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ABSTRACT 44 

A critical task to better quantify changes in precipitation (P) mean and extreme statistics 45 

due to global warming is to gain insights into the underlying physical generating mechanisms 46 

(GMs). Here, the dominant GMs associated with daily P recorded at 2861 gauges in the 47 

Conterminous United States from 1980 to 2018 were identified from atmospheric reanalyses and 48 

publicly available datasets. The GMs include fronts (FRT), extratropical cyclones (ETC), 49 

atmospheric rivers (AR), tropical cyclones (TC), and North American Monsoon (NAM). 50 

Climatologies of the GM occurrences were developed for the nonzero P (NZP) and annual P 51 

maxima (APM) samples, characterizing the marginal and extreme P distributions, respectively. 52 

FRT is everywhere the most frequent (45-75%) GM of NZP followed by ETC (12-33%). The 53 

FRT contribution declines for APM (19-66%), which are dominated by AR (50-65%) in western 54 

regions and affected by TC (10-18%) in southern and eastern regions. The GM frequencies 55 

exhibit trends with the same signs over large regions, which are not statistically significant 56 

except for an increase in FRT (TC) frequency in the Northeast (central region). Two-sample tests 57 

showed well-defined spatial patterns with regions where (1) both the marginal and extreme P 58 

distributions of the two dominant GMs likely belong to different statistical populations, and (2) 59 

only the marginal or the extreme distributions could be considered statistically different. These 60 

results were interpreted through L-moments and parametric distributions that adequately model 61 

NZP and APM frequency. This work provides useful insights to incorporate mixed populations 62 

and nonstationarity in P frequency analyses. 63 

 64 

Keywords: Precipitation, Climate classification/regimes, North America, Probability 65 

forecasts/models/distribution, Trends 66 

  67 
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1. Introduction 68 

Theoretical arguments (Emori & Brown, 2005; Trenberth, 1999) suggest that the 69 

frequency and intensity of precipitation (P) are expected to change in a warmer climate, 70 

potentially causing negative impacts on communities and ecosystems (e.g., Cann et al., 2013; 71 

Eekhout et al., 2018; Gershunov et al., 2018; Wilcox et al., 2017). P outputs of general 72 

circulation models (GCMs) largely confirm these arguments at global and continental scales 73 

(Dong et al., 2021; Janssen et al., 2014; Prein et al., 2017; Lee et al., 2021), but their uncertainty 74 

is still high at the fine scales targeted by impact studies, even after they have been downscaled 75 

statistically or dynamically (e.g., Lopez-Cantu et al., 2020; Underwood et al., 2020). One of the 76 

main reasons is that P processes in GCMs are largely parameterized, and their spatial resolutions 77 

are still too coarse to capture small-scale orographic effects. Despite this, it has been shown that 78 

GCMs simulate better the large-scale generating mechanisms (GMs) leading to P than the 79 

associated P intensities (e.g., Eyring et al., 2021; Zhang & Villarini, 2021), and that this capacity 80 

has improved in the latest GCM versions from the Coupled Model Intercomparison Project 81 

Phase 6 (CMIP6; Priestley et al., 2020). Therefore, a strategy to refine the quantification of 82 

future changes in P mean and extreme statistics is to gain insights into the underlying physical 83 

GMs and assess how their occurrence might change in a warming climate (Barlow et al., 2019; 84 

Zhao et al., 2017). 85 

Important progress has been made over the last decade to define the GMs of P and 86 

identify them in atmospheric reanalysis and GCM simulations. One of the earliest studies was 87 

conducted in the Conterminous United States (CONUS) by Kunkel et al. (2012), who 88 

categorized the GMs of extreme daily P into seven types: fronts associated with extratropical 89 

cyclones (FRTs), extratropical cyclones but where the extreme P occurs at some distance from 90 

the fronts (ETCs), tropical cyclones (TCs), mesoscale convective systems (MCSs), air mass 91 

convection, topographic uplift, and air mass convection associated with the North American 92 

Monsoon (NAM). In that study, a hybrid approach was used to define the GMs recorded at 935 93 

rain gauges from 1908 to 2009 based on manual inspection of weather maps and automatic 94 

algorithms applied to surface pressure and temperature reanalysis datasets for the days with 95 

extreme events. Kunkel et al. (2012) showed that, nationally, about half of extreme P events are 96 

caused by FRTs whose occurrence has been increasing in time, and that ETC is the second 97 

dominant GMs. 98 
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Several studies have subsequently performed a classification of the GMs in the United 99 

States (U.S.) focusing on specific regions. Agel et al. (2015) developed a climatology of daily 100 

overall and extreme P in the northeastern U.S. in 1979-2008 finding that >75% of the extreme 101 

events are related to ETCs throughout the year, except for September when TCs cause half of the 102 

extreme days. In the same region, Marquardt Collow et al. (2016) identified the mechanisms 103 

explaining the observed increase in extreme P in summer, while Henny et al. (2022) analyzed the 104 

role of TCs and atmospheric rivers (ARs) in the fall season. Skeeter et al. (2019) associated 105 

extreme P in the southeastern U.S. in 1950-2016 with four weather types defined according to 106 

the spatial synoptic classification scheme (Sheridan, 2002), and found an increase in the annual 107 

number of extreme P events associated with “moist tropical” days. Mullens (2021) showed that 108 

FRT is the most dominant mechanism responsible for heavy P in coastal regions of Texas for the 109 

period 2003-2018 and that drier P years were due to the lower number of ETC and summer 110 

convection events. Slinskey et al. (2020) examined the climatology of ARs across the CONUS 111 

from 1981 to 2016, finding that this GM occurs most often during fall and winter in the western 112 

regions, spring across the Great Plains, and fall in the Midwest and northeastern regions. Earlier 113 

studies analyzed the role of MCSs and the NAM on warm-season P in central (Fritsch et al., 114 

1986) and southwestern (Adams & Comrie, 1997) U.S., respectively.  115 

The findings of these and other studies have significantly increased our understanding of 116 

the GMs of P in the U.S. However, there are still critical open research questions. Most of the 117 

prior efforts focused on extreme P (Barlow et al., 2019), while little is known about the effects of 118 

the GMs on all nonzero P rates that are important for water resources management and 119 

ecosystems (e.g., Guan et al., 2020; Hou et al., 2014) and of which the extremes are a subsample. 120 

Moreover, it is still unclear under which conditions and at which locations different physical 121 

GMs produce P magnitudes with similar or diverse ranges and statistical properties, or, in other 122 

words, that are samples of the same or multiple statistical populations. This piece of information 123 

would allow improving P frequency estimates currently based on the hypothesis of independent 124 

and identically distributed (i.i.d.) samples (e.g., Bonnin et al, 2004; Mascaro, 2020), which are 125 

required in many practical and scientific applications.  126 

In this paper, we addressed these research needs by gaining new insights into the 127 

climatology of the occurrence of the dominant GMs of both nonzero and extreme P over the 128 

CONUS, and into the statistical distributions of the associated P rates. For this aim, we expanded 129 
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the classification of Kunkel et al. (2012) by (1) considering all nonzero P days at 2861 gauges of 130 

the Global Historical Climatology Network daily (GHCNd) located in the CONUS (NCEI 2023), 131 

and (2) creating a GM dataset by combining publicly available datasets for some GMs and 132 

applying fully automated techniques to detect other GM types using reanalyses such as the 133 

Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2;Gelaro 134 

et al., 2017). We identified six GMs over the period 1980–2018 when MERRA-2 was available, 135 

including ETC, FRT, NAM, AR and TC, and other unclassified mechanisms (Others). Note that 136 

AR was not included in Kunkel et al. (2012), while other categories present in that study were 137 

not included for the reasons explained in Section 3a.  138 

The dataset of daily P records and associated GMs at the GHCNd gauges was used to 139 

investigate four main research questions:  140 

(1) How do the climatological occurrences of the GMs of nonzero daily P and the corresponding 141 

extremes vary spatially in the CONUS? Does the spatial variability change when evaluated at 142 

annual and seasonal scales? 143 

(2) What is the relative contribution of the six GMs to nonzero P and does it vary when 144 

considering the extremes? If yes, in which geographic regions? 145 

(3) Has the annual occurrence of each GM changed from 1980 to 2018?  146 

(4) Are the P values produced by the different GMs characterized by different statistical 147 

distributions? Is this true for both all nonzero P rates and the corresponding extremes or for 148 

just one series type, and why?  149 

To answer these questions, we performed several statistical analyses involving the computation 150 

of climatological metrics, a new framework for trend detection in count time series at multiple 151 

sites, two-sample tests whose power in applications with P records has been recently quantified 152 

by Mascaro (2024), L-moment ratios (Hosking, 1990), and the fitting of parametric distributions 153 

that adequately model the frequency of nonzero P and the extreme values.  154 

2. Study Area and Dataset 155 

We used daily P records from GHCNd rain gauges located in the CONUS for the period 156 

1980-2018 (total of 39 years) when the GMs of daily P were identified (see Section 3a). We 157 

initially selected 3169 gauges and, for each gauge, we excluded the years with more than 10% of 158 

missing days; we then eliminated the gauges with less than 30 years of data. This resulted in a  159 
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 160 

Figure 1. Location of the selected 2861 stations of the Global Historical Climatology Network 161 
daily (GHCNd) in the Conterminous United States (CONUS), along with the National Climatic 162 
Data Center (NCDC) climatic regions defined as East North Central (ENC; 342 gauges), West 163 
North Central (WNC; 365 gauges), Northwest (NW; 171 gauges), West (W; 195 gauges), 164 
Southwest (SW; 246 gauges), South (S; 618 gauges), Southeast (SE; 312 gauges), Central (C; 165 
390 gauges), and Northeast (NE; 222 gauges). The gauges are color-coded based on (a) the mean 166 
annual P, (b) the mean annual P maxima (APM), (c) mean nonzero P (NZP), and (d) fraction of 167 
days with zero P in 1980-2018. The spatial correlation coefficients, r, between the map shown in 168 
panels (a)-(c) and the other maps (indicated with the panel letter) are also reported. 169 

 170 

total of 2861 gauges that cover the country with good density, as shown in Fig. 1. To summarize 171 

our results, we used the nine National Climatic Data Center (NCDC) climate regions (Karl & 172 

Koss, 1984), which are also reported in Fig. 1a (see the figure caption for a definition of the 173 

regions’ acronyms that will be used throughout the paper). We investigated differences between 174 

the GMs of P focusing on nonzero P (NZP) values and the annual P maxima (APM, also known 175 

as Rx1day) series, with the latter being a subsample of the former capturing the extreme P 176 

values. Depending on the analyses, the APM were extracted considering the entire NZP series or 177 

separately from the NZP produced by a given GM. Fig. 1 presents the spatial variability of mean 178 

annual P, mean APM, mean NZP, and fraction of zero P days in 1980-2018. The metrics vary 179 

widely across the country with mean annual P, APM, and NZP exhibiting lower magnitudes in 180 



 7 

most of the western regions, where the fraction of days with zero P can exceed 0.9, and higher 181 

values in the central, eastern, and most of the southern regions, as well as in the Pacific 182 

Northwest, where the fraction of dry days can be as low as 0.5. The pattern of mean annual P 183 

exhibits a relatively high correlation with those of all other metrics (correlation coefficient, r, 184 

above |0.64|), while mean AMP and NZP exhibit the largest spatial correlation (r = 0.88). 185 

 186 

3. Methods 187 

a. Identification of the generating mechanism of daily precipitation 188 

This study leveraged the availability of datasets developed by one of the co-authors 189 

(Kunkel) and other researchers, along with publicly available products. This leveraging provided 190 

the opportunity for a deep analysis of GMs, but it also constrained certain aspects, which will be 191 

discussed herein. The processes causing P are varied and have been categorized in multiple 192 

ways. While the GM framework of Kunkel et al. (2012) adopted a phenomenological approach 193 

based on expert judgment, other studies have taken statistical approaches. For example, Prein & 194 

Mearns (2021) identified weather types causing extreme P from a cluster analysis using as input 195 

several atmospheric state variables. Davenport & Diffenbaugh (2021) used machine learning to 196 

develop an algorithm to identify extreme P days from 500 hPa geopotential height anomalies and 197 

sea level pressure. Henny et al. (2023), in a study of the Northeast U.S., took a narrower 198 

approach and categorized extreme P days into categories of tropical cyclones, atmospheric rivers, 199 

and other. These various approaches are all useful in increasing our understanding. 200 

In broad terms, the TC and ETC represent two major GM categories for CONUS. In the 201 

Kunkel et al. (2012) study, the ETC category was broken into two variants: (1) near the ETC 202 

center and (2) along one of the fronts. In a high-level sense, this ETC breakdown approximates 203 

the quasi-geostrophic (QG) diagnostic framework for vertical motion (Holton 1972). In the QG 204 

framework, upward motion is forced by dynamical imbalances represented diagnostically as 205 

differential positive vorticity advection (DPVA) which is concentrated around the ETC low-206 

pressure center and by warm air advection (WAA), located along the warm front ahead of the 207 

ETC center. Thus, our ETC category approximately maps to QG DPVA forcing while the FRT 208 

category maps to QG WAA forcing, although we recognize that this is only approximate since 209 

we are not calculating QG diagnostics. A third major mechanism (after TC and ETC) for P 210 
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forcing is thermodynamic instability, which manifests as convection. This is not a completely 211 

independent category since convection can be present in all of the other GMs. For example, 212 

convection is dominant in both the TC and NAM categories and is usually present along parts of 213 

the front and near the center in the ETC system. However, both isolated convection and 214 

organized convective clusters can occur independently of the TC, ETC, FRT, and NAM GMs.   215 

The dataset of the GMs used in this study was assembled from the following sources: 216 

• Fronts (FRTs): The automated frontal detection algorithm of Biard and Kunkel (2019) 217 

was applied to the MERRA-2 reanalysis data to produce a front location dataset at 3-218 

hourly resolution.  219 

• Extratropical cyclones (ETCs): Historical ETC tracks at 6-hr resolution were generated 220 

by application of the algorithm of Wang et al. (2013) to the National Centers for 221 

Environmental Prediction (NCEP)-National Center for Atmospheric Research (NCAR) 222 

reanalysis 1 (Kalnay et al. 1996). 223 

• Tropical cyclones (TCs): TC tracks at 3-hr resolution were obtained from the 224 

International Best Track Archive for Climate Stewardship (IBTrACS) dataset (Knapp et 225 

al., 2010). 226 

• Atmospheric rivers (ARs): AR tracks at 6-hr resolution were obtained from the data set 227 

generated by Gershunov et al. (2017). 228 

The characteristics of these datasets provided the constraint on the period of analysis. The 229 

beginning year of the frontal dataset is 1980, a constraint of the MERRA-2 reanalysis. The 230 

ending year of the available FRT and AR data was 2018, setting the analysis period at 1980-231 

2018.  232 

The determination of GM was accomplished by calculating the distance from the rain 233 

gauge to the nearest segment of each GM type. This was done at 6-hr time steps (determined by 234 

the coarser temporal resolution of the ETC and AR datasets) within the 24-hr accumulation 235 

period. The recorded distance was the closest of the four 6-hr values. The GM labeling for each 236 

P event required that the GM was within 500 km of the observation and used a hierarchical 237 

priority scheme when more than one GM was within 500 km as follows from highest to lowest 238 

priority: TC, AR, ETC, FRT, and NAM. If no GM was within 500 km, the P event was labeled 239 

as “Other” with the following exception: for events in the southwest U.S. (Arizona, California, 240 

Colorado, Nevada, New Mexico, and Utah) occurring in June, July, August, and September, such 241 
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events were labeled as North American Monsoon (NAM). The hierarchy of GM categorization, 242 

which has implications in multiple forcing situations, was motivated as follows:  243 

• As mentioned, the TC GM label was used as long as the track was identified in IBTrACS. 244 

Our rationale for assigning TCs as the primary GM in the extratropical transition 245 

situation is that water vapor plays a dominant role in modulating extreme P magnitude 246 

(e.g., Kunkel et al. 2020). Since TCs are always characterized by high water vapor 247 

concentration, we contend that the TC contribution is always important, while that of 248 

other nearby GMs (ETC or FRT) is less certain. 249 

• Atmospheric rivers are embedded within ETCs, usually ahead of the cold front and often 250 

extending to the warm front. The separate categorization of ARs as distinct from and 251 

prevailing over the FRT category in the western U.S. was motivated by the importance of 252 

water vapor as the modulator of P intensity highlighted by a substantial body of research. 253 

For western U.S. stations affected by ARs, around 30% of NZP days were categorized as 254 

AR, and, of those 30%, over 97% had a front located within 500 km. About 48% of NZP 255 

days at those stations were instead categorized as FRT. Thus, overall, about 78% of NZP 256 

days had a front within 500 km, and a subset of about 40% of the total of 78% FRT days 257 

were assigned the AR category. 258 

• In the structure of an ETC, fronts usually extend to the ETC center. This is evident in our 259 

categorization as almost all (99%) of the events categorized as ETC had a front located 260 

within 500 km. The separation of ETC and FRT categories was motivated by the QG 261 

framework. 262 

Finally, we note that the GMs analyzed here do not include all the categories of Kunkel et 263 

al. (2012). Upslope flow and air mass convection were not separately considered here because of 264 

their minor contribution to extremes as found in Kunkel et al. (2012). MCSs also were not 265 

separately categorized because there is no available dataset covering that period and mature 266 

methods for automated detection were not available at the beginning of this study. MCSs can be 267 

categorized as internally driven or externally driven by a large-scale meteorological system such 268 

as a front (Schumacher & Rasmussen, 2020). In our work, the externally driven MCSs were 269 

essentially subsumed into the category of the driving large-scale meteorological system. 270 

Internally driven MCSs not associated with a large-scale meteorological system were not 271 

explicitly identified and were by default encompassed in the Other category. Based on the 272 
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findings of Kunkel et al. (2012), we expect that the large majority of events in the Other category 273 

during the warm season are internally-driven MCSs, particularly for APM events. 274 

 275 
b. Analyses of the occurrence of the precipitation generating mechanisms 276 

The first three research questions outlined in the Introduction were investigated with the 277 

following analyses. We first obtained the spatial patterns of the annual and seasonal climatology 278 

of the occurrence of each GM in the NZP and APM series. This involved computing at each 279 

gauge the long-term mean occurrence (in %) of every GM in both P series. For the annual scale, 280 

these climatological means are defined as 𝑝!"#$ and 𝑝!%$&, respectively, for the j-th GM, with j = 281 

1, …, 6 (note that the sum of 𝑝!"#$ and 𝑝!%$& across the six GMs is 100). For the seasonal scale, 282 

the climatological means are defined as 𝑝!'"#$ and 𝑝!'%$&, with s = 1 (DJF), 2 (MAM), 3 (JJA), or 283 

4 (SON) (note that the sum of 𝑝!'"#$ and 𝑝!'%$& across the four seasons for a fixed GM is 100).  284 

We then investigated whether statistically significant temporal trends could be identified 285 

in the number of annual occurrences of the GMs in the NZP series. Let {𝑦(} be the time series of 286 

the annual occurrences of a given GM in each year t ranging from 1 to N (= 39 years). As a first 287 

level assessment, we computed, at each gauge, the linear regression slopes between {𝑦(} and t 288 

and expressed it as mean annual percentage relative to the average number of occurrences. Next, 289 

following and expanding the work of Farris et al. (2021), we designed a statistical test to quantify 290 

the degree to which the observed {𝑦(} time series are compatible with stationary processes 291 

exhibiting similar serial correlation structures and marginal distributions. As described in detail 292 

in Appendix A, we found that these two statistical properties were well reproduced by either the 293 

negative binomial (Ristíc et al., 2012; NBINAR(1)) or the Poisson (Al‐Osh & Alzaid, 1987; 294 

Brännäs, 1995; Farris et al., 2021; PoiINAR(1)) integer autoregressive models of order 1, 295 

depending on the observed time series.  296 

For each gauge, we selected the most appropriate autoregressive model, estimated its 297 

parameters based on the observed sample, and generated 1000 synthetic stationary time series. 298 

For every synthetic and observed time series, we then applied the negative binomial regression 299 

(Colin & Pravin, 1998), which is utilized when the counts are overdispersed, i.e., they exhibit 300 

variance larger than the mean, and which includes the Poisson regression as a special case when 301 
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the counts have a mean close to the variance. The regression is performed between the 302 

conditional mean of {𝑦(}, µt, and t via the relation: 303 

𝐸[𝑦(|𝑡] = 𝜇( = exp	(𝑏) + 𝑏* ⋅ 𝑡),    (1) 304 

where b0 and b1 are parameters estimated by maximizing the likelihood, along with the 305 

additional parameter aNB that controls the overdispersion of the marginal distribution (aNB = 0 306 

for Poisson marginals; see Colin & Pravin (1998) for details). The degree to which the observed 307 

count time series was consistent with the stationary synthetic ones was assessed through a 308 

statistical test where the null hypothesis H0 is that the series is stationary, the test statistic is b1, 309 

and the p-value of the observed b1 is computed using the empirical distribution of b1 estimated 310 

from the 1000 synthetic samples as the null distribution. Since this test is applied at multiple 311 

sites, we accounted for field significance by applying the false discovery rate (FDR) test of 312 

Wilks (2006) at a global significance level αglobal = 0.10, chosen to account for the presence of 313 

spatial dependence. The need and utility of the FDR test were recently discussed by Farris et al. 314 

(2021). 315 

c. Inference on the statistical properties of daily precipitation associated with different 316 

generating mechanisms 317 

The fourth research question outlined in the Introduction aims to assess whether different 318 

physical GMs lead to similar or diverse P distributions at each site, and if the differences affect 319 

all frequencies (i.e., non-extreme and extreme P rates). To better explain this question and its 320 

importance, it is useful to clarify the terminology and introduce some symbols. The statistical 321 

distributions of the NZP and APM series are here also referred to as the marginal and extreme 322 

distributions of daily P, respectively. Since the APM are a sub-sample of the NZP series, the 323 

APM values are most likely located in the right tail of the marginal distribution. As it will be 324 

shown later, the two most recurrent GMs make up the large majority of the NZP and APM 325 

records at most gauges. Under this condition, the cumulative distribution function (CDF) of the 326 

marginal distribution, F(x), is largely controlled by the CDFs of the NZP values produced by the 327 

two most recurrent GMs, F1(x) and F2(x). Our research question aims to assess whether F1(x) and 328 

F2(x) could be considered statistically different, i.e., they represent different statistical 329 

populations. Similar reasoning can be made for the CDF of the extreme distribution, using the 330 

symbols G(x), G1(x), and G2(x). Such an assessment has important scientific and practical 331 
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implications since it would (1) provide insights into which GMs are responsible for more intense 332 

non-extreme and/or extreme P events and where, and (2) be useful to improve P frequency 333 

estimates that are routinely done assuming i.i.d. samples, e.g., F1(x) and F2(x) (or G1(x) and 334 

G2(x)) are the same.  335 

Since the true P distributions are unknown and only samples are available, the research 336 

question was investigated by applying two-sample tests to the pairs of NZP and APM records 337 

associated with the two dominant GMs at each gauge. Broadly speaking, these tests evaluate the 338 

null hypothesis H0 that two samples belong to the same population, i.e., 𝐹*(𝑥) = 𝐹+(𝑥) or 339 

𝐺*(𝑥) = 𝐺+(𝑥). Following the recommendations of Mascaro (2024), we assessed differences in 340 

location with the Wilcoxon test (Wilcoxon, 1945) and the entire distribution with the likelihood-341 

ratio (S. S. Wilks, 1938) and Kolmogorov–Smirnov (Kolmogorov-Smirnov et al., 1933) tests. A 342 

brief overview of these popular tests is given in Appendix B. Since the tests are performed at 343 

multiple locations, the FDR test at αglobal = 0.10 was also applied. Because only 39 years are 344 

available, the samples used to make inferences on G1(x) and G2(x) were the APM extracted 345 

separately for the two dominant mechanisms.  346 

To interpret the tests’ results and compare the shape of the distributions of the two 347 

mechanisms (F1(x) vs. F2(x) and G1(x) vs. G2(x)), we (1) computed the first four L-moments of 348 

the samples lk (k = 1, …, 4; Hosking, 1990) and, from these, the ratios L-CV (t = l2/l1), L-349 

skewness (t3 = l3/l2), and L-kurtosis (t4 = l4/l2); and (2) adopted the generalized gamma (GG) 350 

and the generalized extreme value (GEV) as parametric distributions for the NZP and APM 351 

series, respectively. The CDFs of the GG and GEV are provided in Appendix C. The ability of 352 

the GG distributions to adequately capture the distribution of NZP series was shown by Mascaro 353 

et al. (2023), Papalexiou & Koutsoyiannis, (2012), and Papalexiou (2022), while ample 354 

empirical evidence demonstrated that the GEV well represents the distribution of APM series 355 

(e.g., Blanchet et al., 2016; Deidda et al., 2021; Mascaro, 2020; Papalexiou & Koutsoyiannis, 356 

2013). Here, we confirmed the appropriateness of these two distributions for the P records 357 

associated with the underlying generating mechanisms through L-moment ratio diagrams (see 358 

Fig. S1 of the Supplemental Material and its interpretation in the caption). We then estimated the 359 

parameters of the GG and GEV following the methods of Zaghloul et al. (2020) and Hosking and 360 

Wallis (1997), respectively; both approaches rely on the L-moments. As described in Appendix 361 

B, the GG and GEV distributions were also used to apply the two-sample likelihood-ratio test. 362 
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4. Results 363 

a. Climatology of the annual and seasonal occurrence of the precipitation generating 364 

mechanisms  365 

The maps of the mean annual occurrence of each GM for the NZP (𝑝!"#$) and APM 366 

(𝑝!%$&) series are displayed in Fig. 2, while the results for the nine climatic regions are 367 

summarized in Fig. 3. For both types of P series, FRT is the most frequent mechanism followed 368 

by ETC; both GMs occur throughout the country and exhibit an organized spatial variability 369 

controlled by latitude and distance from the coast. The higher frequency of ETCs at northerly 370 

latitudes is a consequence of closer proximity to the mean jet stream position, while the higher 371 

frequency of FRTs toward the south reflects the structure of ETCs in which fronts can extend 372 

considerably south of the ETC low-pressure center. AR, NAM, and TC are instead less frequent 373 

and reflect more regional mechanisms. AR occurrences are restricted to the West (NW, W, and 374 

SW) because the Gershunov et al. (2017) dataset is limited to west coast events, while NAM is 375 

observed only in the Southwest (SW and W) by definition. TC occurrence is mostly restricted to 376 

lower latitudes in the eastern parts of the country (SE, S, SW, C, NE, and ENC). For a given 377 

GM, the spatial patterns of 𝑝!"#$ and 𝑝!%$& are relatively similar, as quantified by the correlation 378 

coefficient between the pairs of maps r ≥ 0.71 (reported in the left panels of Fig. 2). However, 379 

there are also several cases where 𝑝!"#$ and 𝑝!%$& of the same GM differ depending on the 380 

degree to which that mechanism produces the most intense P events at a given site. This is better 381 

visualized in Fig. 3, which shows that FRT is everywhere the most recurrent GM when 382 

considering the entire marginal distribution (NZP); however, its relative contribution to the 383 

extremes (APM) decreases in all regions, while that of ETC, TC, and AR becomes larger. In 384 

particular, the contribution of ETC to APM slightly or moderately increases in all regions, AR 385 

dominates APM in NW and W, and TC is a non-negligible cause of APM in C, SE, NE, and S 386 

(in order of increasing relative importance). It is worth mentioning that the mean percentage of 387 

occurrence of the GMs controlling APM is very similar to that of the GMs affecting P rates 388 

exceeding the local 95th quantile of the NZP distribution (not shown). 389 
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 390 

Figure 2. Mean annual occurrence of the P generating mechanisms of NZP, 𝑝!"#$ (left panels), 391 

and APM, 𝑝!%$& (right panels). The correlation coefficient between the two maps, r, is also 392 

reported in the left panels.   393 
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 394 

Figure 3. Mean annual occurrence of the six mechanisms in the nine regions for (a) NZP and (b) 395 
APM series. The percentages shown in each region are the averages of 𝑝!"#$ and 𝑝!%$& across the 396 
gauges of that region; since the sum of 𝑝!"#$ and 𝑝!%$& across the 6 GMs is 100 at each gauge, 397 
this is also true for the average across multiple gauges. 398 

 399 

The seasonal occurrence of the GMs, 𝑝!'"#$ and 𝑝!'%$&, is visualized in Fig. 4 through bar 400 

plots for each of the climatic regions. Maps are instead shown in Figs. S2 and S3. When 401 

considering the NZP series, FRT and ETC occur in all seasons with a higher frequency in spring 402 

and summer or in winter and spring, depending on the region. The more regional GMs have a 403 

much more pronounced seasonality: AR largely occurs in winter and, to a lesser extent, in fall; 404 

TC practically only in summer and fall; and NAM, again by definition, in summer and the 405 

beginning of fall. Finally, the unclassified mechanisms (Others) are observed in all seasons but 406 

with different percentages depending on the region; as noted earlier, the majority of these in the 407 

warm season are likely to be MCSs. The seasonal occurrence of GMs of APM are generally 408 

similar to those of NZP with two important exceptions: an overall decrease in the occurrence of 409 

any mechanism in spring and an increase in summer. This indicates that, independently of the 410 

mechanism, P rates are relatively lower in spring and much higher in summer, likely due to the 411 

higher atmospheric water vapor content in the summer which is favorable for higher extreme P 412 

event magnitudes (Kunkel et al., 2020). 413 

 414 

 415 

 416 

 417 

 418 
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 419 

Figure 4. Mean seasonal occurrence of the six mechanisms across the nine regions for the (a) 420 
NZP and (b) APM series. The percentages shown in each region are the average of 𝑝!'"#$ and 421 
𝑝!'%$& across the gauges in that region; since the sum of 𝑝!'"#$ and 𝑝!'%$& across the 4 seasons is 422 
100 at each gauge, this is also true for the average across multiple gauges.  423 
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b. Trends in the occurrence of the precipitation generating mechanisms 424 

Fig. 5 displays the maps of the mean percent change in the occurrence of each mechanism 425 

in the NZP series relative to the local mean for ETC, FRT, AR, and TC. No significant changes 426 

and patterns were found for NAM, while results for Others were not considered given the 427 

possible heterogeneity of the underlying processes. The number of gauges with positive and 428 

negative trends is also provided for each region, along with the statistically significant cases 429 

based on the framework described in Section 3b. Changes over time in ETC occurrence are not 430 

statistically significant; however, distinct clusters emerge where the ETC frequency has 431 

decreased (up to -3%) in the southern and interior parts of NW, most of W, and southern SW; 432 

and increased (up to +3%) in western ENC, NE, and pockets of C, SE, and S. The pattern for 433 

FRT is instead well-defined: the frequency of this GM (1) declined in the desert regions of W, 434 

most of SW and S, and parts of SE, although these changes were largely not statistically 435 

significant; and (2) rose throughout most of the rest of the country, with several statistically 436 

significant cases in ENC and NE. The occurrence of AR diminished throughout the western 437 

regions, although the variations are not statistically significantly different from a stationary 438 

signal. In contrast, TC was observed more frequently at practically all gauges where this 439 

mechanism occurs in the southern and eastern regions, except for some sites in S. Notably, the 440 

percent increase in TCs is large (up to +8%) and statistically significant at many locations in the 441 

C region. In this region, the number of TC occurrences is relatively small, and a closer 442 

examination of the data indicated that TCs preferentially occurred in the latter part of the record 443 

in this region, leading to an upward trend.  444 

  445 
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Figure 5. Mean annual percent change relative to the local mean of the occurrence of ETC, FRT, 447 
AR, and TC in the NZP series. The locations where trends were found to be statistically 448 
significant and increasing (decreasing) are shown as ∆ (∇). Results are summarized for each 449 
region based on the number of gauges with increasing (red) and decreasing (blue) trends; the 450 
values in parentheses indicate the number of statistically significant results. 451 

c. Differences between the P distributions of the two most recurrent generating mechanisms 452 

The climatology of the annual occurrence of the GMs revealed that two GMs account for 453 

the majority of the NZP and APM records at most gauges. As mentioned in Section 3b, 454 

quantifying whether the two associated pairs of samples have different statistical properties 455 

provides insights into the relative contribution of the GMs in the marginal and extreme 456 

distributions of daily P. The spatial variability of the two most recurrent GMs for the NZP series 457 

and their combined percentage of occurrence are shown in Figs. 6a,b, respectively; bar plots are 458 

also presented in Fig. 6c to summarize the percentage of gauges in each climatic region 459 

associated with the dominant pairs of GMs. There are four pairs of dominant GMs and all 460 

include FRT as one of the GMs. FRT and ETC (hereafter, FRT&ETC) are the two most recurrent 461 

GMs across the gauges of all regions except for W and NW, where the AR category is defined 462 

and FRT&AR prevail. FRT&ETC combined represent the vast majority of all NZP observations 463 

at the gauges where this pair is prevalent (mean of 93.2%), while FRT&AR make up a slightly 464 

lower portion of the records at the associated gauges (mean of 79.1%). In the near-coastal area of 465 

the Gulf of Mexico in the S and SE regions, FRT&Others are the top two GMs comprising, on 466 

average, 90.4% of the NZP observations. Finally, in a very limited number of rain gauges in SW, 467 

FRT&NAM are the dominant GMs although they account for a lower portion of the records of 468 

these gauges (mean of 69.1%). If the focus is placed on the top two GMs of APM, more 469 

combinations of such pairs are found, but the great majority is similar to those found for NZP, 470 

except for the case of FRT&TC replacing FRT&Others in the S and SE regions (Fig. S4). 471 

Therefore, in the following, we considered the two dominant GMs of NZP to investigate 472 

differences between the associated pairs of samples of the marginal (NZP) and corresponding 473 

extreme (APM) distributions. 474 

  475 
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 476 

Figure 6. (a) Map of the two most frequent GMs of NZP. (b) Map of the percentage of combined 477 
occurrence of the two dominant GMs in the NZP samples. (c) Percentage of the gauges 478 
experiencing a given pair of dominant GMs in each climatic region relative to the total number 479 
of gauges in the region (the legend of the color is the same as panel a). All acronyms are defined 480 
in the main text. 481 

 482 

The three types of two-sample tests were applied separately to the two pairs of NZP and 483 

APM samples associated with the dominant GMs at each gauge, providing very similar and 484 

robust results. Fig. 7 shows the outcomes for the likelihood-ratio test, while those for Wilcoxon 485 

and Kolmogorov-Smirnov tests are displayed in Figs. S5 and S6. When considering all gauges 486 

and their dominant GMs, the null hypothesis H0 of similar distributions was rejected in ~80% of 487 

the cases for the NZP series and ~60% for the corresponding APM series. This indicates that 488 

different physical GMs produce daily P accumulations characterized by clearly diverse statistical 489 
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properties when considering all nonzero values, but that these differences are less evident when 490 

focusing on the extremes. This might be due to the smaller size of the APM samples that reduces 491 

the test power (Mascaro, 2024) and/or to the similarity between the right tails of the NZP 492 

distributions of the two GMs that likely include the APM records.  493 

 494 

 495 

Figure 7. Results of the likelihood-ratio two-sample test applied to NZP and APM series 496 
associated with (a) FRT&ETC, (b) FRT&AR, (c) FRT& Others, and (d) FRT&NAM. After 497 
computing the test p-value at each site, the FDR test of Wilks (2006) was applied at a global 498 
significance level αglobal = 0.10 to assess the local rejection of the null hypothesis H0. 499 

 500 

A closer look at the test outcomes allows better exploration of the latter point. There are 501 

three sets of gauges where different GMs result in diverse statistical distributions of daily P when 502 

considering: both all NZP values and the subsamples of the extremes (red dots; Case 1: H0 503 

rejected for both NZP and APM); only all NZP values, but not the extremes (blue dots; Case 2: 504 

H0 rejected only for NZP); and only the extremes, but not the larger samples of all NZP rates 505 
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(green dots; Case 3: H0 rejected only for APM). Finally, in a very limited number of gauges 506 

(~5%), the two-sample test did not indicate statistically significant differences between the 507 

samples of both distribution types (gray dots; Case 4). The percentage of the four cases for each 508 

dominant pair of GMs is given in Table 1, along with the main regions where the cases occur 509 

which are well-defined in space as shown in Fig. 7. It is worth reminding that these conclusions 510 

are based on the statistical evidence associated with the significance level adopted for the tests 511 

(see Section 3c). 512 

 513 

 Case 1 
H0 rejected for 
NZP and APM 

Case 2 
H0 rejected for 
NZP only 

Case 3 
H0 rejected for 
APM only 

Case 4 
H0 not rejected 
for NZP and 

APM 
Physical 
meaning 

The two NZP 
samples come from 

different 
populations, and 
so do the two APM 

samples 

The two NZP 
samples come from 

different 
populations, while 
the two APM 

samples from the 
same population 

The two APM 
samples come from 

different 
populations, while 
the two NZP 

samples from the 
same population 

The two NZP 
samples come 
from the same 
population, and 
so do the two 
APM samples 

 FRT&ETC 
% gauges 38% 42.7% 15.5% 3.8% 

Main 
regions 

East of S; SE; C; 
south of ENC; 
north of SW 

WNC; north of S; 
ENC; NE; north of 

SE 

Southeast of SW; 
west of S; sparse 
locations in ENC, 
C, SE, and NE 

Northwest of S; 
south of SW 

     
 FRT&AR 

% gauges 68.9% 15.7% 8.6% 6.8% 
Main 
regions 

NW and W Interior regions of 
NW and W 

NW Center of NW 
and south of W 

     
 FRT&Others 

% gauges 61.2% 1.2% 36.4% 1.2% 

Main 
regions 

East and north of S 
and SE 

West of SE Along the Gulf of 
Mexico coastal 
shoreline 

West of SE 

     
 

% gauges 
FRT&NAM 

0% 35.7% 28.6% 35.7% 
Main 
regions  South of Arizona in 

SW 
North of Arizona in 

SW 
South of 

Arizona in SW 
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Table 1. Outcomes of the likelihood-ratio test applied to the NZP and APM samples of the two 514 
dominant GMs. For each pair of mechanisms, the percentage of gauges found in the four cases of 515 
H0 rejections or non-rejections are reported along with the main climatic regions where the cases 516 
occur. 517 

 518 

To gain further insights into the reasons for these outcomes and the relations between the 519 

marginal and extreme distributions of P associated with the two dominant GMs, we displayed in 520 

Fig. 8 the scatterplots between the L-moment ratios of the NZP and APM samples for each pair 521 

of dominant GMs for Case 1 (FRT&NAM are not shown because of the very small number of 522 

gauges). The points below the 1:1 lines indicate P samples generated by FRT with larger mean 523 

(λ1), spread (t), skewness (t3), and kurtosis (t4) than those produced by the other dominant GM. 524 

This figure is complemented by Fig. 9 showing the empirical CDFs and survival functions of the 525 

NZP and APM series for some representative gauges along with the fitted GG and GEV 526 

distributions, respectively. FRT leads to daily P that, when considering all NZP values, have 527 

lower mean than ETC but higher variability and rates that might be much larger than the mean 528 

(i.e., lower λ1 and larger t, t3, and t4; Fig. 8a). However, the behavior is opposite when 529 

considering the subsamples of the APM, with FRT producing P extremes with higher mean and 530 

slightly lower spread than ETC, and similar skewness and kurtosis (Fig. 8b). In other words, the 531 

P rates caused by FRT are lower than those originated by ETC during more frequent events and 532 

much larger for rarer events. This is well visualized by the change in the relative position of the 533 

CDFs of NZP and APM in Figs. 9a,b. Focusing on FRT&AR, AR generates NZP values with 534 

significantly larger mean than FRT so that, despite the lower variability, skewness, and kurtosis, 535 

the P accumulations are higher across all frequencies. As a result, the APM samples for AR have 536 

also a greater mean than FRT, while the higher-order moments for the two GMs are very similar. 537 

This is shown by the very distinct CDFs for AR and FRT in Fig. 9c. Since AR events are also 538 

almost always located near a FRT, this behavior illustrates the effect of the higher water vapor 539 

transport in AR events compared to FRT (non-AR) events. Finally, for the gauges where 540 

FRT&Others prevail, FRTs cause larger P rates for events of any frequency because of the 541 

slightly (much) higher mean of its NZP (APM) samples. The close but distinct CDFs of NZP and 542 

the well-separated CDFs of APM for the two mechanisms in the example of Fig. 9d well 543 

illustrate this point. 544 

 545 
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 546 

Figure 8. Scatterplots between the L-moment ratios of FRT vs. the second dominant mechanism 547 
(ETC, AR, Others) for the (a) NZP and (b) APM series in Case 1 where H0 was rejected for both 548 
NZP and APM samples. The means of the empirical samples are also shown with white markers. 549 
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 550 

Figure 9. Examples of empirical CDFs and survival functions (shown to better visualize the 551 
right tails) and fitted GG and GEV distributions (“Model” in the legend) at four gauges where H0 552 
was rejected for both NZP and APM series (Case 1) for (a)-(b) FRT&ETC, (c) FRT&AR, and 553 
(d) FRT&Others. In each panel, the CDF for NZP (APM) is shown on the top left (top right), and 554 
the survival function at the bottom left (bottom right). The values of the empirical L-moment 555 
ratios are also reported. 556 

  557 
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 558 

Figure 10. Scatterplots between the L-moment ratios of FRT vs. ETC for the NZP and APM 559 
series where H0 was (a) rejected for NZP but not for APM (Case 2), and (b) rejected for APM 560 
but not for NZP (Case 3). The means of the empirical samples are also shown with a black circle. 561 

The same analyses were performed for Case 2 (H0 rejected only for NZP) and Case 3 (H0 562 

rejected only for APM). The scatterplots of the L-moment ratios for the FRT&ETC mechanisms, 563 

covering the large majority of these cases, are displayed in Fig. 10, while examples of CDFs are 564 

reported in Fig. 11. As for Case 1, all NZP values generated by ETC have higher mean and lower 565 

spread, skewness, and kurtosis than FRT (Fig. 10a) so that the corresponding CDFs are visibly 566 

separated as shown in the examples of Figs. 11a,b. However, in these gauges mainly located in 567 

WNC, ENC, C, and NE, both GMs produce P rates within very similar ranges for the less 568 

frequent NZP events; since these extreme P values are mainly the APM, their CDFs overlap (see 569 
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Figs. 11a,b), the L-moments are similar, and H0 of the two-sample test cannot be rejected. For 570 

the Case 3 sites located in SW and S, FRT produces NZP values with a similar mean to those of 571 

ETC but slightly larger higher L-moments (Fig. 10b). Such small differences are not detected by 572 

the two-sample test so that H0 cannot be rejected. However, these differences are an indication 573 

that the right tail of the NZP distributions for FRT is heavier than that of ETC, i.e., FRT causes 574 

more intense extremes than ETC. As such, the APM samples are clearly distinguishable and H0 575 

is rejected. This is well visualized in the examples of Figs. 11c,d, where the CDFs of the NZP for 576 

the two mechanisms largely overlap except for the right tail, while the CDFs of APM are well 577 

distinct. While a definitive analysis of the causes for this behavior is beyond the limits of this 578 

study, the QG framework suggests that FRT extremes are usually driven by WAA. Due to the 579 

thermodynamic instability often present in the warm air mass, P along the front is often enhanced 580 

by embedded convection, increasing P rates. 581 

 582 

 583 

Figure 11. Same as Figure 9 but for gauges where H0 was (a)-(b) rejected for NZP but not for 584 
APM (Case 2), and (c)-(d) rejected for APM but not for NZP (Case 3). 585 
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5. Summary and Discussion 586 

a. Comparison with existing studies and new contributions to the literature 587 

Most of the prior work focused on the GMs of extreme P, which was defined in several 588 

different ways (Barlow et al., 2019). Here, we used the APM to characterize extreme P and found 589 

that these events are largely generated by FRT and ETC in all of CONUS except for the western 590 

regions where the AR category is defined, and that these two GMs are observed in all seasons but 591 

less frequently in winter. The occurrences of FRT and ETC are largely in line with the estimates 592 

reported in the literature. In a global study, Catto & Pfahl (2013) found that the occurrence of 593 

fronts linked to extreme P in North America exhibits a longitudinal gradient ranging from >70% 594 

in the eastern part to <50% in the western side. This gradient is well visible in the map of the 595 

GMs of APM shown in Fig. 2h, although the frequencies for the eastern regions are slightly 596 

lower (see also Fig. 3b). In the NE region, the combined percentage of FRT and ETC causing 597 

APM was determined to be >75% (see Fig. 3) as in Agel et al. (2015), who considered a single 598 

category for extratropical cyclones. Our estimate of the total occurrence of FRT and ETC is also 599 

qualitatively consistent with the frequency of extreme P due to non-tropical causes reported by 600 

Moore et al. (2015) for the SE region. The AR category of our classification is defined over the 601 

W and NW CONUS and is a dominant GM of extreme P in these regions, occurring largely in 602 

winter and fall with frequencies well aligned with the study by Slinskey et al. (2020). TCs 603 

account for a non-negligible fraction of APM in S, SE, NE, and C and are observed in summer 604 

and fall, consistent with the results of Agel et al. (2015), Marquardt Collow et al. (2016), Moore 605 

et al. (2015), and Skeeter et al. (2019). Finally, NAM causes a relatively small fraction of daily 606 

APM in SW during the summer, confirming the findings of Kunkel et al. (2012) for the 1-in-5-yr 607 

P events.  608 

As highlighted in the review of Barlow et al. (2019), a theme that has been relatively 609 

overlooked in the literature is the analysis of the GMs of non-extreme events. Here, we 610 

contributed to addressing this research gap by identifying the GMs of all daily NZP rates. We 611 

determined that FRT is the major GM of daily P events in the CONUS, accounting for 50%-75% 612 

of NZP (Fig. 3) and occurring with comparable frequencies in the four seasons (Fig. 4). The 613 

second most dominant GM of NZP is ETC, except in the W and NW regions which fall within 614 

the domain of Gershunov et al. (2017) AR dataset; there, AR is the second most dominant GM. 615 
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These western AR events are observed largely in winter, while the NZP events associated with 616 

ETC in the remainder of the country occur in all seasons with a frequency peak in winter and 617 

spring. The relative contribution of TCs to all NZP events is much smaller than their impact on 618 

the APM, while NAM contributes equally to all non-zero and extreme P in W and SW. Finally, 619 

the proportion of other unclassified GMs (Other) is higher in the NZP than APM series. 620 

As discussed in several studies (e.g., O’Gorman & Schneider, 2009; Pendergrass & 621 

Hartmann, 2014; Seneviratne et al., 2021), the effect of global warming on atmospheric 622 

thermodynamic and dynamic processes could lead to changes in the distribution of daily P. 623 

Globally, P extremes are expected to increase at a rate similar to the rise in water vapor with 624 

warming (7.5%/K) or even higher because of dynamic circulation, whereas the mean P is 625 

predicted to increase at a smaller rate due to energy constraints. How these changes will occur at 626 

regional and local scales is still uncertain, and our investigation of the temporal changes in the 627 

number of GMs of NZP in the CONUS over the last four decades could provide useful insights. 628 

As shown in Fig. 5, we found overall low evidence of statistically significant trends, except for 629 

increases in the frequency of FRT in NE and TC in C. The low number of significant trends 630 

could be due to the small sample size of the count time series (as high as 39 years), combined 631 

with the presence of serial correlation that further reduces the test power (Farris et al., 2021; 632 

Serinaldi et al., 2018). Despite this, the spatial variability in the mean annual changes in GM 633 

frequency exhibits structured patterns with large regions with similar trend signs. These patterns 634 

are largely consistent with prior studies that analyzed the causes of observed trends in extreme P 635 

(but not of all P rates) in specific regions. In NE, Huang et al. (2018) found that the numbers of 636 

TC, FRT, and ETC increased in 1996-2016 relative to 1979-1995, as shown here, and that the 637 

higher number of TCs was the main cause of an abrupt rise in frequency and intensity of extreme 638 

P after 1996. The link between increasing frequency of TCs and more intense extreme P in NE 639 

was also documented by Henny et al. (2022). In a region including SE and part of C and NE, 640 

Skeeter et al. (2019) ascribed the intensification of extreme P to more frequent “moist tropical” 641 

days, which could be related to the increasing occurrence of TC presented here. Finally, while 642 

previous studies reported a rise in integrated water vapor of AR in the western regions (e.g., 643 

Gershunov et al., 2017), to our knowledge, the change in the annual frequency of this GM has 644 

not been explicitly studied.  645 

 646 
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 647 

 648 
b. Differences in statistical properties of precipitation distributions produced by the generating 649 

mechanisms  650 

A major novel contribution of this paper is the investigation of whether the GMs lead to 651 

daily P accumulations with distinct statistical distributions for all NZP values and the subsamples 652 

of the APM that capture the extremes. This was done by focusing on the two most recurrent GMs 653 

that were shown to produce most of the P values across all sites. As shown in Fig. 6, FRT was 654 

found to be a dominant GM at all gauges in the CONUS, along with ETC in the large majority of 655 

the sites, AR in the western regions, and Other (NAM) in a few localized gauges close to the 656 

Gulf of Mexico coast (southern Arizona). Two-sample tests revealed the existence of well-657 

defined regions (see Fig. 7 and Table 1) where the two dominant GMs generate NZP and APM 658 

series that likely belong to different statistical populations (labeled as Case 1), and of regions 659 

where the evidence of statistically different distributions is high only when considering all NZP 660 

values but not the subsamples of the APM (Case 2) and vice versa (Case 3). The physical 661 

interpretation of these findings will be the subject of future work and will involve the 662 

quantification of how the factors causing non-extreme and extreme P (e.g., water vapor 663 

availability and strength of vertical ascent) vary across the GMs, as suggested by Agel et al. 664 

(2015) who found different total P but similar extreme P magnitudes across the seasons in NE, 665 

like in our Case 2. 666 

The inspection of the sample L-moments proved to be a very effective yet simple tool to 667 

explain the tests’ results. To summarize and further explore the spatial variability of the 668 

differences between the P distributions, Fig. 12 shows maps of the ratio between the L-moments 669 

of the NZP and APM samples of (1) FRT, which is a dominant GM at all sites; and (2) the 670 

second dominant GM, which is either ETC, AR, NAM, or Others. Apart from some portions of 671 

the SW, S, and SE regions, the marginal distributions of P caused by FRT have lower means 672 

(ratio of l1 < 1) but are more variable, positively skewed, and with heavier tails (ratios of t, t3, 673 

and t4 > 1) than the other mechanisms. The spatial patterns dramatically change when 674 

considering P extremes: if we exclude the W and NW regions dominated by AR, the APM 675 

samples of FRTs have a larger mean and lower variance throughout the country and, more 676 

significantly, in the S and SW regions. The ratios of τ3 and τ4 for the APM samples exhibit 677 
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instead random patterns, which are somewhat expected given the high uncertainty of these 678 

statistics with such short samples of extreme records. Finally, another effective way to explain 679 

the two-sample tests’ results was the comparison of the GG and GEV distributions fitted to the 680 

NZP and APM series, respectively. These parametric distributions were found to capture quite 681 

well the two types of P series across GMs and geographic and climatic regions. 682 

 683 

Figure 12. Ratio between the L-moment ratios (l1, τ, τ3, and τ4) of the NZP (left panels) and 684 
APM (right panels) samples associated with (1) FRT and (2) the second dominant mechanism 685 
(ETC, AR, Others, or NAM). The empirical histograms of the ratios are also reported to support 686 
the interpretation of the maps. 687 
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6. Conclusions 688 

This study developed a CONUS-wide climatology of the occurrence of dominant GMs of 689 

daily P at 2861 gauges from 1980 to 2018. The GMs included TC, AR, ETC, FRT, and NAM, 690 

plus other unclassified mechanisms (Other). Unlike most of the prior work that focused only on 691 

extreme P, here the GMs associated with all nonzero P days were automatically extracted from 692 

the atmospheric reanalyses and existing datasets. The spatial variability of the annual and 693 

seasonal climatologies of the GMs associated with NZP and APM samples were presented and 694 

discussed, along with the analyses of trends in GM frequency. Next, the differences between the 695 

marginal and extreme distributions of P produced by the two most dominant GMs at each site 696 

were quantified using two-sample tests. L-moments and parametric distributions were used to 697 

explain and interpret the tests’ results. 698 

The results of this work have important implications for water resources managers and 699 

the design and management of infrastructure against extreme P, as they indicate locations and 700 

conditions where the use of mixed distributions (e.g., Mascaro, 2018; Miniussi et al., 2020) 701 

should be considered to improve the frequency analysis of all daily and extreme P. Moreover, 702 

these findings provide physical corroboration for the incorporation of nonstationarity in P 703 

frequency analysis. Results of this study could, in fact, be used as a benchmark to assess the 704 

GCMs’ ability to reproduce the GMs of P in historical simulations; then, the frequencies of the 705 

GMs could be extracted from simulations under future climate scenarios of the most accurate 706 

GCMs and used in nonstationary statistical models of P frequency based on mixed distributions. 707 

Future work should be devoted to (1) expanding the GM classifications by including mesoscale 708 

convective systems (Fritsch et al., 1986) and ARs in other regions of the country (Slinskey et al., 709 

2020); and (2) increasing the statistical significance of trend analyses in GM occurrence by 710 

quantifying the importance of internal climate variability vs. external forcings through climate 711 

simulations and atmospheric reanalysis, as done in recent promising studies (L. Dong & Leung, 712 

2022; Huang et al., 2021; Kunkel, Karl, et al., 2020). 713 
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 726 

APPENDIX 727 

Appendix A: Count time series models 728 

A count time series process can be generally defined as 𝑌 = {𝑌(; 𝑡 ∈ ℕ,}. We generated 729 

stationary synthetic count time series that adequately reproduce marginal distribution and serial 730 

correlation of the observed sample count data, {𝑦(}, to compute the null distribution of the trend 731 

test statistic as described in Section 3b. To introduce the count time series models, we first 732 

describe the Poisson (Poi) and negative binomial (NB) discrete probability distributions which 733 

were found to capture well the marginal distributions of the samples {𝑦(}. The probability mass 734 

function (pmf) of the Poi distribution is: 735 

𝑃$-.(𝑌 = 𝑦; 𝜇) = /!"0#

1!
   y = 0, 1, 2, …   (A1) 736 

with parameter µ > 0, and equal mean and variance. The pmf of the NB distribution is: 737 

𝑃"3 ?𝑌 = 𝑦; 𝜃, 4
*,4

B = C𝜃 + 𝑦 − 1𝑦 F 4#

(*,4)$%#
 y = 0, 1, 2, … , (A2) 738 

with two parameters q > 0 and p > 0 that allow representing overdispersed count data with 739 

variance larger than the mean (Colin & Pravin, 1998). Note that ? 4
*,4

B is the probability of 740 

failure that appears in the alternative form of the NB distribution that is often utilized (see, e.g., 741 

D. S. Wilks, 2019).  742 

For each observed sample {𝑦(}, we considered two count time series models that could 743 

reproduce its serial correlation structure, but with Poi and NB marginals, respectively; we then 744 

https://www.ncei.noaa.gov/products/land-based-station/global-historical-climatology-network-daily
https://www.ncei.noaa.gov/products/land-based-station/global-historical-climatology-network-daily
https://urldefense.com/v3/__https:/zenodo.org/doi/10.5281/zenodo.10724690__;!!IKRxdwAv5BmarQ!eeDdM4C3eVf1-8UNDpVjEKSnrg82RXwBSZa8FLjWtUqn_MI7BSmHh8QiEZp_E7XA-tdSHRPxEk9XF0KRm8EmIjo0hA$
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selected the best-performing model based on the lowest Akaike Information Criteria. To do this, 745 

we first computed the lag-1 serial correlation, r1, and considered the series to exhibit serial 746 

correlation if r1 > 0, and to be uncorrelated if r1 ≤ 0. For the latter case, the two count time series 747 

models consisted of simply simulating random variates of either the Poi or NB distribution with 748 

parameters estimated through maximum likelihood. For serially correlated series with Poi 749 

marginal distribution, we adopted the Poisson integer autoregressive model of order 1 or 750 

PoiINAR(1) (Al‐Osh & Alzaid, 1987; Brännäs, 1995). A stationary process {Yt} is defined 751 

PoiINAR(1) with parameters {𝜇7, b} if: 752 

Yt = b ∘ Yt81 + ϵt,        (A3) 753 

where {ϵt} is an independent and identically distributed (i.i.d.) integer Poisson random variable 754 

with parameter µe, and “∘” is the binomial thinning operator defined as: 755 

b ∘ 𝑌 = ∑ 𝐵.7
.9* , Y > 0,       (A4) 756 

where {Bi} are i.i.d. variates of a Bernoulli distribution with parameter b and pmf 757 

𝑃3/:;(𝐵 = 𝑏; 𝛽) = 𝛽<(1 − 𝛽)*8<, 𝑏 ∈ {0,1}. The variable {Yt} is also Poisson-distributed with 758 

parameter 𝜇7 = 𝜇=/(1 − 𝛽).  759 

Serially correlated time series with NB marginal distribution were simulated with the 760 

negative binomial INAR(1) model or NBINAR(1) (Ristíc et al., 2012). A stationary process {Yt} 761 

is defined NBINAR(1) with parameters {p, q, a} if: 762 

Yt = a ∗ Yt81 + ϵt,        (A5) 763 

where {ϵt} is an i.i.d. integer random variable with the distribution provided by Ristić et al. 764 

(2012; their equation (2)) with parameters q > 0, p >0, and 𝛼 ∈ [0, 𝑝/(1 + 𝑝)]. The operator “∗” 765 

is the negative Binomial thinning operator: 766 

𝛼 ∗ 𝑌 = ∑ 𝐺7
.9* ., Y > 0,       (A6) 767 

where {Gi} are i.i.d. variates of a geometric distribution with parameter ? >
*,>

B and pmf 768 

𝑃?/- ?𝐺 = 𝑔; >
*,>

B = >&

(*,>)&%'
, g = 0, 1, 2, …. Note that ? >

*,>
B is the probability of failure that 769 

appears in the other popular parameterization of the geometric distribution. The variable {Yt} is 770 

NB-distributed with parameters q and ? 4
*,4

B. For both the PoiINAR(1) and NBINAR(1) models, 771 

parameters were estimated through conditional least squares (CLS) following Ristíc et al. (2012). 772 
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However, because of the relatively small sample size, it was found that the CLS estimates of b 773 

and a led to an underestimation of the observed r1, especially for smaller values. Monte Carlo 774 

simulations were then conducted with the two models to find empirical relationships that were 775 

used to bias correct the CLS estimates of b and a as a function of the observed r1. 776 

Appendix B: Two-sample statistical tests 777 

The Wilcoxon test is a non-parametric test whose null hypothesis H0 is that both samples 778 

have equal median. The test statistic is 𝑈 = 𝑅* −
;'
+
(𝑛* + 1), where R1 is the sum of the ranks of 779 

one of the samples with size n1. The null distribution of U is Gaussian for sample sizes larger 780 

than 10. The Kolmogorov–Smirnov test is also non-parametric, and its H0 is that the samples are 781 

drawn from the same distribution. The statistic is 𝐷' = max
@
|𝐹*(𝑥) − 𝐹+(𝑥)|, where F1(x) and 782 

F2(x) are the empirical cumulative distribution functions of the first and second samples, 783 

respectively. The p-value is computed through the Kolmogorov distribution or other 784 

approximations. The likelihood ratio test has the same H0 as the Kolmogorov–Smirnov test and 785 

requires assuming parametric forms for the distribution of samples 1 and 2 and of the two 786 

samples combined. Let us defined 𝐺*V𝑥; 𝜽X𝟏Y, 𝐺+V𝑥; 𝜽X𝟐Y, and 𝐺)V𝑥; 𝜽X𝟎Y as such distributions 787 

with parameters 𝜽X𝟏, 𝜽X𝟐, and 𝜽X𝟎 estimated on the corresponding samples 𝒙𝟏, 𝒙𝟐, and 788 

𝒙𝟎 = {𝒙𝟏, 𝒙𝟐}.	The test statistic is Λ∗ = 2[𝐿*V𝜽X𝟏; 𝒙𝟏Y + 𝐿+V𝜽X𝟐; 𝒙𝟐Y − 𝐿)V𝜽X𝟎; 𝒙𝟎Y], where 789 

𝐿EV𝜽X𝒌; 𝒙𝒌Y is the log-likelihood of the corresponding distribution 𝐺EV𝑥; 𝜽X𝒌Y, with k  = 0, 1, and 790 

2. The null distribution is the χ2 with degrees of freedom n = m1 + m2 – m0, where mk is the 791 

number of parameters of the k-th distribution. Here, we used the generalized gamma (GG) and 792 

the generalized extreme value (GEV) as parametric distributions for the NZP and APM series 793 

(see Appendix C). 794 

Appendix C: The generalized gamma and generalized extreme value distributions 795 

The cumulative distribution function (CDF) of the generalized gamma (GG) distribution 796 

is: 797 

𝐹GG(𝑥) = 1 − Γ ?H'
H(
, ?@
I
B
H(
B Γ ?H'

H(
B` ,     (C1) 798 
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which is defined for x ≥ 0 and where g1 > 0 and g 2 > 0 are two shape parameters, b > 0 is the 799 

scale parameter, and Γ(∙,∙) and Γ( ∙ ) are the incomplete and complete gamma functions, 800 

respectively. The CDF of the generalized extreme value (GEV) distribution is: 801 

𝐹GJK(𝑥; 𝜉, 𝜇, 𝜎) = d
exp	 e− ?1 + 𝜉 @80

L
B
8')f 																	𝜉 ≠ 0

exp h− exp ?− @80
L
Bi 																						𝜉 = 0

, (C2) 802 

where x Î (-¥, +¥) is the shape parameter, µ Î (-¥, +¥) the location parameter, and s > 0 the 803 

scale parameter. The GEV is defined in the sets −∞ < 𝑥 < ∞ if x = 0, 𝜇 − L
M
≤ 𝑥 < ∞ if x > 0, 804 

and −∞ < 𝑥 ≤ 𝜇 − L
M
 if x < 0. 805 
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