
will be denoted by M,,(E) and its elements will, most of the time, be indicated as [€]
or [e;;]. My, (C) will denote the space of linear maps from C™ to C", equipped with
the standard norm. The elements of the operator spaces and algebras will be denote
by lowercase letters e, f, g, etc..

2.1 Algebra of physical observables

Let A;, j € Z, be C*-algebras canonically isomorphic to a fixed unital and separable
C*-algebra A, referred to as the site algebra. We denote by «; : A —» A the canonical
isomorphism. To avoid unnecessary complications, we assume that A is nuclear, such
that all many possible ways to complete its algebraic tensor powers coincide. We

) Birkhauser
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introduce the notation
Amp) =An @ Ant1®...QA,, m<nel, 2.1

and we will use the symbols a(; ), 1(n,n) and id,, ) for the generic monomials, the
identity element and identity automorphism of A, ), respectively. The natural unital
embeddings

Acnny = Acn—1n+1)s A=nn) = 1@ ann ® 1, (2.2
supply an inductive tower
Ao — A,y — = Acapn — -+ (2.3)

of unital C*-algebras, whose direct limit is the unital separable C*-algebra A®%,
denote here by Az. This is the algebra of physical observables we are assuming in this
work. It comes with canonical embeddings i(,.,) : Agn,n) — Az.

Embedded in Az, are the C* algebras A, ) and A(_ s, ) defined by the inductive
towers of A, ) and Ay n) algebras, m — doo, respectively. Special symbols will
be used for Ag 1= A(1,00) and Ay, := A(—c0,0). We note that Az = A ® Ag and
also Az = Ay - Ag, when the latter are embedded in Az, as well as that Ap (Ar)
belongs to the relative commutant of Ay, (Ag) inside Az.

As is the case for any C*-algebra, Az comes equipped with a C*-norm that enjoys
the special property ||a*a|| = |la*| |a| = ||la||?, for any a € Az. Among many other
things, this property enables one to define a special positive cone

A} ={a*a, a € Az}, (2.4)

whose order semi-norm (see 3.8) is a (complete) norm and coincides with the C*-
norm. The state space of Az consists of all bounded linear functionals @ which map
A% into R, the positive cone of C, and are normalized as w (1) = 1. We will denote
by A; and AZ the positive cones of the corresponding C*-algebras.

The algebra Az has a special (outer) automorphism S : Az —» Az, which is the
shift acting on monomials as

S(®an) = ®uez (o 0, ) (an—1). (2.5)
Since S shifts the entries from left to right, it maps Ag C Az into itself, hence we
can define a shift map Sg on Ag. A similar C*-algebra morphism SL_1 can be defined

on Ay. The goal of our work is to explore the states w on Az that are shift invariant,
w = w o S, using the strategy develop in [16].

2.2 Background: concrete and abstract operator spaces

Many classes of subspaces of B(H) can be characterized concretely and abstractly,
and operator spaces are no exceptions.

) Birkhauser
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Definition 2.1 ([4], p. 5) A concrete (closed) operator space is a (closed) linear sub-
space of B(H) for some Hilbert space H.

Remark 2.2 The attribute “closed” is sometimes included in the definition of a concrete
operator space, such as in [30], and sometimes is not, such as in [14] and [4]. We chose
to side here with the second option and to specify explicitly when the encountered
operator spaces are closed. Note that, in such cases, the operator spaces are actually
complete.{

Operator spaces are intrinsic structures that are intimately related to matrix ampli-
fications of normed linear spaces:

Definition 2.3 ([14], p. 20) An abstract (closed) operator space is a linear space E
equipped with a system of (complete) matrix norms || ||, on each M,,(E), n € N*
such that:

R1) Foralle € M,,(E) and ¢’ € M, (E),

62)

R2) Foralle € M,,,(E), « € My, ;,(C) and B € M, ,(C),

= max({|lelln, lle'Im}; (2.6)

m-+n

laeBlln < llellliellm Il BIl- 2.7

Theorem 2.4 ([13, 33]) Any abstract operator space can be isometrically embedded
in the B(H) of some Hilbert space H. Conversely, if E can be isometrically embedded
in B(H), then the norms || |, inherited by M,,(E) from M,,(B(H)) ~ B(H™, H™)
satisfy R1 and R2.

It is important to expose the fine synergies set in motion by the conditions R1 and
R2, as revealed by the following fact:

Proposition 2.5 ([14], p. 22 and 34) Suppose that E is a linear space, and that we are
provided with mappings || - ||ln : M(E) — [0, 00) for all n € N*, satisfying R1 (or
a slightly weaker version) and R2. Then these mappings are seminorms satisfying R1
and R2. If, in addition, || - ||1 is a (complete) norm, then the same is true for all matrix
Seminorms.

Closed linear sub-spaces of an operator space are again operator spaces with the
n-norms induced from the parent operator space. More importantly for us is a funda-
mental result by Ruan that quotients of operator spaces by closed linear sub-spaces
are also operators spaces:

Proposition 2.6 ([4] p. 8, [14] Prop. 3.1.1) If E is an operator space and F is one of
its closed linear subspaces, then E | F is an operator space with norms induced by the
identification M,,(E/F) >~ M,(E)/M,(F). Explicitly, these norms are give by the
formula

Ileij + Fllln = inf {Ilei; + fijlln, [fij] € Ma(F)}, (2.8)

) Birkhauser
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for any [e;j] € M, (E).

Remark 2.7 Clearly, if E is closed, then || - ||| defined above is complete. Then Propo-
sition 2.5 assures us that all || - ||,, norms are complete. {

Concrete presentations of quotient operator spaces were supplied by Rieffel in [32].
Unfortunately, we were not able to take advantage of them at this point.

2.3 Background: completely bounded linear maps

The morphisms in the category of operator spaces are supplied by the completely
bounded (c.b.) linear maps:

Definition 2.8 ([30] p. 19; [4] p. 4) A linear map u : E — F between two operator
spaces can be amplified to a linear map

uy * My(E) - M, (F), Mn([eij]) = [M(eij)], (2.9)

for all n > 1. The map u is called:

1) Completely bounded if

sup llunllm, (£)— M, (F) < 00. (2.10)

n>1

2) Complete isometry if all u,,’s are isometries.
3) Complete quotient if each u, sends the unit ball of M,,(E) onto the unit ball of
M, (F).

The set of c.b. maps CB(E, F) is closed under addition and becomes a Banach
linear space when equipped with the norm

lullco = sup lunll s, (E)— M, (F)- (2.11)
neN

As expected, c.b. linear maps behave well under composition:

Proposition 2.9 ([30] p. 19) If E, F and G are operator spaces and u : E — F and
v : F — G are completely bounded linear maps, then vou : E — G is a completely
bounded map and |[v o ullco < ||[vllcb [lullcb-

C.b. linear maps also behave natural under taking quotients:

Proposition 2.10 ([30] p. 42) Let E, F and G be operator spaces such that F C E,
andletq : E — E/F be the canonical surjection. Then, a linearmapu : E/F — G
is completely bounded if and only ifu oq is completely bounded and ||u||cp = ||uoq||cb-

Proposition 2.11 ([4] p. 8) Ifu : E — G is completely bounded and if F is a closed
subspace of E contained in Ker u, then the canonical map u : E/F — G induced
by u is also completely bounded, with ||i|cp, = |ullcp.. If F = Keru, then u is a
complete quotient map if and only if it is a complete isometric isomorphism.

) Birkhauser
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Corollary 2.12 Let E and F be operator spaces with F C E. Then the canonical
surjection q : E — E/F is a complete quotient map and Kerq = F.

2.4 The entanglement kernel and the reduced state

Let w be a state on Az, not necessarily shift invariant. Then, for any x € A; C Az,
define a bounded linear functional

wy : Ar C Az — C, wy(ar) = w(xag), (2.12)

which is not positive, in general. Inspired by [16], we introduce:

Definition 2.13 The following subset of Ag,

Ko = [ Kera, (2.13)

xE.AL

will be referred to as the entanglement kernel of w.

K is an intersection of closed linear sub-space, hence it is closed linear sub-space
of the C*-algebra Ag. As such, it is automatically a closed operator subspace and it
enters the exact sequence of closed operator spaces

Ky — Ap = By = Ar/K. (2.14)

Indeed, from Proposition 2.6 and Remark 2.7, we know that the quotient space B,
inherits a natural closed operator space structure. Furthermore, the second map in
(2.14) is the canonical surjection g : Agp — Agr/X,, which is a complete quotient
map, as we learned from Corollary 2.12. We will refer to B, as the w-reduced operator
space, which can be entirely and abstractly described by the data (Bw, {-1e },,21),
with the matrix norms supplied by Proposition 2.6. Its elements will be specified by b,
b’ and so on. Also, the matrix amplifications of ¢, which are all contractions, will be
denoted by ¢,. The class of an element ag € A in B, = Ar/K, will be indicated
by several symbols, such as

q(agr) = ag = lag]. (2.15)
The second notation ag is useful when considering matrix amplifications of B,,. The
third notation will be used when ap, is given as a long expression.

Proposition 2.14 Let wg be the state on A g supplied by the restriction of w. Then wg
descends to a completely bounded linear functional & : B, — C with wgp = @ o g
and ||@llecy = 1.

Proof Taking x the unit of A sub-algebra, we see from the definition (2.13) of XK,
that K, C Ker wg. As such, the map

o:B, — C, wlr+ XK, = wr(ar), (2.16)

) Birkhauser
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Fig. 1 Spin-1 particles, shown by red bubbles, are arranged in a closed chain of length N. The algebra of
observables is [11®%N , where [ j1denotes the spin-j algebra. The site algebra [1] is embedded via a map j
into the algebra [%] ® [%] of two spin—% particles, shown as pairs of black dots, and the algebra [1 19ZN s

embedded into [%]‘X’ZZN via j®ZN . The tensor power Pg9 ZN of the projection Py onto the one-dimensional
subspace of the decomposition [%] ® [%] =~ [0] @ [1], shown by the segments, generates a rank-one

projection in [1]®ZN and a state [1]®ZN > M +— Tr(j®ZN (M) Pgb ZN ) Note that the projections are

applied on the “bonds” shown by the sticks and this is why the shift appears in (2.18)

is well defined. Furthermore, @ o ¢ = wpg and the latter is a completely bounded
functional with c.b. norm 1. According to Proposition 2.10, this can be true if and only
if w is completely contractive. O

2.5 Examples of entanglement kernels and reduced spaces

The algebra Ag can be reduced (quotiented) in many different ways, but one of the
practical values of the above particular reduction, which is the great insight supplied
by [16], is that K, and B,, can be computed for a large class of interesting physical
models.

Example 2.15 Let w be a state on A and let w = wg@Z be the product state on Az. In
this case,

wy(ar) = w(x) w(ar) = w(x) wr(ar) (2.17)

for any x € A and ag € Ag, hence, X, = Ker wg. Since Ker wg coincides with
the linear subspace {ag — wg(ag) - 1, ag € A,}, it follows that B, = C - 1 for any
product state on Ag. ¢

Any product state has zero correlation length, in the language introduced in [16].
Of course, the main interest of the physics community is on correlated states. The fol-
lowing example supplies a large class of such states for which B,, is again computable,
at least formally.

Example 2.16 Product states in conjunction with shift maps can be used in creative
ways to generate states with finite correlation length. The following class of states
is modeled after the so call AKLT state for spin-1 system [1], whose construction
is sketched in Fig. 1. In fact, the construction given here covers all dimerized states
introduced in [1](p. 523). For this reason, we refer to the states cover by this example as
AKLT-type. The construction involves a (nuclear) C*-algebra A and a projection p €
A ® A. Then the local algebra A is defined as the unital C*-algebra A = p(AQ A) p,
with p playing the role of the unit. We generate a state @ on Ay, via the thermodynamic

) Birkhauser
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limit N — oo of the states wy on Az, , supplied by the following sequence of maps

o2 L . . o Ly
Azy 25 (A® Ayzy ~ Azyy =25 Agyy = (A®A), 2= C,  (218)

N

where & is a positive functional on A®A. The first map is the power of the non-unital
inclusion

A3 pap— j(pap) = pip e AQA, acAQA, (2.19)

and S is the obvious shift map on lezN.
If Eq. (2.18) is to supply a state on Az, the above data must obey the constraint

im0 (5(pP2)) = 1. (2.20)

For example, this is indeed satisfied if (id ® &) (p ® 1) = 1 and, in particular, for
the case described in Fig. 1. The limiting procedure is required because p®Z is not
an element of (fl ® fl)®Z, hence the non-unital inclusion j®ZN does not make sense
in the thermodynamic limit. Let us specify that, if a unital inclusion is used instead
of j and & is a state, then all the maps in the sequence (2.18) are well defined in the
thermodynamic limit, but then the state on A is a trivial product state. We will not
investigate the thermodynamic limiting process here because we will re-construct this
class of states via a different path in Example 5.9. We only mention here that these
issues were fully resolved in [1] for the particular case illustrated in Fig. 1.

Now, assuming that the thermodynamic limit of the state exists, we compute the
corresponding operator spaces K, and B,,. For this, we first note the obvious isomor-
phisms

xR ARAR —> ARURAR, x1:ARA)L — ARA)L ®A,
(2.21)

which we use to define the maps

. x . X Z\N* . . X
Tr=Gd@EN ) o xr0i®, Tr=E2"") ®id)o xp 0j®@WY,
(2.22)

from Ag to A and from Ay to A, respectively. These maps are well defined because
of our assumption that the map 5682 o S 0j®7% exists as the thermodynamic limit
of the chain of maps (2.18). Also, there exists a natural isomorphism between A,
and Ag, induced by the reflection of Z C R relative to % which sends I'y g into
I'r. 1, respectively. From this fact, we deduce that the ranges of I'z, and I'g coincide.
Furthermore, we have

w(aragr) = &(ar ® ar), dar,r =Trr(ar,L). (2.23)

) Birkhauser
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One immediate conclusion from here is that Ker I'p C X,,. If, additipnally, we choose
&o such that &y(a ® a) # 0 when a samples a dense sub-set of A, then KerI'g =
X, because, for each ag, we can produce an ay, via I'y, that coincide with ag. The
conclusion is that B, = Range ' = A for such choice of &. O

2.6 Additional structures and a look ahead

Let us denote by ®, the matrix amplifications of the reduced state @. We want to
point here to a few interesting properties of these maps. Specifically, since M, (Ag)
are again C*-algebras, we can consider their positive cones and define the subspaces

Dy 1= My (AR)T/Mu(Ko) = gu(Mu(AR)T), 224)
which can be characterized more explicitly as [22][p. 327]

Dy = {laij + Kol € My(By) | Fkij € Koy s.t. [aij + kij] € My(Ar)T}.
(2.25)

Evidently, we have
n(Dp) CRy, n=1,2,.... (2.26)

This indicates that B,, spaces may carry more structure, perhaps that of an operator
system, but, without a more refined characterization of the entanglement kernel, this
cannot be established. Let us point out that, as of now, the structure of the reduced data
is quite far from the one assumed in [16], where the authors focused on the special
cases where B, is a C*-algebra and the reduced state @ is a completely positive map.
As we shall see, in general, D,,’s defined above do not generate an Archimedean matrix
order structure, hence an abstract operator structure. Here are a few things that can go
wrong:

e D, ’s may fail to be closed spaces;

e D,’s may not be compatible, in the sense that the relation A*D, A C D,, may fail
for A an ordinary n x m matrix;

e The intersections D, N (—D,;) might contain elements other than 0.

Of course, there are states for which D,,’s do supply Archimedean matrix order struc-
tures and explicit sufficient conditions for this to happen will be supplied in the next
section.

To summarize, the data that we pass to the reduction process is that of an operator
space with extra structure:

{Boos Il I T Inz1, {Dntnz1, 1 + Koy, @ : By, — CJ. (2.27)

) Birkhauser
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3 Reduction process

A C*-algebra comes equipped with an order structure that is compatible with the
topology induced by the C*-norm (see Remark 3.12). As a closed linear subspace
of C*-algebra Ag, we have seen that K, inherits a closed operator space structure
and so does its corresponding quotient space B,,. As already hinted, these spaces also
inherit a matrix order structure that can be Archimedeanized to an operator system
structure. The latter induces an order topology on B, that in general is different from
the operator space topology [22][Sec. 4]. Therefore, a decision must be made about
which of the two inherited structures is more important for the present context. Our
main goal for this section is to expose and characterize the inherited order structures,
which is achieved over the course of several subsections. An additional section will
discuss the relation between the operator space and the operator system structures on
B and will give sufficient conditions that assure that the two structures coincide. For
example, this is always the case if the inherited operator system structure is close and,
as such, its matrix order norms are complete. Lastly, a choice will be made in favor of
the operator system structure on B, and, with that, we can finally describe what we
call the reduced data.

The proof of the existence of a canonical Archimedean matrix order structure on B,
consists of tying together several concepts and results from the existing literature, due
to Kavruk, Paulsen, Todorov and Tomforde [21, 22,27, 28]. We will take this opportu-
nity and give a brisk recap of these ideas, which supply the natural framework and the
right tools for the problem at hand, something that we still contemplate with amaze-
ment.2 In the process, one will hear about ordered *-vector spaces, (Archimedean)
order units, order semi-norms and topologies, as well as order ideals and their quo-
tients [27]. One will also hear about matrix ordered x-vector spaces, (Archimedean)
matrix order units and a conceptual refinement of the order ideal, which is the kernel
introduced in [22]. The later has the remarkable property that its quotient space carries
automatically an ordered *-vector space with an Archimedean matrix order unit.

3.1 Background: ordered vector spaces and their order topologies

This material, which is entirely collected from [27], will help us elucidate the structure
of B, as induced by the subsets D,, introduced in the previous section.

Definition 3.1 ([27], p. 1322) If V is a real vector space, a cone in V is a nonempty
subset € C 'V with the following two properties:

1) av € € whenever a € [0, o0) and v € C;

2) v+ w € € whenever v, w € C.
An ordered vector space is a pair (V, V1) consisting of a real vector space V and cone
V+ C V satisfying V¥ N (=V+) = {0}.

Remark 3.2 If (V, V1) is an ordered real vectors space, one writes v > v’ if v — v’ €
AN

2 Specifically, that the pioneering concepts introduced in [16] found their rightful home in a framework
developed two decades later.
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Definition 3.3 ([27], pp. 1323-1324) If (V, V1) is an ordered real vector space, an
element e € V is called an order unit for V if, for each v € V, there exists a real
number r > 0 such that re > v. The order unit e is called Archimedean if whenever
v eVwithre 4+ v > 0forall real » > 0, then v € VT.

Example 3.4 ([27], p. 1353) The real vector space of self-adjoint elements of any unital
C*-algebra is an ordered vector space with the unit playing the role of Archimedean
order unit. {

Of course, our interest is in order structures on complex vector spaces. In this case,
an extra structure is required.

Definition 3.5 ([27], p. 1337) A *-vector space consists of a complex vector space
V together with a map * : V — 'V that is involutive, (v*)* = v for all v € 'V, and
conjugate linear. If V is a x-vector space, then Vi = {v € V | v* = v} represents the
set of hermitean elements of V. It carries the structure of a real vector space.

Definition 3.6 ([27], p. 1337) If V is a *-vector space, one says that (V, V1) is an
ordered *-vector space if (Vy,, V1) is an ordered real vector space. Furthermore, e € V
is an (Archimedean) order unit for (V, V1) if it is an (Archimedean) order unit for
(Vh, V).

Definition 3.7 ([27], p. 1337) Let (V, V*) be an ordered *-vector space with order
unit e and let (W, W) be an ordered *-vector space with order unit ¢’. A linear map
@ : V — Wis positive if v € V* implies ¢(v) € WT, and unital if p(e) = ¢'.

Order structures can be used to generate topologies:

Definition 3.8 ([27], p. 1327) Let (V, V1) be an ordered real vector space with order
unit e. The order semi-norm on V determined by e is defined as:

[v] = inf{r e R|re+v > 0andre —v > 0}. 3.1

The order topology on V is the topology induced by the order semi-norm.

The following statement supplies a complete characterization of the order semi-
norm:

Theorem 3.9 ([27], p. 1330) Let (V, V1) be an ordered real vector space with order
unit e. Then the order seminorm [-] is the unique seminorm on V satisfying simulta-
neously the following three conditions:

D [e] = 1;
2) If —v' < v <V, then [v] < [V'];
3) If f :V — Risastate, then | f (v)| < [v].

When the order unit is Archimedean, then [-] is actually a norm and the order topol-
ogy is Hausdorff (the reciprocal is not necessarily true [27][p. 1328]). Nevertheless,
the Archimedean case can be characterized as it follows:
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Theorem 3.10 ([27], p. 1330) Let (V, V1) be an ordered real vector space with order
unit e, and let [-] be the order semi-norm determined by e. Then the following are
equivalent:

i) e is Archimedean;
i) V't is a closed subset of V in the order topology induced by [-];
iii) —[v]e <v <[v]eforallveV.

Remark 3.11 ([27], Sec. 4) The order semi-norm on the hermitean sub-space of an
ordered x-vector space with unit can be extend over the entire complex space, in an
essentially unique way. ¢

Remark 3.12 C*-algebras are extremely special cases where the C*-norm coincides
with order norm. In particular, this is always the case for B(H) of a Hilbert space. ¢

Definition 3.13 ([27], p. 1341) If (V, V1) is an ordered *-vector space, then a subspace
J C Vis called an order ideal if J is self-adjoint (§* = J) and, furthermore, v € JNV+
and 0 < v/ < v implies that v" € 7.

Proposition 3.14 ([27], p. 1342) Let (V, V) be an ordered *-vector space with order
unit e and let § C V be an order ideal. Then (V/J, VT /) is an ordered x-vector
space with order unit e + J.

3.2 Entanglement kernel is an order ideal

We prove this statement in several steps.
Proposition 3.15 X, does not contain the unit 1g of Ag.

Proof We need to find one element x of A; for which w,(1g) = w(x) # 0. This
element is the identity of Ay . O

Proposition 3.16 The entanglement kernel is self-adjoint: i, = K.
Proof We have
wy(ag) = w(xag) = w(arx™)* = w(x*ag)*, (3.2)

for all x € Ar, where for the last equality we use that [A, Ag] = {0}. Hence, if
ag € Xy, then w(xay) = 0 for any x € Ay . As a consequence, ay € K,,. m]

Proposition 3.17 The entanglement kernel can be equivalently defined as

Ko= [ Kero,. (3.3)

+
xeAy

Compared to (2.13), the intersection in (3.3) runs over the (much) smaller space of
positive elements.
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Proof This follows from the fact that any x € A can be decompose as x = ()cfr -
x;r )+ l(x;r — xj) in terms of positive elements x;r € Azr. O

Proposition 3.18 The entanglement kernel is an order ideal of AR.

Proof Consider kR?L from X, DA‘IE and a; from A;, such that a; < k;. Our task is to
show that a;{ is automatically in K, N A}f. For this, consider x* € A}f and note that
x*a;f and x*k; are positive element of A7, because x ™ commutes with any element

from Ay, and clearly xTa} < xTk};. Then:
0<w(xay) <oGaTky) =0, VxteA]l. 3.4)

Proposition 3.17 then assures us that a}' belongs to K, N .A;. O

From above and Proposition 3.14, we can conclude that (B, D1) is an order space
with unit 1 4+ K. As such, B, can be endowed with an order seminorm [-]. Since the
parent ordered space of X, is a C*-algebra, Proposition 3.18 has actually far more
reaching consequences, as explained next.

3.3 Background: operator systems and matrix ordered #-vector spaces

We collect here a number of fundamental concepts and statements related to order
structures on matrix amplifications.

Definition 3.19 ([26] p. 9) A concrete operator system is a self-adjoint linear subspace
of a unital C*-algebra containing the unit.

Remark 3.20 As in the case of operator spaces, we call an operator system closed if
the linear subspace in Definition 3.19 is closed. {

A concrete operator system inherits a full order structure from the embedding unital
C*-algebra. Indeed, if § C A is an operator system, then 8T = § N A* supplies a
positive cone. A matrix amplification of an operator system is again a linear subspace of
a C*-algebra, which is the matrix amplification of the embedding C*-algebra. As such,
the matrix amplifications of an operator system come equipped with order structures
too. This tower of order structures puts a sharp distinction between the linear spaces
that can or can not be embedded in C*-algebras such that they contain the unit. The
mentioned extra structures can be described abstractly and intrinsically.

Definition 3.21 ([26] p. 176) Given a *-vector space V, one says that V is matrix-
ordered provided that:

i) For each n, we are given a cone G, in M,,(V)y;
i) €, N (—C,) = {0} for all n;
iii) For every n,m € N* and A € M,, ,,(C), we have A*C,A C C,,.

Definition 3.22 Let (V, V') be a matrix-ordered *-vector space with order unit e. Then
e is called a matrix order unit provided I, ® e is an order unit for M,,(V), for each n.
Furthermore, e is called Archimedean matrix order unit if 7, ® e is an Archimedean
order unit for M, (V), for each n.
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Definition 3.23 ([26] p. 176) Given two matrix-ordered *-vector spaces V and V' with
cones C, and C,, one calls a linear map ¢ : V — V' completely positive provided that
[vij] € €, implies that [¢(v;;)] € C),. One calls ¢ a complete order isomorphism if ¢
is completely positive and it has an inverse which is also completely positive.

The following result, due to Choi and Effros [7], supplies the abstract characteri-
zation of operator systems.

Theorem 3.24 ([26] p. 177) If V is a matrix-ordered *-vector space with an
Archimedean matrix order unit e, then there exists a Hilbert space H, a concrete oper-
ator system S € B(H), and a complete order isomorphism :V — Swithg(e) = Iy.
Conversely, every concrete operator system 8 is a matrix-ordered *-vector space with
Archimedean matrix order unit, when equipped with the matrix order inherited from
the embedding C*-algebra and with the Archimedean matrix order unit e = 1.

Definition 3.25 A linear map between two abstract operator systems is called unital if it
maps the order unit into the order unit. As in [21], we denote by O the category whose
objects are operator systems and whose morphisms are unital completely positive
(u.c.p.) maps.

The following statement supplies an effective criterion for a map to be completely
positive. It will be used here very often.

Proposition 3.26 ([4], p. 18, [26] Prop. 2.11) Let 8 and 8' be two operator systems
and ¢ : 8 — 8 be a linear unital map. Then ¢ is completely positive if and only if ¢
is completely contractive for the order norms.

Remark 3.27 Together with Remark 3.12, Proposition 3.26 implies that the unital com-
plete order embedding of an abstract operator space S in a B(H ) supplies also isometric
embeddings of (M, (8), [-],) in B(H™), for all n € N*. This means (8, []) is an
operator space and that its system of matrix norms || - ||, coincide with [-],. The
conclusion is that [-],, satisfies Ruan’s axioms. ¢

Stinespring theorem [34], formulated below, supplies the structure of the completely
positive maps when the domain is a C*-algebra and the codomain is B(H) of some
Hilbert space.

Theorem 3.28 ([4], p. 18) Let A be a unital C*-algebra. A linear map ¢ : A —
B(H) is completely positive if and only if there is a Hilbert space K, a unital *-
homomorphism t : A — B(K), and a bounded linear map V : H — K such that
p(a) = V*n(a)V forall a € A. This can be accomplished with ||¢||cb = || V||2. Also,
this equals ||||. If ¢ is unital, then we may take V to be an isometry; in this case we
may view H C K and have ¢(a) = Pym(a)|ly

Arveson extension theorem [2], formulated below, tells us among many other things
that the above factorization functions also when the domain is an operator system.

Theorem 3.29 ([4], p. 18) If § is an operator subsystem of a unital C*-algebra A, and
if o : 8 = B(H) is completely positive, then there exists a completely positive map
¢ : A — B(H) extending ¢.
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3.4 The reduced space is a matrix-ordered %-space

We have found in Proposition 3.18 that X, is an order ideal. This, together with the
fact that K, is a subspace of a C*-algebra enables us to formulate one of our main
conclusions:

Proposition 3.30 Let w be any state on A®Z and recall the subsets D, of B, intro-
duced in Eq. (2.24). Then the reduced data

(Bwv {Dn}nzlv 1+ :Ka)) (3.5)

defines a matrix-ordered *-space with a matrix-order unit.

Proof We reproduce the discussion in [22](p. 327) from where we learn that, for any
linear self-adjoint subspace of an operator system that does not contain the unit, the
projections of the positive cones are also cones for the matrix amplifications of the
quotient space and, furthermore, they automatically satisfy the compatibility condi-
tions iii) from Definition 3.21. Furthermore, if this linear subspace is an order ideal,
condition ii) from Definition 3.21 is also satisfied. m]

Thus, the images of the positives cones of Ag and of its matrix amplifications
through the quotient map g : Agp — Agr/XK, and its matrix amplifications supply a
matrix-ordered *-space structure with a unit on B,,, and this happens for any state @
on Az. Our next task is to complete the matrix-ordered structure to an Archimedean
one, to confirm that B,, inherits from its parent C*-algebra both, an operator space
structure and an operator system structure. This will also help us elucidate the fate of
w under the reduction process.

3.5 Archimedeanization of the reduced space

There are well understood Archimedeanization processes, which were developed in
[27] for ordered vector spaces and in [28] for matrix amplifications. They typically
involve two stages, of which the first one quotients out the kernels of the matrix
seminorms and the second one expands the positive cones. It was shown in [22] that
this process greatly simplifies if the base space is a quotient by a kernel:

Definition 3.31 ([22], Def. 3.1) A subset J of an operator system S is called a kernel
if there exists a collection {1 }yea Of states on 8 such that J = ﬂa ea kerng.

Proposition 3.32 ([22], Lemma 3.3) Let J be a closed, non-unital order ideal of an
operator system 8. Then the order seminorm on 8/J is a norm if and only if J is a
kernel.

Quite remarkably, for any state w on Az, the entanglement kernel is an order kernel
ideal. We establish this fact in several steps.

Proposition 3.33 Let x € A;f such that w(x) = 0. Then Ker wy = Ag.
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Proof By renormalizing x € AZ’ by its norm in Az, we can assume ||x|| = 1. From
the Cauchy-Schwarz inequality, we have:

|o(xar)* < w(x*) w(akag), Vag € Ag. (3.6)

Since ||x|| < 1, we have (1 — x)x > O or x> < x, hence 0 < w(x?) < w(x) = 0.
Then (3.6) assures us that w,(agr) = 0 for all ag € Ag. ]

Corollary 3.34 The entanglement kernel can be equivalently defined as

w(x)7#0
Ky = ﬂ Ker w,. 3.7
xe.AZ
Proof Indeed,
w(x)#0 w(x)=0
m Ker w, =< m Kera)x) ﬂ( m Kera)x) (3.8)
xeAz xe.AI xeAz
w(x)#0
= ( m Ker a)x) ﬂAR
xe‘AJLr
and the statement follows. O

The value of the last statement rests in the observation that all positive functionals
wy entering in the new definition (3.7) of X, can be normalized by w, (1), hence,
transformed into states. More precisely:

Proposition 3.35 The entanglement kernel is a kernel. Explicitly, the entanglement
kernel is the intersection of the kernels of a family of states:

Ko= () Kero,. (3.9)

Note that wy is a state on AR if w(x) = 1.

Proof We have

w(x)#0 w(x)=a
M Kerox= () ( N Kera)x). (3.10)
XE.AZ' ae(0,00) xe./lz

Obviously, Ker w, = Ker w,, for all @ € (0, 00), hence,

w(0)=a w(x)=1
ﬂ Ker wy = ﬂ Kerwy, Ya € (0,00), (3.11)
)ce/lzr xe‘AJLr
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because both, the left and right sides, sample the same subsets of Ag. The statement
then follows. O

We arrive at the main result of the section:

Theorem 3.36 The reduced space B, = Agr/K, inherits from Agr a canoni-
cal Archimedean matrix-order structure, supplied by the Archemedianization of
(Bw, {Dn}nz1). Its positive cones are (see [22](Prop. 3.4) and [28][Prop. 3.16])

Cy = {[a + K] € My(By,) | Ve > 03ki; € K, such that

i (3.12)

el ® I + [af +kijl € My(Ap) ™},
and its Archimedean matrix unit is e = 1 + K. Furthermore, the quotient map
q:Ar — B, isu.c.p..

Remark 3.37 One important point about the above is that B,, is not being quotiented
because its order norm induced by D and unit 1 4+ X, was already a norm. Note,
however, that this does not imply that its unit was Archimedean. ¢

The Archimedeanization of B, we just described enjoys the universal property
described in [22][p. 329], which can be used to characterize the reduced map @:

Proposition 3.38 ([22] Prop. 3.16) Assume that B, is equipped with operator space
structure as in Theorem 3.36. Let T be an operator system and ¢ : Ag — T be a
unital and completely positive map such that X, < Ker ¢. Then the map ¢ : By, - T
given by ¢p(ap + K,) = @(ag) is unital and completely positive. In particular, @ is a
unital and completely positive map from B, to C, hence a state.

We, actually, can say much more:
Proposition 3.39 &(D;\{0}) N {0} = .

Proof Let ag € A%, which we can always normalize such that 0 < arp < 1. We will
show that w(ag) = 0 implies ag € X,. Indeed, take any x from A‘Z. From Cauchy-
Schwarz inequality, we have that w(xa )2 < w(xz)a)(a%e). Now, with the assumed
normalization, ag (1 — ag) > 0, orag > a%. Then

a)()caR)2 < a)(xz)a)(a%e) < a)(xz)a)(aR) =0, (3.13)

which proves that w(xagr) = 0 for all x € AI, hence ag € K,,. O

As in [22], we denote by || - ||2Sy the order norms on matrix space M, (B,,), which
obey Ruan’s axioms (see Remark 3.27). From the discussion in [28][p. 37], one learns
that the C,,’s defined above are just the closures of D,,’s in the topology induced by
these order norms. Furthermore, the quotient map ¢ : Ar — B, and its matrix

. . . . osy . .
amplifications are unital and contractive for || - ||, . An important question we need
to answer is if these norms are complete, which is equivalent to asking if the induced
operator system structure is closed. Below is the answer:
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Proposition 3.40 The norms | - || are complete if and only if they are equivalent

with || - |n'Y. If that is the case, then D,,’s coincide with ©,’s, hence, {B.,, {Dn}n>1,€)
is a closed operator system. Furthermore, the reduced state @ is faithful.

osy

Proof As already pointed out in [22] (see also Corollary 3.44), || - [ < || - |2
and we know that || - ||5'" are complete. If || - 10 is complete, then the identity
map on M, (B,) is a continuous map from the Banach space (M,(B,), || - [hs)
to the Banach space (M, (Bo), || - ln"). Since the identity map is surjective, it is
automatically an open map, which means its inverse, mapping (M, (Bo), | - |I»>) into
(M, (B, || - ||25p), is continuous. This imply the existence of finite positive constant

k such that || - [|nF < k| - ||In”. The second statement follows from Proposition 3.39.0

In general, the operator space and operator system norms on quotient spaces are
not equivalent (see [22][Sec. 4]). As such, if one has a preference for closed operator
systems, B, needs to be completed. This can be done straightforwardly using a con-
crete representation. Indeed, complete or not, Choi-Effros Theorem 3.24 assures us
that:

Corollary 3.41 The quotient space with its Archimedean matrix-order structure
(Bw, {Cr}n>1, €) admits a concrete representation as an operator system inside B(H )
of some Hilber space H. The closure of that representation inside B(H) supply the
completion of B,,.

Furthermore, from Stinespring [34] and Arveson Theorems 3.28 and 3.29, respec-
tively, we now can spell out the structure of the reduced map :

Corollary 3.42 If p : B, — B(H) is the concrete representation of B, then there
exists a vector { € H such that

() = (¢, p(b)¢), be By, (3.14)

Furthermore, the map extends to a completely positive map over the entire B(H) and,
in particular, over the completion of B,,.

3.6 Sufficient conditions for completeness of order norms

We can spell out a simple and explicit condition that ensures that the matrix order norms
are complete. This condition will appear again later in a totally different context.

Proposition 3.43 ([22], Prop. 4.1) The operator space and the matrix order norms on
B, can be characterized as

Ilad + Kol = sup [l @D | 6 : Ar — B(H),
¢ (Kp) = {0}, ¢ completely contractive} (3.15)

and
@] + Kl = sup {I¢ @D 1 ¢ : Ar — B(H), ¢(Xy) = {0},
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¢ unital completely positive} (3.16)

where, in each of the cases, H runs through all Hilbert spaces.
The following are direct consequences of the above:

Corollary 3.44 ([22], Cor. 4.2) || - x> < |l - IIn>.

Corollary 3.45 The following inequality

(¢}

.. S (x):l ..
1@ + K115 = “sup [[wx @Dl @) (3.17)
xeAz

holds for any [ag + Kol € M, (By).

Proof This follows from Proposition 3.43 because w; is a state over Ag if x € A;: is
such that w(x) = 1. O

The above prompts us to define:

Proposition 3.46 The map

B, - [0,00), Tlag+%Ko) = "SUp lwx(@r). (3.18)

+
xeA;

and its generalizations

ij (x)=1 ij
Ty : My(By) = [0,00), Ty(a + K1) :="sup [wx@Dllm, ) (3.19)

4
xeAL
forn € N%, are well defined, continuous, sub-linear and homogeneous. Furthermore,

Ty (M (Bow) \ {0}) C (0, 00). (3.20)

Proof The maps are well defined for, if [b%] is another element from the class of [alg],
then by — ap € Ker wy and (b)) = wy(ajp), forall x € Af with w(x) = 1.
Sub-linearity follows from the linearity of each w, and from the “sub-linearity” of
Il - Il s, (c) and of the sup process. If o € (0, 00), then

w(x)=1 ij w(x)=1 ij
sup |[[wx(@ap)lim, ) = sup |[awx(@g)]lim,©)
xe./lz xe./lz 391
w(x)=1 ij w()=1 ij G2
= sup |lelwx(@g)]lim, ) = sup allwxlag)]lim, @
xeflzr xeflzr

and homogeneity follows. Lastly, [ag + Kyl € M,(B,)\{0} implies that [ag] ¢
M, (X,), hence, there exists at least one x € AZ‘ with w(x) = 1 and a pair 7, j such

that w, (a%) > 0. Then the last statement follows. m]
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We are now ready to supply the sought condition:

Proposition 3.47 If the closure of the image of the unit ball of (B, || - ||(1)Sp) through
the map T does not contain the origin of the real axis, then || - || and || - ||y are all

equivalent and Dy, coincides with C,,.

Proof With the stated assumption, there must exist a strictly positive constant ¢ such
that I'(b) > ¢, foy all b € B, with ||b||‘fle = 1. Since I' is homogeneous, this is same
asT'(b) > ¢ ||b||{™P, for all b € B, This together with (3.17) and Corollary 3.44 give

OS] [ OS]
1615 = 1515 = c 16117, (3.22)
This implies | - ||} is complete and, from Remark 3.27, we known that || - |, satisfy
Ruan’s axioms. Then Proposition 2.5 assures us that all matrix norms || - || are
complete, hence equivalent to || - 0P O

Remark 3.48 1In the language introduced in [22](p. 334), the entanglement kernel X,
becomes completely order proximinal under the conditions of Proposition 3.47. It will
be interesting to establish if these conditions are optimal for I, to enjoy this property.
One should be aware that these conditions are still not sufficient for the operator space
and system structures to be isometric (see [22][Prop. 4.10]). ¢

Corollary 3.49 If By, is finite dimensional, then | - ||, and || - |y are equivalent.

Proof Any two norms on a finite dimensional linear space are equivalent. O

Remark 3.50 The reader should not be deceived by the simplicity of the above state-
ment or of its proof. Indeed, they depend crucially on the fact that || - 173 are norms
and not mere semi-norms and the latter follows from the deep inside from [22], and
the amazing fact that I, is a kernel.

3.7 Concluding remarks and a look ahead

The work [16] exposed the matrix ordered *-space structure of B,, in Lemma Al,
under the assumptions that w is translation invariant and B, is finite dimensional.
This, however, is not enough for || - || to be a norm and set Corollary 3.49 in motion,
or, equivalently, to embed B, with the order structure specified in [16][Lemma A1]
in a C*-algebra. As indicated in the discussion at page 451 of [16], this is not at all a
concerned if the minimality of B, is not enforced. As we mentioned at the beginning
of the section, the works of Kavruk, Paulsen, Todorov and Tomforde [21, 22, 27, 28]
provide just the right tools and, in fact, an entire framework to completely settle such
fine points for any state over Az with A nuclear. What we have learned in this section
is that, without truncation or completion, the quotient linear space B, = Az/K,
inherits a canonical operator system structure from its parent C*-algebra Az, with the
positive cones specified in Eq. (3.12). The latter can be different from the images of
the positive cones of Az through the quotient maps and the induced order topology
can also be different from the quotient topology.
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Proposition 3.47 supplies sufficient conditions for the operator system to be closed.
If B, is finite dimensional, the unit ball of (B,,), || - ||(1)SP) is compact and its image
through I" is also compact, hence it cannot contain the origin of the real axis. Thus, the
condition in Proposition 3.47 is automatically satisfied for finite dimensional reduced
spaces and, as such, it is reasonable to claim that the situations singled out in Propo-
sition 3.47 are direct generalizations of the cases studied in [16]. Certainly, they are
very interesting cases to study in the future.

Looking forward, we need to make a choice for the reduced data. Our choice is the
Archimedean matrix order *-vector space B, without completion, together with its
matrix order norms and the reduced state. Thus, the tuple

(Bos (Culuz1, - 1Y e = 1+ Koy, @) (3.23)

represents our derived reduced data.

4 Factorization Process

The main conclusions of the previous section apply to generic states w on the algebra of
physical observables Az. In this section, however, we start by assuming that the state is
shift-invariant, wo S = w. In these conditions, [ 16] defined a bi-linear map Az x B,, —
B, which proved to be of fundamental importance in the analysis of one dimensional
spin systems, as we already emphasized in our introductory remarks. In this section, we
investigate the properties of this bi-linear map and of its extensions to tensor products.
As for the previous phase of our program, key to this phase is the identification of the
natural framework to work in. If the program was to be advanced inside the category
of operator spaces, then the Haagerup tensor product of operator spaces is the right
fit because of its natural relation with multi-linear forms [30][Ch. 5]. However, we
already made the decision to advance the program inside the category of operator
systems and, as such, we will place our analysis in the framework developed by
Kavruk, Paulsen, Todorov and Tomforde [21], which systematizes the tensor product
structures for operator systems.

4.1 Background: Tensor products of operator systems

Throughout, © denotes the algebraic tensor product of linear spaces.

Definition 4.1 ([21], p. 273) Let (8, {Pn}n>1, €1) and (T, {Qn}u>1, €1) be operator
systems. An operator system structure on 8 © T is a family v = {Cy},>1,C, € SOT,
satisfying:

T1. (8O T, {Cn}r=1, €1 ® e2) is an operator system denoted § ®; T;

T2. P, © 9, C Cyun,foralln, m € N*;

T3. If¢p: 8 > M,(C)and ¢ : T — M,,(C) are u.c.p. maps,then pQO ¢ : S®; T —
My, (C) is a u.c.p. map.
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Definition 4.2 ®; is called functorial if it can be extended to a functor from O x O to
O.

Remark 4.3 Given two operator system structures on $ © 7, one says that 7 is greater
than 7, if the identity map on § © T is a completely positive map from 8 ®;, T to
8 ®., 7. This is equivalent to M, (8 ®, T)™ € M, (8 ®,, T)* foralln € N*. In such
case, the order norms enter the relation [-], < [-],. ¢

Ref. [21] identified one side of the spectrum of operator tensor structures to be:

Definition 4.4 ([21], p. 276) For $ an operator system, let
Sp(8) :={¢p : 8§ - M, (C), ¢ unital completely positive map}. “4.1)

The minimal tensor product 8 @min T of two operator systems S and T is defined by
the system of positive cones

Cr(S, T) = {[pij] € My(S O T), [(¢ © ¥)(pij)] € Mutm(C)™,

4.2)

¢ € Sk(8), ¥ € Su(T), k,m € N*}.
Theorem 4.5 ([21], Th. 4.4) Let 8 and T be operator systems and let ig : § — B(H)
and ig : T — B(K) be embeddings that are unital complete order isomorphisms
onto their ranges. Then min is the operator system structure on 8§ © T arising from
the embedding is ©17 : S ©® T — B(H ® K).

Theorem 4.6 ([21], Th. 4.6) The mapping min : O x O — O sending (8, 7) to
S ®min T is an injective, associative, symmetric, functorial operator system tensor
product. Moreover, if T is any other operator system structure on 8 © T, the T is larger
then min.

On the other side of the spectrum sits:

Definition 4.7 ([21], p. 276) The maximal tensor product 8 ®max T of two operator
systems 8 and T is defined by the Archimedeanization of the following system of
positive cones:

Dy, T) == {y(Isij] © [t;Dy*, Lsij] € Mp(8)™, 43)

[tij] € M, (7), Y € Mn,km((c)’ k,m e NX}
Theorem 4.8 ([21], Th. 5.5) The mapping max : O x O — O sending (8,7T) to
8 ®max T is a symmetric, associative, functorial operator system product. Moreover,
if T is any other operator system structure on & © T, then max is larger than .

Remark 4.9 From [21]( Lemma 5.1), we learn that the matrix order induced by the
positive cones D" is larger than any other matrix order satisfying property T2, in
particular, it is larger than 8§ ®mnin J. As such, Remark 4.3 assures us that the order
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seminorm induced by D"** majorizes [-]min, hence, it is actually a norm. In this case,
the Archimedeanization process consists of extending D' to

ey (S, T) :==A{lpijl € My(8OT), re, + [pijl € Dy ¥V r > 0}, 4.4

and the first stage of the Archimedeanization process is not necessary. ¢

Theorem 4.10 (/21], Corollary 6.8) Let Q be a unital C*-algebra. Then Q is a nuclear
C*-algebra if and only if Q Qmin & = Q Qmax S for every operator system 8.

The above statement assures us that A ® B, carries only one operator structure
structure if A is nuclear, which we denote simply by A ® B,,.

4.2 Generating bi-linear map

The setting here is the same as in section 2.1 but with the major difference that w is

assumed shift-invariant. In this section, the class ag + X, in B,, is denoted by dg and

B, is considered equipped with its canonical operator system structure summarized

in Eq. (3.23). We will continue to denote the quotient map from Ag to B, by g.
Consider the C*-algebra embeddings

APPHD s Az, Buntp) = imntp o (@10 a)), 4.5)
forp >0andn € Z.

Proposition 4.11 Let k € X, C Ar C Ag. Then
§ePHD (B .0y (@)k) € Ko, (4.6)
forany o € AP and p € N.
Proof Let x € Ay . Given the shift invariance of w, we have
(ST (B p.0)@K)) = (S 7D () B p,0) (@) 47

Therefore, if we denote by x’ the element S°(’P’1)(x) B(=p.0)(@) and observe that
x" € Ay, then

0 (SPHD (B .0y (@)K)) = @y (k) = 0 4.8)

and the statement follows. O

Corollary 4.12 We have well-defined bilinear maps A®P+D x B, — B,
ES D (a, ag) = (q 0 P (B p,0 (@ar), 4.9)
forall p € N.
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We denote the canonical extension of Efup 1 as alinear map on the algebraic tensor

product A®P+D o B, by the same symbol and, for p = 0, we simplify the notation to
[E,,. Since all operator system structures on A®?*+D © B, coincide, we have the liberty
to choose between the various characterizations of this structure. For our purposes,
we found that the max-structure is most efficient:

Proposition 4.13 E((DPH) cA®PED @ B, — By, is a completely positive map.

Proof According to [21](Lemma 2.5), it is enough to check if
EL D (DX (A®PHD B ) € M, (B,)*. (4.10)
For [a;;] € My(A®PHD)+ and [a1]] € M,,(B,,)*, we have
ESA (v (eij) © @3 hy*) = y B (il © [ag Dy, @.11)
for any y € M, 1 (C), and, by definition,
EL Y (i1 0 @31 = (qum o S ) (18i1 ® [ag)). 4.12)
where [B;;] = [B—p,0)(ij)] € M; (Ap)™. Note that, on the right, we passed to the

tensor product of C*-algebras. According to Theorem 3.36, our task is to show that,
for any € > 0, we can find [K;] € M (X,) such that

€eim + Sp PV ([Bi71 @ [a1) + [Kij] € Mim(Ar)*. (4.13)

Since [&g] belongs to M, (B,,)™", we know that, for any > 0, there exists [kij(m)] €
M,,(X,) such that

Nem + a4 + kij ()] € My (Ag)™. (4.14)
Then, if £ = [o;;]x = [Bijlx # 0, we choose
[Kij1 = S; P V(1811 ® [kij (e/£1), (4.15)

which is known to belong to My, (X,,) by Proposition 4.11. We have

cerm + Sp V(1871 @ [a]) + [Kij)
= ceen — £SpV (1Bij1 ® em) (4.16)
+ ol V(1B ® (Sem + La] + kij(e/)]),

and the elements seen in the last two lines belong to the positive cone My, (Ag)™.
The case & = 0 is evident. O
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Example 4.14 For the product state from Example 2.15, we found that B, = C- ¢ and
we have E(a ® ¢) = wg(a) - e.

Proposition 4.15 The maps satisfy the recursive relations

EY™) =E, o0 (d®EP), p> 1, (4.17)
and, more general,
EYTP =EY o (d®EY), p,g > 1. (4.18)

Proof The statements follow from the identity

SCUTPY (B g pi1.0)(@ ® @ )ag) = S (:3(—(1+1,0) (@) S°P (B—p+1,0) (Ot/)aR)),
4.19)

valid for any o € A®Y o’ € A®P and ag € Ag. O

Proposition 4.16 Let us consider the unital complete order embeddings® J P A®P
A®P @ B, and iptk,p - A®P s A®P @ A®K ~ A®(PHK) Thep

EP 0 Jpik 0ipikp =EP o J, (4.20)
on A®P. As such, the tower of maps
EP o J,: A®P — B,, (p=>1), 4.21)

has a direct limit ES o Joo : ABNT ~ Ar — By, which coincides with the quotient
map q : Ar — B,

Proof Eq. (4.20) is a consequence of the identity
S (B-p+1.0/@)1r) = S PTO(Bpririo (@@ 1991p).  (4.22)

Eq. (4.20) then assures us that the tower of contractive unital maps respect the structure
maps of the direct limit .A®NX, hence Ey o Jxo is well defined and shares the same
attributes. Lastly,

EL 0 Jp)@) = q(Ba.i+p @), ¥ae AP, (4.23)
which proves the last statement. O

3 The operator system structures on the tensor products are injective.
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4.3 Ergodic states

Shift-invariant states form a convex subset of the state space of Az. The extremals
among shift-invariant states, i.e. those states that can not be decomposed among the
shift-invariant states, are called ergodic states [5, Sec. 4.3]. In this subsection, we
investigate the synergy between the ergodic states and a dynamical system on B,
canonically induced by the shift-invariant state w. In particular, we supply sufficient
conditions for the state w to be ergodic.

Let n,, : Az — B(H,) be the GNS-representation induced by the shift-invariant
state w. Then it is known that shift map S is implemented by a conjugation with a
unitary operator Uy, nw(S (a)) = Uymy(a)U}. The following is a useful though
somewhat abstract characterization of the ergodic states:

Proposition 4.17 ([5], Th. 4.3.17) A shift-invariant state w is ergodic if and only if the
C*-algebra generated by m,,(Az) U U, inside B(H,) is irreducible on H,,.

A more practical criterion to identify ergodic states relies on asymptotic tests:

Definition 4.18 We say that the shift-invariant state @ on Az has the asymptotic clus-
tering property if the sequence

sup{|a)(aL - $°(ag)) — wlapw(ag)|, ar € AL C Az, laLll = 1} (4.24)

converges to zero as r — 00, for any ag € Agr C Az.

Proposition 4.19 ([5], Th. 4.3.22) If a shift-invariant state displays the asymptotic
cluster property then the state is ergodic.

Remark 4.20 The formulation of clustering property in Definition 4.18 seems stronger
than the standard formulation (see [5, Sec. 4.3.2]), in that it requires a uniform conver-
gence w.r.t. the ay entry. Note, however, that a; and ag are constrained on opposite
half-sides of the chain in 4.24, in which case the formulation becomes equivalent with
the standard one (see also Proposition 4.21). The reason for our preference towards
the formulation in Definition 4.18 will become apparent in Proposition 4.26. {

From Proposition 4.17, we see that factor states are ergodic. In such cases, we can
demonstrate that our formulation of clustering property can be indeed derived:

Proposition 4.21 If 7., (Az)" is a factor, then w satisfies the cluster property as for-
mulated in Definition 4.18.

Proof We will follow closely the example 4.3.24 in [S], with a few improvements. The
proof rests on the observation that Az displays the asymptotic abelienness

lim [I[S"7 (@), Bl =0. Va.p e Az (4.25)
r—

in a uniform fashion, provided « = ay, is chosen from Ay . Indeed, for any € > O,
there exist N and ay € A[—y,nj such that |8 —an| < €. Then

11S°C (ar), Bl = 11S° (ar), B — an]|| < 2¢€llar ], (4.26)
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forallr > N + 1. As a consequence,

lim sup {[[S°"(ap), Il ar € A, llall =1} =0. (4.27)
r—00

From here on, we can repeat the arguments from [5, Example 4.3.24], which we do
for completeness. Let 2, be the cyclic vector of m,,. Since 2, and n = (7, (ag) —
w(apr)l)L2, are orthogonal in H,,, there exists a self-adjoint operator 7 on H,, such that
T, = Q4 and Ty = 0. Taking ap self-adjoint and with C = (7, (ag) —w(ar) T,
we have CQ,, = n and C*Q, = 0, as well as

w(arS* (ar)) — w(ar)w(ag) = w(S°"(ar)(ar — w(ag)l))

(4.28)
= (R, [1,(S° T (a1)), C1).

Next, one observes that, since 1, (A®%)" is a factor, the algebra generated by 7, (A7) U
7, (Az)’ is irreducible on H,,, hence Kadison’s transitivity theorem applies and C can
be chosen from this algebra. In particular, for each € > 0, there exist ; € Az and
B; € m,(Az)’, with i in a finite set and such that

IC = mu(B)Bill < e. (4.29)
Then

(Qu, [7(5° " (a1), C12%) < 2€llarll+ Y IBAIIST (L), Blll  (4.30)

i
and the statement follows from Eq. (4.27). The case when ag is not self-adjoint is
obvious. O
We now investigate how ergodicity is related to the characteristics of a dynamical
system on B, canonically induced by the state w. Indeed, the shift map descends on

Bo:

Definition 4.22 We call the shift map on B,, the map
S:By,—> By, S=E,olL, (4.31)
with L being the unital complete order embedding
L:B,—>ARQB,, Lb) =1Qb. (4.32)
Proposition 4.23 As a composition of u.c.p. maps, S is u.c.p. and, furthermore, it

satisfies the following relation S o ¢ = q o Sg. As a consequence, the reduced state is
also shift invariant, @ o § = .
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Proposition 4.24 The shift-invariant state w displays the asymptotic clustering prop-
erty if and only if the reduced state @ displays a similar reduced clustering property,

tim sup {[&(EY (« @ 57 1)) - 5(EP (¢ @ ) Jab) || =0, ©433)

r—>o0

where the supremum is over p > 1 and o € A®P with ||| = 1.

Proof If B = B(_p41,0)() € Ap C Az and b = ag for some ag € Agr C Az, we
have

EP (o ® S (b)) = q(S°7 (BS” (ar))). (4.34)
Therefore, taking into account the shift invariance of w,

O(EL (e ® 57 (b)) = (B ® S (ar)). (4.35)
Then

@(Eg) (@ ® (57 (b) - cb(b)e))) = w(B® 5 (ar)) — 0(B)w(ar)  (4.36)

and, from this identity, the statement follows in both directions because (J,, Bi—p,0]
(A®P) is dense in Aj. ]

Remark 4.25 The asymptotic clustering property ensures the decay of correlation func-
tions. For example, a 2-site correlation function refers a quantity of the type

Ca,d;n=0(-®1a01° dQ1®---), a,d €A (437)
This correlation function can also computed as
Cla,d;r) =doEl™ @@ 1% ®ad ®e) = (@oEy)(a® 5 (@)), (4.38)

and the clustering property assures us that C(a, a’; r) — w(a)w(a’) converges to zero
as the “distance” r goes to infinity. {

The next statement identifies specific conditions in which we can establish a direct
relation between the dynamical system (B,,, S) and the asymptotic clustering prop-
erty of the state. For this, we recall the functional I" : B, — [0, co) defined in
Propostion 3.46. Then:

Proposition 4.26 Assume that
L) = c|bly®, Vb e B, (4.39)

for some strictly positive constant c. Then the following are equivalent:

1. w displays the asymptotic clustering property.
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2. The linear sub-space generated by e is the only attractor of the map S,

lim S (b) = &(b)e, Vb e B,, (4.40)
r—>00

where the limit is in the order topology of B,.

Proof “1 = 2” From the asymptotic clustering property (4.24), we have

lim sup Ha)(x -8 (ag — w(ag) 1R)>

r—>0o0

 xeAL C Az |Ix| = 1} — 0,(4.41)

for all ag € Ar C Az, which translates to

I'(S(ag — w(ag)e)) — 0 as r — oc. (4.42)
Since the unit is invariant for S and || - ||(1)Sp > - ||(fsy, condition (4.39) implies
15" (ar) — d(ag)e|}™ — 0 as r — oo, (4.43)

which proves the first claim.
“2 = 1”7 This is a direct consequence of Proposition 4.24. O

Remark 4.27 The above statement can be regarded as a direct generalization of point
(3) of Proposition 3.1 in [16]. ¢

Corollary 4.28 In the conditions of Proposition 4.26, there is one and only one shift-
invariant state on B, which can be detected via (4.40).

Remark 4.29 Note that (4.39) is exactly the same condition that ensures that the oper-
ator system norm on B, is complete (see Proposition 3.47). ¢

Proposition 4.30 Assume that the statement in Eq. (4.40) holds. Then the map E,, is
full, in the sense that

Up>1 Uxe.A®l’ E((‘)p)(x ®b) =Bo, Vb€ B, (4.44)

Proof The statement is true for b = e because E° o Joo = ¢, as we have seen in
Proposition 4.16. Now, fix a generic element b and let ), € A®” be a uniformly
bounded sequence such that E,(Up ) (ap ® e) converges in order topology to another
element ' € B, as p — o0. Then

ECP (0 © 197) @ b) = P (0, @ 57 5)). (@45
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Rewriting the right side as

EP (o) ® S (b)) = d(D)EP (o ® €) + EL (), ® (57 (b) — d(D)e)),

(4.46)
and, by using the fact that Efup ) are all contractions, we obtain
ECP ((a, ® 1%P) @ b) — a(b)b' ||
IES? ((etp ) ®b) DDy 4.47)

< |@BEP (ap @ e) — BT + ey lIS°P (b) — d(b)e) |1

Since the left side of the inequality goes to zero as p — oo, we can conclude that
the left hand side of Eq. (4.44) contains the linear space generated by &'. Since b’ was
arbitrary, the statement follows. O

4.4 Concluding remarks and a look ahead

The reduction and factorization processes described in this section produced the data
consisting of the following:

(1) The local nuclear C*-algebra A.

(2) The reduced space B, with the structure of an operator system.
(3) Theu.cp.mapE, : A RQ B, — B,.

(4) The u.c.p. functional o : B, — C.

Itis certainly appropriate to say that the initial data (A7, w) was reduced and factorized
to the data (A, By, E,, @).

We have also seen that questions related to the ergodicity of the state w can be
answered if the reduced data displays specific characteristics. Furthermore, our inves-
tigation of the ergodic states led us naturally to the concept of a full E map and a
connection was made between this concept and a condition that assures that the state
is ergodic. This property will appear again, in an essential way, in the reconstruction
phase of our program, investigated next.

5 Reconstruction Process

In this section, we consider a set of data that shares the same attributes as the reduced
data of a state over Ayz. As we shall see, such data always produces a state on Ay,
by a straightforward algorithm. However, the reduced data corresponding to the so-
constructed state may not coincide with the initial data supplied as the input for the
algorithm. The discussion at page 451 in [16] where B, is taken as Ag supplies such
an example. In such cases, we cannot draw any conclusions about the ergodicity of the
state by simply examining the initial data. For this reason it is imperative to identify
input data that leads to states that reduce back to the input data, which will then enable
us to apply the results obtained in subsection 4.3. These issues are explored to the
fullest in this section.
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5.1 Reconstruction algorithm

Here we prove one of our main results.

Theorem 5.1 Assume:

o A unital nuclear C*-algebra A;

o An Archimedean matrix-ordered space (8, e);
cAucp.mipE:ARS — §;

o A u.c.p. functional ¢ on 8.

Then:
i) Let EP) : A®P @ § — 8 be the systems of maps defined iteratively as in Propo-
sition 4.15, specifically,
ED =E, EP*D =Eoc(dQEP), p>1. (5.1)
Then the tower of linear functionals

wp) AP - C, wp =¢oEP o, p>1, (5.2)

define a state wg on ABN ~ Ap where Jp’s are the unital complete order
embeddings Jp : A®P s .A_®p ® B,
ii) Suppose ¢ o S = ¢, where S is defined as in Proposition 4.24, specifically,

§:8>8, §=EolL, (5.3)

with L being the unital complete order embedding L : § — A ® S. Then there
exists a unique shift-invariant state w on Az, extending wg derived at point 1).

Proof i) As compositions of u.c.p. maps (recall point T3 of Definition 4.1), the maps
E® are u.c.p. and the maps J) are as well u.c.p. As such, w(p) are u.c.p., hence states
on A®”. Furthermore, if j; , : A®P — A®P @ A®U=P) = A% are the standard
C*-algebra embeddings for g > p, then w(y) ojq,p = w(p) forany g > p and, as such,
the tower of states respects the structure maps of the directed tower of C*-algebras
and, as such, it defines a state on the inductive limit, which is A®N “~ A R.

ii) We denote by wg the inductive limit of states from point i), and let Sg : A®N s
A®N" be the C*-algebra morphism ag — 1 ®ag. Then, forany p > 1 and o € A®P,
we have

(@ © S&) (it00.p) (@) = 0prn (1 ®a) = (po EPTV) (1 @) ®¢). (5.4)
Using the very definition of E?”), we find
(@r 0 SR) (J(oo.p) (@) = (P o E)(1 @ EP (@ ® ¢)), (5.5)
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and, after invoking the definition of L,
(@r © SR)(j(o0. ) (@) = (@ 0 Eo L)(EP (@ ® ¢)). (5.6)

Since Eo L = § and ¢ o S = ¢, we must have wg o Sg = wg. Any state with such
property can be uniquely extended to a shift-invariant state over Az. O

Let (A, By, Ey, @) be the reduced data for the state produced via Theorem 5.1 from
the input (A, S, E, ¢) with ¢ shift-invariant. As already stated, without additional
information about the input data, there is no reason to assume that the two sets of
data coincide. It is imperative to find out when the two actually coincide. A related
problem is the identification of states that can be produced with the algorithm from
Theorem 5.1, for some input data. The two mentioned issues are actually related:

Proposition 5.2 Ifw and o’ are shift invariant states and the data (Az, ) and (Az, ')
both reduce to the same data (A, B, E, ¢), then necessarily o = o'.

Proof Let wg be the restriction of w on Ag. From Proposition 2.14, we know that
wpr = ¢ o g and, from Proposition 4.16, we know that ¢ is completely determined by
[E. Since the same arguments apply for «’, the conclusion is that wg and ', coincide
on a dense subspace of Ag, hence on the whole Ag. Due their shift-invariance, they
must also coincide on the whole A7,. O

Corollary 5.3 Let w be a state over Az and (A, By, E,, @) be its reduced data. Then
the algorithm from Theorem 5.1 with input (A, B, E,, @) generates back the state
.

The following statement supplies sufficient conditions for an input data set
(A, S, E, ¢) to be the reduced data of some state over Az,

Theorem 5.4 Assume the conditions of Theorem 5.1 and, additionally, that ¢ is shift
invariant and  is full,

U,o U e, V@9 =8, Vs es, s #0. (5.7)

Let w be the shift-invariant state produced by the algorithm from Theorem 5.1 from
the input data (A, 8, E, ¢). Then the data (Az, w) reduces back to the input data
(A, 8, E, ¢). In particular; this is the case if S satisfies relation (4.40).

Proof We first note that (]E(Q) oJy)oigp = E® o Jp, for any ¢ > p and, as such,
we have a direct limit map E© o J, : A®N" — §. Note that E© o Jo is unital

and contractive and continues to enjoy Markov’s property (4.18). We define the closed
subset

K = Ker(E® o Joo) C ABN" (5.8)
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We will show that K coincides with the entanglement kernel X, of the state w. For
x = B—p+1,0) (@) with o € A®P, we have

o(x-ap) = p(EP (¢ 8 Bo 0 Jo)(ar)) ), Var € AP = Ag. (59)

As such, ifag € K, then w,(ag) = O for x in a dense subset of A, hence for all x in
A because of the continuity of the state. This proves that X € XK,,. The reciprocal is
also true in the stated conditions. Indeed, if ag € K, then necessarily

B(EP(2 @ (oo 0 Joc)(ap)) ) =0 (5.10)

for any o € A®P and p > 1, which is a direct consequence of the identity (5.9). Let
s = (Exo 0 Joo)(ag) € 8 and assume that s # 0. In this case, since E is full,

» _
Up21Ua€A®pE” (@®s) =S8, (5.11)

and (5.10) can be true only if ¢ = 0. This contradiction proves that s = 0 or, in other
words, that ag € K.

We have established that the entanglement kernel X, of @ coincide with the kernel
Ker(E® o Ju). Then the projection ¢ : Ag — Ag/K. coincides with E© o J.o.
Our last task is to show that [E given at the start of the reconstruction process coincides
with the map defined in Eq. (4.9) for the reconstructed state w. Specifically, we need
prove that

E(a ® (E™ o Jxo)(ar)) = E® o Jx)(S(B,0)(@)ar)), (5.12)

foralla € A andag € A®N". For any o € A®?, we have

E(a® (E o Joo) (i.p @) ) = E(a ® (E? 0 J,) (@)

(5.13)
= E(”+l)((a Ra)®e).

The last line can be cast as (E o Joo)(joo,p+1 a® a)) and joo, p+1(a ® ) can be

seen to coincide with S(Bo,0)(@)ar), under the isomorphism ABN ~ 4 R- As such,
the relation (5.12) holds for a dense subset of 8, hence on the whole S. O

Example 5.5 1t is easy to exemplify how the statement in Theorem 5.4 fails if the

full-ness condition is not satisfied. Indeed, let E : A ® S — 8§ be full as stated.
Consider

E:AQS®B—>S®3B, E=E®id, (5.14)
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where B is an auxiliar operator system. A short calculation shows that

E”w®s®@b) =EP (@ ®s)® b, (5.15)

hence it is evident that [ fails to beA full. Now, consider the state ® = @ ® & over
8 ® B, with £ any state on B. Then (E, &) produces the same state w over Ay, through
the reconstruction process, but (Az, w) reduces to 8 and notto S ® B. O

Corollary 5.6 Assume the conditions of Theorem 5.1 and, additionally, that po S = ¢,
that the map E is full and that the input data displays the asymptotic clustering property

lim sup ”¢(E<f’>(a ® 5 (s — $(s) e)))“ —0, Vses, (5.16)
r—00
where the supremum is overalln > 1, a € A®P with ||«|| = 1. Then the reconstructed

state w displays the asymptotic clustering property and, as such, it is ergodic.

Proof In the stated conditions, the reduced data (A, B, E,, ®) for reconstructed
state w coincides with the input data (A, 8, E, ¢). Then we can apply the results of
subsection 4.3 and the statement follows from Proposition 4.24. O

We now put forward the ideal scenario that will sought for in all our examples:

Theorem 5.7 Let (A, 8, E, ¢) be as in Theorem 5.1 and suppose that

lim S (s) — ¢(s)e, Vs €8, (5.17)
r—00

checks for the input data. Then:

() ¢ is shift invariant, ¢ o S = ¢;
(ii) The map E is full and, as such, the data (Az, o), with @ the shift-invariant state

generated by the algorithm form Theorem 5.1, reduces back to the input data
A, S, E, ¢);
(iii) The state w displays the asymptotic clustering property and, as such, it is ergodic.

Proof (i) is evident. (ii) follows from the same argument as in Proposition 4.30. (iii)
follows from Proposition 4.24, which applies to the present context due to (ii). O

5.2 Examples of reconstructed states

Below, we give examples of ergodic states derived with the algorithm described in
Theorem 5.1.

Example 5.8 Let us consider the product state discussed in Examples 2.15 and 4.14,
where we found B, = C - e and E,, (¢ ® ¢) = wp(a) - e. Hence, E,, is obviously full
and there is only one state on B,,, @(e) = 1. As such,

w()(a) = d)(E(a ® e)) = wo(a) (5.18)

) Birkhauser



Operator product states on tensor powers of C*-algebras Page 37 of 51 8

and

o) (@ ® a) = &(E? (a1 ® a2 ® €)) = &(E(a1 ® E(a2))) = wolan)wo(az).
(5.19)

Iterating further, one finds

wm (a1 ® -+ Q@ ay) = wolay) - - - wolay), (5.20)

which confirms that the product state a)®Z

algorithm. ¢

is indeed reproduced by the reconstruction

Example 5.9 We reconsider here the class of AKLT states introduced in Example 2.16,
which we now can analyze to the fullest, without assuming any convergence of periodic
approximants. We recall that the setting was that of a nuclear C*-algebra A, of a
projection p from A ® A, and of a a positive map & : A ® A — C. Both operator
systems A and 8 are defined in terms of this data, namely A= p(A ® A) p, with
p standing for the unit of A, and § = A. We let j i pA p — A be the non-unital
embedding that takes p into p rather than into the unit of A.AsaC* -algebra morphism,
j is a c.p. map. Lastly, we define E as

E: pA@A)p®A— A, E=(d®&)o(eid), (5.21)

which, as a composition of two c.p. maps,* is a c.p. map. This map is also unital,
provided

([de&)(p D) =1 (5.22)

Therefore, whenever p and & fulfill this constraint, an AKLT-type state can be recon-
structed from the data

AKLT = (A = pA®Ap, $:=A, E:= (id® &) o ( ®id), ¢), (5.23)

where ¢ is a shift invariant state on A. This machinery now works equally for finite
and infinite dimensional nuclear C*-algebras A. Below, we give two examples where
the AKLT data satisfies the conditions of Theorem 5.7.

Remark 5.10 The particular case studied in [1], illustrated in Fig. 1 and partially ana-
lyzed in Example 2.16, corresponds to A = M3 (C), hence A = M,(C) ® M,(C) ~
M4(C), and p is the rank-3 projection

3
p=300®00+3 Y o' ®@c' € MyC), (5.24)
i=1

4 Property T3 in Definition 4.1 assures us that this is indeed the case.
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such that A = pMy(C)p ~ M3(C). Above, 0;,i = 1,2, 3, are Pauli’s matrices and
o0y is the identity of M;(C). Furthermore,

£o(m) = 3 Tr(mpo), m € M4(C), (5.25)

with pg being the rank-1 projection
3 . .
po=300®00— 1Y o ®a' e My(C). (5.26)
i=1

In this case, (5.21) takes the following concrete form:

3

]E(p(y ®y)p® 7/”) =3> gagﬁTr((G“y/aﬂ ® y”)po) o®yab, (5.27)
o, =0

where go = 3 and g; = § fori = 1,3and y, y’, " € Ma(C). We then find
E(p®og) =09, E(p®a&-6)=—3d-3, (5.28)

wherea € C*and@-6 = 213: 1 «; 0;. Hence, the data satisfy the constraint mentioned
in Example 5.9. Furthermore, since any s € M>(C) can be written uniquely as s =
apog + o - o, we have

S7(s) =E(p®E(..E(p®s)..)) =agoo+ (—3) @5, (529

hence S satisfies relation (4.40). As a consequence, there is only one S-invariant
functional @ on M5 (C), which is

(oo +a-5) = ag, (5.30)

and the reconstructed state w is ergodic. Two-site correlation functions can be also
computed explicitly, by following Example 4.25:

Cla,d;r) = (@oE)(a ®57(@)) = w@w@)+(—3) (@oE)a,a- o),
(5.31)

where @ - 0 = E(a’ ® 0p) — w(a’) and w(a) = (v o E)(a & o0yp). For given specific
entries a and a’, the calculation can be completed by applying (5.27). ¢

Example 5.11 We can take a page from the above example and produce an AKLT data
with A infinite dimensional. For this, we want to engage the full C*-algebra C*G
of an infinite amenable discrete group G,> but, typically, such algebras are poor in

5 For amenable groups, the full and reduced group C*-algebras coincide and are nuclear [25].
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projections, unless we tensor them with a matrix algebra. For this reason, the AKLT
construction requires a slight generalization, which we now explain. We start with a
projection p € My(C) ® C*G. The group morphism G 3 g+ gx g € G x G
lifts canonically to an algebra morphism My (C) ® C*G — My(C) ® (C*G ®
C*G), hence, the image of p through this map is still a projection, which we take
as the projection p in the AKLT construction. The latter can be presented as a norm
convergent series

p= Z g g®g. cg € My(C), cpr =i (5.32)
geG

We now can specify half of the input data:
A=pMyOC)QC*G®C*G)p, 8§=C"G. (5.33)

Next, we choose a positive element go from C*G with | gg|| < 1, and push it through
the same morphism into My (C) ® (C*G ® C*G). If

qo = deG dy g ®g. dg €C, dg-1 = d, (5.34)

is the result of that action, then we define the positive map

C*GRC*'G 30 > &(0) = (T ®TN(/9004/90) = (T ®TN(oqo) € C,
(5.35)

where T is the standard trace on C*G, T7()_ < Ag - &) = A. Lastly, we define
E:A®S -8, E=(tr®id® &) o (joid), (5.36)
where tr is the trace state on My (C) and j is the non-unital C*-algebra embedding

A — My(C) ® C*G ® C*G. As a composition of c.p. maps, E is a c.p. map.

Furthermore, if s = 3, 5S¢ - g € S, then we have

(r®id®&)(p®s) = (r@id®T ® (X, pec Cesnds - 8 ® gf @ hf)

(5.37)
and, by using the fact that T(g) = §; ., we find
Ss)=E(p®s) = dec ¥ tr(cg)sg - 8. (5.38)
Therefore, if we choose the coefficients of gg such that
de = 1/tr(c.), |dg| < 1/|tr(cg)| for g # e, (5.39)
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which we can always do, then E(p ® e) = e and
S (s) = deG (djtr(cg)) sg -8 — sc-e, asr —> 00, Vse8. (540)
The conclusion is that the reconstruction algorithm for the modified AKLT data

mAKLT:(A = p(MNC) QAR A)p, $:=A, E:= (r®id ® &) o (j®id)),
(5.41)

produces an ergodic state  on A®Z.

Remark 5.12 The last example can be given the physical interpretation of the thermo-
dynamic limit of states for N distinguishable quantum particles hopping on the Cayley
graph of G, where the states are invariant against circular permutation of the identities
of the particles. ¢

6 Stinespring representations of operator product states

The goal of this section is to appeal to the Stinespring representation of map E and
derive a possibly simpler set of input data for a reconstruction algorithm (see Propo-
sition 6.22). It is argued that this new type of input data samples densely the space
of input data introduced in the previous section, provided § can be embedded in a
postliminal C*-algebra.

6.1 Background: types of C*-algebras and their spectra

When appealing to the Stinespring representation of the map E, one immediately
encounters the space of representations of the C*-algebras involved. As we shall see,
the generic representation of E engages many if not all irreducible representations of
an embedding C*-algebra for B,,. This calls for a brief overview of the spaces where
the representations of C*-algebras live.

A representation of a C*-algebra Q is a C*-algebra morphism 7 : Q — B(H) for
some Hilbert space H. Both the C*-algebras and the Hilbert spaces will be assumed
separable in this section. When referring to a specific representation , we will use
the symbol H,; for the associated Hilbert space. We recall that two representations
are called equivalent if there exists a unitary map between the corresponding Hilbert
spaces intertwining the two representations.

Definition 6.1 A representation 7r of a C*-algebra Q is called topologically irreducible
if 0 and H,; are the only closed subspaces invariant for the action of the algebra Q.
The set of equivalence classes of irreducible representations defines the spectrum of
the algebra, typically indicated by a hat as in Q.

The spectrum of a C*-algebra accepts a canonical topology, which can be introduced
in a multitude of distinct ways (see [10] Ch. 3, [15] Ch. VII, [31] Ch. A). We want to
describe this topology here.
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Definition 6.2 ([10], Sec. 3.1) A closed double-sided ideal of a C*-algebra Q is called
primitive if it is the kernel of an irreducible representation of Q. The set of primitive
ideals is usually specified as Prim(Q).

Proposition 6.3 ([10], Sec. 3.1) For each subset T C Prim(Q), one lets I1(T) be the
intersection of the elements of T and considers the set T of all primitive ideals of Q
containing I(T). Then there exists a unique topology on Prim(Q) such that T is the
topological closure of T.

Definition 6.4 The topology defined by Proposition 6.3 is called the Jacobson topol-
ogy. The Prim space is endowed with this natural topology.

Remark 6.5 The naturality stems from the observation that the closed subsets of
Prim(Q) and the closed double-sided ideals of A are in a bijective relation, estab-
lished by the map Prim(Q) 5 T = T > ({J, J € T}. In other words, the lattice of
ideals of Q can be derived from the Jacobson topology of Prim(Q). ¢

Definition 6.6 Since the kernels of equivalent representations coincide, there exist a
natural surjective map Q > [7] — ker w € Prim(Q) and the topology of Q is defined
to be the pull-back topology through this map.

The pure states over a C*-algebra Q supply irreducible representations. If P(Q)
stands for the set of pure states, then this set comes equipped with the weak-* topology
inherited from the dual of Q.

Proposition 6.7 ([10] 3.4.12) The topology of Q introduced in Definition 6.6 coincides
with the quotient topology of the topology of P(Q) for the canonical surjective map
P(Q) — Q.

A topological space is called a Ty-space if for any two distinct points of the space
there is a neighborhood of one of the points which does not contain the other. While
Prim spaces are always Ty [10][Prop. 3.1.3], this is not always the case for the spectra.
When this does happen, we have:

Proposition 6.8 ([10], Prop. 3.1.6) The following three conditions are equivalent:

@) Qisa To-space.
(ii) Two irreducible representations of Q with the same kernel are equivalent.
(iii) The canonical map Q — Prim(Q) is a homeomorphism.

The simplest spectrum is that consisting of a single point. The separable C*-algebras
displaying such spectra are precisely the elementary ones, that is, the ones that are
isomorphic to the algebra of compact operators over some Hilbert space (finite or
infinite dimensional). These were exactly the C*-algebras engaged in the study of
finitely-correlated states in [16], and they remain very relevant for the more general
context considered here (see Example 6.28). All finite dimensional C*-algebras have
finite Hausdorff spectra [6][Corollary §]. Next up in the ladder of complexity come
the dual C*-algebras [20] (see also [10][4.7.20] for a brisk characterization), which all
have discrete spectra. The C*-algebras of compact groups are dual [20] and, in fact,
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this property characterizes completely the compact groups among the locally compact
groups [3, 12]. Liminal and postliminal C*-algebras [10][Ch. 4] also have a fairly com-
plete characterization of their spectra. In particular, postliminal C*-algebras have only
type I representations and satisfy the equivalent properties stated in Proposition 6.8
[18]. Furthermore:

Proposition 6.9 ([10], Ch. 4) Let Q be a separable postliminal C*-algebra. Let T be
a non-degenerate representation of Q on a separable Hilbert space. Then there exist
mutually singular positive measures JLy, [y, ..., oo 01 Q, such that

2] @ [S)
T ng dﬂl(é)éeﬂfé dﬂz(f)f@-“@i‘%o/é) dp (&) E, 6.1)

where the coefficients in front of the integral signs indicate the multiplicities. The
system of measures {;} is fixed by w up to measure equivalence.

Remark 6.10 In general, the integration and disintegration of representations of a C*-
algebra is developed over the quasi-spectrum of the algebra equipped with its natural
Mackey-Borel structure. For a separable postliminal C*-algebra, however, the spec-
trum endowed with the topological Borel structure coincides with the Mackey-Borel
structure [11] (see also [10][Ch. 7]). O

All commutative C*-algebras are postliminal. C*-algebras of type-I topologi-
cal groups are also sources of postliminal C*-algebras (see [17][Theorem 7.8] and
[9][Example 8.5.1] for explicit lists of type-I groups). In particular, a discrete group
is of type-I if and only if it contains an abelian subgroup of finite index. In particular,
the C*-algebra of the space-groups engaged in crystallography (i.e. the lattices of the
Euclidean group) are postliminal.

We will restrict our discussion of the operator-product presentation of a state over
Az to the situations where the operator system B, can be embedded in a postliminal
C*-algebra. Besides all the above nice features, the class of postliminal C*-algebras
has the following special property:

Theorem 6.11 ([31], Th. B.45) Let A and B be nuclear C*-algebras. Then the he map

(,n) — 7 ® n induces a homeomorphism of A x B onto its range in A ® A® B.
Furthermore, if either A or B is postliminal, then this homeomorphism is surjective.

There are alternative tools to the disintegration theory summarized in Proposi-
tion 6.9. For example, Fell and Doran describe in section VI.14 of [15] the notion of
discretely decomposable x-representations. Such a representation accepts an essen-
tially unique direct decomposition in irreducible representations. Another useful and
related concept is that of approximately equivalent representations.

Definition 6.12 ([8], pg. 57) Two representations 7 and 1 of a C*-algebra Q are said
to be approximately unitary equivalent, written as m ~, 0, if there exists a sequence
of unitary transformations U, : H; — Hj such that

m(g) = lim Uyn(q)Up, Vqe€Q, (6.2)
n—
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where the limit is in the norm topology of B(H;). Note that the difference 7 (q) —
U, n(g)U, can be arranged to be in K (Hy) if m ~, 7.

Approximately unitary equivalence fits our purposes because of the following:

Proposition 6.13 (/8] Corollary 11.5.9) Every representation of a separable C*-
algebra on a separable Hilbert space is approximately unitarily equivalent to a direct
countable sum of irreducible representations.

Proposition 6.14 Let ® : Q — B(H) be a u.c.p. map and ®(q) = V*n(q)V be a
Stinespring representation of ® as in Theorem 3.28.% Let U, : Hy — Z[% H; be the
unitary transformations implementing the approximate unitary equivalence mentioned
in Proposition 6.13, where the direct sum runs over a countable subset of Q. Then

®, : A — B(H), ®n(q) = V,T(Zi] CD)Var Vai=UpV,  (63)

converges in the weak-* topology to ®.

Proof Letn = Z?z] ¢ be the representation mentioned in the statement, in which case
®,(q) = V*Un(q)U,V. Then the statement follows from the facts that the limit
in (6.2) holds in norm topology of B(H;) and V is a bounded map. O

Corollary 6.15 The set of u.c.p. maps of the form
*
Q549> Zm Vit(q)Ve € B(H), (6.4)

where the sum runs over a countable subset of Q and V¢ are bounded linear maps
from H to H, is weak-x dense in the space of all u.c.p. maps from Q to B(H).

Remark 6.16 While weak approximations of states have deficiencies, e.g. they are not
powerful enough to resolve spectral features of the exact state, they serve perfectly
well the purpose of computing correlation functions. ¢

Since this will be our main device for deriving new example of operator product
states using Stinespring representations, we present the following example:

Example 6.17 Let X be a compact subset of R and p a cyclic representation of C(X)
on a separable Hilbert space. In the first part of the exercise, we derive for p an approx-
imately unitary equivalent representation made out of a countable set of irreducible
representations of C(X). In the second part of the exercise, we show how the latter
generates a weakly-* converging sequence of convex combinations of a fix countable
set of pure states of C(X), with the limit state matching to the cyclic representation p.

From [8][Th. II.1.1], we know that p is equivalent to the representation that sends
f € C(X) to the multiplication operator My by f on H, = L?(X, w), for some
reqular Borel probability measure on X. Furthermore, if T = M, is the multiplication

6 Hj can be chosen separable when both Q and H are separable [26](pg. 45).
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operator by the identity function f(x) = x, then p(C(X)) can be identified with
the C*-algebra generated by T in B(H,). By Weyl-von Neumann theorem, T is an
arbitrarily small compact perturbation of a diagonalizable operator. We need some
elements from the proof, which we borrow from [19][2.2.5]. Consider a sequence of
partitions of X by Borel subsets, such that the diameters of the subsets in the n-th
partition are equal or less than € 27”3, and the (n + 1)-th partition refines the n-th.
If P¢ denotes the projection onto the finite dimensional linear subspace of L*(X, )
generated by the characteristic functions of the Borel sets of the n-th partition, then
Qs, = P; — P:_, are projections too, Qf, are mutually orthogonal, ), O, converges
strongly to identity, and || Q5T — T Q¢ || < €27". Now,

T =3 0T05 - S (05T — T 0, 6.5)

with both sums converging in strong topology, and the first one is a direct sum of
self-adjoint operators over finite dimensional spaces, while the second one is a com-
pact operator of norm smaller than €. The conclusion is that there exists a diagonal
operator D, on Y2 Q¢ H,, a unitary transformation U, : H, — Y2 Q¢ H, such
that T = U} D U, up to a compact operator of norm smaller than or equal to €. Fur-
thermore, it can be arranged to have the spectrum of D, contained in the set X. Note
that the unitary transformation Uk is a direct sum of finite unitary matrices that can be
explicitly computed. Now, by Lemma I1.4.3 from [8], all D, operators are approxi-
mately unitarily equivalent. Then, by fixing an €y, there exists a unitary transformation
Vepe : 2 QS H, — 2 07 H, such that D, = Ve ey De Veo.e Plus a compact per-
turbation whose norm can be taken arbitrarily small, e.g. smaller than €. By piecing
together the parts, we see that T = W:;)’ ¢ Deg Wey e Plus a compact correction of norm
smaller than or equal to 2¢, where W, ¢ = V¢ cUe. Turning now our attention back
to the representation p(C (X)) >~ C*(T), we have

ST - f(W:;,eDeo Weoe) = f(T) — W:O,ef(Deo)Weo,e — 0 ase— 0, (6.6)

for any continuous function f over X. The irreducible representations of C (X) consist
of the evaluations at the points of X, f > ev,(f) := f(x).If {xZO} are the diagonal
entries of Dg,, which is a countable set, then

fDq) = Y7 ev i (1), ©.7)

hence (6.6) materializes the statement of Proposition 6.13 in the present context.
For the second part of the exercise, we proceed as follows:

/dM(X)f(X) = dIMy|1), = Gli_l;%uu|Weo,ef(Déo)W:0,e|1)u

_ (6.8)
611310;f(xi“)M<1|W€0,6P{x;o}wgg,€|1>u.
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where 1), is the class of the (properly normalized) constant function in L3(X, 1)
and Py, are the projections corresponding to the specific diagonal entries of Dg,. As
promised, the approximate unitary equivalence (6.6) produced a sequence of convex
combinations of a fixed set of pure states of C (X), and this sequence converges weakly-
x to the state corresponding to p. ¢

6.2 Examples produced via Stinespring representations

The plan is to start from an input data (A, 8, E, ¢) and apply the reconstruction algo-
rithm, but this time engaging Stinespring representations. To start, we need some
preparation. First, we embed S in a C*-algebra B and extend the u.c.p. map E over
AQ® B.

Remark 6.18 Throughout this section, we assume that B is postliminal.{

Next, we point out that Stinespring’s representation engages a positive map with
values in B(H) for some Hilbert space H. For this, we can compose [E with a repre-
sentation of B, but, since any representation desintegrates as in Proposition 6.1, it is
fruitful to examine first the families

Ee :A®B— B(H), E;:=£0E, (6.9)

of u.c.p maps indexed by [£] € B.of course, each [E¢ accepts a representation of the
form

Eg(a ® b) = Vime(a ® b)V € B(Hg), (6.10)

where Vi : Hy — Hp, is an isometry. As the notation suggests, the representation 7
appearing in the above Stinespring representation depends on the chosen representa-
tion & of B.

Proposition 6.19 The representation e is approximately unitarily equivalent to a
representation of the type

D
T ~a Zm T ®L, 6.11)

where ¢ ¢’s are representations of A and the direct sum seen in the right side is over
a countable subset of B.

Proof Proposition 6.13 states that every representation of A ® B is approximately
unitarily equivalent to a direct sum of irreducible representations of A ® B. Since B is
assumed postliminal, then Theorem 6.11 assures us that each irreducible representation
of A ® B takes the form y ® ¢, where both y and ¢ are irreducible representations for
A and B, respectively. Lastly, any direct sum of terms y ® ¢ can be organized over
the irreducible representations of B, hence it can be brought to the stated form, which
incorporates in 7, ¢ the possible multiplicities over ¢. O
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Corollary 6.20 Every E¢ can be weakly-* approximated by an expression
E¢(a ®b) = Zm Ce (e (@) ® C(D)) Vi, (6.12)

where the sum runs over a countable subset of B and Veg : He = Hn, . @ Hy are
isometries.

Our next task is to resolve the structure of the isometries. For this, it will be conve-
nient to fix basis sets {¥, (¢, §)},, and {g; (&)}, for the separable Hilbert spaces Hy,
and He, respectively.

Proposition 6.21 Any isometry Vi ¢ : He — Hy, . ® H; can be reduced to the form

V;,sl(ﬂ(f))=ZIW(§,E)>®Wu(§,€)|<p(§)), (6.13)
n

where W, (¢, &)’s are bounded linear maps from Hg to H;. Similarly, the adjoint
V;S : Hy, . ® H — Hyg takes the form

VIV (@, €)@ 19(0) = ) (u(@, OV ) Wi, H)lp@),  (6.14)
m

where W;; (¢, &) is the conjugate of W, (¢, §). Reciprocally, any family of linear oper-
ators {W,, (¢, §)}, satisfying the constraints

D WL &) W&, §) = In, (6.15)
y

produces an isometry Hg — Hy, . ® H¢ via Eq. (6.13).

Proof Since V; ¢ is alinear bounded map, there exist complex coefficients {A,..; ; (¢, §)}
such that

Veglei(€)) = ZA;L;i,j(é'v E) 1Yu(2,8)) ®lg; (L))

M. j

(6.16)
=D Wu@E)® D Aui (€ H)lei ().
IS J

Then W, (¢, §) is the linear map from Hg to H; defined by the matrix elements
Ayi,j (g, &) in the obvious basis sets. Furthermore, one can manually check that

(15, 8) @ 19(©)), Veelo®))) = (Vielve) ® lox), leg)), (6.17)
if we use the action seen in Eq. (6.14). For the last statement, one can check manually

that constraint (6.15) implies V; £ Ve g = In,. Note that this constraint automatically
implies that each W, is bounded. O
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Proposition 6.22 ¢ can be weakly-x approximated by an expression of the form

Ee@®b) =Y 3 (Wu (. O)lmee@I¥u(C.6) WiE.§) £(b) Wy (£, £)6.18)
[¢] mv

Reciprocally, for any collections of:

o Representations {m; ¢, [¢],[§] € B} of A;
o Basis sets {{,(, §)} C Hy, ;s
o Bounded maps {W, (¢, &) : He — H, [¢],[€] € @} satisfying (6.15),

expression (6.18) defines u.c.p. maps ]Eg from A ® B to B(Hg).

Proof The direct implication is a simple consequence of Corollary 6.20 and Proposi-
tion 6.21. FOF the reverse implication, if we set 7z = @; e ®¢ and Vg = Z% Vees
then expression (6.18) can be assembled back as Vg*ng (a ® b) Ve, hence a u.c.p. map.

O

Remark 6.23 We want to draw attention to two extremal cases for expression (6.18).
On one end of the complexity spectrum sits the case where only one irreducible
representation ¢ is engaged. As we shall see below, iterations of [ then involve only
this representation ¢ . At the other extreme is the case where the sum over ¢ degenerates
to an integral f@ dpg (&) for some regular Borel measure with full support. This case
is difficult to iterate and this is the reason we prefer to work with weak-* approximants
that only involve countable sums. ¢

Proposition 6.24 The system of maps from Proposition 6.22 can be iterated:
B (@ ®b) = 3 (W (1. O)lme, @D ¥, (€1, 6)
T <W/Lp (fp’ §p71)|7[§,,,§,,_1 (ap)hﬂu,, (fpy §p71)> (6.19)
W;Zl ({l» éf) tee W;,ip(é’pv Cp—l)é-p(b)va (§p7 é—p—l) T Wu1 ({l» éJ_),

Whereaa =a1 ® ---®a, € A®P and the sum is over all {’s, u’s and v’s.

Proof The first iteration of I looks as follows:

Be(w @B@@h) = Y W @1, &)lre @)l @1, )
[1], 1,01 (6.20)

W (¢1, S0)¢1 (Baz ® b)) Wiy, (41, &).
Since
¢1(E(az ® b)) = (¢1 0 E) (@2 ® b) = By, (a2 ® b), (6.21)
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we can continue

Eéz)(al ®ar, ® b) :Z(l/ful(g'l, ey o (@) [, (61, 8))

<wﬂ2<;z 0|7y, (@) ¥, (82, £1)) (6.22)
oy (C1, EYW (2, £ 52 (D) Wiy (82, £1) Wy, (81, §).

It is then clear that p iterations lead to expression (6.19). ]

Corollary 6.25 The shift map of [ on ‘B takes the form

0 SP(b) =) Wi (61,6 Wpi (&p, Cp-DEp(D)
W/L,,(é‘pv é‘pfl) T W[;L](é‘l’ E)

(6.23)

Remark 6.26 The conditions of Th. 5.7 are satisfied if & o S°” converges to 1 He) as

p — oo, foreach [£] € B. The right side of (6.23) should help us decide if that is the
case or not. {

Our last task is to evaluate the constructed state:
w@ = (poEP)@®l), aecA®, p>1. (6.24)

By embedding B into Z? B(Hg), we finally have:

Proposition 6.27 Every shift-invariant state over Az can be weakly-+ approximated
as

A®P 5 ¢ > &) = Z (¢z 0 Eép)

3

Je®1), (6.25)

where {¢¢} is a system of c.p. maps on {B(Hg)}, § € B.

Example 6.28 Consider A = C([0, 1]), the algebra of continuous functions over the
closed interval [0, 1]. Then Az coincides with C ([0, 1] XZ), the C*-algebra of contin-
uous functions over the Hilbert cube. The shift-invariant states over Ay are one on one
with the shift-invariant normalized Radon measures over [0, 11*Z. Our theory says
that ergodic measures can be generated via the reconstruction process from a reduce
data (A = C([0, 1]), S, E, ¢), provided we can verify the conditions of Theorem 5.7.
We supply here an example of such data. For this, we take the embedding C*-algebra
of & to be M,(C), whose spectrum consists of a single point, corresponding to the
identity representation. Thus, the sum over ¢ in expression (6.18) disappears and we
only need to fix a single representation & of A. If P is a probability measure over
the interval [0, 1], we take 7 to be the GNS representation corresponding to the state
a+— deP(t) a(t). The Hilbert space of this representation is H; = L2([0, 1], dP)
and the functions from A act by multiplication on the square integrable functions from
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LZ([O, 1], dP). We fix a basis {v,.} for H; and, foru =0,1,2,3 andd < 1/«/5, we
pick

Wo=+v1-3d200, Wy=do,, pu=123, (6.26)

where oy is the unit matrix and the rest of the o’s are Pauli’s matrices. We set W, =0
for the remaining values of u. With these choices, > M le W, = o9 and, as such, the
map

3
Ea®b) = Y f dP(1) Y (DY (Dat) Wi b W, (6.27)

,v=0

is u.c.p.. Furthermore, if we express b € M (C) as b = byoy + b- o, we have

3
Sy =E(1®b) =Y WibW, =booo+ b5, (6.28)
n=0

where L = (1 — 4d2) is a number of absolute value strictly smaller than 1. Therefore,
Son(b) converges as n — o0 to tr(b)og, where tr is the unique trace state over M, (C).
As a consequence, we are in the conditions of Th. 5.7, hence we know for sure that the
reduced space of the constructed state in M>(C) and, furthermore, that the only choice
for a S-invariant state is ¢ (b) = tr(b). Lastly, if 8 is the embedding of a1 ® 1®? ®ay €
A®@P+2) in Ap, we can compute the correlation function

w(B) = (roE)(a; ® $°7 (E(az ® e))) (6.29)
explicitly as

o) = a(EwE) + 37 Y [ AP T Oy i)
W,V

_ (6.30)
f dP(t) Yy, () Yo, (D) (a2(t) — w(az))

tr(W:Zl W:z Wy, Wy,),
where B2 are (any) embeddings of a; 2 in Az. To conclude, we have constructed a

Radon measure I" over the Hilbert cube that has a known correlation decay law, in the
sense that

w7 [arapaa,) - [ artoha) o, ©3n

converges to a constant for p — oo.
This example demonstrates that, even though we are dealing with a commutative
C*-algebra Ay, the reduced space B,, does not necessarily have to be embedded into
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a commutative C*-algebra.” If we replace the interval [0, 1] by a finite set of points, it
is known that 8 can be always taken a finite dimensional commutative C*-algebra (see
example 7.1 in [16]). Things are different for the present context because, in general,
we cannot choose a basis for L2([0, 1], dP) such that all matrix elements seen in (6.19)
are diagonal. ¢
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