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This letter presents an extension of the fatigue indicator
parameter work in Castelluccio and McDowell."

In the study of fatigue fracture in metals, fatigue indi-
cator parameters (FIPs) are nonlocal quantities that rep-
resent the driving force to incubate fatigue cracks' and
correlate well to crack tip opening displacement.” FIP is
often related directly to fatigue life N. These FIP values
can be used to design materials with microstructural fea-
tures less prone to fatigue failure."* However, the nonlo-
cal nature of FIPs introduces another variable that must
be determined for accurate predictions. Many studies use
nonlocal volumes that enclose a predetermined number
of finite elements." To encapsulate the entire microstruc-
ture, these nonlocal volumes must be conformal to the
microstructure (i.e., they do not overlap or have gaps
between them). These nonlocal volumes intrinsically
have a length scale. It has been shown that if the length
scale is too small, the nonlocal FIP data is mesh depen-
dent. But if the length scale is too large, the experimen-
tally observed spread in fatigue life is not captured.' This
work introduces a nonlocal nonconformal volume (i.e., a
volume that surrounds each element and overlaps nonlo-
cal volumes). Averaging FIP over this nonlocal volume
both captures the spread in fatigue data and is mesh
independent. It also allows for weighted nonlocal aver-
ages that would have excluded some of the microstruc-
ture using the conformal approach. While this approach
is more accurate than the previous approaches, it does
require a large amount of computational resources to
determine each nonlocal volume, so a parallelized
algorithm that is scalable across multiple computing
nodes is employed. The example polycrystalline material

for this work is Ti-6Al-4V, a common titanium alloy with
a hexagonal closed-packed crystal structure.

For alloys, larger inclusions, defects, or grains that
are oriented to favor plasticity tend to lower the fatigue
life of the material. However, when calculating a FIP at
the microscale using computational crystal plasticity and
finite element models, there is no intrinsic length scale
associated with the model, and thus, FIPs do not auto-
matically account for the size effect. Thus, McDowell
et al® introduced a length scale resulting in a nonlocal
Fatemi-Socie* FIP. Here, a crystallographic version of the
Fatemi-Socie FIP is used and defined by
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where Ayl(f’) is the range of plastic shear strains over a

cycle and aﬁ,") is the stress perpendicular to a slip plane,
all for a slip system a; o), is the yield strength. The
constant x accounts for load state. In the work here, only
the maximum FIP value over all the slip systems (at a
given material point) is stored. Here, « is 0.55, and o,
is 900 MPa (the average bulk yield strength given for
Ti-6Al-4V in previous work>).

To account for the size dependence of fatigue life on
microstructure size, the FIP value in Equation (1) is
nonlocal. In the work here, every material point
(i.e., integration point) is assigned a FIP, and these are
averaged over a nonlocal region similar to the average
volume of the crystallographic grains (as in Castelluccio
and McDowell").
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Yet the shape of this region and the approach to nonlo-
cal averaging can take several forms. Castelluccio and
McDowell' show that neglecting this nonlocal volume
average—in a finite element simulation—results in a
mesh dependent FIP value. They also consider averaging
over crystallographic grains; this eliminates mesh depen-
dence but reduces the spread in FIP values to an extent
which no longer represents fatigue statistics observed
experimentally. This approach also does not hold the non-
local volume constant, so microstructures with a wide dis-
tribution of grain sizes could result in very high FIPs in a
few small grains. Castelluccio and McDowell show that
nonlocal volumes based on crystallographic slip planes
result in both a realistic distribution of FIP and minimal
mesh sensitivity. However, using as slip plane-based non-
local volume requires predetermining the shape of a slip
plane, which may become difficult for hexagonal close-
packed (HCP) materials such as titanium where several
slip planes carry significant shear stresses. In the study of
Castelluccio and McDowell, they show that nonlocal vol-
umes that contain more than one crystallographic grain
have advantages; they state that their “results demonstrate
the limitation of using an apparent Schmid factor (consid-
ering only grain orientation and ignoring intergranular
interactions) as a predictor of fatigue crack formation.”

Another disadvantage of nonlocal averaging over grains
is that it does not address size effect; the model would pro-
duce the same result with large or small grains (unless a
size-dependent constitutive law is implemented). Con-
versely, using a geometric nonlocal volume like a sphere or
cube that is not based on the microstructure morphology
allows the nonlocal volume to stay constant in size for large
and small grains which in turn results in size effect.

Several studies use nonlocal volumes that contain more
than one crystallographic grain; the studies’” predefine
static nonlocal volumes for calculating FIP (i.e., they do not
move in the microstructure). This approach requires that
all nonlocal volumes be conforming, such that there is no
space in the microstructure where FIP is not averaged. It
also does not allow for overlapping volumes.

Enakoutsa et al° pose a nonlocal ductile fracture model
that addresses unlimited localization in porous solids—
where the microstructural defects are pores. They propose
an averaging method for porosity that is not uniform over
a nonlocal volume and that “considerably improves
numerical predictions.” Reframing this approach in terms
of FIP rather than porosity evolution rate gives

1. _ 1 ocC
FIP"(x) = ) / Qqﬁ(xf ¥)FIP(y)dQ, (2)

where FIP® and FIP™ are local and nonlocal FIP values
respectively. The position where nonlocal FIP is

calculated is x and y is positions around x over which
FIPY° ig integrated. The nonlocal volume is Q, A is a nor-
malizing value defined in Enakoutsa et al,® and

¢(x) = exp(—|lx||*/1%), (3)

where [ is the nonlocal length scale. For the work here, !
is 13.37% of the length of the unit cell (which is based on
achieving a nonlocal volume equal to the average grain
volume). For nonlocal volumes that exceed the modeled
domain, Q is truncated. This truncation can also occur in
conformal volumes.

If static conformal nonlocal volumes are used with
the approach in Equation (2), then regions near the edge
of each volume carry a much lower weight than regions
near the volume's centroid. However, there is no reason
that some regions of the microstructure should be
excluded in this way when calculating nonlocal FIP. To
remedy this issue, the work here uses dynamic nonlocal
volumes (i.e., that move with the location at which FIP'*°
is calculated) and are nonconformal (i.e., each volume
can overlap with other volumes). This means that unique
spherical volumes surround each point x at which FIP'
is calculated. So, every finite element has its own nonlo-
cal volume. These conformal and nonconformal nonlocal
volumes are shown in Figure 1.

While these dynamic nonconformal nonlocal volumes
reduce mesh dependence while maintaining the statistical
spread in FIP seen experimentally and account for FIPs
across grain boundaries, they require the determination of
a large number of nonlocal volumes. For example, if a
microstructural mesh has 100,000 elements, then 100,000
nonlocal volumes are determined. For regular meshes, an
algorithm can be formulated to efficiently determine these
nonlocal volumes, but for irregular meshes, these nonlocal
volumes need formulated by systematically searching the
mesh. For that reason, an approach based on Python par-
allel processing is proposed here. This approach is scalable
across many processors and computing nodes.

Determining each nonlocal volume is an embarrass-
ingly parallel task, so it can scale (nearly) linearly across
a large number of computing cores and computing nodes
on a high-performance computing cluster. Since Python's
multiprocessing module’ does not easily scale across
several computing nodes, the work here uses the open-
source Python library Dask® for parallelization of pre-
processing scripts (specifically the dask.distributed
library) as shown in Moore et al.’

The crystal plasticity micromechanics model follows
exactly the derivation of McGinty,'® details of which are
not reproduced here. The only modification comes from
the slip kinetics,
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FIGURE 1

(A) Static conformal nonlocal volumes (red boxes) around several finite elements in a polygranular microstructure.

(B) Three nonconformal nonlocal volumes (colored shapes corresponding to the element colors); notice that the nonconformal volumes

overlap, are centered around each element, and can be any shape. (C) 11°, 19%, 32*, and 48° element meshes (left to right) where colors

represent different grains. [Colour figure can be viewed at wileyonlinelibrary.com]

where m is a material parameter, 7, is a reference shear
stress, 7, is a reference shear strain rate, a® is a backs-
tress that describes kinematic hardening, and z(@ is the
resolved shear stress. Unlike in McGinty,m the reference
shear stress in each system is a weighting factor of a con-
stant reference shear stress 1(()“) =wry where w is a
weighting factor and 7, is the constant reference shear
stress. Four families of slip systems in the HCP a phase
are considered: basal, prismatic, pyramidal (a), and
pyramidal (c+a). The weighting factors w for the basal,
prismatic, pyramidal (a), and pyramidal (c+a) families
are 1.0, 1.0, 1.13, and 2.12, respectively. The first three
weights are used in Moore et al,'' and the pyramidal
(c+a) weight is determined to match the anisotropy of
the material shown in Mulay et al."* The (c) to (a) ratio
is 1.599. Only the « phase is modeled; this approximation
should result in minimal error in stress-strain response
as discussed in Moore et al.'!

The finite element model uses four different meshes
ranging from coarse to fine that match exactly the mesh

sizes used in Castelluccio and McDowell.! These meshes
are 11 x11x11, 19x19x 19, 32 x 32 x 32, and 48 x 48 x
48 elements, respectively. Abaqus (2018) software with
reduced integration’ hexahedral eight node finite ele-
ments are used exclusively. A displacement is applied in
the x-direction; subsequently, the displacement in the y-
and z-directions change based on the apparent Poisson's
ratio of the material. Each microstructure mesh is loaded
cyclically for three full cycles and a strain amplitude of
0.5% and an R ratio of —1. This amounts to a max/min
average stress of + 600 MPa.

Fifty different realizations of microstructures are used
for each mesh. Each realization has 100 randomly distrib-
uted equiaxed crystallographic grains with a constant
Euler angle for each grain. The crystallographic texture is
random. The grain morphology for each microstructure
realization is created using tessellation in the software
Neper.”® The elastic parameters in Voigt notation are
C11 =162,400 MPa, Cq,=92,000 MPa, C4y = 69,000 MPa.
The plasticity material parameters are y,=0.001s"",

*Post-processing software is written to find the maximum FIP over
several integration points were standard integration elements to
be used.

:sdny) SUONIPUOY) PuE SULIS [, 341 338 *[€20T/01/p1] U0 Axe1qr autjuQ A[IA\ ‘AI01eI0QE T [EUONEN IOULIdAIT 9OULIMET Aq 8[43/ 111°01/10p/w0d"A3[1m" Areiqrjout|uoy/:sdny woyy papeo[umo( ‘0 ‘s69209¢ I

10}/00° KA 1M,

pue-s

ASULIIT suowwo)) dAnear)) aqeorjdde oy £q pausaaoS aie sajonIe Y Lasn Jo Sa[nI 10§ A1eIqi] duljuQ) A3IA\ U0 (SuonIp


http://wileyonlinelibrary.com

LETTER TO THE EDITOR

4 | ] < }
Wl L E Y_ﬁi d‘m E?\igl?::eﬁ(nzﬁt;:rijs & Structures

12001
o hd e4+x ¢ MMPDS Data
s MMPDS Best Fit Line
R | U Fitting Range
a 10001 + Fit Model
o ox
5 A O
= 8001
C [ )
Q °
O | S e e __.
> ¢
5 600] - X e
L ¢
¢
104 10° 10° 10’

Fatigue Life (N), Cycles

FIGURE 2

Equivalent stress and fatigue life for a Ti-6Al-4V plate cycled at various R ratios: —1 (@), —0.4 (4 ), 0 (+), 0.1 (x), and 0.3

(#). The simulated FIP values (in a given fitting stress range) are converted to fatigue life via fitting parameters. [Colour figure can be viewed

at wileyonlinelibrary.com]|

m =50, 7o =334 MPa, and the direct hardening parame-
ter (h in McGinty'®) is 500 MPa; all other hardening
parameters in McGinty'® are zero. These parameters are
calibrated to data from Mulay et al.'* Before presenting
the statistical spread predictions from the model, the
spread observed in Ti-6Al-4V fatigue data is addressed.
Since fatigue life is measured experimentally while FIP is
calculated by the model, each measured fatigue life
is converted to FIP. To do this, FIP values from all four
meshes and nonlocal volume average procedures are fit
to life data.

For this fitting, a single realization of the microstruc-
ture from Figure 4 is simulated for a maximum stress of
586, 600, and 655 MPa and R= —1. This realization is
chosen to give FIP values in the middle of each of the
lowest histogram bin in Figure 4 and is considered to rep-
resent the expected FIP value. The simulated FIPs are fit
to the best fit equivalent stress’ line for the fatigue life of
a solution treated and aged Ti-6-Al-4V plate (from the
MMPDS handbook) in Figure 2. In Figure 2, the differ-
ence between the fit fatigue life values for each mesh size
and nonlocal volume is negligible even though each set
of fitting parameters (mapping FIP to N) is different.
Using FIP=ANP, the fitting parameters are A and b;
these are used to convert the histogram of fatigue life
from Figure 2 to FIP values.

The probability density function for FIP values con-
verted from fatigue life using the fitting parameters dis-
cussed above are shown in Figure 3. Each fatigue life in

"Equivalent stress as defined by MMPDS is stress “that consolidates
data for all stress ratios into a single curve”; it is not the von Mises
stress.

the fitting range shown in Figure 2 is converted to FIP to
give an estimate of the experimentally observed statistical
spread in FIP values. For each case, a three parameter
Weibull distribution is fit to the probability density func-
tion using Python's scipy.stats.exponweib func-
tion. These Weibull distributions are compared to
simulations in Figure 4.

Figure 4 shows FIP results using four types of nonlo-
cal volume averages for each of the four mesh sizes
(ie., 11x11x11, 19x19x%x19, 32x32x32, and 48 x
48 x 48 elements). The local FIP values for each mesh
size are the same, but the averaging volume and the aver-
aging procedure differ.

FIP values denoted as element are not averaged
(i.e., the nonlocal volume is only one element). The FIP
values denoted as conformal use cubic nonlocal volumes
that do not overlap (as shown in Figure 1A). The FIP
values denoted as nonconformal use spherical overlap-
ping nonlocal volumes centered at every element
(as shown in Figure 1B); for the nonconformal average,
every FIP is weighted equally. The FIP values denoted as
weighted use the same nonlocal volumes as the noncon-
formal average but weight each element's FIP values
using Equation (2).

The error shown in Figure 4 is calculated using

max (FIP%, ;) — max (FIPIB‘}(p)
e=100% . (5)
max (FIPE)I(p')

As shown in Figure 4, the local element value of FIP
has a large spread but also a large mesh dependence. For
the conformal nonlocal volumes, the mesh dependence is
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FIGURE 3 The probability density function
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(i.e., density) for each mesh size and nonlocal
volume is shown (by the dashed line) based on
the fatigue life in the fitting range in Figure 2.
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FIGURE 4 FIP for 50 realizations, using a local element
volume, a conformal nonlocal volume, a nonconformal nonlocal
volume, and a weighted nonconformal nonlocal volume. The coarse
to fine meshes are top to bottom, respectively. The probability
density functions from Figure 3 are scaled to the maximum
histogram value and shown with dashed lines. The error e is also
given as a percentage (where negative values indicate that the
simulation underestimates the data). [Colour figure can be viewed
at wileyonlinelibrary.com|

minimal, but the spread is limited. For the nonconformal
volumes, the mesh dependence is also minimal, but the
spread is wider than the conformal volume, albeit not as
wide as the element local FIP.

The 48 x 48 x 48 element mesh with the element non-
local volume average is the only to over-predict the data.
All other predictions under-predict the data. For the 32 x
32 x 32 and 48 x 48 x 48 elements meshes, the effect of
nonconformal nonlocal volumes is the most clear. While

the mesh dependent element averages for the 32 x 32 x
32 and 48 x 48 x 48 element meshes show —8% and 25%
error, respectively, the mesh independent conformal ele-
ment averages show —76% and —75%, respectively. This
error is reduced for the mesh independent nonconformal
element averages, where for the 32 x 32 x 32 and 48 x
48 x 48 element meshes, the error ranged from —16% to
—52%. The weighted average shows between 3% and 27%
less error than for the nonconformal average; thus, the
weighted nonconformal average is considered more accu-
rate than the nonconformal average without weighting.

This letter's intent is to convey that a weighted non-
conformal nonlocal average is computationally tractable
and has potential to predict a more accurate statistical
spread in FIP values than other mesh independent nonlo-
cal approaches considered.
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