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Abstract—MU-MIMO beamforming is a key technology for
5G/NextG networks. In practice, MU-MIMO beamforming re-
quires Channel State Information (CSI) and is prone to uncer-
tainty. Furthermore, a beamforming solution must be derived
within a millisecond (ms) to be useful for real-time (RT) 5G appli-
cations. We present ReDBeam—a RT data-driven beamforming
solution for MU-MIMO using limited CSI data samples. The
main contribution of ReDBeam is a parallel algorithm and an
optimized GPU implementation. ReDBeam minimizes the base
station (BS)’s power consumption while offering a probabilistic
guarantee of users’ data rates. It is purposefully designed to take
advantage of the vast parallel processing capability in commercial
off-the-shelf GPUs. Through extensive experiments, we show that
ReDBeam can meet the 1 ms RT requirement and is orders of
magnitude faster than other state-of-the-art algorithms for the
same problem.

I. INTRODUCTION

Beamforming is the key to increasing spectral efficiency

in MU-MIMO [1], [2]. For beamforming, Channel State

Information (CSI) is required to ensure transmit signals are

precoded in the correct directions. There is a large body of

works on MU-MIMO beamforming by assuming knowledge

of perfect CSI (see, e.g., [3], [4]). Such an assumption is

unrealistic, due to issues such as channel estimation errors [5],

limited feedback [6], and hardware imbalance [7]. Therefore, a

practical MU-MIMO beamforming solution must address the

inherent channel uncertainty in CSI.

Existing works addressing CSI uncertainty can be classified

into two branches: model-based and data-driven. Under the

model-based approach, CSI is assumed to follow some known

distributions [8], [9], channel statistics [10], [11], or worst-case

boundaries [12], [13]. These works typically offer tractable

mathematical formulations and subsequently can be leveraged

to develop solutions with performance guarantees. However,

the efficacy of this approach hinges upon the validity of the

assumed models. In contrast, a data-driven approach (a.k.a.

model-free) does not assume any models but rather uses

CSI data samples directly to derive a beamforming solution.

The prevailing examples of this approach are learning-based

solutions (see, e.g., [14], [15]). Data-driven solutions are

highly adaptive to a wide range of scenarios and can easily

meet real-time (RT) requirements. However, their performance
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hinges upon a large high-quality dataset for training and lacks

a theoretical performance guarantee.
Recently, a new approach called D2BF was proposed in

[16], which aimed to combine the strengths of both model-

based and data-driven approaches and avoid their pitfalls. In-

stead of requiring a large dataset as in a data-driven approach,

it only uses a small number of CSI data samples (which we

call “small data”). Similar to a model-based approach, it is able

to offer probabilistic performance guarantees to the UEs. The

only concern of D2BF is its high computational complexity,

which poses a challenge to meet the RT requirement in

5G/NextG. By “RT”, we mean am MU-MIMO beamform-

ing solution must be derived within one Transmission Time

Interval (TTI).
In this paper, we address the RT challenge associated with

the new small-data approach in [16]. Assuming the most

common 5G-NR numerology 0 [17], we aim to derive an

MU-MIMO beamforming solution within 1 ms. The main

contributions of this paper are summarized as the following:

• We address the key limitation in D2BF [16] for MU-

MIMO beamforming: How to make it work in RT?

This “RT challenge” is especially important in 5G/NextG

networks, where the available time for computation is

only 1 ms.

• We propose an RT solution called ReDBeam, short for

Real-time Data-Driven Beamforming, with two primary

objectives: (i) deriving a beamforming solution within 1
ms, and (ii) minimizing BS power consumption while

guaranteeing probabilistic data rates for the UEs. We

structure ReDBeam as a parallel algorithm and make it

suitable for parallel processing by Commercial Off-The-

Shelf (COTS) GPUs.

• We implement ReDBeam on an NVIDIA V100 GPU

and optimize our hardware implementation to minimize

total time consumption. Specifically, we design three

kernels and optimize each kernel by properly choosing

the computation steps run in parallel for the GPU threads

and using shared memory to reduce data access time.

• Through experiments, we show that ReDBeam can meet

the 1 ms timing requirement and guarantee probabilistic

SINR thresholds (equivalent to data rate requirements)

for the UEs. In addition, we find that the performance

of ReDBeam is very close to D2BF and is significantly

better than other model-based algorithms (i.e., Gaussian

Approximation).

IC
C 

20
24

 - 
IE

EE
 In

te
rn

at
io

na
l C

on
fe

re
nc

e 
on

 C
om

m
un

ica
tio

ns
 |

 9
78

-1
-7

28
1-

90
54

-9
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 |

 D
OI

: 1
0.

11
09

/IC
C5

11
66

.2
02

4.
10

62
28

51

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on November 19,2024 at 00:32:18 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 1. Downlink MU-MIMO in a 5G cell (left) and grouping of RBs into
RBGs for resource allocation (right).
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Fig. 2. Sliding window for CSI data samples.

II. SYSTEM MODEL AND MATHEMATICAL FORMULATION

A. MU-MIMO Beamforming

Fig. 1 (left) shows a 5G cell that employs the MU-MIMO

scheme to serve a group of UEs. Denote M as the number

of antennas of the BS and denote K = {1, 2, 3, · · · ,K} as

the set of K UEs. We consider downlink and assume that

each UE only has one antenna. As defined in 5G-NR [17],

one Resource Block (RB) covers 12 sub-carriers in one TTI.

To reduce the scheduling overhead, the BS can group multiple

RBs into an RB Group (RBG) and use RBG as the granularity

for scheduling. In Fig. 1, 64 RBs are grouped into 8 RBGs.

Each RBG serves a subset (multiple) of UEs and a UE can be

scheduled on multiple RBGs. Denote G = {1, 2, · · · , G} as

the set of G RBGs at the BS. For RBG g ∈ G, denote Kg as

the subset of UEs that are selected to receive data from RBG

g. In this work, we assume Kg’s are given a priori.
In the context of MU-MIMO, UEs in Kg simultaneously

receive different data streams from the BS on the same RBG.

To achieve this, we need to design a unique precoding vector

for each UE on an RBG g. Denote w(g,i) (an M ×1 complex

column vector) as the precoding vector for UE i on RBG g.

These w(g,i)’s should be optimized using the CSI from the BS

to the UEs.

B. CSI Data Samples from Sliding Window

Denote h(g,i) (an M×1 complex column vector) as the CSI

from the BS to UE i on RBG g. h(g,i) can be estimated during

a channel sounding process and can be performed on each RB

[18]. Fig. 2 shows a sliding window mechanism on RBG 0,

where each small rectangle represents an RB. Denote S as the

number of RBs in an RBG and we have S = 8 in Fig. 2. Each

window has (N +S) RBs spanning over (N/S+1) TTIs. We

will use the N CSI data samples collected in the most recent

N/S TTIs (green) to design precoding vectors for the S RBs

in the upcoming TTI (red). The same mechanism applies to

other RBGs.

Denote Ph(g,i)
as the probability density function (PDF) of

the unknown distribution of h(g,i), i.e., h(g,i) ∼ Ph(g,i)
. Then

we have the N CSI data samples of h(g,i) drawn from the

unknown distribution Ph(g,i)
. We denote this sampling process

from unknown channel distribution as:

N samples from unknown distribution h(g,i) ∼ Ph(g,i)
. (1)

Under the sliding window mechanism shown in Fig. 2, we

need to design an MU-MIMO beamforming solution within

one TTI, which is 1 ms under 5G numerology 0.

C. Problem Formulation

We consider two requirements for the precoding vectors

w(g,i). The first is that the total transmission power over all

RBGs (to all UEs) cannot exceed a power budget, i.e.,∑
g∈G

∑
i∈Kg

||w(g,i)||22 ≤ P max , (2)

where || · ||2 is the L2-norm and P max is the BS power budget.

The second is on UE’s service requirement. We assume

each UE has a data rate requirement to be met, which is

equivalent to meeting an SINR threshold given the bandwidth

of each RBG. Per 5G standards [19], a UE must use the same

Modulation and Coding Scheme (MCS) on all its RBGs, which

means SINR thresholds must be the same on all its RBGs.

Denote γ req

i as the SINR threshold for UE i. To cope channel

uncertainty, we employ probabilistic guarantee for γ req

i as:

P

{
|(w(g,i))

Hh(g,i)|2∑k �=i
k∈Kg

|(w(g,k))Hh(g,i)|2 + σ2
i

≥ γ req

i

}
≥ 1− εi

(i ∈ Kg, g ∈ G) ,
(3)

where (·)H denotes conjugate transpose, σ2
i is the power of

thermal noise at UE i, P{·} denotes the probability function,

and εi is called risk level. Constraints (3) state that the actual

SINR on RBG g should be greater or equal to the required

SINR threshold γ req

i with a probability at least 1− εi.
In this work, we are interested in minimizing the BS’s power

consumption while meeting the UEs’ probabilistic data rate

requirements. Our problem (P1) can be stated as follows:

(P1) min
w(g,i)∈CM×1

∑
g∈G

∑
i∈Kg

||w(g,i)||22

s.t. BS power budget (2) ,

Probabilistic SINR guarantees (3) ,

CSI data samples with unknown distribution (1) ,

where C
M×1 is the set of all complex M ×1 column vectors.
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Fig. 3. An illustration of key steps of ReDBeam.

P1 is a chance-constrained program, which is hard to solve.

In [16], the authors showed that P1 can be decomposed

into G parallel and independent subproblems, where the g-th

subproblem corresponds to MU-MIMO beamforming on RBG

g. Then each subproblem can be equivalently reformulated into

a deterministic problem based on the empirical distribution of

h(g,i) from its N data samples using ∞-Wasserstein ambiguity

set [20]. After the G subproblems are solved, we can recover

the solution to P1. This solution recovery process does not

introduce relaxation and has negligible computation efforts.

The g-th (g ∈ G) subproblem is given as:

(P2) min
w(g,i)

∑
w(g,i)∈CM×1

||w(g,i)||22

s.t.
1

N

N∑
n=1

I

{
f̂
(
w(g,i), ĥ(g,i)(n)

) ≥ σ2
i

}
≥ 1− εi (i ∈ Kg),

where f̂
(
w(g,i), ĥ(g,i)(n)

)
is defined as

f̂
(
w(g,i), ĥ(g,i)(n)

)
=

{
min

ci∈CM×1

( |(w(g,i))
Hci|2

γ req

i

−
k �=i∑
k∈Kg

|(w(g,k))
Hci|2

)
: ||ci − ĥ(g,i)(n)||2 ≤ θ(g,i)

} (4)

In P2, ĥ(g,i)(n) is the n-th data sample of h(g,i), I(·) is the

indicator function, and θ(g,i) is a small constant that represents

the search space (distance) of ci around each CSI data sample

[16], [20], [21]. We will show a simple approach to set θ(g,i)
based on the N CSI data samples in Section V.

Technical Challenges Though P2 is a deterministic problem,

it is mathematically complex. In particular, its constraints

include a non-convex Quadratically Constrained Quadratic

Program (QCQP) defined in f̂(w(g,i), ĥ(g,i)(n)). Iterative al-

gorithms for MU-MIMO (e.g., [3], [16]) require substantial

computation time and cannot meet our RT requirement (1
ms). In this work, we will develop a 1 ms RT solution that

effectively explores the search space C
M×1 for w(g,i).

III. REAL-TIME DATA-DRIVEN BEAMFORMING

In this section, we present ReDBeam—a Real-time Data-

Driven Beamforming solution and its GPU implementation.

Fig. 3 shows the three key steps of ReDBeam. In the first

step, we identify a “promising” search space and generate a

sufficiently large number (denoted as L) of initial solutions.

In the second step, we employ a scaling-based local search to

find feasible solutions based on these L initial solutions while

trying to improve the objective if possible. In the final step, we

find the feasible solution with the minimum objective value as

our solution to P2.

A. Generating A Population of Initial Solutions

In this step, we generate L initial solutions within a promis-

ing search space. The “promising search space” is a subspace

formed by some basis vectors and it should contain many

feasible beamforming vectors with satisfactory performance.

It is possible that the optimal beamforming solution may fall

outside of this search space. But as long as we can find a good

solution (i.e., close to the optimal) within this space, we have

achieved our goals.

A Promising Search Space For ease of exposition, we drop

the subscript g when there is no confusion. To narrow down

the original search space C
M×1, we observe that a promising

direction for wi ∈ C
M×1 should enhance the received power

and suppress the received interference for UE i. Based on

this observation, we identify a promising search space to be

a cone whose basis vectors are derived from the widely used

Zero-Forcing (ZF) precoding based on CSI data samples.

Given that we have N CSI data samples in the current

window, it is natural to use N basis vectors to form the cone

where each basis vector corresponds to a specific CSI data

sample. Denote vi(n), n = 1, 2, · · · , N s the N basis vectors.

Each vi(n) is the ZF precoding vector for UE i under the

n-th CSI data sample. Clearly, vi(n) depends on the CSI data

samples ĥi(n), i ∈ Kg . Define an M × |Kg| matrix Ĥ(n) as:

Ĥ(n) =
[
ĥ1(n) ĥ2(n) · · · ĥ|Kg|(n)

]
.

We can calculate the ZF precoding vectors vi(n)’s based on

Ĥ(n) following the deterministic CSI model. This means we

need to calculate the Moore-Penrose pseudo-inverse of Ĥ(n),
denoted as Ĥ(n)† (a |Kg|×M complex matrix). Here we cal-

culate Ĥ(n)† using QR decomposition and forward/backward

substitutions since it has many parallelizable steps.

Denote ui(n), an M × 1 complex column vector, as the

complex conjugate of the i-th row of Ĥ(n)†, i.e.,

Ĥ(n)† =
[
u1(n) u2(n) · · · u|Kg|(n)

]H
.

Then vi(n) is given as:

vi(n) = σi

√
γ req

i · ui(n) (i ∈ Kg, n = 1, 2, · · · , N) , (5)

which means that vi(n) follows the same direction as ui(n).
Due to the zero interference property of ZF precoding, and

the fact that
(
ui(n)

)H
ĥi(n) = 1, the received SINR at UE

i is |(vi(n)
)H

ĥi(n)|2/σ2
i = γ req

i . Since there are N Ĥ(n)’s,

we can calculate the ZF precoding vectors for each Ĥ(n) in

parallel for n = 1, 2, · · · , N . After calculating vi(n) in (5),

we obtain the promising search space for wi, given as:

wi ∈
{
e : e =

N∑
n=1

αi(n)vi(n), αi(n) ≥ 0
}

(i ∈ Kg) , (6)
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where each vector inside this cone is a linear combination of

the N basis vectors vi(n)’s with αi(n) ≥ 0, i ∈ Kg .

Sampling The L initial solutions are randomly sampled

inside this promising cone. Denote the �-th initial solution

as z�i where � = 1, 2, 3, · · · , L. To generate z�i , we choose

α�
i(n), n = 1, 2, · · · , N in (6) following a uniform distribution

between [0, 1]. Then we scale the α�
i(n)’s proportionally so

that their sum is normalized to 1, i.e.,
∑N

n=1 α
�
i(n) = 1. This

gives each initial solution as z�i =
∑N

n=1 α
�
i(n)vi(n). Clearly,

finding the L initial solutions can be done in parallel since

they are independent of each other.

B. Finding Promising Solutions via Local Search

Now we have L initial solutions z�i , � = 1, 2, · · · , L,

i ∈ Kg . However, since they are randomly generated from the

“promising space”, they neither guarantee feasibility (meet the

UEs’ data rate requirements) nor good performance (minimize

the BS’s transmission power over all RBGs). Therefore, we

will perform a local search on each of these L initial solutions

so that i) each new solution is feasible (if possible), and ii)

the objective of P2 is minimized.

Main Idea With 1 ms time constraint, a local search must be

simple and fast, with as few steps as possible. Thus, we limit

our local search only to the scaling of the length (or norm)

of z�i , i.e., without creating new directions. Denote w�
i as the

solution after scaling of z�i , which is given as

w�
i = λ� · z�i (i ∈ Kg) . (7)

Here λ� > 0 is the scaling factor and is independent of UEs.

With the scaling in (7), the objective function of P2 be-

comes
∑

i∈Kg
||λ� ·z�i ||22, which is (λ�)2 ·∑i∈Kg

||z�i ||22. Since∑
i∈Kg

||z�i ||22 is a constant when z�i ’s are given, the objective

of P2 can be replaced by min λ�. Further, based on the

definition of f̂(w�
i , ĥi(n)) in P2, we have

f̂(w�
i , ĥi(n)) = f̂(λ�z�i , ĥi(n)) = (λ�)2f̂

(
z�i , ĥi(n)

)
. (8)

Therefore, with given z�i ’s, we can rewrite P2 as follows:

(P3)min
λ�

λ�

s.t.
1

N

N∑
n=1

I

{
(λ�)2f̂

(
z�i , ĥi(n)

) ≥ σ2
i

}
≥ 1− εi (i ∈ Kg),

Definition of f̂
(
z�i , ĥi(n)

)
in (4), λ� > 0 .

Thus, we substitute the complicated multi-dimensional local

search for z�i ’s with finding λ�. Clearly, the main difficulty of

P3 is f̂
(
z�i , ĥi(n)

)
.

Calculation of f̂
(
z�i , ĥi(n)

)
In P3, f̂

(
z�i , ĥi(n)

)
contains

N ·|Kg| terms. Since these terms are independent of each other,

we can solve them in parallel. Based on (4), for a specific

f̂
(
z�i , ĥi(n)

)
, we need to solve

(P4) min
ci

( |(z�i)Hci|2
γ req

i

−
k �=i∑
k∈Kg

|(z�k)Hci|2
)

s.t. ||ci − ĥi(n)||2 ≤ θi .

Unfortunately, P4 is a non-convex QCQP, which is hard to

solve. Due to our strict 1 ms time constraint, we will find

a lower bound for the optimal objective of P4 and use it for

f̂
(
z�i , ĥi(n)

)
in P3. This may lead to a slightly larger value for

λ� in the objective of P3. Nevertheless, in our final solution to

P1, all constraints (probabilistic guarantee of UEs’ data rates

and BS’s power budget) remain satisfied, except the objective

(BS’s power consumption) may be slightly higher than that of

the optimal solution.

Note that in the objective of P4, the first term is related to

the received signal, while the other (|Kg|−1) terms are related

to interference. To obtain a lower bound for P4, we relax its

objective function by separating the |Kg| terms, i.e.,

min
ci

|(z�i)Hci|2
γ req

i

−
k �=i∑
k∈Kg

max
ci

|(z�k)Hci|2. (9)

Then we can decompose P4 into Kg subproblems where each

subproblem corresponds to an item in (9):

(P4-A) min
ci

|(z�i)Hci|2
γ req

i

s.t. ||ci − ĥi(n)||2 ≤ θi ,

and for k ∈ Kg, k �= i,

(P4-B) max
ci

|(z�k)Hci|2

s.t. ||ci − ĥi(n)||2 ≤ θi .

We will have one instance of (P4-A) for the received signal,

and |Kg|−1 instances of (P4-B). Both (P4-A) and (P4-B) have

only one decision variable ci in their objective function and

constraint, which promises closed-form solutions. To conserve

space, we omit the derivations and directly provide the lower

bound for P4’s objective function (i.e., f̂
(
z�i , ĥi(n)

)
) as:

f̂LB
i (n) =

1

γ req

i

(
max

{
0,
(|(z�i)H ĥi(n)| − θi · ||z�i ||2

)2})

−
k �=i∑
k∈Kg

(|(z�k)H ĥi(n)|+ θi · ||z�k||2
)2

.

(10)

Solution to P3 Substituting f̂
(
z�i , ĥi(n)

)
with its lower

bound f̂LB
i (n), we can rewrite the constraints in P3 as

N∑
n=1

I

{
(λ�)2 · f̂LB

i (n) ≥ σ2
i

}
≥ N(1− εi) (i ∈ Kg). (11)

There are |Kg| constraints in (11). Denote β�
i as the minimum

λ� to satisfy the i-th constraint of (11). β�
i can be easily found

by sorting N real numbers in non-decreasing order and set β�
i

as the (1− εi)-quantile. There are two cases:

i) If for all i ∈ Kg , f̂LB
i (n) > 0 holds for at least �N ·(1−εi)	

CSI data samples, then β�
i > 0. To satisfy all constraints in

(11), we simply set λ� to:

λ� = max
i∈Kg

β�
i . (12)
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Fig. 4. A GPU implementation of ReDBeam.

Using λ� from (12) to (7), we have a feasible solution:

w�
i =

(
max
i∈Kg

β�
i

)
·

N∑
n=1

α�
i(n)vi(n) (i ∈ Kg). (13)

ii) Otherwise, i.e., for some i ∈ Kg , f̂LB
i (n) > 0 only holds

for fewer than �N · (1− εi)	 CSI data samples, then there is

no feasible solution to (11) under this initial solution z�i . We

can simply drop this initial solution z�i .

C. Finding the Final Solution

After the local search, we have at most L feasible solutions,

we can calculate their objectives (i.e.,
∑

i∈Kg
||w�

i ||22) and find

the one with the smallest objective (since P2 is a minimiza-

tion problem). The feasible solution w�
i associated with this

smallest objective value is our final solution to P2 on RBG g.

IV. GPU IMPLEMENTATION

Now we have a solution to P2. But we still need to

address how to make the solution to meet the 1 ms time

constraint in the real world. To do this, we choose COTS GPU

as our implementation platform, due to its massive parallel

computing capability. On a GPU, we need to address how to

efficiently allocate the available resources, such as threads1

for computation and memory for data storage.

Fig. 4 shows our GPU implementation of ReDBeam. The

total time consumption consists of data transfer and algorithm

execution. We use asynchronous data transfer between CPU

and GPU to reduce these data transfer times. As shown in

Fig. 4, there are G streams (blue) and each stream calculates

the beamforming solution on a specific RBG (one P2 instance).

We overlap data transfers and kernel executions across differ-

ent streams to reduce overall time consumption [22]. For each

stream, we design three kernels (red):

• Kernel 1 calculates the ZF precoding vectors vi(n) based

on CSI data samples ĥi(n), i ∈ Kg , n = 1, 2, · · · , N .

• Kernel 2 generates initial solutions z�i based on vi(n),
finds the scaling factors λ� (if exists), applies λ� to obtain

w�
i = λ� · z�i , and calculates its objective.

• Kernel 3 finds the best solution from the feasible solutions

provided by kernel 2, which is our solution to a P2.

Due to space limitations, we will focus our discussion on ker-

nel 2 to demonstrate how to optimize the GPU implementation

of ReDBeam.

1A thread is the minimum processing unit for algorithm execution and
threads are grouped into thread blocks (TBs) to execute kernels.

Kernel 2 For kernel 2, we use L TBs, and each TB has

N |Kg| threads to maximize the parallelization capability of

our GPU. Specifically, each TB generates an initial solution

z�i from (6), finds the scaling factor λ�, obtains w�
i = λ� · z�i

by (7), and calculates the objective value.

The core step of generating an initial solution is to calculate

|Kg|M sums of N complex numbers with randomly generated

αi(n). Note that the promising search space (6) will be

implicitly included during this process. A common technique

to reduce execution time in GPU implementation is parallel

reduction, which is suitable for comparison or summation over

a large number of terms [23]. For a sum of N numbers, we

need log2(N) iterations and N/2 threads. Since timing is our

main concern, we employ the parallel reduction technique to

calculate an initial solution z�i , i ∈ Kg .

For the lower bounds f̂LB
i (n) derived in (10), we need

to calculate N |Kg|2 times of multiplication of two M × 1
complex vectors in the form of (z�k)

H · ĥi(n). So each thread

will compute one such term and N |Kg| terms can be calculated

in parallel. Then we can easily calculate f̂LB
i (n) based on (10).

To find λ�, we can directly sort N numbers and then check

the sorted numbers to see whether we employ (13) to obtain

w�
i or drop this initial solution z�i . Specifically, we need to

perform |Kg| times of sorting of N real numbers. We employ a

parallel sorting algorithm called odd-even sorting, which uses


N/2� threads and N iterations to sort N numbers. Then λ�

can be easily found by comparing |Kg| real numbers or we

declare it does not exist and the initial solution is infeasible.

If λ� is found, we only need to multiply a real number

λ� to |Kg| M × 1 complex vectors z�i , i ∈ Kg . To reduce

computation time, we use 2M |Kg| threads, where the first

|Kg|M threads are for the real part of w�
i , i ∈ Kg and the

remaining |Kg|M threads are for the imaginary part of w�
i ,

i ∈ Kg . Then we can calculate the objective of this feasible

solution using parallel reduction.

In terms of memory, we use both global memory and shared
memory. Global memory has a large volume (e.g., ∼ 10
gigabytes) and can exchange data with external platforms (i.e.,

CPU or other GPU) while shared memory has faster access but

a smaller volume (e.g., 48 kilobytes per SM in our NVIDIA

V100 GPU) and no external access outside of a thread block.

Thus, shared memory is more suitable for repeatedly accessed

data within a TB. In kernel 2, all intermediate results are stored

in the shared memory, which includes z�i , f̂
LB
i (n), β�

i , and λ�.

The output feasible solutions w�
i and their objectives are stored

in global memory for kernel 3.

V. EXPERIMENTAL RESULTS

In this section, we evaluate the running time and perfor-

mance of ReDBeam. We implement ReDBeam using CUDA

11.2 on an NVIDIA Tesla V100.

A. Parameter Settings

Fig. 5 shows the topology of a 5G cell with a 500-meter

radius and 30 UEs (i.e., K = 30). We assume the BS has 8

antennas (i.e., M = 8). Following Fig. 1, the BS has G = 8

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on November 19,2024 at 00:32:18 UTC from IEEE Xplore.  Restrictions apply. 



-500 -250 0 250 500
-500

-250

0

250

500
BS
UEs

Fig. 5. A BS with 30 UEs.

0.5 1 1.5 2 2.5 3
0

0.05

0.1

0.15

0.2

Ac
tu

al
 V

io
la

tio
n 

Pr
ob

ab
ilit

y

N = 24
N = 40
N = 56
N = 72
N = 88 = 0.1

(a) Violation probability

1.5 1.75 2 2.25 2.5
0

5

10

15

20

25

Ac
hi

ev
ed

 O
bj

ec
tiv

e 
(W

at
ts

)

N = 24
N = 40
N = 56
N = 72
N = 88

(b) Objective value

Fig. 6. Impact of ρ and N .

RBGs and each RBG consists of 8 RBs. We set the number of

UEs per RBG |Kg| = 2. The BS has a power budget P max = 46
dBm and the thermal noise σ2

i is set to −150 dBm/Hz for all

UEs. We set the SINR threshold γ req

i = 2(500/di) − 1 where di
is the distance between UE i and the BS in meters. Further,

we found it is sufficient to set L = 650 for our setting.
For the wireless channel, we consider the path-loss model

and fast fading. The path-loss between UE i and the BS is

modeled by PLi = 38 + 30 × log10(di) (in dB) [24]. For

fast fading, we employ Rician fading with a 10 dB Rician

factor, which is a common model for correlated RBs. We also

employ a truncated Gaussian distribution to simulate the CSI

estimation errors [9]. Note that ReDBeam only relies on the

CSI data samples and does not assume any channel models.

B. Choosing N and θ(g,i)

We first discuss how to choose N and θ(g,i). Intuitively, we

would like to choose a small N to reduce complexity and a

small θ(g,i) that meets the probabilistic data rate guarantees

with lower BS power consumption. For a given N , θ(g,i) is

related to how uncertain the N CSI data samples are. We

propose a fast heuristic based on these samples to calculate

θ(g,i) before executing ReDBeam. Specifically, we resort to a

constant factor and the estimated standard deviation from N
CSI data samples, i.e., for any i ∈ Kg, g ∈ G,

θ(g,i) =
ρ

N
·
√√√√ 1

N − 1

N∑
n=1

(
||ĥ(g,i)(n)−

∑N
n=1 ĥ(g,i)(n)

N
||22

)
.

ρ is the constant factor we need to choose. We use ρ/N in the

above expression because the more CSI data samples we have,

the closer the empirical distribution is to the true distribution.
To find a proper ρ and N , we set εi = 0.1 and run ReDBeam

under 0.25 ≤ ρ ≤ 3 and 24 ≤ N ≤ 88. The actual violation

probabilities and achieved objectives are shown in Fig. 6. As

shown in Fig. 6(a), it is sufficient to choose ρ ∈ [1.5, 2.5] in

all cases of N . Then we zoom into these ρ values and study

the achieved objectives as shown in Fig. 6(b). As shown in

Fig. 6(b), the objective only increases slightly w.r.t. ρ. Taking

both Fig. 6(a) and Fig. 6(b) into account, we conclude that it

is prudent to choose N = 40 and ρ = 2 to calculate θ(g,i).
The above process shows how to set N and θ(g,i) for a given

network setting. They can be dynamically adjusted during run-

time through continuous tracking of the violation probabilities

at the UEs. As for time consumption, in each window, before

executing ReDBeam in Fig. 4, we will use G|Kg| thread blocks

to calculate these θ(g,i)’s in parallel and then use these θ(g,i)’s
in ReDBeam to derive a beamforming solution. Note that ρ’s

have no impact on the overall time consumption while a larger

N will slightly increase time consumption.

C. Results

We evaluate ReDBeam with two benchmarks. The first

one is D2BF [16], which solves each P2 through convex

approximation and Semidefinite Programming (SDP). The

second one is Gaussian Approximation [8], which assumes

CSI follows a complex Gaussian distribution. We implement

them with MOSEK 9.2.38 using MATLAB R2017b on Intel

Xeon E5-2687w v4. All results are the average of 50 runs.

Fig. 7 shows ReDBeam’s performance w.r.t. ε, including

running time (a), threshold violation probabilities (b), and the

achieved objective (c). As shown in Fig. 7(a), ReDBeam meets

the 1 ms timing requirement under all risk level ε’s. Further, it

is rather independent of ε because the running time depends on

the number of steps for each thread. On the other hand, none of

the other two solutions (D2BF and Gaussian Approximation)

can meet the 1 ms timing requirement. Specifically, Gaussian

Approximation requires ∼ 102 ms while D2BF requires ∼ 104

ms. One may argue that employing a C API optimizer may

yield a reduced execution time compared to the results of using

MATLAB API (as shown in Fig. 7(a)). But this change still

cannot offer a reduction required to meet the 1 ms requirement

for D2BF and Gaussian Approximation.

As shown in Fig. 7(b), ReDBeam can meet the target

risk level ε. Further, Fig. 7(c) shows that the objective value

achieved by ReDBeam is very close to that of D2BF. This

demonstrates the superb performance of ReDBeam. Gaussian

Approximation offers the worst performance (as it uses the

most transmission power), which is consistent with its conser-

vativeness demonstrated in Fig. 7(b). In general, the closer the

actual violation probabilities to the risk level ε (in Fig. 7(b)),

the less power is needed (in Fig. 7(c)).

We also conducted experiments with varying M and |Kg|
and found that our ReDBeam can meet the 1 ms real-time

requirement for a network with up to M = 18, |Kg| = 4,

and G = 12 (i.e., serving 48 UEs simultaneously), which
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Fig. 7. Performance of ReDBeam w.r.t ε.

is sufficient for real-world scenarios. All observations are

consistent with the above discussions.

VI. CONCLUSIONS

We presented ReDBeam—a real-time MU-MIMO beam-

forming solution that offers performance guarantees (in terms

of UEs’ probabilistic data rate requirements) and minimizes

BS power consumption with limited CSI data samples. The

key idea is to employ GPU’s massive parallel computing

capability to solve the beamforming problem on each RBG in

parallel and combine them as the final solution. For each RBG,

ReDBeam generates initial solutions from a promising sub-

space, employs local search to ensure feasibility and improve

objective, and finds the best feasible solution. Further, we

optimized GPU implementation for ReDBeam on thread allo-

cations and memory management. Experiment results showed

that ReDBeam can deliver an MU-MIMO beamforming solu-

tion within 1 ms while meeting the UEs’ probabilistic data rate

requirements and minimizing the BS’s power consumption.
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