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Abstract—MU-MIMO beamforming is a key technology for
5G/NextG networks. In practice, MU-MIMO beamforming re-
quires Channel State Information (CSI) and is prone to uncer-
tainty. Furthermore, a beamforming solution must be derived
within a millisecond (ms) to be useful for real-time (RT) 5G appli-
cations. We present ReDBeam—a RT data-driven beamforming
solution for MU-MIMO using limited CSI data samples. The
main contribution of ReDBeam is a parallel algorithm and an
optimized GPU implementation. ReDBeam minimizes the base
station (BS)’s power consumption while offering a probabilistic
guarantee of users’ data rates. It is purposefully designed to take
advantage of the vast parallel processing capability in commercial
off-the-shelf GPUs. Through extensive experiments, we show that
ReDBeam can meet the 1 ms RT requirement and is orders of
magnitude faster than other state-of-the-art algorithms for the
same problem.

I. INTRODUCTION

Beamforming is the key to increasing spectral efficiency
in MU-MIMO [1], [2]. For beamforming, Channel State
Information (CSI) is required to ensure transmit signals are
precoded in the correct directions. There is a large body of
works on MU-MIMO beamforming by assuming knowledge
of perfect CSI (see, e.g., [3], [4]). Such an assumption is
unrealistic, due to issues such as channel estimation errors [5],
limited feedback [6], and hardware imbalance [7]. Therefore, a
practical MU-MIMO beamforming solution must address the
inherent channel uncertainty in CSI.

Existing works addressing CSI uncertainty can be classified
into two branches: model-based and data-driven. Under the
model-based approach, CSI is assumed to follow some known
distributions [8], [9], channel statistics [10], [11], or worst-case
boundaries [12], [13]. These works typically offer tractable
mathematical formulations and subsequently can be leveraged
to develop solutions with performance guarantees. However,
the efficacy of this approach hinges upon the validity of the
assumed models. In contrast, a data-driven approach (a.k.a.
model-free) does not assume any models but rather uses
CSI data samples directly to derive a beamforming solution.
The prevailing examples of this approach are learning-based
solutions (see, e.g., [14], [15]). Data-driven solutions are
highly adaptive to a wide range of scenarios and can easily
meet real-time (RT) requirements. However, their performance
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hinges upon a large high-quality dataset for training and lacks
a theoretical performance guarantee.

Recently, a new approach called D?BF was proposed in
[16], which aimed to combine the strengths of both model-
based and data-driven approaches and avoid their pitfalls. In-
stead of requiring a large dataset as in a data-driven approach,
it only uses a small number of CSI data samples (which we
call “small data”). Similar to a model-based approach, it is able
to offer probabilistic performance guarantees to the UEs. The
only concern of D?BF is its high computational complexity,
which poses a challenge to meet the RT requirement in
5G/NextG. By “RT”, we mean am MU-MIMO beamform-
ing solution must be derived within one Transmission Time
Interval (TTTI).

In this paper, we address the RT challenge associated with
the new small-data approach in [16]. Assuming the most
common 5G-NR numerology 0 [17], we aim to derive an
MU-MIMO beamforming solution within 1 ms. The main
contributions of this paper are summarized as the following:

o« We address the key limitation in D2BF [16] for MU-
MIMO beamforming: How to make it work in RT?
This “RT challenge” is especially important in 5G/NextG
networks, where the available time for computation is
only 1 ms.

o We propose an RT solution called ReDBeam, short for
Real-time Data-Driven Beamforming, with two primary
objectives: (i) deriving a beamforming solution within 1
ms, and (ii) minimizing BS power consumption while
guaranteeing probabilistic data rates for the UEs. We
structure ReDBeam as a parallel algorithm and make it
suitable for parallel processing by Commercial Off-The-
Shelf (COTS) GPUs.

¢ We implement ReDBeam on an NVIDIA V100 GPU
and optimize our hardware implementation to minimize
total time consumption. Specifically, we design three
kernels and optimize each kernel by properly choosing
the computation steps run in parallel for the GPU threads
and using shared memory to reduce data access time.

o Through experiments, we show that ReDBeam can meet
the 1 ms timing requirement and guarantee probabilistic
SINR thresholds (equivalent to data rate requirements)
for the UEs. In addition, we find that the performance
of ReDBeam is very close to D?BF and is significantly
better than other model-based algorithms (i.e., Gaussian
Approximation).
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Fig. 1. Downlink MU-MIMO in a 5G cell (left) and grouping of RBs into
RBGs for resource allocation (right).
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Fig. 2. Sliding window for CSI data samples.

II. SYSTEM MODEL AND MATHEMATICAL FORMULATION
A. MU-MIMO Beamforming

Fig. 1 (left) shows a 5G cell that employs the MU-MIMO
scheme to serve a group of UEs. Denote M as the number
of antennas of the BS and denote £ = {1,2,3,---, K} as
the set of K UEs. We consider downlink and assume that
each UE only has one antenna. As defined in 5G-NR [17],
one Resource Block (RB) covers 12 sub-carriers in one TTIL.
To reduce the scheduling overhead, the BS can group multiple
RBs into an RB Group (RBG) and use RBG as the granularity
for scheduling. In Fig. 1, 64 RBs are grouped into 8 RBGs.
Each RBG serves a subset (multiple) of UEs and a UE can be
scheduled on multiple RBGs. Denote ¢ = {1,2,--- ,G} as
the set of G RBGs at the BS. For RBG g € G, denote K, as
the subset of UEs that are selected to receive data from RBG
g. In this work, we assume KC,’s are given a priori.

In the context of MU-MIMO, UEs in K, simultaneously
receive different data streams from the BS on the same RBG.
To achieve this, we need to design a unique precoding vector
for each UE on an RBG g. Denote w, ;) (an M x 1 complex
column vector) as the precoding vector for UE ¢ on RBG g.
These w, ;)’s should be optimized using the CSI from the BS
to the UEs.

B. CSI Data Samples from Sliding Window

Denote h, ;) (an M x 1 complex column vector) as the CSI
from the BS to UE 7 on RBG g. h(, ;) can be estimated during
a channel sounding process and can be performed on each RB
[18]. Fig. 2 shows a sliding window mechanism on RBG 0,

where each small rectangle represents an RB. Denote S as the
number of RBs in an RBG and we have S = 8 in Fig. 2. Each
window has (N +S) RBs spanning over (N/S+1) TTIs. We
will use the N CSI data samples collected in the most recent
N/S TTIs (green) to design precoding vectors for the S RBs
in the upcoming TTI (red). The same mechanism applies to
other RBGs.

Denote Py, ,, as the probability density function (PDF) of
the unknown distribution of h(g)i), ie., h(g’i) ~ ]P’h(g,i). Then
we have the N CSI data samples of h, ;) drawn from the
unknown distribution Py, ,,. We denote this sampling process
from unknown channel distribution as:

N samples from unknown distribution h, ;) ~ Ph(gvi). (D)

Under the sliding window mechanism shown in Fig. 2, we
need to design an MU-MIMO beamforming solution within
one TTI, which is 1 ms under 5G numerology 0.

C. Problem Formulation

We consider two requirements for the precoding vectors
W(g,:)- The first is that the total transmission power over all
RBGs (to all UEs) cannot exceed a power budget, i.e.,

DD lIweallz < P™, )

geGIEK,

where || - ||2 is the Ly-norm and P™ is the BS power budget.

The second is on UE’s service requirement. We assume
each UE has a data rate requirement to be met, which is
equivalent to meeting an SINR threshold given the bandwidth
of each RBG. Per 5G standards [19], a UE must use the same
Modulation and Coding Scheme (MCS) on all its RBGs, which
means SINR thresholds must be the same on all its RBGs.
Denote ;" as the SINR threshold for UE ¢. To cope channel

K3
req

uncertainty, we employ probabilistic guarantee for ;" as:

H
((Wg.) " hgn RIS P
3)

, >
Sk, (W) o +0?

(ieKgged),
where (-)f denotes conjugate transpose, o7 is the power of
thermal noise at UE 4, P{-} denotes the probability function,
and ¢; is called risk level. Constraints (3) state that the actual
SINR on RBG g should be greater or equal to the required
SINR threshold ~;* with a probability at least 1 — ¢;.

In this work, we are interested in minimizing the BS’s power
consumption while meeting the UEs’ probabilistic data rate
requirements. Our problem (P1) can be stated as follows:

DI
geGiek,
s.t. BS power budget (2)
Probabilistic SINR guarantees (3) ,
CSI data samples with unknown distribution (1) ,

(P1)

min
W (g,i) eCMx

where CM*1 is the set of all complex M x 1 column vectors.
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Fig. 3. An illustration of key steps of ReDBeam.

Final solution

P1 is a chance-constrained program, which is hard to solve.
In [16], the authors showed that Pl can be decomposed
into GG parallel and independent subproblems, where the g-th
subproblem corresponds to MU-MIMO beamforming on RBG
g. Then each subproblem can be equivalently reformulated into
a deterministic problem based on the empirical distribution of
h, ;) fromits N data samples using oo-Wasserstein ambiguity
set [20]. After the G subproblems are solved, we can recover
the solution to P1. This solution recovery process does not
introduce relaxation and has negligible computation efforts.

The g-th (g9 € G) subproblem is given as:

>

w(g 5 ECMx1

st—Z{

where f (w

F(Wig.i, Bgn(n) = {

(P2) min

2
'W .
W(g.i) H (g,z)HZ

W(g,i)s Doy (n)) =
(g)i),h(g)i)(n)) is defined as

req

NH . |2
in (l(W<q,)) cil

C{,E(CIMXI 'yl
- A )
= 3 ) e?) ¢ lles ~ i) < O |
keK,

In P2, ﬁ(g,i)(n) is the n-th data sample of hg ;), I(-) is the
indicator function, and 0( 9.,0) is a small constant that represents
the search space (distance) of c¢; around each CSI data sample
[16], [20], [21]. We will show a simple approach to set 6
based on the N CSI data samples in Section V.
Technical Challenges Though P2 is a deterministic problem,
it is mathematically complex. In particular, its constraints
include a non-convex Quadratically Constrained Quadratic
Program (QCQP) defined in f (w( h(g #(n)). Iterative al-
gorithms for MU-MIMO (e.g., [3] [16]) require substantial
computation time and cannot meet our RT requirement (1
ms). In this work, we will develop a 1 ms RT solution that
effectively explores the search space CM*1 for W(g.i)-

(9,%)

III. REAL-TIME DATA-DRIVEN BEAMFORMING

In this section, we present ReDBeam—a Real-time Data-
Driven Beamforming solution and its GPU implementation.
Fig. 3 shows the three key steps of ReDBeam. In the first
step, we identify a “promising” search space and generate a
sufficiently large number (denoted as L) of initial solutions.

3}21_61-(2'6;@),

In the second step, we employ a scaling-based local search to
find feasible solutions based on these L initial solutions while
trying to improve the objective if possible. In the final step, we
find the feasible solution with the minimum objective value as
our solution to P2.

A. Generating A Population of Initial Solutions

In this step, we generate L initial solutions within a promis-

ing search space. The “promising search space” is a subspace
formed by some basis vectors and it should contain many
feasible beamforming vectors with satisfactory performance.
It is possible that the optimal beamforming solution may fall
outside of this search space. But as long as we can find a good
solution (i.e., close to the optimal) within this space, we have
achieved our goals.
A Promising Search Space For ease of exposition, we drop
the subscript g when there is no confusion. To narrow down
the original search space CM*!, we observe that a promising
direction for w; € CM>1 should enhance the received power
and suppress the received interference for UE i. Based on
this observation, we identify a promising search space to be
a cone whose basis vectors are derived from the widely used
Zero-Forcing (ZF) precoding based on CSI data samples.

Given that we have N CSI data samples in the current
window, it is natural to use /N basis vectors to form the cone
where each basis vector corresponds to a specific CSI data
sample. Denote v;(n), n =1,2,--- N s the N basis vectors.
Each v;(n) is the ZF precoding vector for UE ¢ under the
n-th CSI data sample. Clearly, v;(n) depends on the CSI data
samples h;(n),i € K,. Define an M x |K,| matrix H(n) as

H(n) = [ﬁl(n) ho(n) f1|;cg‘(n)} .

We can calculate the ZF precoding vectors v;(n)’s based on
H(n) following the deterministic CSI model. This means we
need to calculate the Moore-Penrose pseudo-inverse of H(n),
denoted as H(n)t (a |KC,| x M complex matrix). Here we cal-
culate I:I(n)T using QR decomposition and forward/backward
substitutions since it has many parallelizable steps.

Denote u;(n), an M x 1 complex column vector, as the
complex conjugate of the i-th row of H(n)%, i.e.,

H(n)" = [ui(n) uz(n) uwg‘(n)]H )

Then v;(n) is given as:

vi(n) = oi/77 - wi(n)
which means that v;(n) follows the same direction as u;(n).
Due to the zero interference property of ZF precoding, and
the fact that uZ Hflj,( ) = 1, the received SINR at UE
iis |(vi(n)) hi(n )| Jo? =~ Since there are N APAI(n)’S,
we can calculate the ZF precoding vectors for each H(n) in
parallel for n = 1,2,--- | N. After calculating v;(n) in (5),
we obtain the promising search space for w;, given as:

(ie,cgv n:172a"'7N)7 (5)

N
w; € {e: e= Zai(n)vi(n)7 ai(n) > 0} (teky), 6
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where each vector inside this cone is a linear combination of
the IV basis vectors v;(n)’s with a;(n) > 0, i € Cg.
Sampling The L initial solutions are randomly sampled
inside this promising cone. Denote the ¢-th initial solution
as zf where ¢ = 1,2,3, -+, L. To generate zf, we choose
af(n),n=1,2,---, N in (6) following a uniform distribution
between [0, 1]. Then we scale the af(n ) S proportionally SO
that their sum is normalized to 1, i.e., Zn L at(n) = 1. This
gives each initial solution as z{ = 25:1 at(n)vi(n). Clearly,
finding the L initial solutions can be done in parallel since
they are independent of each other.

B. Finding Promising Solutions via Local Search

Now we have L initial solutions zf, (= 1,2,---,L,
i € ICy. However, since they are randomly generated from the
“promising space”, they neither guarantee feasibility (meet the
UEs’ data rate requirements) nor good performance (minimize
the BS’s transmission power over all RBGs). Therefore, we
will perform a local search on each of these L initial solutions
so that i) each new solution is feasible (if possible), and ii)
the objective of P2 is minimized.
Main Idea With 1 ms time constraint, a local search must be
simple and fast, with as few steps as possible. Thus, we limit
our local search only to the scaling of the length (or norm)
of zf, i.e., without creating new directions. Denote wf as the
solution after scaling of zf , which is given as

wi=X.2! (iek,). (7)

Here \* > 0 is the scaling factor and is independent of UEs.

With the scaling in (7) the objective function of P2 be-
comes ) . K, [|\¢-z¢||2, which is ()\e) Zielcg ||z¢|3. Since
Zze/c Hzl||2 is a constant when z{’s are given, the objective

of P2 can be replaced by min )\Z Further, based on the
definition of f(w?,h;(n)) in P2, we have

fwi hi(n) = f(X'2{, hi(n)) = (\)*f (2. hy(n)) . (8)

Therefore, with given zf’s, we can rewrite P2 as follows:

(P3)min A
)\2

sty SV (el b)) > 0f} > 1 i € Ky

Definition of f(zf, fll(n)) in (4), X' >0.

Thus, we substitute the complicated multi-dimensional local
search for z¢’s with finding \*. Clearly, the main difficulty of
P3 is f(zf,flz(n))

Calculation of f(z{,h;(n)) InP3, f(z{,h;(n)) contains
N-|K4| terms. Since these terms are independent of each other,
we can solve them in parallel. Based on (4), for a specific
f(zf, fll(n)), we need to solve

( f)H s
Py min (TP = 3 | (af) el
! kek,

st |le; — hi(n)|la < 6; .

Unfortunately, P4 is a non-convex QCQP, which is hard to
solve. Due to our strict 1 ms time constraint, we will find
a lower bound for the optimal objective of P4 and use it for
f (z¢, fll(n)) in P3. This may lead to a slightly larger value for
At in the objective of P3. Nevertheless, in our final solution to
P1, all constraints (probabilistic guarantee of UEs’ data rates
and BS’s power budget) remain satisfied, except the objective
(BS’s power consumption) may be slightly higher than that of
the optimal solution.

Note that in the objective of P4, the first term is related to
the received signal, while the other (| | —1) terms are related
to interference. To obtain a lower bound for P4, we relax its
objective function by separating the |/Cy| terms, i.e.,

() el
min — max | (z5,) 7 c; |2 )
“ i ek, o

Then we can decompose P4 into I, subproblems where each
subproblem corresponds to an item in (9):

[CA

req
i

(P4-A) min
Ci

st |le; — fll(n)Hz <0;,

and for k € ICy, k # 14,

L

(P4-B) max |(z5) c;]?

S.t. ch — flz(’n)”g <4, .

We will have one instance of (P4-A) for the received signal,
and |KC 4| —1 instances of (P4-B). Both (P4-A) and (P4-B) have
only one decision variable c; in their objective function and
constraint, which promises closed-form solutions. To conserve
space, we omit the derivations and directly provide the lower
bound for P4’s objective function (i.e., f(zf, ljll(n))) as:

0 = (max{a (1688} = - a1} )
' k#i 9
=3 (1) )]+ 2l2)
kek, (10)

Solution to P3  Substituting f (zf,fll(n)) with its lower
bound fIB(n), we can rewrite the constraints in P3 as

N

>

n=1

H{(V)Q B (n) > 03} >N(1—-¢) (i€k,). (11)

There are |K,| constraints in (11). Denote Bf as the minimum
M to satisfy the i-th constraint of (11). 3¢ can be easily found
by sorting N real numbers in non-decreasing order and set 3¢
as the (1 — ¢;)-quantile. There are two cases:

i) If for all i € Ky, fFB(n) > 0 holds for at least [N - (1 —¢;)]
CSI data samples, then ﬂf > 0. To satisfy all constraints in
(11), we simply set A\’ to:

PN —maxﬂ

i€, (12)
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Fig. 4. A GPU implementation of ReDBeam.

Using A from (12) to (7), we have a feasible solution:

wi = (?El%x Bz) . iaf(n)vi(n)
n=1

ii) Otherwise, i.e., for some i € Ky, fZLB(n) > 0 only holds
for fewer than [N - (1 — ¢;)] CSI data samples, then there is
no feasible solution to (11) under this initial solution zf . We

can simply drop this initial solution z.

(iek,). (13)

C. Finding the Final Solution

After the local search, we have at most L feasible solutions,
we can calculate their objectives (i.e., > ;e |[w¢l3) and find
the one with the smallest objective (since P2 is a minimiza-
tion problem). The feasible solution w! associated with this

smallest objective value is our final solution to P2 on RBG g.

IV. GPU IMPLEMENTATION

Now we have a solution to P2. But we still need to
address how to make the solution to meet the 1 ms time
constraint in the real world. To do this, we choose COTS GPU
as our implementation platform, due to its massive parallel
computing capability. On a GPU, we need to address how to
efficiently allocate the available resources, such as threads'
for computation and memory for data storage.

Fig. 4 shows our GPU implementation of ReDBeam. The
total time consumption consists of data transfer and algorithm
execution. We use asynchronous data transfer between CPU
and GPU to reduce these data transfer times. As shown in
Fig. 4, there are GG streams (blue) and each stream calculates
the beamforming solution on a specific RBG (one P2 instance).
We overlap data transfers and kernel executions across differ-
ent streams to reduce overall time consumption [22]. For each
stream, we design three kernels (red):

o Kernel I calculates the ZF precoding vectors v;(n) based
on CSI data samples fli(n), itekyn=12---,N.

o Kernel 2 generates initial solutions z¢ based on v;(n),
finds the scaling factors ¢ (if exists), applies \* to obtain
we = X\ . z¢, and calculates its objective.

. Kernel 3 ﬁnds the best solution from the feasible solutions
provided by kernel 2, which is our solution to a P2.

Due to space limitations, we will focus our discussion on ker-

nel 2 to demonstrate how to optimize the GPU implementation
of ReDBeam.

YA thread is the minimum processing unit for algorithm execution and
threads are grouped into thread blocks (TBs) to execute kernels.

Kernel 2 For kernel 2, we use L TBs, and each TB has
N|K,| threads to maximize the parallelization capability of
our GPU. Specifically, each TB generates an initial solution
z¢ from (6), finds the scaling factor A\, obtains w! = X\’ - z{
by (7), and calculates the objective value.

The core step of generating an initial solution is to calculate
|ICq| M sums of N complex numbers with randomly generated
a;(n). Note that the promising search space (6) will be
implicitly included during this process. A common technique
to reduce execution time in GPU implementation is parallel
reduction, which is suitable for comparison or summation over
a large number of terms [23]. For a sum of N numbers, we
need log, (V) iterations and N/2 threads. Since timing is our
main concern, we employ the parallel reduction technique to

calculate an initial solution z, i € KC,.

For the lower bounds fiLB( ) derlved in (10), we need
to calculate N|K,|? times of multiplication of two M x 1
complex vectors in the form of (z ) - h;(n). So each thread
will compute one such term and N|K,| terms can be calculated
in parallel. Then we can easily calculate fB(n) based on (10).

To find A, we can directly sort N numbers and then check
the sorted numbers to see whether we employ (13) to obtain
w? or drop this initial solution z . Specifically, we need to
perform |ICq| times of sorting of N real numbers. We employ a
parallel sorting algorithm called odd-even sorting, which uses
| N/2] threads and N iterations to sort N numbers. Then \*
can be easily found by comparing |K,| real numbers or we
declare it does not exist and the initial solution is infeasible.

If A’ is found, we only need to multiply a real number
ANoto [Ky| M x 1 complex vectors z¢, i € K . To reduce
computation time, we use 2M|/C,| threads, where the first
|KC4| M threads are for the real part of w!, i € K, and the
remaining |KC4|M threads are for the imaginary part of we,
i € K4. Then we can calculate the objective of this feasible
solution using parallel reduction.

In terms of memory, we use both global memory and shared
memory. Global memory has a large volume (e.g., ~ 10
gigabytes) and can exchange data with external platforms (i.e.,
CPU or other GPU) while shared memory has faster access but
a smaller volume (e.g., 48 kilobytes per SM in our NVIDIA
V100 GPU) and no external access outside of a thread block.
Thus, shared memory is more suitable for repeatedly accessed
data within a TB. In kernel 2, all intermediate results are stored
in the shared memory, which includes zf, fZLB(n) f and \’.
The output feasible solutions w? and their objectives are stored
in global memory for kernel 3.

V. EXPERIMENTAL RESULTS

In this section, we evaluate the running time and perfor-
mance of ReDBeam. We implement ReDBeam using CUDA
11.2 on an NVIDIA Tesla V100.

A. Parameter Settings

Fig. 5 shows the topology of a 5G cell with a 500-meter
radius and 30 UEs (i.e., K = 30). We assume the BS has 8
antennas (i.e., M = 8). Following Fig. 1, the BS has G = 8
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Fig. 5. A BS with 30 UEs.

RBGs and each RBG consists of 8 RBs. We set the number of
UEs per RBG |/Cy4| = 2. The BS has a power budget P™* = 46
dBm and the thermal noise o? is set to —150 dBm/Hz for all
UEs. We set the SINR threshold ;¢ = 2(59/di) — 1 where d;
is the distance between UE ¢ and the BS in meters. Further,
we found it is sufficient to set L = 650 for our setting.

For the wireless channel, we consider the path-loss model
and fast fading. The path-loss between UE ¢ and the BS is
modeled by PL; = 38 + 30 x logy,(d;) (in dB) [24]. For
fast fading, we employ Rician fading with a 10 dB Rician
factor, which is a common model for correlated RBs. We also
employ a truncated Gaussian distribution to simulate the CSI
estimation errors [9]. Note that ReDBeam only relies on the
CSI data samples and does not assume any channel models.

B. Choosing N and 0, ;)

We first discuss how to choose N and 0, ;). Intuitively, we
would like to choose a small N to reduce complexity and a
small 0, ;) that meets the probabilistic data rate guarantees
with lower BS power consumption. For a given N, 0, ;) is
related to how uncertain the N CSI data samples are. We
propose a fast heuristic based on these samples to calculate
0(4,i) before executing ReDBeam. Specifically, we resort to a
constant factor and the estimated standard deviation from N
CSI data samples, i.e., for any i € K4, g € G,

1 Ly
Ooi) =2 | 7 2 (B (n) — ===
n=1

p is the constant factor we need to choose. We use p/N in the
above expression because the more CSI data samples we have,
the closer the empirical distribution is to the true distribution.

To find a proper p and IV, we set ¢; = 0.1 and run ReDBeam
under 0.25 < p < 3 and 24 < N < 88. The actual violation
probabilities and achieved objectives are shown in Fig. 6. As
shown in Fig. 6(a), it is sufficient to choose p € [1.5,2.5] in
all cases of N. Then we zoom into these p values and study
the achieved objectives as shown in Fig. 6(b). As shown in
Fig. 6(b), the objective only increases slightly w.r.t. p. Taking
both Fig. 6(a) and Fig. 6(b) into account, we conclude that it
is prudent to choose N = 40 and p = 2 to calculate 0, ;).

The above process shows how to set N and 6, ;) for a given
network setting. They can be dynamically adjusted during run-
time through continuous tracking of the violation probabilities

Zg:l B(gvi) (n) 2
B

(b) Objective value

Fig. 6. Impact of p and N.

at the UEs. As for time consumption, in each window, before
executing ReDBeam in Fig. 4, we will use G|, | thread blocks
to calculate these 0(, ;)’s in parallel and then use these 0, ;)’s
in ReDBeam to derive a beamforming solution. Note that p’s
have no impact on the overall time consumption while a larger
N will slightly increase time consumption.

C. Results

We evaluate ReDBeam with two benchmarks. The first
one is D?BF [16], which solves each P2 through convex
approximation and Semidefinite Programming (SDP). The
second one is Gaussian Approximation [8], which assumes
CSI follows a complex Gaussian distribution. We implement
them with MOSEK 9.2.38 using MATLAB R2017b on Intel
Xeon E5-2687w v4. All results are the average of 50 runs.

Fig. 7 shows ReDBeam’s performance w.r.t. €, including
running time (a), threshold violation probabilities (b), and the
achieved objective (c). As shown in Fig. 7(a), ReDBeam meets
the 1 ms timing requirement under all risk level €’s. Further, it
is rather independent of e because the running time depends on
the number of steps for each thread. On the other hand, none of
the other two solutions (D?BF and Gaussian Approximation)
can meet the 1 ms timing requirement. Specifically, Gaussian
Approximation requires ~ 10?> ms while D?BF requires ~ 10*
ms. One may argue that employing a C API optimizer may
yield a reduced execution time compared to the results of using
MATLAB API (as shown in Fig. 7(a)). But this change still
cannot offer a reduction required to meet the 1 ms requirement
for D?BF and Gaussian Approximation.

As shown in Fig. 7(b), ReDBeam can meet the target
risk level e. Further, Fig. 7(c) shows that the objective value
achieved by ReDBeam is very close to that of D?BF. This
demonstrates the superb performance of ReDBeam. Gaussian
Approximation offers the worst performance (as it uses the
most transmission power), which is consistent with its conser-
vativeness demonstrated in Fig. 7(b). In general, the closer the
actual violation probabilities to the risk level € (in Fig. 7(b)),
the less power is needed (in Fig. 7(c)).

We also conducted experiments with varying M and |/IC,|
and found that our ReDBeam can meet the 1 ms real-time
requirement for a network with up to M = 18, |K,| = 4,
and G = 12 (i.e., serving 48 UEs simultaneously), which
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Fig. 7. Performance of ReDBeam w.r.t e.

is sufficient for real-world scenarios. All observations are
consistent with the above discussions.

VI. CONCLUSIONS

We presented ReDBeam—a real-time MU-MIMO beam-
forming solution that offers performance guarantees (in terms
of UEs’ probabilistic data rate requirements) and minimizes
BS power consumption with limited CSI data samples. The
key idea is to employ GPU’s massive parallel computing
capability to solve the beamforming problem on each RBG in
parallel and combine them as the final solution. For each RBG,
ReDBeam generates initial solutions from a promising sub-
space, employs local search to ensure feasibility and improve
objective, and finds the best feasible solution. Further, we
optimized GPU implementation for ReDBeam on thread allo-
cations and memory management. Experiment results showed
that ReDBeam can deliver an MU-MIMO beamforming solu-
tion within 1 ms while meeting the UEs’ probabilistic data rate
requirements and minimizing the BS’s power consumption.
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