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Topological materials and metamaterials opened new paradigms to create and manipulate phases of mat-
ter with unconventional properties. Topological D-class phases (TDPs) are archetypes of the ten-fold clas-
sification of topological phases with particle-hole symmetry. In two dimensions, TDPs support
propagating topological edge modes that simulate the elusive Majorana elementary particles.
Furthermore, a piercing of n-flux Dirac-solenoids in TDPs stabilizes localized Majorana excitations that
can be braided for the purpose of topological quantum computation. Such two-dimensional (2D) TDPs
have been a focus in the research frontier, but their experimental realizations are still under debate.
Here, with a novel design scheme, we realize 2D TDPs in an acoustic crystal by synthesizing both the
particle-hole and fermion-like time reversal symmetries for a wide range of frequencies. The design
scheme leverages an enriched unit cell structure with real-valued couplings that emulate the targeted
Hamiltonian of TDPs with complex hoppings: A technique that could unlock the realization of all topo-
logical classes with passive metamaterials. In our experiments, we realize a pair of TDPs with opposite
Chern numbers in two independent sectors that are connected by an intrinsic fermion-like time-
reversal symmetry built in the system. We measure the acoustic Majorana-like helical edge modes and
visualize their robust topological transport, thus revealing the unprecedented D and DIII class topologies
with direct evidence. Our study opens up a new pathway for the experimental realization of two funda-
mental classes of topological phases and may offer new insights in fundamental physics, materials
science, and phononic information processing.

© 2024 Science China Press. Published by Elsevier B.V. and Science China Press. All rights reserved.
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1. Introduction

The discovery of topological insulators and related topological
phases of matter [1-5] has permanently revolutionized our under-
standing of materials. With the inclusion of topological supercon-
ductors and topological semimetals, topological states of matter
form a large family of materials with exotic properties. In this fam-
ily of materials, symmetry plays a pivotal role in their emergent
physical effects. It has been conjectured [6,7] that there are three
fundamental symmetries and combinations thereof that can stabi-
lize boundary modes that are immune to Anderson localization.
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This led to the ten-fold classification of strong topological insula-
tors and superconductors [7]. Earlier, Altland and Zirnbauer [8]
have shown that the normal and superconducting mesoscopic sys-
tems fall into ten and only ten distinct classes that can also be dis-
tinguished by fundamental symmetries. It turns out that these
classes predicted and characterized by Altland and Zirnbauer can
be sampled, at least in principles, by the boundary modes of the
topological states from the ten-fold classification table, or by the
bulk metallic states emerging at the topological phase transitions
(see, e.g., Ref. [9] for numerical demonstrations). In addition to
these fundamental characteristics, each topological phase from
the ten-fold table enables unique physics effects, such as the heli-
cal topological edge modes in the All and DIII class, the stabiliza-
tion of the Majorana zero-dimensional modes by m-flux piercings
in D-class systems, and the emergence of a solid-state analog of
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Majorana particles at the edge boundaries of the D and DIlI-class
topological superconductors [10]. For these reasons, exploring
topological states of matter in various symmetry classes is one of
the major goals in the study of topological materials [11]. However,
up till now, not all symmetry classes have been realized in exper-
iments, which is by far still a vigor challenge in the research
frontier.

Historically, around the time when the ten-fold table was per-
fected, topological phases were predicted for classical waves as
well. For instance, topological Chern insulators, i.e., A-class topo-
logical insulators featured with unidirectional chiral edge states,
were predicted for electromagnetic [12] and mechanical [13] sys-
tems. With the advantages in fabrication, tunability, and measure-
ment, classical wave systems are becoming a rising force in the
study of topological phenomena and their applications (see, e.g.,
[14-30]). For instance, it was proposed theoretically [13] and real-
ized experimentally [14] that, with external driving, a mechanical
system exhibits a Chern insulator phase. A mechanical analog of a
quantum spin-Chern insulator (i.e., an All-class topological insula-
tor with additional U(1) symmetry) was later realized using
smartly-designed couplings in a lattice of coupled pendula [15].
Other topological phases such as topological semimetals [31-37],
higher-order topological insulators [38-41], fragile topological
insulators [42], Kitaev chains [43], were realized in mechanical sys-
tems as well. However, as evidenced by the recent review articles
[11,16-20], with decades of efforts, several fundamental topologi-
cal classes, for instance, the topological D and DIII classes in dimen-
sion two and higher, remain outside the reach of experimental
realizations, neither in condensed matter systems [11] nor in clas-
sical waves [16-20] (see Table 1). In superconductors, the topolog-
ical D class corresponds to p, + ip, superconductors that support
chiral Majorana edge modes. The experimental discovery of such
a topological matter has been under debate for years [44].

Here, we fill this gap by realizing 2D TDPs with acoustic meta-
materials. The key features of TDPs are the non-trivial bulk topol-
ogy and the underlying particle-hole symmetry. TDPs from the DIII
class have the additional feature of a fermionic time reversal sym-
metry. These symmetries are very difficult to achieve in the exist-
ing forms of metamaterials [16-20] because they are anti-unitary
and have to be enforced over a substantial window of frequencies.
Here, we exploit an unconventional approach to overcome such a
challenge and realize an acoustic TDP with pseudospin-polarized
Chern number +1. Our solution here is based on lattice models
of coupled acoustic cavities with enriched unit-cell structures,
where a projected symmetry of a subset of bands can simulate
any targeted symmetries, covering all ten symmetry classes [45].
Such a scheme can generate the exact combinations of symmetries
as well as the topology of the bands needed for the TDP, with a
design based only on real-valued couplings. This design has the
advantage of intrinsic broad band couplings that realize the tar-
geted symmetries without fine tuning. With such a design, we real-
ize the acoustic TDP with gapless topological edge modes that
exhibit the particle-hole symmetry. Using acoustic pump-probe
measurements, we directly observe the Majorana-like topological
edge modes of the TDP and visualize the robust one-dimensional
(1D) topological sound transport along the edge boundaries.

2. Methods
2.1. Numerical simulations

All simulations of acoustic wave dynamics and calculation of
acoustic energy bands were conducted by using acoustic pressure
module of the commercial finite-element solver COMSOL Multi-
physics. Due to the huge acoustic impedance mismatch between
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air and the photosensitive resin used in the 3D printing and trans-
parent hoses composing of polyvinyl chloride, the latter two con-
stituents can be treated as sound hard boundaries in numerical
simulation. Sound waves encapsulated inside the sample propa-
gate in the air with a mass density 1.23 kg/m> and a speed
343 m/s at room temperature (around 20 °C). The bulk dispersion
relations of the acoustic waves in the 2D sonic crystal are
calculated based on a primitive lattice with the Floquet Bloch
boundary conditions imposed on the edge boundaries in both
x- and y-directions and sound hard boundary conditions on the
other boundaries. To calculate the projected bands of the ribbon-
shaped supercell, the system is set as periodic in x-direction but
finite in y-direction with ten primitive cells. Specifically, to obtain
the acoustic pressure maps in finite lattice, point source was fixed
at the bottom-right sites of the sample with frequencies in the bulk
band gap.

2.2. Experimental measurements

Every column of sample along y direction was manufactured by
3D printing technology using photosensitive resin and was assem-
bled layer-by-layer along x direction. Due to the huge complexity
of coupling between the nearest neighboring unit cells and the pre-
cision of 3D printing machine, our experimental sample cannot be
fabricated as a whole directly. Soft tube composing of polyvinyl
chloride with identical length can facilitate the couplings of differ-
ent cavities and it is also hard enough for acoustic wave to be
regarded as closed boundaries in simulation. To measure the
acoustic pressure, a headphone of a diameter of 6 mm is utilized
for acoustic excitations with the frequency sweeping from 0.5 to
1.2 kHz at a step of 1 Hz. The headphone is placed and enclosed
in the top cavity of the sample to excite corresponding eigenstates.
A tiny microphone is connected with the network analyzer (Key-
sight E5061B) and inserted into each cavity of the upper layer to
detect the acoustic pressure. Such measurements contain both
the amplitude and phase profiles of the acoustic pressure field,
thanks to the data processing by the network analyzer (i.e., the
Fourier transformation of the real-time acoustic signal). Through
fast Fourier transformations of the detected acoustic pressure pro-
files in real-space at each pump-probe frequency, we map the
detected signals to wavevector-frequency space which are then
compared with the simulated acoustic dispersions in the sample.
The signal in the wavevector-frequency space is essentially the
spectral functions of the acoustic phonons in the system. In our
experiments, we perform such measurements on the sample edge
and compare the acoustic spectral functions with the simulated
acoustic dispersions of the edge states.

3. Results
3.1. Theoretical model

While the minimal representative lattice models for each class
in the periodic table of topological insulators and superconductors
are well known [7], most of these lattice models, in particular those
corresponding to the TDPs, contain complex hopping terms. In
acoustic crystals, such complex couplings can be implemented
with finely tailored acoustic bridges, but such a design works only
at a single frequency. This is unacceptable in the present context
because the symmetries of topological phases need to be imple-
mented over a broad range of frequencies for both the bulk and
edge states. Our design principle here rests on the observation that
complex couplings can be emulated with real-valued couplings if
the degrees of freedom are doubled [45]. Specifically, this goal is

achieved by replacing the imaginary unit i = v/—1 with the matrix
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Table 1
Topological symmetry classes in two-dimensional (2D) systems®.
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Topological class Time-reversal Particle-hole

Chiral symmetry Realization in 2D metamaterials

symmetry symmetry
A 0 0 0 v [14,30]
D 0 +1 0 x
DIIl -1 +1 1 x
All -1 0 0 v [15,27]
c 0 -1 0 x

2 There are five nontrivial topological classes in 2D systems, characterized by combinations of time-reversal, particle-hole, and chiral symmetries. The number 0 in each
column stands for absence of symmetry, while +1 indicate the presence of a symmetry together with the even or odd character of the symmetry operator relative to squaring.
The check marks in the last column indicate whether the topological symmetry class has been realized in 2D metamaterials in the past, and citations to the relevant works are

placed next to the marks.
0 1

(5 s

Hamiltonian H = YT, clc. (with ¢} and ¢, denoting the creation
and annihilation operators for the local degrees of freedom r and
r’, respectively) of the targeted topological symmetry class to a
real-valued Hamiltonian H’, by expanding the hopping matrices

trp as
Re (fr,/) Im (f,_,,)

—Im (ﬂw) Re (ﬂw)

Therefore, if H has N degrees of freedom in each unit cell and
trm are N x N matrices, then Hs has 2N degrees of freedom in
each unit cell and 7,,. are 2N x 2N matrices. As this mapping
preserves all the algebraic relations, H and H' thus have the
same spectrum, but the spectrum of H' is doubly degenerate
due to the doubling of the degrees of freedom. Moreover, the
bulk-boundary correspondence is preserved as well: If H with
a boundary displays topological edge modes, so does H'. A cru-
cial observation is that the Hamiltonian H' with real-valued cou-
pling matrices can serve as the dynamical matrix of a passive
mechanical metamaterial, which can be implemented by placing
2N resonators in each unit cell and by engineering their cou-
plings according to Eq. (1) [45].

Regarding the symmetries of such mechanical systems, we
point out that such dynamical matrices automatically commute

with U:<O ”

>. This substitution maps any complex tight-binding

(1)

tr.r/ — err, =

-1 0
7 = UK is a symmetry operator (K is the complex conjugation
operator). Therefore, a so-designed mechanical system has a
built-in fermion-like time reversal symmetry 72 = U?> = —1 and
Kramers degeneracy at all time-reversal invariant momenta, a fea-
ture that is required for the DIII class. Our realization of the
fermion-like time-reversal symmetry is similar to that in Ref.
[15] but different from the approaches based on crystalline sym-
metries [27,41]. In the latter cases, the Kramers degeneracy can
be realized only in one or a portion of the time-reversal invariant
momenta. The matrix U has two eigenvalues, +i, which divide
the phononic spectrum of the mechanical system into two inde-
pendent sectors that are invariant by the dynamics of phonons,
and the projections onto these sectors are denoted as IT.. One sec-
tor is mapped into the other by the fermion-like time reversal sym-
metry [45]. It was revealed theoretically that the projected
Hamiltonians I1.H'TI, onto each of these sectors have the same
set of symmetries as the targeted Hamiltonian [45,46] (see the
Supplementary materials). Yet these two sectors carry opposite
Chern numbers, as they are the fermion-like time-reversal coun-
terparts of each other.

In our case, we choose the following targeted Hamiltonian to be
the minimal model for the D-class in two dimensions [7]

) (I is the N x N identity matrix) and hence
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H=ity" a;@(sj - S}) +03%) (2)

j=12

m+tz<sj+sj> ,

j=12

where gj's (j = 1,2, 3 representing the x, y, and z directions, sepa-
rately) are the Pauli matrices. S; = Z,CIM]C, are the translation by

the primitive lattice vector a; (j = 1,2) in the square lattice. t and
m are the hopping and Dirac mass parameters, respectively. It has
the particle-hole symmetry implemented by the anti-unitary oper-
ator @py with ©%,=1. The phase diagram of this Hamiltonian and
the associated topological edge states can be calculated analytically
[46]. Transforming into the wavevector space, the above Hamilto-
nian becomes,

H(k) = 2tsin(ka)oy + 2tsin(k,a) oy
+ [m + 2tcos(kya) + 2tcos(kya)] o,

3)
where a is the lattice constant. This model, which is also known as
the Qi-Wu-Zhang model [5], exhibits two nontrivial gapped phases
with Chern numbers C = sgn(m) if |m| < 4t, a trivial gapped phase
with Chern number C =0 for |m| > 4t, and topological transition
points at m =0 and m = +4t (see the Supplementary materials).
The topologically gapped phase, in the context of topological super-
conductors, supports gapless Majorana edge states with particle-
hole symmetry [46]. The procedure explained above supplies out
of H a real-valued dynamical matrix H' with four degrees of freedom
per unit cell, displaying a fermion-like time reversal symmetry
0 5L

implemented by the operator < 1, 0

>IC and a particle-hole sym-

0 oy
or O
matrix. Therefore, H' belongs to the DIII class and such mechanical
system will support topological edge states that are the classical
analog of the helical Majorana edge states in time-reversal invariant
topological superconductors. Moreover, due to the built-in fermion-
like symmetry, the projected dynamical matrices IT.H'TI. each
realize a D-class topological phase which can be observed and
manipulated independently in the laboratory.

We remark that, as our system consists of two independent sec-
tors of D-class topological phases with opposite Chern numbers,
the final outcome resembles a DIII class topological phase. It
should be pointed out that, however, as the two sectors are inde-
pendent, the essential topological physics is the same as that of
the D-class topological phases. This scenario is like a topological
insulator consists of two independent copies of quantum anoma-
lous Hall systems with opposite Chern numbers as the schematics
illustrated in Fig. 1a. Such a topological insulator seems like a
quantum spin Hall insulator but is essentially different, as this
topological phase is essentially the same as the quantum anoma-
lous Hall insulators. In comparison, the quantum spin Hall insula-
tor is characterized by different topology where the spin-orbit
coupling and the Kramers degeneracy play a key role.

metry operator ®Opy = ( )lC, where [, is the 2 x 2 identity
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(d)
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Fig. 1. (Color online) A TDP realized with an acoustic platform. (a) Schematic of a TDP from DIII-class with a doubled symmetry representation and hosting two branches of
counter-propagating Majorana-like topological edge states. (b) Schematic of the mechanical model that implements the TDP, realized on a square-lattice acoustic
metamaterial. Each site (orange ellipse) consists of four acoustic resonators (Ry, R, R3, and Ry4) that are coupled together in a designed way (blue lines), as illustrated in (c) and
(d). (c) gives the couplings in the x direction, while (d) for the y direction. All couplings are of the same strength. (e)—(h) Robust topological transport of sound in the acoustic
TDP at different boundary conditions as calculated from full-wave simulations. (e) and (f) Half-open boundaries where the open edge boundaries are indicated by the blue
dotted lines. (g) Close boundary condition without defect. (h) Close boundary condition with a defect. In (e)—(h) acoustic waves are excited by a point source (green star) with
a frequency in the topological band gap (around 840 Hz). The dissipation of acoustic waves is not included in the simulations.

3.2. Acoustic metamaterial design

The couplings of the mechanical resonators, as derived from the
mapped Hamiltonian H', are illustrated in Fig. 1b—d. As seen in
Fig. 1c and d, each resonator has eight couplings of equal strength
with the neighboring resonators, but they are positive as well as
negative. By realizing these couplings with coupled acoustic cavi-
ties, we arrive at an acoustic crystal supporting TDPs with robust
topological sound transport at the edges, as evidenced by the COM-
SOL simulation results in Fig. 1e—h. Specifically, these simulations
show that the edge states can propagate both clockwise and coun-
terclockwise without backscattering: a key feature of the helical
edge states (Fig. 1e and f). Furthermore, the topological edge waves
can propagate around a defect, showing robustness of the topolog-
ical sound transport. These properties, together with the results
shown in Fig. 2, demonstrate the effectiveness of our approach in
simulating various topological classes.

Using the above design, we fabricate the acoustic topological
crystal with the commercial 3D printing technology based on
photosensitive resins. The unit-cell structure of the acoustic crystal
and the fundamental acoustic modes are depicted in Fig. 2a and b.
The fabricated sample with 10 x 10 unit-cells is shown in Fig. 2c.
To realize both the positive and negative couplings sketched in
Fig. 1c and d, we design the H-shaped acoustic cavities. As shown
in Fig. 2b, in these cavities the first resonating mode has uniform
pressure field along the long arms, but the two arms have opposite
acoustic pressures. The positive and negative couplings between
the H-shaped cavities are then realized by the in-phase and out-
of-phase couplings via short acoustic bridges, respectively
(Fig. 2b). The other advantage of the design here is that the bridges
can be attached to four ends, reducing the load per end. Moreover,
the strength of each coupling is determined by the length of the
acoustic bridge which is the same for all couplings in our system
to realize the model in Eq. (2).

With four H-shaped resonators, Ry, Ro, R3, and Ry, in a unit-cell,
we achieve the couplings sketched in Fig. 1c and d to realize the
targeted Hamiltonian in Eq. (2). The constant mass term in
Eq. (2) is realized by the difference in the first resonating mode
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frequency of the H-shaped cavities enabled by tuning the height
of the resonators (Fig. 2b). Specifically, R; and R; have a height
h,, while R, and R4 have a height h;, and m « (h; — hy). The geo-
metric parameters are as follows: The lattice constant of the square
lattice is a = 80 mm. The diameter of the long arms of the H-shaped
cavity is d; = 22 mm. The two long arms have a center-to-center
distance of I; = 27 mm, while the tube connecting them has a
diameter d, = 3 mm. The heights of the H-shaped resonators are
chosen as h; = 57.8 mm and h, = 62.2 mm. All couplings between
the H-shaped resonators are realized by soft tubes of the
same length 120 mm and the same diameter d5 = 2 mm. These soft
tubes are glued to the 3D-printed framework of the H-shaped
cavities. The synthetic symmetries and band topology of the
acoustic crystal are analyzed in detail in the Supplementary
materials.

Based on the above design, full-wave simulations based on
COMSOL Multiphysics give the acoustic bulk band structure
(Fig. 2d) comparable with the tight-binding band structure
(Fig. 2e) generated with the couplings from Fig. 1c and d. Note that,
in acoustic systems, we solve the acoustic wave equation, and the
eigenvalues have the meaning of resonant frequency square, which
is to be compared with the tight-binding energy. In addition, the
band structure (Fig. 2d) should be referenced from the middle of
the acoustic band gap occurring at the finite angular frequency

square 2.8 x 107 rad?/s?. The acoustic bands show a notable spec-
tral symmetry with respect to the mid-gap angular frequency
square: A sign of the successful realization of the particle-hole
symmetry in acoustic systems.

Experimentally, we use the pump-probe technique to measure
the Majorana-like acoustic edge modes. Here, the edge modes are
excited with an acoustic source (a tiny speaker) inserted in a cavity
at the edge boundary with the excitation frequency in the bulk band
gap. Meanwhile, an acoustic detector (a small microphone) is
inserted into another cavity at the edge boundary to probe the
acoustic signal in that cavity. A network analyzer is used to track
the detected acoustic signal at the excitation frequency. As the net-
work analyzer Fourier transforms the time-resolved acoustic signal,
the measurement gives both the amplitude and the phase of the
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Fig. 2. (Color online) Observation of the Majorana-like helical edge states in the acoustic TDP. (a) Specific design of the acoustic metamaterial using H-shaped acoustic
resonators (orange) and the short-bridge couplings (gray) among them. (b) The first acoustic resonating modes in the H-shaped resonators and the realization of the positive
and negative couplings. The color scheme represents the acoustic pressure (i.e., the acoustic wave amplitude). (c) A photo of the experimental system. The main part of the
bilayer acoustic metamaterial is fabricated by the 3D printing technology based on resins. Couplings between resonators are realized by soft tubes. Black plugs are used to
facilitate the insertion of the tiny speaker (source) and microphone (detector) which are connected to a network analyzer. Inset: Zoom-in top-view of the system. The black
dashed box (main) and the green dashed box (inset) indicate a unit-cell. (d) Simulated bulk acoustic bands. (e) Bulk bands from the tight-binding model with m = 1 and
t = —0.5. (f) Measured and simulated acoustic dispersions at the edge boundary. (g) Calculated acoustic dispersions at the edge boundary from the tight-binding model. Note
that the tight-binding model here refers to the model depicted in Fig. 1c and d. Here A, B, and C label three edge states that are connected with each other via the particle-hole
(PH) symmetry and the time-reversal (TR) symmetry. Dashed lines in (d), (e) and (g) label the mid-gap frequency square, while in (f) it labels the frequency square of the Dirac

point.

pump-probe signal (see Methods and the Supplementary materials
for details). By measuring the distribution of the pump-probe signal
and Fourier transforming the signal from spatial to wavevector
dependence, the acoustic edge spectrum is obtained (Fig. 2f) which
is consistent with both the simulation and tight-binding calculation
(Fig. 2g). These results show excellently the emergence of gapless
topological edge states in the acoustic band gap, confirming an
important signature of the TDP. Moreover, both the bulk and edge
spectra are nearly symmetric around the mid-gap. The Dirac point
in the edge band is at 2.78 x 107 rad?/s? which is very close to the
mid-gap angular frequency square of the bulk. Small deviation
between the experiments and the simulation for the edge bands
may originate from the intrinsic acoustic dissipation.

We remark that in Fig. 2f slight lift of the Kramers degeneracy at
k¢ =Z can be noted which is due to the long-range hoppings that
are almost unavoidable in acoustic metamaterials. These
unwanted additional hoppings make the acoustic dispersion devi-
ates from the ideal tight-binding model slightly. Consequently, the
Kramers degeneracy at k, = % is lifted a little bit. Nevertheless, such
degeneracy lifting is still negligible and much smaller than in pre-
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vious realizations of fermion-like time-reversal symmetry based
on the crystalline symmetry [27,41].

The topological edge band is constrained by the synthetic
particle-hole and time-reversal symmetries, as illustrated in
Fig. 2g. These constraints dictate that an edge band necessarily
crosses the mid gap point an odd number of times and such cross-
ing can only be at the k = 0 or k = m. For our acoustic crystal, this
crossing happens at k =0, as shown in Fig. 2f. Moreover, these
edge bands must have zero curvature when they cross the middle
of the bulk band gap due to these symmetry constraints. This
vanishing curvature implies that a wave packet excited around
the mid-gap will exhibit no deformation. Therefore, such wave-
packet will propagate very much like a massless particle traveling
along the edge of the sample with a speed given by the slope of the
edge band at k = 0, thus excellently emulating the elusive Majo-
rana elementary particle. This phenomenon, which though cannot
be tested in our system due to the small size, can be verified in
future systems with much larger size.

A direct manifestation of the unique band topology and the
above symmetry features is the robust dynamics of the acoustic
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edge waves. For this purpose, we measure the acoustic wave
propagation in and outside the topological band gap in our sample
(a top-view scheme is given in Fig. 3a). By selectively exciting only
one symmetry sector of the acoustic edge states in the topological
band gap, we can achieve unidirectional acoustic wave propaga-
tion in both the clockwise and anticlockwise directions (Fig. 3b
and c). The results show that the acoustic edge waves can perfectly
turn around the sample corner without noticeable back reflection.
In sharp contrast, when the excitation frequency is outside the
topological band gap, the excited acoustic wave propagates in all
directions in the sample (Fig. 3d). A careful quantitative examina-
tion on the wave amplitude along the propagation channels (either
edge or bulk) shows that the acoustic edge waves propagate stea-
dily along the edge channels in a unidirectional way for each sec-
tor, except an overall decay due to the intrinsic dissipation of the
acoustic waves (Fig. 3e and f). In comparison, the bulk acoustic

Science Bulletin 69 (2024) 893-900

wave spreads out in all directions (Fig. 3g). More details and
discussion on the dissipation effect can be found in the Supple-
mentary materials.

We now test the robustness of the topological edge channel for
acoustic wave propagation by introducing defects in the edge
channel (Fig. 4a). In conventional 1D acoustic waveguides, such
defects cause severe backscattering which substantially reduces
the performance of the acoustic waveguides [16]. In contrast, in
our acoustic TDP, even when a notable defect is introduced at
the edge boundary by removing one unit-cell, the acoustic wave
still propagates steadily along the edge channel (Fig. 4b and c). This
stable wave dynamics in the edge channel is indicated when both
the clockwise and anticlockwise edge modes are excited or when
only one of them is excited. In both these cases, the acoustic wave
propagates perfectly around the defect. A careful look at the quan-
titative measurement of the acoustic wave amplitude along the
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Fig. 3. (Color online) Observation of topological edge transport in the acoustic TDP. (a) Schematic top-view of the lattice structure of the acoustic metamaterial. Numbers
label the sites where the edge waves and bulk waves propagate through which will be used in (e)—(g). (b) Transport of sound along the anticlockwise edge when the left and
lower edge boundaries are open (indicated by the blue dotted lines). (c) Transport of sound along the clockwise edge when the right and upper edge boundaries are open
(indicated by the blue dotted lines). (d) Transport of sound in the bulk. (e)—(g) Acoustic pressure, i.e., the sound wave amplitude, along three transport paths: The
anticlockwise edge path (A route), the clockwise edge path (C route), and the bulk path (B route) at different conditions. (e) The same condition as in (b) with an excitation
frequency 842.2 Hz. (f) The same condition as in (c) with an excitation frequency 848.4 Hz. (g) The same condition as in (d) with an excitation frequency 875 Hz.

@)%_%_ %_ % % % % % °-
o O O 0 © O O . -
e o060 @ © 0 © "0
. o o o o o o o o
o o o o o o o o o
o o o o o o o o o
® e.© o ©o o e o °
o o o 0.0 o o o O
9 o o 9. .0..0 o o ©
e, o o 9© -6 0.0 e o
6_"e ©® 9 @ © O e ©°
o o o 0.0 e o o O
e e o 0. 0..0-9 o ©
e e O 3-0 99 e @
. e ©®© O © O O ©o o
o o o oO. O o o o
9 o o 9 0.50.-9 e O
e o O 090 0.0 o 0O o
2 e ® © O °© 9 0
o o o 6.-0 o0.9 o O -
o o o O 0.0-0 @0 6 ;
o e O 0.0 0.9 o O ;
o e 6 006 © O ©° L
. o o o 0.0 o o o o =
o o o e 0.0 o o o 0 =
o o o e o0, o o o 0o o
2 "e_ ©_ ' 0_O0_0_ 0 _ O O 5
o o o o o e o o o o 2
e o o o o o o o o o 4
o O o o o o o o e o g
® o o o o e e o °o o
g 0, 0 0 0 0o 0o o o o 2
‘ e, o o °o o o o o o 2
b, e, O O o o o o o o g
o e o o o e e e o o 8
o m D 9o O O0 6 0 0 <
yﬁ C 3} (19 ®, (11) (7) () N L N N N N N
Piteo o o » % % % %% % 9% 0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70
Site index Site index

Fig. 4. (Color online) Visualizing robust topological transport of sound in acoustic TDP. (a) Schematic top-view of the lattice structure of the acoustic metamaterial with a
defect introduced by removing four cavities (dashed ones at the right edge). Numbers label the sites where the edge waves and bulk waves propagate through which will be
used in (d) and (e). (b) Topological sound transport along the edges with closed edge boundaries and the defect (excitation frequency 844 Hz). (c) Topological sound transport
along the anticlockwise edge path with the defect where the left and lower edge boundaries (dashed blue lines) are open (excitation frequency 840 Hz). (d), (e) The acoustic
wave amplitude along the clockwise (C route) and anticlockwise (A route) edge paths as well as along the bulk path (B route) for the condition corresponding to (b) and (c),

respectively.

898



S.-Q. Wu et al.

edge channels also confirms the stable wave propagation (Fig. 4d
and e): In Fig. 4d, the acoustic wave amplitudes along both the
clockwise and anticlockwise routes are comparable, despite that
the acoustic edge wave along the anticlockwise path encounters
the defect quickly after it is excited. This is strong evidence that
the defect does not disturb the acoustic wave propagation in the
edge channel. Fig. 4e confirms the robustness of the edge wave
dynamics again by the stable unidirectional wave propagation. In
particular, the acoustic wave amplitude does not have any notable
change when propagating around the defect and the corner of the
sample. These careful observations indicate signatures of a strong
topological insulator phase.

4. Discussions and outlook

Our study unveils a new type of topological metamaterials sup-
porting D- and DIll-class topological phases, which are featured
with a combination of synthetic particle-hole and fermionic time
reversal symmetries. With acoustic pump-probe measurements,
we verified the existence of the expected topological helical edge
states in our acoustic TDP and demonstrated the robust topological
sound transport in the edge channels. Our technique for realizing
TDPs with metamaterials made of passive elements offers a power-
ful platform for materialization of various topological symmetry
classes, including those that have not yet been realized so far
(Table 1).

Furthermore, the realization of TDPs can enable Majorana-like
local modes stabilized by m-fluxes. As demonstrated in Refs.
[47,48], the braiding and fusion of m-fluxes are non-trivial and
worth exploring even at the one-particle level covered by the lin-
ear wave equation regime employed here. We mention that, in
one dimension, the work on Majorana-like modes implemented
with classical degrees of freedom is vigorously underway, particu-
larly with the recent work [43,49-54| demonstrating the experi-
mental control at a fascinating level that makes the classical
systems feasible for information storage and processing. In 2D
acoustic systems, implementing the m-fluxes will require nonuni-
form perturbations of the couplings which will be an important
direction in the future.
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