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a b s t r a c t

Topological materials and metamaterials opened new paradigms to create and manipulate phases of mat-

ter with unconventional properties. Topological D-class phases (TDPs) are archetypes of the ten-fold clas-

sification of topological phases with particle-hole symmetry. In two dimensions, TDPs support

propagating topological edge modes that simulate the elusive Majorana elementary particles.

Furthermore, a piercing of p-flux Dirac-solenoids in TDPs stabilizes localized Majorana excitations that

can be braided for the purpose of topological quantum computation. Such two-dimensional (2D) TDPs

have been a focus in the research frontier, but their experimental realizations are still under debate.

Here, with a novel design scheme, we realize 2D TDPs in an acoustic crystal by synthesizing both the

particle-hole and fermion-like time reversal symmetries for a wide range of frequencies. The design

scheme leverages an enriched unit cell structure with real-valued couplings that emulate the targeted

Hamiltonian of TDPs with complex hoppings: A technique that could unlock the realization of all topo-

logical classes with passive metamaterials. In our experiments, we realize a pair of TDPs with opposite

Chern numbers in two independent sectors that are connected by an intrinsic fermion-like time-

reversal symmetry built in the system. We measure the acoustic Majorana-like helical edge modes and

visualize their robust topological transport, thus revealing the unprecedented D and DIII class topologies

with direct evidence. Our study opens up a new pathway for the experimental realization of two funda-

mental classes of topological phases and may offer new insights in fundamental physics, materials

science, and phononic information processing.

� 2024 Science China Press. Published by Elsevier B.V. and Science China Press. All rights reserved.

1. Introduction

The discovery of topological insulators and related topological

phases of matter [1–5] has permanently revolutionized our under-

standing of materials. With the inclusion of topological supercon-

ductors and topological semimetals, topological states of matter

form a large family of materials with exotic properties. In this fam-

ily of materials, symmetry plays a pivotal role in their emergent

physical effects. It has been conjectured [6,7] that there are three

fundamental symmetries and combinations thereof that can stabi-

lize boundary modes that are immune to Anderson localization.

This led to the ten-fold classification of strong topological insula-

tors and superconductors [7]. Earlier, Altland and Zirnbauer [8]

have shown that the normal and superconducting mesoscopic sys-

tems fall into ten and only ten distinct classes that can also be dis-

tinguished by fundamental symmetries. It turns out that these

classes predicted and characterized by Altland and Zirnbauer can

be sampled, at least in principles, by the boundary modes of the

topological states from the ten-fold classification table, or by the

bulk metallic states emerging at the topological phase transitions

(see, e.g., Ref. [9] for numerical demonstrations). In addition to

these fundamental characteristics, each topological phase from

the ten-fold table enables unique physics effects, such as the heli-

cal topological edge modes in the AII and DIII class, the stabiliza-

tion of the Majorana zero-dimensional modes by p-flux piercings

in D-class systems, and the emergence of a solid-state analog of
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Majorana particles at the edge boundaries of the D and DIII-class

topological superconductors [10]. For these reasons, exploring

topological states of matter in various symmetry classes is one of

the major goals in the study of topological materials [11]. However,

up till now, not all symmetry classes have been realized in exper-

iments, which is by far still a vigor challenge in the research

frontier.

Historically, around the time when the ten-fold table was per-

fected, topological phases were predicted for classical waves as

well. For instance, topological Chern insulators, i.e., A-class topo-

logical insulators featured with unidirectional chiral edge states,

were predicted for electromagnetic [12] and mechanical [13] sys-

tems. With the advantages in fabrication, tunability, and measure-

ment, classical wave systems are becoming a rising force in the

study of topological phenomena and their applications (see, e.g.,

[14–30]). For instance, it was proposed theoretically [13] and real-

ized experimentally [14] that, with external driving, a mechanical

system exhibits a Chern insulator phase. A mechanical analog of a

quantum spin-Chern insulator (i.e., an AII-class topological insula-

tor with additional U 1ð Þ symmetry) was later realized using

smartly-designed couplings in a lattice of coupled pendula [15].

Other topological phases such as topological semimetals [31–37],

higher-order topological insulators [38–41], fragile topological

insulators [42], Kitaev chains [43], were realized in mechanical sys-

tems as well. However, as evidenced by the recent review articles

[11,16–20], with decades of efforts, several fundamental topologi-

cal classes, for instance, the topological D and DIII classes in dimen-

sion two and higher, remain outside the reach of experimental

realizations, neither in condensed matter systems [11] nor in clas-

sical waves [16–20] (see Table 1). In superconductors, the topolog-

ical D class corresponds to px þ ipy superconductors that support

chiral Majorana edge modes. The experimental discovery of such

a topological matter has been under debate for years [44].

Here, we fill this gap by realizing 2D TDPs with acoustic meta-

materials. The key features of TDPs are the non-trivial bulk topol-

ogy and the underlying particle-hole symmetry. TDPs from the DIII

class have the additional feature of a fermionic time reversal sym-

metry. These symmetries are very difficult to achieve in the exist-

ing forms of metamaterials [16–20] because they are anti-unitary

and have to be enforced over a substantial window of frequencies.

Here, we exploit an unconventional approach to overcome such a

challenge and realize an acoustic TDP with pseudospin-polarized

Chern number �1. Our solution here is based on lattice models

of coupled acoustic cavities with enriched unit-cell structures,

where a projected symmetry of a subset of bands can simulate

any targeted symmetries, covering all ten symmetry classes [45].

Such a scheme can generate the exact combinations of symmetries

as well as the topology of the bands needed for the TDP, with a

design based only on real-valued couplings. This design has the

advantage of intrinsic broad band couplings that realize the tar-

geted symmetries without fine tuning. With such a design, we real-

ize the acoustic TDP with gapless topological edge modes that

exhibit the particle-hole symmetry. Using acoustic pump-probe

measurements, we directly observe the Majorana-like topological

edge modes of the TDP and visualize the robust one-dimensional

(1D) topological sound transport along the edge boundaries.

2. Methods

2.1. Numerical simulations

All simulations of acoustic wave dynamics and calculation of

acoustic energy bands were conducted by using acoustic pressure

module of the commercial finite-element solver COMSOL Multi-

physics. Due to the huge acoustic impedance mismatch between

air and the photosensitive resin used in the 3D printing and trans-

parent hoses composing of polyvinyl chloride, the latter two con-

stituents can be treated as sound hard boundaries in numerical

simulation. Sound waves encapsulated inside the sample propa-

gate in the air with a mass density 1.23 kg/m3 and a speed

343 m/s at room temperature (around 20 �C). The bulk dispersion

relations of the acoustic waves in the 2D sonic crystal are

calculated based on a primitive lattice with the Floquet Bloch

boundary conditions imposed on the edge boundaries in both

x- and y-directions and sound hard boundary conditions on the

other boundaries. To calculate the projected bands of the ribbon-

shaped supercell, the system is set as periodic in x-direction but

finite in y-direction with ten primitive cells. Specifically, to obtain

the acoustic pressure maps in finite lattice, point source was fixed

at the bottom-right sites of the sample with frequencies in the bulk

band gap.

2.2. Experimental measurements

Every column of sample along y direction was manufactured by

3D printing technology using photosensitive resin and was assem-

bled layer-by-layer along x direction. Due to the huge complexity

of coupling between the nearest neighboring unit cells and the pre-

cision of 3D printing machine, our experimental sample cannot be

fabricated as a whole directly. Soft tube composing of polyvinyl

chloride with identical length can facilitate the couplings of differ-

ent cavities and it is also hard enough for acoustic wave to be

regarded as closed boundaries in simulation. To measure the

acoustic pressure, a headphone of a diameter of 6 mm is utilized

for acoustic excitations with the frequency sweeping from 0.5 to

1.2 kHz at a step of 1 Hz. The headphone is placed and enclosed

in the top cavity of the sample to excite corresponding eigenstates.

A tiny microphone is connected with the network analyzer (Key-

sight E5061B) and inserted into each cavity of the upper layer to

detect the acoustic pressure. Such measurements contain both

the amplitude and phase profiles of the acoustic pressure field,

thanks to the data processing by the network analyzer (i.e., the

Fourier transformation of the real-time acoustic signal). Through

fast Fourier transformations of the detected acoustic pressure pro-

files in real-space at each pump-probe frequency, we map the

detected signals to wavevector-frequency space which are then

compared with the simulated acoustic dispersions in the sample.

The signal in the wavevector-frequency space is essentially the

spectral functions of the acoustic phonons in the system. In our

experiments, we perform such measurements on the sample edge

and compare the acoustic spectral functions with the simulated

acoustic dispersions of the edge states.

3. Results

3.1. Theoretical model

While the minimal representative lattice models for each class

in the periodic table of topological insulators and superconductors

are well known [7], most of these lattice models, in particular those

corresponding to the TDPs, contain complex hopping terms. In

acoustic crystals, such complex couplings can be implemented

with finely tailored acoustic bridges, but such a design works only

at a single frequency. This is unacceptable in the present context

because the symmetries of topological phases need to be imple-

mented over a broad range of frequencies for both the bulk and

edge states. Our design principle here rests on the observation that

complex couplings can be emulated with real-valued couplings if

the degrees of freedom are doubled [45]. Specifically, this goal is

achieved by replacing the imaginary unit i ¼
ffiffiffiffiffiffiffi
�1

p
with the matrix
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0 1
�1 0

� �
. This substitution maps any complex tight-binding

Hamiltonian H ¼ Pbtr;r0cyrcr0 (with cyr and cr0 denoting the creation

and annihilation operators for the local degrees of freedom r and

r0, respectively) of the targeted topological symmetry class to a

real-valued Hamiltonian H0, by expanding the hopping matrices

btr;r0 as

btr;r0 ! bv
r;r0 ¼

Re btr;r0
� �

Im btr;r0
� �

�Im btr;r0
� �

Re btr;r0
� �

0

B@

1

CA: ð1Þ

Therefore, if H has N degrees of freedom in each unit cell and

btr;r0 are N � N matrices, then H0 has 2N degrees of freedom in

each unit cell and bv
r;r0 are 2N � 2N matrices. As this mapping

preserves all the algebraic relations, H and H0 thus have the

same spectrum, but the spectrum of H0 is doubly degenerate

due to the doubling of the degrees of freedom. Moreover, the

bulk-boundary correspondence is preserved as well: If H with

a boundary displays topological edge modes, so does H0. A cru-

cial observation is that the Hamiltonian H0 with real-valued cou-

pling matrices can serve as the dynamical matrix of a passive

mechanical metamaterial, which can be implemented by placing

2N resonators in each unit cell and by engineering their cou-

plings according to Eq. (1) [45].

Regarding the symmetries of such mechanical systems, we

point out that such dynamical matrices automatically commute

with U ¼ 0 I

�I 0

� �
(I is the N � N identity matrix) and hence

T ¼ UK is a symmetry operator (K is the complex conjugation

operator). Therefore, a so-designed mechanical system has a

built-in fermion-like time reversal symmetry T 2 ¼ U2 ¼ �1 and

Kramers degeneracy at all time-reversal invariant momenta, a fea-

ture that is required for the DIII class. Our realization of the

fermion-like time-reversal symmetry is similar to that in Ref.

[15] but different from the approaches based on crystalline sym-

metries [27,41]. In the latter cases, the Kramers degeneracy can

be realized only in one or a portion of the time-reversal invariant

momenta. The matrix U has two eigenvalues, �i, which divide

the phononic spectrum of the mechanical system into two inde-

pendent sectors that are invariant by the dynamics of phonons,

and the projections onto these sectors are denoted as P�. One sec-

tor is mapped into the other by the fermion-like time reversal sym-

metry [45]. It was revealed theoretically that the projected

Hamiltonians P�H
0
P� onto each of these sectors have the same

set of symmetries as the targeted Hamiltonian [45,46] (see the

Supplementary materials). Yet these two sectors carry opposite

Chern numbers, as they are the fermion-like time-reversal coun-

terparts of each other.

In our case, we choose the following targeted Hamiltonian to be

the minimal model for the D-class in two dimensions [7]

H ¼ it
X

j¼1;2

rjb Sj � Syj

� �
þ r3b mþ t

X

j¼1;2

Sj þ Syj

� �" #

; ð2Þ

where rj’s (j ¼ 1;2;3 representing the x, y, and z directions, sepa-

rately) are the Pauli matrices. Sj ¼
P

r
cyrþaj

cr are the translation by

the primitive lattice vector aj (j ¼ 1;2) in the square lattice. t and

m are the hopping and Dirac mass parameters, respectively. It has

the particle-hole symmetry implemented by the anti-unitary oper-

ator HPH with H
2
PH=1. The phase diagram of this Hamiltonian and

the associated topological edge states can be calculated analytically

[46]. Transforming into the wavevector space, the above Hamilto-

nian becomes,

H kð Þ ¼ 2tsin kxað Þrx þ 2tsin kya
� �

ry

þ mþ 2tcos kxað Þ þ 2tcos kya
� �	 


rz; ð3Þ

where a is the lattice constant. This model, which is also known as

the Qi-Wu-Zhang model [5], exhibits two nontrivial gapped phases

with Chern numbers C ¼ sgn mð Þ if mj j < 4t, a trivial gapped phase

with Chern number C ¼ 0 for mj j > 4t, and topological transition

points at m ¼ 0 and m ¼ �4t (see the Supplementary materials).

The topologically gapped phase, in the context of topological super-

conductors, supports gapless Majorana edge states with particle-

hole symmetry [46]. The procedure explained above supplies out

of H a real-valued dynamical matrix H0 with four degrees of freedom

per unit cell, displaying a fermion-like time reversal symmetry

implemented by the operator
0 I2
�I2 0

� �
K and a particle-hole sym-

metry operator HPH ¼ 0 rx

rx 0

� �
K, where I2 is the 2 �2 identity

matrix. Therefore, H0 belongs to the DIII class and such mechanical

system will support topological edge states that are the classical

analog of the helical Majorana edge states in time-reversal invariant

topological superconductors. Moreover, due to the built-in fermion-

like symmetry, the projected dynamical matrices P�H
0
P� each

realize a D-class topological phase which can be observed and

manipulated independently in the laboratory.

We remark that, as our system consists of two independent sec-

tors of D-class topological phases with opposite Chern numbers,

the final outcome resembles a DIII class topological phase. It

should be pointed out that, however, as the two sectors are inde-

pendent, the essential topological physics is the same as that of

the D-class topological phases. This scenario is like a topological

insulator consists of two independent copies of quantum anoma-

lous Hall systems with opposite Chern numbers as the schematics

illustrated in Fig. 1a. Such a topological insulator seems like a

quantum spin Hall insulator but is essentially different, as this

topological phase is essentially the same as the quantum anoma-

lous Hall insulators. In comparison, the quantum spin Hall insula-

tor is characterized by different topology where the spin-orbit

coupling and the Kramers degeneracy play a key role.

Table 1

Topological symmetry classes in two-dimensional (2D) systemsa.

Topological class Time-reversal

symmetry

Particle-hole

symmetry

Chiral symmetry Realization in 2D metamaterials

A 0 0 0
p

[14,30]

D 0 +1 0 �
DIII �1 +1 1 �
AII �1 0 0

p
[15,27]

C 0 �1 0 �
a There are five nontrivial topological classes in 2D systems, characterized by combinations of time-reversal, particle-hole, and chiral symmetries. The number 0 in each

column stands for absence of symmetry, while �1 indicate the presence of a symmetry together with the even or odd character of the symmetry operator relative to squaring.

The check marks in the last column indicate whether the topological symmetry class has been realized in 2D metamaterials in the past, and citations to the relevant works are

placed next to the marks.
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3.2. Acoustic metamaterial design

The couplings of the mechanical resonators, as derived from the

mapped Hamiltonian H0, are illustrated in Fig. 1b�d. As seen in

Fig. 1c and d, each resonator has eight couplings of equal strength

with the neighboring resonators, but they are positive as well as

negative. By realizing these couplings with coupled acoustic cavi-

ties, we arrive at an acoustic crystal supporting TDPs with robust

topological sound transport at the edges, as evidenced by the COM-

SOL simulation results in Fig. 1e�h. Specifically, these simulations

show that the edge states can propagate both clockwise and coun-

terclockwise without backscattering: a key feature of the helical

edge states (Fig. 1e and f). Furthermore, the topological edge waves

can propagate around a defect, showing robustness of the topolog-

ical sound transport. These properties, together with the results

shown in Fig. 2, demonstrate the effectiveness of our approach in

simulating various topological classes.

Using the above design, we fabricate the acoustic topological

crystal with the commercial 3D printing technology based on

photosensitive resins. The unit-cell structure of the acoustic crystal

and the fundamental acoustic modes are depicted in Fig. 2a and b.

The fabricated sample with 10 � 10 unit-cells is shown in Fig. 2c.

To realize both the positive and negative couplings sketched in

Fig. 1c and d, we design the H-shaped acoustic cavities. As shown

in Fig. 2b, in these cavities the first resonating mode has uniform

pressure field along the long arms, but the two arms have opposite

acoustic pressures. The positive and negative couplings between

the H-shaped cavities are then realized by the in-phase and out-

of-phase couplings via short acoustic bridges, respectively

(Fig. 2b). The other advantage of the design here is that the bridges

can be attached to four ends, reducing the load per end. Moreover,

the strength of each coupling is determined by the length of the

acoustic bridge which is the same for all couplings in our system

to realize the model in Eq. (2).

With four H-shaped resonators, R1, R2, R3, and R4, in a unit-cell,

we achieve the couplings sketched in Fig. 1c and d to realize the

targeted Hamiltonian in Eq. (2). The constant mass term in

Eq. (2) is realized by the difference in the first resonating mode

frequency of the H-shaped cavities enabled by tuning the height

of the resonators (Fig. 2b). Specifically, R1 and R3 have a height

h2, while R2 and R4 have a height h1, and m / h1 � h2ð Þ. The geo-

metric parameters are as follows: The lattice constant of the square

lattice is a = 80 mm. The diameter of the long arms of the H-shaped

cavity is d1 = 22 mm. The two long arms have a center-to-center

distance of l1 = 27 mm, while the tube connecting them has a

diameter d2 = 3 mm. The heights of the H-shaped resonators are

chosen as h1 = 57.8 mm and h2 = 62.2 mm. All couplings between

the H-shaped resonators are realized by soft tubes of the

same length 120 mm and the same diameter d3 = 2 mm. These soft

tubes are glued to the 3D-printed framework of the H-shaped

cavities. The synthetic symmetries and band topology of the

acoustic crystal are analyzed in detail in the Supplementary

materials.

Based on the above design, full-wave simulations based on

COMSOL Multiphysics give the acoustic bulk band structure

(Fig. 2d) comparable with the tight-binding band structure

(Fig. 2e) generated with the couplings from Fig. 1c and d. Note that,

in acoustic systems, we solve the acoustic wave equation, and the

eigenvalues have the meaning of resonant frequency square, which

is to be compared with the tight-binding energy. In addition, the

band structure (Fig. 2d) should be referenced from the middle of

the acoustic band gap occurring at the finite angular frequency

square 2:8� 107 rad2/s2. The acoustic bands show a notable spec-

tral symmetry with respect to the mid-gap angular frequency

square: A sign of the successful realization of the particle-hole

symmetry in acoustic systems.

Experimentally, we use the pump-probe technique to measure

the Majorana-like acoustic edge modes. Here, the edge modes are

excited with an acoustic source (a tiny speaker) inserted in a cavity

at the edge boundarywith the excitation frequency in the bulk band

gap. Meanwhile, an acoustic detector (a small microphone) is

inserted into another cavity at the edge boundary to probe the

acoustic signal in that cavity. A network analyzer is used to track

the detected acoustic signal at the excitation frequency. As the net-

work analyzer Fourier transforms the time-resolved acoustic signal,

the measurement gives both the amplitude and the phase of the

Fig. 1. (Color online) A TDP realized with an acoustic platform. (a) Schematic of a TDP from DIII-class with a doubled symmetry representation and hosting two branches of

counter-propagating Majorana-like topological edge states. (b) Schematic of the mechanical model that implements the TDP, realized on a square-lattice acoustic

metamaterial. Each site (orange ellipse) consists of four acoustic resonators (R1, R2, R3, and R4) that are coupled together in a designed way (blue lines), as illustrated in (c) and

(d). (c) gives the couplings in the x direction, while (d) for the y direction. All couplings are of the same strength. (e)�(h) Robust topological transport of sound in the acoustic

TDP at different boundary conditions as calculated from full-wave simulations. (e) and (f) Half-open boundaries where the open edge boundaries are indicated by the blue

dotted lines. (g) Close boundary condition without defect. (h) Close boundary condition with a defect. In (e)�(h) acoustic waves are excited by a point source (green star) with

a frequency in the topological band gap (around 840 Hz). The dissipation of acoustic waves is not included in the simulations.
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pump-probe signal (see Methods and the Supplementary materials

for details). Bymeasuring the distribution of the pump-probe signal

and Fourier transforming the signal from spatial to wavevector

dependence, the acoustic edge spectrum is obtained (Fig. 2f) which

is consistentwith both the simulation and tight-binding calculation

(Fig. 2g). These results show excellently the emergence of gapless

topological edge states in the acoustic band gap, confirming an

important signature of the TDP. Moreover, both the bulk and edge

spectra are nearly symmetric around the mid-gap. The Dirac point

in the edge band is at 2:78� 107 rad2/s2 which is very close to the

mid-gap angular frequency square of the bulk. Small deviation

between the experiments and the simulation for the edge bands

may originate from the intrinsic acoustic dissipation.

We remark that in Fig. 2f slight lift of the Kramers degeneracy at

kx ¼ p
a
can be noted which is due to the long-range hoppings that

are almost unavoidable in acoustic metamaterials. These

unwanted additional hoppings make the acoustic dispersion devi-

ates from the ideal tight-binding model slightly. Consequently, the

Kramers degeneracy at kx ¼ p
a
is lifted a little bit. Nevertheless, such

degeneracy lifting is still negligible and much smaller than in pre-

vious realizations of fermion-like time-reversal symmetry based

on the crystalline symmetry [27,41].

The topological edge band is constrained by the synthetic

particle-hole and time-reversal symmetries, as illustrated in

Fig. 2g. These constraints dictate that an edge band necessarily

crosses the mid gap point an odd number of times and such cross-

ing can only be at the k ¼ 0 or k ¼ p. For our acoustic crystal, this

crossing happens at k ¼ 0, as shown in Fig. 2f. Moreover, these

edge bands must have zero curvature when they cross the middle

of the bulk band gap due to these symmetry constraints. This

vanishing curvature implies that a wave packet excited around

the mid-gap will exhibit no deformation. Therefore, such wave-

packet will propagate very much like a massless particle traveling

along the edge of the sample with a speed given by the slope of the

edge band at k ¼ 0, thus excellently emulating the elusive Majo-

rana elementary particle. This phenomenon, which though cannot

be tested in our system due to the small size, can be verified in

future systems with much larger size.

A direct manifestation of the unique band topology and the

above symmetry features is the robust dynamics of the acoustic

Fig. 2. (Color online) Observation of the Majorana-like helical edge states in the acoustic TDP. (a) Specific design of the acoustic metamaterial using H-shaped acoustic

resonators (orange) and the short-bridge couplings (gray) among them. (b) The first acoustic resonating modes in the H-shaped resonators and the realization of the positive

and negative couplings. The color scheme represents the acoustic pressure (i.e., the acoustic wave amplitude). (c) A photo of the experimental system. The main part of the

bilayer acoustic metamaterial is fabricated by the 3D printing technology based on resins. Couplings between resonators are realized by soft tubes. Black plugs are used to

facilitate the insertion of the tiny speaker (source) and microphone (detector) which are connected to a network analyzer. Inset: Zoom-in top-view of the system. The black

dashed box (main) and the green dashed box (inset) indicate a unit-cell. (d) Simulated bulk acoustic bands. (e) Bulk bands from the tight-binding model with m ¼ 1 and

t ¼ �0:5. (f) Measured and simulated acoustic dispersions at the edge boundary. (g) Calculated acoustic dispersions at the edge boundary from the tight-binding model. Note

that the tight-binding model here refers to the model depicted in Fig. 1c and d. Here A, B, and C label three edge states that are connected with each other via the particle-hole

(PH) symmetry and the time-reversal (TR) symmetry. Dashed lines in (d), (e) and (g) label the mid-gap frequency square, while in (f) it labels the frequency square of the Dirac

point.
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edge waves. For this purpose, we measure the acoustic wave

propagation in and outside the topological band gap in our sample

(a top-view scheme is given in Fig. 3a). By selectively exciting only

one symmetry sector of the acoustic edge states in the topological

band gap, we can achieve unidirectional acoustic wave propaga-

tion in both the clockwise and anticlockwise directions (Fig. 3b

and c). The results show that the acoustic edge waves can perfectly

turn around the sample corner without noticeable back reflection.

In sharp contrast, when the excitation frequency is outside the

topological band gap, the excited acoustic wave propagates in all

directions in the sample (Fig. 3d). A careful quantitative examina-

tion on the wave amplitude along the propagation channels (either

edge or bulk) shows that the acoustic edge waves propagate stea-

dily along the edge channels in a unidirectional way for each sec-

tor, except an overall decay due to the intrinsic dissipation of the

acoustic waves (Fig. 3e and f). In comparison, the bulk acoustic

wave spreads out in all directions (Fig. 3g). More details and

discussion on the dissipation effect can be found in the Supple-

mentary materials.

We now test the robustness of the topological edge channel for

acoustic wave propagation by introducing defects in the edge

channel (Fig. 4a). In conventional 1D acoustic waveguides, such

defects cause severe backscattering which substantially reduces

the performance of the acoustic waveguides [16]. In contrast, in

our acoustic TDP, even when a notable defect is introduced at

the edge boundary by removing one unit-cell, the acoustic wave

still propagates steadily along the edge channel (Fig. 4b and c). This

stable wave dynamics in the edge channel is indicated when both

the clockwise and anticlockwise edge modes are excited or when

only one of them is excited. In both these cases, the acoustic wave

propagates perfectly around the defect. A careful look at the quan-

titative measurement of the acoustic wave amplitude along the

Fig. 3. (Color online) Observation of topological edge transport in the acoustic TDP. (a) Schematic top-view of the lattice structure of the acoustic metamaterial. Numbers

label the sites where the edge waves and bulk waves propagate through which will be used in (e)�(g). (b) Transport of sound along the anticlockwise edge when the left and

lower edge boundaries are open (indicated by the blue dotted lines). (c) Transport of sound along the clockwise edge when the right and upper edge boundaries are open

(indicated by the blue dotted lines). (d) Transport of sound in the bulk. (e)�(g) Acoustic pressure, i.e., the sound wave amplitude, along three transport paths: The

anticlockwise edge path (A route), the clockwise edge path (C route), and the bulk path (B route) at different conditions. (e) The same condition as in (b) with an excitation

frequency 842.2 Hz. (f) The same condition as in (c) with an excitation frequency 848.4 Hz. (g) The same condition as in (d) with an excitation frequency 875 Hz.

Fig. 4. (Color online) Visualizing robust topological transport of sound in acoustic TDP. (a) Schematic top-view of the lattice structure of the acoustic metamaterial with a

defect introduced by removing four cavities (dashed ones at the right edge). Numbers label the sites where the edge waves and bulk waves propagate through which will be

used in (d) and (e). (b) Topological sound transport along the edges with closed edge boundaries and the defect (excitation frequency 844 Hz). (c) Topological sound transport

along the anticlockwise edge path with the defect where the left and lower edge boundaries (dashed blue lines) are open (excitation frequency 840 Hz). (d), (e) The acoustic

wave amplitude along the clockwise (C route) and anticlockwise (A route) edge paths as well as along the bulk path (B route) for the condition corresponding to (b) and (c),

respectively.
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edge channels also confirms the stable wave propagation (Fig. 4d

and e): In Fig. 4d, the acoustic wave amplitudes along both the

clockwise and anticlockwise routes are comparable, despite that

the acoustic edge wave along the anticlockwise path encounters

the defect quickly after it is excited. This is strong evidence that

the defect does not disturb the acoustic wave propagation in the

edge channel. Fig. 4e confirms the robustness of the edge wave

dynamics again by the stable unidirectional wave propagation. In

particular, the acoustic wave amplitude does not have any notable

change when propagating around the defect and the corner of the

sample. These careful observations indicate signatures of a strong

topological insulator phase.

4. Discussions and outlook

Our study unveils a new type of topological metamaterials sup-

porting D- and DIII-class topological phases, which are featured

with a combination of synthetic particle-hole and fermionic time

reversal symmetries. With acoustic pump-probe measurements,

we verified the existence of the expected topological helical edge

states in our acoustic TDP and demonstrated the robust topological

sound transport in the edge channels. Our technique for realizing

TDPs with metamaterials made of passive elements offers a power-

ful platform for materialization of various topological symmetry

classes, including those that have not yet been realized so far

(Table 1).

Furthermore, the realization of TDPs can enable Majorana-like

local modes stabilized by p-fluxes. As demonstrated in Refs.

[47,48], the braiding and fusion of p-fluxes are non-trivial and

worth exploring even at the one-particle level covered by the lin-

ear wave equation regime employed here. We mention that, in

one dimension, the work on Majorana-like modes implemented

with classical degrees of freedom is vigorously underway, particu-

larly with the recent work [43,49–54] demonstrating the experi-

mental control at a fascinating level that makes the classical

systems feasible for information storage and processing. In 2D

acoustic systems, implementing the p-fluxes will require nonuni-

form perturbations of the couplings which will be an important

direction in the future.
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