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Abstract— Open Radio Access Network (O-RAN) offers a new
paradigm for the design and deployment of future RANs. The
unique architecture of O-RAN presents two main challenges when
designing a scheduler. First, it is impractical to obtain accurate
and full Channel State Information (CSI) due to estimation
errors and limited bandwidth of the fronthaul link between Open
Radio Unit (O-RU) and Open Distributed Unit (O-DU). Second,
the large-scale processing at an O-DU introduces difficulties in
meeting the stringent time requirement in O-RAN, especially
in the real-time (RT) control loop. To address these challenges,
we propose R®—a real-time robust Multi-user, Multiple Input,
Multiple Output (MU-MIMO) scheduler for O-RAN. R® serves as
a comprehensive scheduling solution encompassing RB allocation,
MCS selection, and beamforming calculation. Most notably,
R® utilizes a limited number of CSI samples to offer prob-
abilistic QoS guarantees. To meet the timing requirements of
O-RAN, R® decomposes the scheduling problem into two distinct
sub-problems and integrates them into separate control loops.
Moreover, each sub-problem is designed with a parallel structure,
utilizing a reduced search space, and implemented on a GPU
platform to accelerate the computation time. Experimental results
demonstrate that R® offers competitive throughput performance
as the state-of-the-art while simultaneously fulfilling the QoS
guarantees. Further, R®> meets the timing requirements of var-
ious control loops in O-RAN over a wide range of operating
conditions.

Index Terms— CSI, MU-MIMO, real-time, O-RAN, scheduler.

I. INTRODUCTION

HE push for a more open and flexible wireless network
architecture has led to the development of O-RAN [1].
O-RAN offers a departure from the conventional proprietary
RAN systems by promoting openness and interoperabil-
ity [2], [3], [4], [5], [6]. At its core, O-RAN enables a new
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Fig. 1. An O-RAN reference architecture.

“mix-and-match” approach to RAN deployment and allows
a carrier to choose the best hardware/software from different
vendors. It breaks up the long-standing closed-RAN paradigm
and moves the RAN market towards a more competitive and
vibrant supply-chain ecosystem [7].

Figure 1 shows a reference architecture for O-RAN. In con-
trast to traditional RANs, O-RAN consists of five distinct
components: Open Radio Unit (O-RU), Open Distributed Unit
(O-DU), Open Central Unit (O-CU), near-real-time (near-RT)
RAN Intelligent Controller (RIC) [8] and non-real-time (non-
RT) RIC [9]. Each component operates at different time scales
and belongs to three distinct control loops: RT (less than
10 ms), near-RT (10 ms to 1 s), and non-RT (over 1 s) control
loops [10].

While O-RAN holds significant potential for opening up
RANS’ ecosystem, it also presents some significant challenges
in designing its scheduler. First, just like traditional RANS,
it is impractical to obtain perfect (full and accurate) Channel
State Information (CSI) at an O-DU. Due to noise [11] and
significant overhead [12], sending accurate and complete CSI
from a UE to an O-RU is not feasible. Specifically, the use
of a large number of pilot signals for full CSI transmission
will adversely impact spectrum efficiency, particularly when
multiple input, multiple output (MIMO) systems are involved.
Second, unlike traditional RAN fronthaul link that carries
user data bitstreams between the base station and the core
network, the fronthaul link in O-RAN carries raw I/Q samples
from the O-RU to the O-DU. Given the limited capacity of
commercial fiber fronthaul links, such as Gigabit Ethernet
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TABLE I
NOTATIONS
Symbol Definition
General Notation
Ar Number of transmit antennas at an O-RU
B Total number of RBGs at the O-RU
K Total number of UEs served by the O-RU
M Maximum MCS level
Scheduling Notation
xz Binary decision variable indicating whether or not
RBG b is allocated to UE k
yp Binary decision variable indicating whether or not
MCS level m is assigned to UE k
hz An A7 x 1 random CSI vector for UE k£ on RBG b
Phax Power budget on each RBG at the O-RU
WZ An A7 x 1 decision variable vector for
beamforming at O-RU w.r.t. UE k£ on RBG b
st SINR at UE k on RBG b
Tl Achievable data rate by O-RU w.r.t. UE k
Qk Required data rate by UE k
€ Risk level
X A K x B matrix consisting of elements x%
Y A K x (M 4 1) matrix consisting of elements y}"
H A K x B matrix consisting of elements hz
CSI Sample Notation
Ng Number of available CSI samples for each
scheduling instance
o Overhead ratio of CSI transmission
ﬂz An Ap X 1 vector of CSI sample embedded with
error for UE k£ on RBG b
hZ* An Ap X 1 vector of error-free CSI sample for UE
k on RBG b
ﬁz A 1 X Ng vector consisting of elements 1:12
th True distribution of hz
PBZ Empirical distribution of 1:12
Pyp- Empirical distribution of h&*
d(Phi , Pf‘i) oo-Wasserstein distance between th and Pf;l,;
GZ Radius of the ambiguity set for UE k£ on RBG b

Passive Optical Network (GEPON) [13] (typically 10 Gbps),
the fronthaul link is already strained by the I/Q samples. For
example, in a 5G cell with 100 MHz bandwidth, the required
bit rate for transmitting raw 1/Q samples from each UE (with
a 200 MHz sampling rate) is 200 MHz x 18 bits [14] =
3.6 Gbps. This leaves little room to accommodate the full
CSI overhead [15]. To address this challenge, the O-RAN
specifications have devoted extensive coverage on overhead
reduction techniques [15], [16]. Third, it is very challenging
to meet the stringent timing requirement of O-RAN system.
Complex tasks such as Resource Block (RB) allocation, Modu-
lation and Coding Scheme (MCS) selection, and beamforming
calculation should all be done at an O-DU. As we shall see
in Section IV, the available time to complete these tasks
in different control loops (tens of milliseconds for near-RT
control loop and less than 10 ms for RT control loop) poses
a major challenge to scheduler design.

There have been some active research efforts devoted to
the design of Multi-user, Multiple Input, Multiple Output
(MU-MIMO) schedulers. However, these approaches assume
either perfect (complete and precise) CSI or accurate statistical
characterizations of CSI, such as the mean and covariance
of the CSI distribution. But in practice, obtaining any of
such information is infeasible. Furthermore, there is little
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research that jointly optimizes the scheduling of RB allocation,
MCS selection, and beamforming calculation while meeting
the stringent timing requirement of O-RAN. More discussions
on related work are given in Section II.

In this paper, we present R3—a Real-time Robust
MU-MIMO scheduler for O-RAN. The main contributions of
R3 are:

e Unlike most existing MU-MIMO schedulers that only
address one or two components, R? stands out as a
comprehensive solution that combines RB allocation,
MCS selection, and beamforming calculation. Further-
more, R? is meticulously designed to specifically address
the distinctive challenges posed by O-RAN, such as
imperfect CSI and the need for real-time computation.
None of the state-of-the-art schedulers can address these
challenges effectively in a holistic manner.

o In contrast to existing schedulers that rely on perfect
CSI or prior knowledge of channel statistics (model-
based), R? addresses the challenge of imperfect (partial
and inaccurate) CSI at O-DU in O-RAN by using a
data-driven approach. More important, R3 effectively
addresses channel uncertainty by solely relying on a small
number of CSI samples, while providing probabilistic
QoS guarantees.

o To effectively meet the computational time require-
ments of O-RAN, R? employs a two-stage optimization
approach, decomposing the scheduling problem into two
distinct sub-problems within the near-RT and RT control
loops in O-RAN. Further, each sub-problem is solved
with a parallel structure, through a reduced search space,
and making efficient use of the computational power
offered by a GPU platform.

o Experimental results show that R? can offer high spec-
trum efficiency while successfully providing probabilistic
QoS guarantees, even in the presence of imperfect CSIL
R? also demonstrates robust performance across varying
system parameters. R? is the only known scheduler that
can meet the stringent time requirement of O-RAN with
the aforementioned capabilities.

II. RELATED WORK

In the domain of scheduler design for wireless communi-
cation systems, research bifurcates primarily into two distinct
categories: schedulers based on perfect CSI and those predi-
cated on imperfect CSI. This section provides a review of the
current state-of-the-art within each category.

Schedulers based on perfect CSI (e.g., [17], [18], [19], [20],
[21], [22], [23], [24]) operate under the assumption that both
complete and accurate CSI are available. These schedulers
leverage this idealized, error-free CSI to make scheduling
decisions. While such designs are typically less complex and
capable of achieving good performance, the realization of
perfect CSI is hindered by practical issues (e.g., large overhead
and estimation errors). The challenge of obtaining perfect CSI
becomes particularly pronounced in O-RAN system, due to
currently limited bandwidth of the fiber front-haul link.

Conversely, schedulers based on imperfect CSI (e.g., [25],
[26], [27], [28], [29], [30]) operate under the premise that
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Fig. 2. An illustration of downlink MU-MIMO transmission at an O-RU.

CSI is dynamic and inherently uncertain. These schedulers
often rely on the statistical characteristics of the CSI, aiming
to deliver performance optimized over a time period. While
these schedulers alleviate the need for perfect CSI-thereby
reducing system overhead—they still require accurate estimates
of the mean or covariance of the CSI distribution. However,
the ephemeral and fluctuating nature of channel conditions
renders these parameters elusive. The means and variances
of the CSI distribution can only be estimated with a finite
number of samples, introducing inherent errors. Consequently,
the performance of the schedulers depends on the accuracy in
the obtained statistical characteristics of the CSI.

Beyond the previously delineated limitations of contem-
porary scheduler designs, additional challenges are also
prevalent. First, owing to the expansive search space inherent
to scheduling decisions, a majority of algorithms elect to focus
on a limited subset of decision factors, typically encompassing
one or two elements such as RB allocation, MCS selection,
or beamforming computation (e.g., [17], [18], [19], [20], [21],
[22], [23], [24], [25], [26], [27], [28], [29], [30], [31], [32]).
This approach, while simplifying the decision-making process,
often falls short of attaining quality performance due to the
absence of a comprehensive, joint optimization strategy.

Secondly, the intricate nature and extensive scope of a
scheduler often lead to complex algorithms (e.g., [20], [21],
[22], [23], [24], [25], [26], [27], [28], [29], [30], [32]). These
algorithms are usually plagued by excessive computation
times, which cannot meet the stringent real-time requirement
in O-RAN, especially the RT control loop.

In summary, none of the existing MU-MIMO schedulers
can effectively address the imperfect CSI challenge in O-RAN
while achieving high performance and meeting the time
requirements of O-RAN.

III. SYSTEM AND MATHEMATICAL MODELS

Consider a downlink (DL) scheduling problem within O-RU
service area in the O-RAN architecture (see Fig. 2). Denote
Ar as the number of antennas at an O-RU and we assume
the number of antennas at each UE is 1. Denote B as
the number of available RB groups (RBGs).! If an RBG
b=1,---,B is assigned to a UE k = 1,--- | K, there is

'We use RGB as the minimum resolution in resource allocation instead of
RB for generality and time efficiency [42].
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an Ar x 1 beamforming vector w? to be determined by the
O-RU to optimize system performance.

A. CSI

As depicted in Fig. 1, the CSI is initially conveyed from
UEs to O-RU via the wireless channel, and subsequently
transmitted from the O-RU to O-DU through an optical
fronthaul link. Obtaining perfect (full and accurate) CSI is
impossible due to several practical reasons. First, between UEs
and the O-RU, the required bit rate for transmitting full CSI
can be up to Gbps. For instance, considering a typical cell
with 40 users, 120 RBs, and 8 antennas, the bit rate needed
for transmitting full CSI can be calculated as 40 x 120 x
8 x 32 = 1.22 Gbps. Such a large overhead from the UEs
simply cannot be supported. Second, the CSI feedback process
is susceptible to errors such as channel noise and hardware
noise. These errors will adversely impact the accuracy of
the CSI feedback. Third, for uplink transmission between an
O-RU and the O-DU, the O-RU needs to sample the received
I/Q signals, quantize the samples, and then forward them to
the O-DU. For a UE operating with several MHz bandwidth,
the bandwidth used for transmitting I/Q signals can escalate
to several Gbps [15]. But the current commercial fiber links
typically only have ~10 Gbps capacity. So there is simply no
room to carry full CSI, let alone to say that the same uplink
fiber still needs to carry user data, which is supposed to be
the dominant traffic component.

Given that perfect (full and accurate) CSI is not available,
for each UE £k, the CSI for RBG b can be represented by an
Ar x 1 vector of random variables, which we denote as hz.
In this paper, we do not assume any prior knowledge of the
distributions of the random variables. Instead, we will only rely
on a small number of CSI samples, which represent imperfect
(partial and inaccurate) CSI. How this can be done will be
explored in Section VIIL.

B. RB Allocation

Denote xz as a binary decision variable with the following
definition:

b 1, if RBG b is allocated to UE k,
Ty = ; (1)
' 0, otherwise.

Under MU-MIMO, one RBG can be allocated to multiple (up
to A7) UEs. This is a fundamental differentiating feature from
SU-MIMO. So we have:

K
> @ < Ar. (b=1---B) 2)
k=1

C. MCS Assignment

Denote y;* as a binary decision variable with the following
definition:

m 17
Y = 0,

where m € [0, M] and M = 28 per 5G standard [33].

if MCS level m is assigned to UE k,
otherwise,

3)
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Since only one MCS can be assigned to a UE (which will
be used on all RBGs allocated to this UE), we have:

M
oy =1
m=0

Constraint (4) is a distinct feature for MCS assignment for a
UE.

(k=1---K). 4)

D. O-RU Transmit Power

b

For the beamforming vector w}, we have the following

constraint:
K
ZHWZH%SPmax (b=1---B), (5a)
k=1
szuggxzpmax (bZl--~B,k=1-~-K), (Sb)

where ||-||2 denotes Ly norm and Pp,.x denotes the maximum
transmit power on each RBG at an O-RU. If RBG b is not
assigned to UE k, then ||w?||3 = O (i.e., the beamforming
vector w,l; is 0).

E. SINR and Data Rate

Denote N} as the noise power at UE k on RBG b. The
SINR at UE k on RBG b, denoted as sz, can be calculated as
follows:

|(wi) Thy |2

- , (6)
K,i#k
S 7F | (wh)Thy|2 + N}

8 =

where (-)T denotes the conjugate transpose.

Based on (6), the achievable data rate of UE k£ on RBG
b with MCS y;* = 1, denoted as r,l;’m, can be calculated as
follows (see Table 5.1.3.1-1 in [33]):

m Ry, if sy > S,
= {0 ¢ @

otherwise,

where R,, is the achievable data rate of MCS level m and
S is the SINR threshold of MCS level m, m € [0, M]. For
a given m value, if 32 > S,,, then r,};’m = R,, regardless
how large the difference between si and S,,. On the other
hand, if sz < S, then rZ’m = 0 even though sz may
be close to S,,. So a judicious choice of m is critical to
maximizing throughput, especially when multiple RBGs with
different SINRs are allocated to the same UE k.

Based on (4) and (7), the achievable data rate of UE k on
RBG b, denoted as rz, is as follows:

M
v ®)

m=0

=

Finally, the total data rate of UE k over all RBGs allocated
to it, denoted as 7y, is:

B

re=> 1 Q)

b=1
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F. Data Rate Guarantee

Given the imperfect CSI, it is impossible to offer a hard
(deterministic) guarantee for data rate r;. Instead, we propose
to offer a probabilistic guarantee via chance constraints.

Denote Q). as the required QoS data rate from UE k (in bps)
and e as the risk level of violating the probabilistic (chance)
constraint. We can put forth the following chance constraints:

P{rszk}zle(klmK) (10)
where P{-} denotes the probability measure function. The
QoS chance constraint aims to guarantee that the system offers
a QoS data rate requirement for each UE with a probability
of at least 1 — ¢, where ¢ is a small value close to 0. This
kind of guarantee in chance constraints accounts for occasional
deviations from the desired QoS levels while maintaining high
overall service quality.

IV. PROBLEM FORMULATION
A. Objective Function
Many objective functions can be considered. In this paper,
we set the objective function to maximize the overall system
throughput (i.e., the sum of throughput from all UEs).

Denote r(t) as the system throughput at time ¢. Then our
objective function is to

1 T
Jim TZr(t)} (1)

— 00
t=1

max Eg [

where H = [hZ]Kxg. Note that in (11), we take the
expectation due to the random nature of H. By moving the
expectation function inside the sum, the objective function

becomes: max limy_, o ~ Zthl Eg |7(t)|. Since scheduling
decisions at each time ¢ (as 7' — oo) are independent,
to maximize limy oo & S1_, Ext |r(t)], it is sufficient to

max Exg [r(t)} (12)

for each scheduling time instance (or TTI) t. We can omit

time dependence (¢) when there is no confusion. Since r =
K . .

> k1 Tk (12) is equivalent to:

K

max Egy [Zrk} ,

k=1

(13)
which is our objective function.

B. Problem Formulation

Putting together the objective function and constraints,
we have the following stochastic programming problem with
chance constraints [34]:

K
OPT-S max Eg [Zrk]
k=1
s.t. RB allocation constraint: (2);
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MCS selection constraint (4);
Power constraint (5);

SINR calculation (6);

Data rate calculation (7)(8)(9);
QoS chance constraint (10);

zp € {0,1}; 45" € {0,1};w} € C,

where xz, y;' and WE are decision variables, B, K, M, Ar,
Puaxs [Ro, -+ s Rm], [So0, -+, Sm], € and Q, are constants, h}
is a vector of random variables, sz and r}, are both intermediate
variables.

A scheduler in O-RAN should do the scheduling (maximiz-
ing the throughput while offering the QoS guarantee without
knowing the actual CSI) by solving OPT-S in real-time. Prob-
lem OPT-S is hard to solve for at least four reasons. First, the
coupling of all three decision variables presents a significant
challenge in finding a solution. Second, the inclusion of the
random variable hZ and probabilistic (chance) constraints
introduce uncertainty to the optimization problem, thereby
elevating its complexity. Third, the search space for each
decision variable is prohibitively large. The joint RB allocation
and MCS selection problem is already NP-hard [22]. Finally,
scheduling at an O-RU has stringent real-time requirements
(on the order of ~ms). This means that a solver to OPT-S
must meet this RT requirement.

V. R3: MAIN IDEAS

To solve OPT-S in real-time, we propose R®*—a real-time
robust MU-MIMO scheduler in the O-RAN architecture. The
main ideas in R? consist of the following four elements.

First, to mitigate the complexity of OPT-S, R? exploits the
two different time scales associated with Near-RT and RT
control loops in O-RAN to decouple it into two sub-problems:
OPT-S1 (for RB allocation and MCS assignment) and
OPT-S2 (for beamforming calculation). This decoupling aims
to solve the decision variables % and y!" through OPT-S1
before solving w? in OPT-S2. Since the beaming variables
wz may still be present in OPT-S1, we can initialize them
with some well-known (provably good) solutions and then
re-calibrate them when we solve OPT-S2.

Second, R? addresses the issue of imperfect CSI by using
a small number of CSI samples, which substantially reduces
CSI overhead. Based on the small number of CSI samples,
R? removes our problems’ dependency on the random variable
hz. Specifically, R? reformulates OPT-S1 and OPT-S2 into
two deterministic formulations OPT-D1 and OPT-D2, respec-
tively, by utilizing sample average approximation (SAA) and
oo-Wasserstein distance.

Third, R® solves OPT-D1 in near-RT control loop and
then OPT-D2 in the RT control loop. For each problem,
we propose to reduce the search space for the final high-
performing solution. The goal is to strike a balance between
solution quality and computational efficiency. In particular, for
OPT-D1, the search space for RB allocation decision variable
xz is reduced by exploiting the properties of MU-MIMO; The
search space for MCS assignment decision variable y;* is
reduced by considering the QoS requirements of each user.
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For OPT-D2, we first form a signal basis using the most
promising beamforming vectors. Then the signal basis is used
to generate a spanning space (a reduced search space) through
linear combinations.

Fourth, based on the reduced search space for each problem,
R? employs parallel computing (using a GPU platform) to
accelerate computation time for finding a high-performing
solution. Specifically, for OPT-D1 or OPT-D2, R? incorporates
a carefully designed multi-layer structure, with each layer
customized for parallel computation. At each layer, a large
number of independent sub-problems are executed in parallel
in GPU cores. To minimize computation time with a given
GPU platform, R? meticulously engineers efficient utilization
of given GPU resources, including kernel, block, thread, and
shared memory.

In the subsequent sections, we elaborate on these key design
elements in R3.

VI. PROBLEM DECOMPOSITION

For the problem formulation in OPT-S, we recognize that
in practice, RB allocation and MCS assignment are typically
done before setting the beamforming vector. This motivates
us to explore decomposing OPT-S into two independent sub-
problems. Specifically, we observe that RB allocation and
MCS selection mainly depend on channel gain, which remains
relatively stable on the time scale of ~10 ms. So RB allocation
and MCS selection can be effectively performed within the
near-RT control loop in O-RAN. In contrast, beamforming
vector calculation depends on both channel gain and phase,
which can change at ~1 ms time scale. So it is most suitable
to perform beamforming vector calculation in the RT control
loop.

Based on the above discussion, we replace OPT-S with two
sub-problems OPT-S1 and OPT-S2 as follows:

K
max Eg { Z 74

k=1
s.t. RB allocation constraint: (2);

OPT-S1

MCS selection constraint (4);
Constraints: (6)(7)(8)(9);
xj, € {0, 1}y € {0,13,

and

K
OPT-S2 max Ey [Z rk}
k=1
s.t. Power constraint (5);
QoS chance constraint (10);
Constraints: (6)(7)(8)(9);

w} € C.

Note that this decomposition is not perfect, as beamforming
variables wp still appear in OPT-S1 through constraints (6).
To address this issue, we propose the following solution
procedure (see Fig. 3).

First, for OPT-S1, we will set the beamforming vectors
[Wh]kxp to be constant so that we can find [2}]xwp and
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OPT-S1
Solving RB allocation and MCS
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Near-RT control loop
(10 ms ~ 1s)
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based on the RB allocation and
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OPT-S1
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Final scheduling decision:

(B Y D Twunny (98 )

Fig. 3. A mapping of our problem decomposition (OPT-S1 and OPT-S2)
into O-RAN’s near-RT and RT control loops.

[y Kk x (M+1)- This can be done by using Zero Forcing (ZF)
beamforming [36] for [WZ] KxB as a starting point. ZF is
deemed near-optimal for maximizing total throughput.> Sub-
sequently, with the output from the solution to OPT-S1, i.e.,
(22 ]k x 3 and (Wi K x (M+1)» We can solve the beamforming
vectors [w9|rxp in OPT-S2. This new objective value will
further improve the one that we achieved earlier in OPT-S1.

The above two-step procedure is not entirely equivalent to
solving OPT-S. But it is a sound heuristic that will offer a
highly competitive solution. More importantly, it effectively
utilizes the two control loops of different time scales in
O-RAN to address the three sets of decision variables.

However, after decomposition, OPT-S1 and OPT-S2 remain
stochastic programming problems (due to random variables
hz’s). In this paper, we do not assume any prior knowledge
of these random variables’ distributions. Instead, we will rely
on a small number of CSI samples to address these random
variables.

VII. FROM RANDOM VARIABLES TO
LIMITED CSI SAMPLES

R? employs a small number of CSI samples to represent
random variable h? (see Fig. 4). Denote HY as the small set
of CSI samples of UE k£ on RBG b, i.e.,

H), = [h{(1) h(2) - hY(N,)]

where flz (j) G =1---Ny)is an Ar x 1 vector representing
j-th received CSI sample from UE k£ on RBG b, N; is the
number of CSI samples that we employ over a time window
of L TTIs. Note that the matrix flz only contains a subset of
all possible CSI samples within the time window L (marked
in blue in Fig. 4). Within window L, the CSI experiences
changes in each TTI. However, its distribution is considered
stable, reflecting the actual channel behavior, including path
loss and fast fading, observed in real-world conditions.

(14)

2 Another well-known beamforming method such as MMSE [37] does not
provide substantial benefits in our context, as the single receiving antenna
already prevents noise amplification at the receiver side.
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Fig. 4.  Scheduling at time instance ¢ based on a small number of CSI

samples (marked in blue) in the past time window L.

The determination of parameter L will be further elaborated in
Section X. Denote v = & 7° as an overhead ratio that quantifies
the percentage of CSI samples employed. The range of ~ is
(0,1]. Clearly, the larger the ~ is, the higher the overhead.
We will also investigate the impact of v setting on the solution
performance in Section X.

Since the reformulation of OPT-S2 is more complex than
OPT-S1, we will discuss it first. In OPT-S2, the random
variable hz appears in both the objective function and the
QoS chance constraints (10). So we need to reformulate both.

For the objective function, with I:Ib, it can be reformulated
as a deterministic form by using sample average approximation
(SAA) [38] as follows:

1 N K
max —— 'S
ORI

k=1

h? = hl(j),b = 1---3}. (15)

For QoS constraints (10), with H?, it can be reformulated
as a deterministic form as follows:

N
ZH{Tk > Qk

h} =h}(j),b =

~-B} > Ny(1—¢)

(k=1---K) (16)

where I(-) is a binary indicator function, returning 1 if the
argument is true and 0 otherwise. For the j-th term in
the summation on the LHS of (16), r; is calculated using
flz (j) based on (6)(7)(8)(9). This reformulation implies that
to meet the QoS constraints (10) for the random variable h?,
sample-based QoS constraints (16) must be satisfied for at
least Ng(1 — €) CSI samples.

There are two important premises of using (16) to
replace (10): i) a sufficient number of CSI samples; and ii)
accurate CSI samples. Getting accurate CSI samples is not
possible due to the estimation errors in H?. To address this
issue, we resort to co-Wasserstein distance [39], [40].

Denote h%* as the discrete random variable for N, data
samples free of any estimation errors. Denote Phb* as the
empirical distribution of hb* based on N, data samples
Denote ]Phb as the emplrlcal distribution for hY, which is a
random variable for the N, data samples (embedding estima-
tion errors). We use the co-Wasserstein distance to characterize
the distance between Py and ]PBZ' Denote d(PhZ*’PfIZ) as

3When Ny — oo, hi* — hz and Phi* — th'
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the oo-Wasserstein distance between Phg* and Py, . We have:
k

A

where Q stands for the set of all possible joint distributions of
h?* and h?. Denote #? as the radius (a non-negative number)

o bx
d(Pyye, Py ) = 525 {SUPQ |[hy* — a7

and P! ’“b as a set of all possible distributions IP whose distance

to the empmcal distribution Phb is bounded by F)k, ie.,

b
Ppt, = {IP’ HA(P,Pyy) < eg}. (18)

b
If 6% is chosen properly, th* can fall within Pg’fb almost
by

surely, i.e., ]P)hb* € PP . So the question is: What value

should we choose for 9”“’

Note that by using Lg norm in (17), 6% only depends on
the maximum noise power (which is a given constant or can
be easily found through offline learning) and the change of
distribution’s envelope (which depends on path loss). Since
the latter is negligible within ~10 ms time scale, we can
confidently set 6% as the square root of the maximum noise
power (which includes all environmental noise).

Our goal is to ensure (16) is satisfied almost surely with

b
Ppp-. Since Py € 730’“‘ if we can ensure that (16) is satisfied
k

for all distributions in Pp* 0 , then our goal can be achieved.

This means the QoS 1nequa11ty (for the j-th term in (16))

should be checked for all possible vectors ¢! (j) as follows:

k() = BRIl <6}, (b=1---B). (19)

(19) holds because, the Ly norm distance between two samples
equals the co-Wasserstein distance between the two distribu-
tions. It is noted that although the scheduling solution is based
on th*, the validation (QoS guarantee) will be conducted
based on the original OPT with true unknown distribution th .

With (19), we can replace (16) with another deterministic
form as:

N
Z H{Tk > Qy

by = (7). [lef(j) —hi(i)ll2 < 67 ,

b:1~--B}>NS(1—e) (k=1---K). (20)
So we have a deterministic (D) reformulation of OPT-S2,
denoted as OPT-D2, as follows:
OPT-D2

mxz{zm

k=1

hj = hi(j),b=1--

B k=

s.t. Power constraint: (5);
QoS constraint: (20);
Constraints: (6)(7)(8)(9);
wi € C.

Although OPT-D2 is a deterministic optimization problem, the
search space for WZ is still extremely large. Further, the QoS
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constraints (20) need to be checked for an infinite number of
vectors per (19). In Section IX, we will address these issues.

For OPT-S1, random variable hZ only shows up in the
objective function. So its deterministic reformulation (based
on limited CSI samples) is:

OPT-D1

mxz{zm

k=1

hb:le(j)’bzl...B’kzl...K}

s.t. RB allocation constraint: (2);
MCS selection constraint (4);
Constraints: (6)(7)(8)(9);
xh €{0,1}; 4 € {0,1}.

OPT-D1 is a deterministic optimization problem with
extremely large search space for 2% and y!". We will address
these issues in Section VIIL

VIII. A DESIGN OF THE NEAR-RT CONTROL LOOP
A. Basic Ildea

For the near-RT control loop, R® focuses on solving
OPT-D1 to find ([IZ*}KxB’[le*]Kx(MH)). Since results
obtained from solving OPT-D1 will be subsequently used in
OPT-D2, it is necessary to ensure ([z2 ] x 5, Wi K x (M+1))
satisfy QoS constraints.

Problem OPT-D1 is NP-hard [21] and its solution
space remains very large. For example, consider a system
with 40 UEs, 10 RBGs, 8 antennas, and 28 MCS lev-

els. The size of the original search space of OPT-DI is

10
(28])14! 10) +F (480 1 ~ 10'2° which is pro-
hibitively large. To find a good solution to OPT-D1 within the

specified time constraint of tens of milliseconds, R® employs
the following steps.

First, R? reduces the search space for xz by exploiting the
properties of MU-MIMO. In the MU-MIMO system, it is
advantageous to allocate RBG to the UEs that have high
channel quality and low channel correlation. By exploiting this
property, R? prunes the search space, resulting in a substantial
reduction in the number of candidate UEs for each RBG.

Second, with the reduced space for RB allocation, R? further
reduces the search space for y* by narrowing its upper and
lower bounds based on channel quality and the QoS con-
straints. Consequently, the number of candidate MCS levels
for each UE is also significantly decreased.

Third, for each candidate decision pair
([eh]kxB, Wik x(m+1)).  R®  performs a  feasibility
check on the QoS constraints. This step ensures that
the selected RB allocation and MCS levels are feasible in
terms of QoS requirements. If infeasible, the corresponding
([28] e xB [ K x (m+1)) pair will be dropped.

Finally, R® computes and compares the objective values of
all feasible solutions within the reduced search space. The
solution that yields the highest objective value is selected
as the final solution for RB allocation and MCS selection
scheduling decision for OPT-D1.
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B. Some Details

In the following, we describe these steps in detail.

1) Step 1. Search Space Reduction for :z:z.' We employ the
following two fundamental properties in MU-MIMO to reduce
search space for xz First, it is advantageous to allocate each
RBG to the UE that exhibits good channel quality on that
RBG. When a UE experiences poor channel quality on a
specific RBG, assigning this RBG to the UE would not achieve
a good data rate and would only introduce interference to
other UEs sharing the same RBG. Second, it is preferable
to allocate RBGs to UEs with minimal channel correlation.
When there is a high channel correlation between different
UEs on the same RBG, the spatial separability of the UEs’
channels decreases and it becomes harder to separate data
to different UEs, diminishing the benefits of MU-MIMO in
increasing capacity.

Based on the first property, on RBG b, we will narrow down
the set of suitable UEs from all K to a subset of K. To do
this, we calculate the channel quality of UE k based on the
average channel gain among all CSI samples as |[h}|[3 =

Ng rb 2
M Suppose BW is the bandwidth of one RBG,
then the maximum achievable data rate of UE k on RBG b

can be estimated as follows:
Prnax| |0} 13

b
qp =BWlog (1+
N}

) 2D
After computing all g;’s, the largest G pate qZ’s will be chosen
as the candidate UEs on RBG b. It is noted that due to fast
fading, each UE might encounter varying channel gains across
different RBGs. This means if one UE is not selected as the
candidate on a specific RBG, it can still be selected as a
candidate on other RBGs. In other words, it is unlikely that a
UE will not be selected by all RBGs in their sets. After this
step, the number of candidate UEs on each RBG is reduced
from K to G pate (< K).

Based on the second property, we further reduce the number
of candidate UEs on each RBG by considering the correlation
factors. For RBG b, we first calculate the channel correlations
between every two UEs in the reduced UE search space. For
UE k; and ky on RBG b, their correlation factor can be
calculated as follows:

| 3052 (BY (5)The, ()]
N '
For all pair-wise UEs in the G rate UEs, we calculate the
correlation factor for the pairs. Then we will choose the UE
pairs starting with the smallest correlation factors (then the
second smallest and so forth) until the number of distinct UEs
reduces from G pate to G corr (< G rate). After this step,
the number of candidate UEs for each RBG is G corr. Grae
and G are chosen based on the computing capability of the
GPU hardware. Random sampling is also implemented when
the size of the search space exceeds the parallel computing
capacity of the GPU hardware [35].

2) Step 2. Search Space Reduction for y;*: Step 1 reduces
the search space of UEs on each RBG, which results in a
reduction of search space for all z}’s, i.e., [xi] kxB- In Step 2,
we move on to reduce the search space for MCS selection w.r.t

(22)
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Fig. 5. An illustration of search space reduction for y*.

each UE k in an RB allocation matrix [2%] x « 5 in the reduced
search space. That is, for each RB allocation matrix [:vi] Kx B>
we will find an upper bound and lower bound for MCS w.r.t.
each UE k (see Fig. 5(a)).

To set an upper bound for MCS w.r.t UE k in an RB
allocation [Q:Z] kx5, we will find an upper bound for MCS
level that can be used on all the RBGs that are allocated to
this UE. Denote B}, as the set of candidate RBGs that can be
allocated to UE k after Step 1. Since the SINR of UE k on
RBG b (b € By) satisfies:

[(wi)Thy |2

_ Puwl[B}]13
K, i#k - =
SIER (W) ThY 2 + N}

N;

sh = = (s}) UB »
an upper bound for the SINRs among all b € By, is therefore
maxpes, (%) UB- Based on (7), an upper bound for the MCS
level m for UE k in RB allocation solution [2%] x5 is:
max{m|S,, < max (s) ug,m=0---M}. (23)
€by

Similarly, to set a lower bound for MCS w.r.t. UE k under
a given RB allocation solution [acZ] Kx B, we can find a lower
bound for MCS that can be used on all the RBGs allocated
to this UE. Considering the QoS rate requirement Q; for UE
k, the lower bound of the achievable rate of UE k aggregated
over all RBGs b € By, cannot be less than Qi (see Fig. 5(b)).
Based on (7), a lower bound for the MCS level m for UE k&

in RB allocation solution [:ri] Kk x B 1s thus:

min{m|R,, > Qr

m=0---M}.
= 1B, )

(24
3) Step 3. Feasibility Check: Following Steps 1 and 2,
we have a reduced space for ([2%]x x5, Wik x (M+1))- But
not every candidate solution ([z%] x5, [Yy"] k- x (m+1)) is fea-
sible. Since we are only interested in evaluating the objectives
for the feasible solutions, we need to filter out the infeasible
solutions first (another step in reducing search space).

To check whether or not a candidate solution pair
([22) kx B, Wil K x (m+1)) s feasible, we check the QoS con-
straints (16) under ZF beamforming (widely regarded as
the optimal beamforming in maximizing throughput). Any
candidate solution pair ([} x5, [VJ"] kx (p+1)) that cannot
meet the QoS constraints (16) will be removed from further
considerations (in Step 4).
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Fig. 6. A parallel implementation of the four steps to solve OPT-D1.

4) Step 4. Finding the Final RB & MCS Solu-
tion: Finally, for the remaining feasible decision pairs
(2% kx5, [V Kk x (m+1)), We calculate their corresponding
objective value in OPT-D1. Then we compare all the achieved
objective values by different ([2}]x x5, Y]k x(M+1)) Pairs
and choose the highest objective value for the final solution.
The corresponding (2] x5, Wi "]k x (v+1)) pair will be
chosen as the final solution for RB allocation and MCS
selection, which will be used as input for the design of the
RT control loop in Section IX.

C. Accelerating Computation Time

To ensure the computation time for the above steps can be
completed in near-RT (on the order of tens of ms), R? employs
GPU and leverages its massively parallel processing capa-
bility [41]. Figure 6 shows the flow chart of our near-RT
implementation on a GPU. At first, the CSI samples [f[ g] KxB
will be transferred from the host to the GPU global memory.
In layer 1, B blocks are generated for B independent sub-
problems, one for each RBG. For each block, K threads are
allocated (one for each UE) to calculate the channel quality
based on (21). The UEs with the top G rate highest channel
qualities will be chosen as the candidate UEs on each RBG.

G corr
2
calculate the correlation factor between every two UEs based

on (22). G corr UE pairs will be chosen, starting with the
smallest correlation factors.

In layer 2, for a given RB allocation [JUZ]KxB, K blocks are
generated for K independent sub-problems, one for each UE.
For each block, two threads are allocated to calculate the upper
bound and lower bound based on (23) and (24), respectively.

In layer 3, for each RB and MCS pair
(2% kx5, Wik x(m+1)), K blocks are generated for

Then in each block, R? generates ) new threads to
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K independent sub-problems, one for each UE. For each
block, N, threads are allocated and each will check one
inequality in the LHS of each QoS constraint in (16), one for
each CSI sample h? (j).

Finally in layer 4, the objective values in OPT-DI for
all feasible RB and MCS pairs ([20]x x5, [Uf"] i x (m+1)) are
computed in parallel. Using parallel reduction, R® can quickly
find the candidate decision pair ([z2"]x x5, Wi Tk x (m+1))
corresponding to the maximum objective value and choose it
as the final RB and MCS pair.

IX. A DESIGN OF THE RT CONTROL LOOP

With the RB allocation and MCS selection decision
([(22) Tk x B [(Y) s x (ar41)) found in the near-RT control
loop in the last section, R3 focuses on solving OPT-D2 to find
the best beamforming vector w? in the RT control loop.

A. Basic Idea

To meet the RT constraint (up to 10 ms), R® employs the
following steps. First, instead of finding a solution for WZ
within C, R? considers a smaller yet promising search space.
Second, for each element in the reduced search space, R? per-
forms a feasibility check using the QoS constraints (20). Since
it is impossible to check (20) directly due to infinite c?(5) in
Ic2(j) —hl(j)]|2 < 62, we reformulate (20) to an equivalent
form for which we only need to check one “worst case” vector
(in terms of achievable data rate). Following this step, all
infeasible solutions will be dropped from further consideration.
Finally, R? computes and compares the objective values for
all the remaining feasible solutions. The solution w?" that
yields the highest objective value to OPT-D2 is chosen as the
final solution. We elaborate on the details in the following

subsections.

B. Search Space

Instead of searching for a beamforming solution w? in

the entire space of C, we focus on a much smaller yet
promising search space for wz. Specifically, we only consider
beamforming vectors that lie in the spanning space of ZF
beamforming vectors. The reason for limiting our focus on
the spanning space of ZF beamforming vectors is twofold.
First, ZF beamforming vectors, denoted as (w?);, can be
regarded as an optimal solution for the j-th CSI sample flz ()
w.r.t. throughput [36], as they minimize the overall interference
among the UEs. Second, note that in the considered scenario,
where each UE is equipped with only one antenna, ZF beam-
forming won’t amplify the noise [36].

For the j-th CSI sample, denote the obtained ZF beam-
forming matrix as W = [(w?);]x x5 where (w?); is the ZF
beamforming vector and is calculated based on fll,; (7). Then
for all Vs CSI samples, a beamforming matrices basis is given
as [Wy--- Wy ]T. Its spanning space can be generated as

W= {a1W1+-~-+aNSWNS,aj €R",j=1---N,;.The

final reduced search space for w’,g, denoted as Z (where each
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[ZﬂKxB), is as follows:

K
ZszH% = Prax,b=1--

k=1

element Z =

Z:{ZEW

-B} 25)

The peak power sum requirement on each RBG b in (25) is
intuitive as the maximum throughput is achieved only with
maximum transmit power on each RBG b.

C. Feasible Solutions

With the reduced search space Z, the next step is to find
all feasible solutions within this space that can satisfy (20).
To meet the 10 ms RT requirement, we propose the following
procedure.

First, directly checking each inequality in (20) is impractical
due to the infinite number of possible c?(j) that satisfy
llch(5) — hb( )||2 < 6%. So we transform (20) into an equiv-
alent form (26). In thls transformed equation, each inequality
requires verification with a specific arg mincz(j) r,ﬁ on each
RBG, enabling a feasible check. Second, determining the data
rate mingy b (5) 7% remains challenging in real-time. Instead of
finding min et (5) rk directly, we opt to utilize its upper and
lower bounds to find the optimal value min cb (5) rk Finally,
upon computing mincz r,}; on each RBG, we introduce a
complete procedure for the feasibility check process. This
procedure can be effectively parallelized and executed on a
GPU platform, significantly reducing computational time.

1) Reformulating QoS Constraint: Regarding (20), for each
candidate beamforming matrix Z = [z;‘;] KxB € Z, a total
of K QoS constraints need to be checked, one for each UE.
Within each QoS constraint, /N, inequalities in the LHS of (20)
need to be examined, one for each CSI sample. As a result,
for each candidate beamforming matrix Z = [z]xxp € Z,
there are total Ny K inequalities need to be checked.

Based on (20), each inequality—specified by the j-th CSI
sample and UE k—should be checked for every possible cz( J)
that satisfies ||c?(j) — h%(4)||2 < #%. This would imply that
the inequality be validated for all conceivable CSIs within the
ambiguity set. This is infeasible—due to the infinite number
of possible c? (5).

Instead of checking (20), we check the following equivalent
constraint:

ZH{merk > Qrh

j=1 bl"(

ge,l;,bzy--B}zma—e) (k=1---K). (26)

ch (), ek (5) — hL()l|2

To show (20) and (26) are equivalent, we need to show 1)
(20) leads to (26) and ii) (26) leads to (20). To show i)
is true, we see that if 7, > Qj holds for all c}(j) s.t.
et (5) = BL()l[2 < 04,5 = 1--- B in (20), then 1% > Q
also holds for the worst CSI argminy ;) 1, where ||c}(j) —
hﬁ}(sj)Hg < 6%, b =1---B. So the corresponding inequality
szl mincz(j) r,l; > @ in (26) holds. To show ii) is true,
we see that if Zszl mings ;) r? > Q@ holds in (26), then
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25:1 o ZA Q. holds since r? > mincz(j) 7t for all ¢t (j) s.t.
e () — B (e < 0hb=1---B.

There are two benefits in working with (26) instead
of (20). First, we only need to consider one specific CSI
arg mines ;) 7% for each RBG b, instead of an infinite number
of CSI. Second, we can exp101t the 1ndependence among the
RBGs in calculating Zb , ming b(])rk That is, instead of

calculating the sum Zb , min cb (5) 7% at one term, we can
calculate each individual term min_ et () 7% independently and
take the sum afterward.

So the new question becomes: How to calculate ming» ;) rb
for each RBG b. We now address this question.

2) Calculating min, et (7) rk To calculate min cb () r,l;,
we still need to carry all the constraints in OPT- D2, except (5).
Constraint (5) is automatically satisfied based on (25). We now
have the following problem for each RBG b:

OPT-}

mln TII::
Ck (.7)

st (6)(7)(8)(19) ,

wy =z}, h} = ¢ (j).
With a given MCS (y7*)" = 1 to UE k (from Section VIII),
ming ;) ry in OPT-7} is equivalent to mingp ;) 2™ based
on (8), where m* is the selected MCS level corresponding to
(y")" = 1. Then based on (7), min ) rZ‘m is equivalent

to min cb (i )Sk Therefore, solving OPT- rk is equivalent to
solving the following problem:

OPT-s! min 5%

cp.(9)

s.t. (6)(19),

wi. =z}, hy = ¢; ().

But OPT-SQ is hard to solve because both (6)(19) are
nonlinear.

3) Leveraging Upper and Lower Bounds: Instead of finding
the optimal objective value for OPT-s%, denoted as (s%)opr,
we propose to find an upper bound (sZ)UB and a lower bound
(s2)1p for (s?)opr. Then based on the relative relationships
(three cases) between ((s?)up, (s%)Lp) pair and S+, we can
calculate an upper and lower bound for OPT-r? (denoted as
(r®)us and (r?)Lp) based on (7) and (8), where (r?)yp and
(TZ)LB are either a constant (R,,,~) or 0. In each case, we obtain
(r%)opr easily.

Specifically, referring to Fig. 7, based on the values of
((s%)us, (s%)Lp) pair and their relationship with S,,,-, we con-
sider three cases:

o Case 1: If (Sk)UB < Spx, then (TZ)UB = (Tl];)LB =

0 from (7) and (8). (r%)opr can only be 0 since (r%)yp =
0.

o Case 2: If (s%)up > Sp and (sb)rp < Sy, then
(r%)up = Ry > 0 and (r?)p = 0 from (7) and (8).
Then we can set (TZ)OPT to 0 to be conservative since
(riis = 0.

o Case 3: If (sb)p > S, then (rP)ip = (r2)us =
R,,+ > 0 from (7) and (8), (T'k)OPT must be R,,«.

Based on the above discussions, we now only need to find
(sp)us and (s})Ls-

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on November 19,2024 at 00:24:51 UTC from IEEE Xplore. Restrictions apply.



WU et al.: R®: A REAL-TIME ROBUST MU-MIMO SCHEDULER FOR O-RAN

Case3

| ! | ,
1 : el |
i i | |
1 ! | sb 1
i i
! G
| ! |
I
| e e
S — - } ; ‘
! (sk) | i |
——t
| ! ()5 i !
I I
1 sk 1 !
| | i |
i ! ! !
i (SDLB | | |
I ! I |
I ! I |
Py =0 1 @)y, >0 (Dyp>0 !
| ! |
I ! I |
D=0 | @Du=0 | (D50 |
I ! I |
| |
i (rﬂ)ow ol (rz)orT:o | (rﬂ)DPT:(rﬂ)LB i

Fig. 7.

Three cases encountered in finding the optimal objective value
(TZ)OPT

4) Finding Upper Bound (s)yp: Since OPT-s? is a min-
imization problem, then any feasible solution to OPT—sz can
serve as a UB solution to minge ;) sb. To find a feasible
solution, we can solve

min |(z2) el () st (19),

27
ch (4)

where the objective function in (27) is the numerator in the
RHS of (6). A feasible solution to (27) can be used as a UB
solution to OPT-si.

Given that (27) is a convex optimization, we can easily find
an optimal solution c?(5)* as follows:

b
b2

N = he(; iarg((22)The (5
CZ(]) :hZ(]) 79k||zb‘|2e dé(( v) hk,(]))
k

) (28)

where arg(-) is the phase function and ¢ is the imaginary
unit. With c2(5)", an upper bound (s%)us can be obtained
by plugging c&(j)” into (6).

5) Finding Lower Bound (sb)s:
mingy ;) sb, we have:

To find a LB for

. b mincz(j) |(ZZ>TC2(.7)|2
o s > K ik | (,bVt b (]2 b
k() maxer ;) >y |(25)Tep(7)P + Ny
A

-\ |2

(29

- K,- k .
S  max g ) [(22) el ()

where the first inequality comes from (6). In the denominator
of (29), we can decompose Zfi?ﬁk maxeb ;) |(z2)Tc (5)[2
into (K — 1) independent maximization problems, with i-th
problem in the following form:

24+ Ny

max |(z7)7c} (j)[* st (19).
<} (9)

(30)

Given that (30) is a convex optimization, we can easily find

an optimal solution c? (j)# as follows:
bk _ Tibs b % i-arg () THY(5) )
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Combining (28) for the numerator in (29), we have a LB for
mincz(j) % as follows:

B\T b (%2
(Sz)LB = K,i#ll(Zki Cszj)- L 2 b’ (32)
Dt |(zi)Tck~(])i| + Ny,

Once we have (s?)yp and (s%).p, we can consider one of
the three cases in Fig. 7 and find (r%)opr for OPT-1).

Algorithm 1 Feasibility Check of Z € Z

Input: Z, [H?| kx5, [0 xxn, [(22) 1k x B>

() Tk x (M+1)-
Output: All feasible Z € Z that satisfy (26)

1 foreach Z € Z do

2 foreach £k =1--- K do

3 I, =0;

4 foreach j =1--- N, do

5 rp = 0;

6 foreach b=1--- B do

7 Calculate (s?)yp based on (28);

8 Calculate (s?)rp based on (32);

9 if (s2)yp < Sy« then

10 | (r?)opr = 0;

1 else if (s%)yp > S+ and (sb) g < S
then

12 ‘ (r%)opr = 0;

13 else

14 | (rR)opr = Run+

15 | 7k =1k (1))oprs

16 if 7. > Q. then

17 L I, =1, +1;

18 if I, > Ny(1 — ¢) then

19 L (26) is satisfied for UE k;

20 if (26) is satisfied for all UEs k =1--- K then
21 | Z is feasible;

22 else

23 | Z is infeasible;

6) A Recap of Complete Procedure: Algorithm 1 sum-
marizes the complete procedure of finding all feasible
beamforming matrix Z € Z that satisfy QoS constraints (26).
In Algorithm 1, there are four nested loops, organized from
the outermost to the innermost as follows:

Outermost Loop (First Loop): The feasibility of each can-
didate beamforming matrix, denoted as Z € Z, is evaluated
w.r.t. the QoS constraints (26), encompassing a total of |Z]
candidates (Lines 1-33).

Second Loop: For a given candidate beamforming matrix
Z € Z, each of the K QoS constraints specified in (26) is
evaluated (Lines 2-19).

Third Loop: For each given candidate beamforming
matrix Z € Z and UE £k, each inequality on the
LHS of (26), amounting to a total of N, inequalities, is
verified (Lines 4—17).
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Innermost Loop (Fourth Loop): For a given candidate beam-
forming matrix Z € Z, UE k and j-th CSI sample, each term
mincz ) r,l; on the LHS of every inequality in (26), totaling
B terms, is computed (Lines 6-15). Specifically, (SZ)UB for
OPT-s! is calculated based on (28) (Line 7), (s}).p for
OPT—sz is calculated based on (32) (Line 8). Then based on the
three cases in Fig. 7, (r})opr for mingy ;) 7} can be obtained
(Lines 9-14).

Algorithm 1 can be efficiently parallelized due to the
inherent independence among the | Z| candidate beamforming
matrix, K UEs, N, CSI samples, and B RBGs. This means
that a total of |Z|- K - N, - B evaluations can be done in
parallel.

D. Finding Final Solution

Finally, for all the feasible solutions Z € Z, R3 will
calculate their corresponding objective values in OPT-D2 and
the one with the highest objective value will be chosen as the
final scheduling decision for beamforming.

E. Accelerating Computation Time

To ensure the computation time can be completed in RT
(less than 10 ms), R again employs GPU for acceleration.
Figure 8 shows the flow chart of our RT implementation on
a GPU. At first, the CSI samples [H?]xxp and RB allo-
cation/MCS selection decision ([J?Z*]KXB, Wik x (v+1))
from OPT-DI in the near-RT control loop will be transferred
from the host to the GPU global memory. In layer 1, Ns blocks
are generated for Vs independent sub-problems, one for each
CSI sample. For each block, one thread is used to calculate the
ZF beamforming matrix based on each CSI sample. Then all
N, ZF beamforming matrices are used to generate the reduced
search space based on (25).

In layer 2, a total of |Z| - K - N, - B threads are generated
for the feasibility check process shown in Algorithm 1.

Finally, in layer 3, the objective values in OPT-D2 for all
feasible beamforming matrices Z are computed in parallel.
Using parallel reduction, R? can quickly find the best decision
matrix Z* corresponding to the maximum objective value and
choose it as the final beamforming solution.

X. EXPERIMENTAL RESULTS

In this section, we present a comprehensive evalua-
tion of R3 through a series of simulation experiments.
We implement R® on NVIDIA RTX 4090 GPU [45] with
CUDA 12.0 Toolkit [46], [47]. The Nvidia RTX 4090 is
a consumer-grade GPU with 16,384 CUDA cores and an
operating frequency of 2.23 GHz.

We will assess the performance of R? through three key
metrics: violation rate of QoS constraint, throughput (objective
value), and computation time (for the RT control loop).
We first use a case study to demonstrate R3’s behavior and
performance. Then we investigate how R® behaves under
various parameter settings.

As for comparison, we find that none of the existing works
address exactly the same problem as ours in this paper. There-
fore, we have to make the necessary customization for the
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Host Transfer CSI samples
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l beamforming matrix
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oo Calculating
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. e Parallel
Layer 3 H reduction
Y Final beamforming
matrix Z*
Fig. 8. A parallel implementation to solve OPT-D2.

state-of-the-art to make a meaningful comparison. Specifically,
we will compare R? with the following two alternative designs.

o Unified Scheduling [21]. Unified scheduling addresses
RB allocation and MCS selection different from our
R3. It employs an iterative greedy algorithm, aiming to
maximize throughput in each iteration. Given that Unified
scheduling assumes knowledge of perfect CSI, which
is not available in our problem, we will use the mean
CSI sample as an approximation. Furthermore, as Unified
scheduling doesn’t address beamforming, we employ ZF
for a fair comparison.

o Gaussian Approximation [28]. Gaussian approximation
is another (different) technique that can be used to address
chance constraints. It transforms a chance constraint into
a deterministic constraint while maintaining a probabilis-
tic guarantee. This method presumes that the channel
adheres to a Gaussian distribution, with both its mean and
variance derived from the CSI samples. Since Gaussian
approximation pertains solely to the chance constraint,
we assume all other components (RB allocation, MCS
selection, and beamforming) will align with R? so as to
make a fair comparison.

It is important to note that both the Unified Scheduling and
Gaussian Approximation algorithms are implemented directly
on the GPU, with iterations executed sequentially. Optimizing
these implementations to maximize parallelism is beyond the
scope of this paper.

A. Simulation Settings

The set of common parameters that will be used in all of
our simulation experiments is given in Table II. Parameters
not listed in the table will be specified in a given study.

The UEs are randomly located within the cell radius (see
Fig. 9), with the number of UEs to be specified in each
study. The channel is modeled using a combination of path
loss and fast fading. The path loss is calculated based on
38+301og;(d) [48], where d represents the distance between
the UE and the O-RU. We generate the fast-fading component
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TABLE 11

PARAMETER SETTINGS
Parameter Value
Numerology 0
Number of RBs (B) 100
Number of RBGs 25 (4 RBs in each RBG)
Bandwidth of one RB (BW) 180 KHz
Maximum MCS level (M) 28
Number of transmit antennas (A7) 8
Power budget (Pmax) 33 dbm
CSI time window (L) 100
QoS data requirement (Qx) 5-10 Mbps
Candidate UEs based on data rate (G'rate) 10
Candidate UEs based on correlation (Georr) | 4
Maximum noise power (62) —150 dbm
Cell radius 300 m

of the channel using the Rayleigh distribution [43]. It is impor-
tant to clarify that the distributions described above are solely
utilized to generate the channel behavior. This information is
not available and is not utilized by our R? algorithm, which
solely relies on the limited CSI samples (with zero knowledge
or any assumption of the underlying distribution information).

The time length of each CSI sample is set to 1 TTI (1 ms).
The CSI time window L is set to 100 ms. We assume the
channel distribution remains stable within this window. This
assumption can be justified by the actual channel behavior (in
terms of path loss and fast fading) in the real world as follows.

o For path loss, let’s consider a scenario with a rapidly
moving vehicle traveling at 30 m/s (65 miles/hour) and
located 50 m away from the O-RU (d=50 m). Based on
the aforementioned path loss model, the variation in path
loss is less than 1 dB (from 88.9 dB to 89.7 dB) over a
100 ms window. This suggests that the path loss remains
relatively constant within this window.

o For fast fading, its distribution is predominantly deter-
mined by the Doppler shift, which can be represented by

%, where v denotes the UE’s velocity, f is the carrier

frequency, and c is the speed of light [44]. As an example,
consider a UE with a carrier frequency f = 2 GHz.
Suppose it is traveling at an initial speed of 20 m/s
(45 miles/hour) and is accelerating at 6 m/s2. Then over
a 100 ms period, the Doppler shift varies from 133 Hz
to 137 Hz, a mere change of only 4 Hz. This indicates that
the change in the fast fading distribution over a 100 ms
duration is negligible.

In summary, given the negligible changes in both path loss and
fast fading components within a 100 ms period, we can con-
fidently conclude that the channel distribution remains fairly
consistent (relatively unchanged) for the L = 100 ms window.
Consequently, all the CSI samples collected within this period
can be assumed to share the same channel distribution.

B. A Case Study

In this study, we set the number of UEs K = 20 as shown
in Fig. 9. We set Ny = 50, which gives us 7 = 0.5. We run
our simulation for 1,000 seconds and take an average of the
results over all scheduling instances. In the simulation results,
confidence interval is not included. This is because, during
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Fig. 9. Network topology used for the case study.

the 1,000-second simulation period, the channel distribution
is both unknown and time-varying while confidence interval
is only meaningful for stationary distributions.

1) Statistical QoS Guarantee: In Fig. 10(a), we present
the actual violation rates of the QoS constraints for all three
algorithms. The violation rate is computed by taking the
average across the violation rates of QoS constraints for all
UEs. The violation rates of R? and Gaussian Approximation
remain consistently below the target risk level e. This indicates
that these algorithms can satisfy the required QoS constraints.
Notably, the violation rates of both R? and Gaussian approx-
imation increase as the risk level increases and Gaussian
approximation exhibits a more conservative behavior than R?.
In contrast, Unified scheduling has a fixed prohibitively high
violation rate and cannot meet the required QoS constraints.
This is because it intends to allocate more RBGs and high
MCS levels to UEs with high channel quality for higher
throughput without considering the QoS requirements.

2) Throughput: Figure 10(b) shows the system throughput
(sum over all UEs) of all three algorithms. Unified scheduling
has the highest throughput since it tends to allocate most
of the resources to UEs which have better channel quality.
R? demonstrates the second-highest performance, with only
a 15% gap compared to unified scheduling when € > 0.3.
Gaussian approximation has the lowest throughput. More-
over, the throughput of both R? and Gaussian approximation
increases as the risk level rises due to the larger feasible region.

3) Computation Time: Figure 10(c) shows the computa-
tion time of all three algorithms. Unified scheduling has the
longest computation time ~10 seconds because it follows an
iterative greedy method. The computation time of Gaussian
approximation is ~300 ms. The near-RT control loop of
R? takes ~ 30ms and meets the time requirement for the
near-RT control loop. The computation time of the RT control
loop of R3 is less than 1 ms, which is well within the
time requirement for RT control loop (less than 10 ms). The
computational time of R3 escalates as the risk level rises,
because of an expanded feasible search space for making
scheduling decisions.

C. Varying System Parameters

1) Varying Overhead Ratio ~y: A larger value of v means
more CSI samples (INV;) can be utilized. Given that v is
the distinct parameter for R3, the performance of Unified
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Fig. 11. Performance of R3 under varying value of ~.

scheduling and Gaussian approximation from the case study
is not affected by varying . All other simulation parameters
are the same as those in the case study, with the exception
that the risk level, ¢, is set to a fixed value of 0.1.

In Fig. 11(a), we present the actual violation rates of the
QoS constraints under varying . When v increases, which
means more CSI samples can be utilized, the actual risk level
decreases because the empirical distribution approaches the
true distribution, and the performance of R? improves. When
~v < 0.2, the actual violation rate is higher than the risk level
€, which means the number of CSI samples is insufficient
to achieve the desired probabilistic guarantee for R3. When
~ = 0.2, the violation rate approximately equals to the target
risk level. When ~ > 0.2, the violation rates of R3 remain
consistently lower than the target risk level.

Figure 11(b) shows throughput (left vertical axis) and
overhead (right vertical axis) as a function of varying . The
overhead can be calculated as # of UEs x # of RB(G)s Xx
# of antennas x float type (e.g., 32 bits) x ~. With a larger
v, the actual overhead in the control channel used for
transmitting CSI samples through the fronthaul link increases.
On the other hand, throughput under different values of ~
remains almost the same. This is because the data channel
and control channel are separate and the throughput is rather
immune to the value of ~.

Figure 11(c) shows the computation time of R3 under
varying . When + increases, which means more CSI samples
are being utilized, the computational time increases. But for
v < 0.7, the computational time of R*® meets the timing

Overhead ratio v

(b) Throughput and Overhead

0‘5 0.7“ 0.1 0.3 0.5 0.7
Overhead ratio ~

(c) Computation time

requirement of O-RAN in both the near-RT and RT control
loops.

2) Varying Number of UEs K: A larger K means more
QoS constraints need to be satisfied when making scheduling
decisions. In this study, all other simulation parameters are
the same as those in the case study, with the exception that
e=0.1.

In Fig. 12(a), we present the actual violation rates of
the QoS constraints under varying K. When K increases,
the actual violation rates of all three algorithms increase.
The violation rates of R® and Gaussian approximation remain
consistently lower than the risk level ¢ = 0.1. The violation
rates of Unified scheduling significantly exceed the target risk
level € = 0.1.

Figure 12(b) shows the throughput (objective value) as a
function of K. With an increasing value of K, the throughput
of R? and Gaussian approximation decreases. This is because
as the number of UEs increases, the number of QoS constraints
also increases, leading to a reduced feasible region and con-
sequently a lower objective value. The throughput of Unified
scheduling remains static because it allocates resources only
to a subset of UEs exhibiting good channel quality.

Figure 12(c) shows the computation time of all three algo-
rithms as a function of K. The computational time of all
three algorithms increases as the number of UE increases. The
computation time of R? (near-RT control loop and RT control
loop) both satisfy their timing requirements in O-RAN.

3) Varying Size of Search Space: In the case study, after the
search space reduction process in R3, the search space size of
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both the near-real-time control loop and the real-time control
loop is reduced to the order of 10*. To evaluate the impact
of the search space reduction process, we use the reduced
search space used in the case study (which meets our real-time
requirement) as the baseline. Then we consider larger search
spaces with 10x, 100x, and 1000x of the baseline search
space. Note that the original search space cannot be evaluated
due to its prohibitively large size, which can include up to
10*2° possible solutions. All other simulation parameters are
the same as those in the case study, with the exception that
the risk level € is set to 0.1.

In Fig. 13(a), we present the actual violation rates of the
QoS constraints as a function of the search space size. For
different-sized search spaces, the actual violation rates remain
below the risk level. As the search space size increases, the
violation rates become slightly closer to the risk level.

Figure 13(b) shows the throughput (objective value) as a
function of the size of search space. Larger search spaces can
achieve higher throughput, which is intuitive. However, when
the search space is 1,000x of the baseline, the throughput
improvement is only 8%, indicating that our baseline search
space is excellent (in terms of containing high-quality
solutions).

Figure 13(c) shows the computation time as a function of
the search space size. The computation time increases nearly
linearly (log scale for both z and y axes) with the search space
size. Only the baseline reduced search space of the RT control
loop can meet the sub-1 ms real-time requirement. When the
search space is 1,000x of the baseline, the computation time
of the RT control loop is ~600 ms, far exceeding the 1 ms
RT requirement.

As the results show, R® achieves an excellent trade-off
between actual performance and computational time, indicat-
ing that the reduced search space is of high quality.

XI. CONCLUSION

We presented R3—a real-time robust MU-MIMO scheduler.
To date, R? is the only scheduler in the field that offers a com-
prehensive solution for RB(G) allocation, MCS assignment,
and beamforming calculation within the O-RAN framework.
In particular, R3 is the only known scheduler that successfully
addresses the two prominent challenges to scheduler design in
O-RAN: imperfect CSI and real-time requirement. To address
the imperfect CSI, R? uses a data-driven approach and utilizes
the limited number of CSI samples to provide probabilistic
guarantees. To meet the stringent time requirement of the
O-RAN system, R? decomposes the scheduling problem into
two distinct sub-problems and fits them into near-RT and
RT control loops of O-RAN. Each sub-problem is designed
with a parallel structure with reduced search space and imple-
mented on the GPU platform. Experiment results confirm that
R? meets our design objectives over a wide range of operating
conditions.
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