
Remote a�estation of confidential VMs using ephemeral vTPMs
Vikram

Narayanan∗
University of Utah

USA
vikram@cs.utah.edu

Claudio Carvalho
IBM Research

USA
cclaudio@ibm.com

Angelo Ruocco
IBM Research
Switzerland

ang@zurich.ibm.com

Gheorghe Almási
IBM Research

USA
gheorghe@us.ibm.com

James Bottomley
IBM Research

USA
jejb@us.ibm.com

Mengmei Ye
IBM Research

USA
mye@ibm.com

Tobin Feldman-
Fitzthum

IBM Research
USA

tobin@ibm.com

Daniele Buono
IBM Research

USA
dbuono@us.ibm.com

Hubertus Franke
IBM Research

USA
frankeh@us.ibm.com

Anton Burtsev
University of Utah

USA
anton.burtsev@utah.edu

Abstract
Trying to address the security challenges of a cloud-centric software
deployment paradigm, silicon and cloud vendors are introducing
con�dential computing – an umbrella term aimed at providing hard-
ware and software mechanisms for protecting cloud workloads
from the cloud provider and its software stack. Today, Intel Soft-
ware Guard Extensions (SGX), AMD secure encrypted virtualization
(SEV), Intel trust domain extensions (TDX), etc., provide a way to
shield cloud applications from the cloud provider through encryp-
tion of the application’s memory below the hardware boundary
of the CPU, hence requiring trust only in the CPU vendor. Un-
fortunately, existing hardware mechanisms do not automatically
enable the guarantee that a protected system was not tampered
with during con�guration and boot time. Such a guarantee relies
on a hardware root of trust, i.e., an integrity-protected location that
can store measurements in a trustworthy manner, extend them, and
authenticate the measurement logs to the user (remote attestation).

In this work, we design and implement a virtual trusted platform
module (vTPM) that virtualizes the hardware root of trust without
requiring trust in the cloud provider. To ensure the security of a
vTPM in a provider-controlled environment, we leverage unique
isolation properties of the SEV-SNP hardware that allows us to
execute secure services (such as vTPM) as part of the enclave envi-
ronment protected from the cloud provider. We further develop a
novel approach to vTPM state management where the vTPM state
is not preserved across reboots. Speci�cally, we develop a stateless
ephemeral vTPM that supports remote attestation without any per-
sistent state on the host. This allows us to pair each con�dential
VM with a private instance of a vTPM completely isolated from
the provider-controlled environment and other VMs. We built our
prototype entirely on open-source components – Qemu, Linux, and
Keylime. Though our work is AMD-speci�c, a similar approach

∗Work done while at IBM Research

This work is licensed under a Creative Commons Attribution International
4.0 License.

ACSAC ’23, December 04–08, 2023, Austin, TX, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0886-2/23/12.
https://doi.org/10.1145/3627106.3627112

could be used to build remote attestation protocols on other trusted
execution environments (TEE).
ACM Reference Format:
Vikram Narayanan, Claudio Carvalho, Angelo Ruocco, Gheorghe Almási,
James Bottomley, Mengmei Ye, Tobin Feldman-Fitzthum, Daniele Buono,
Hubertus Franke, and Anton Burtsev. 2023. Remote attestation of con-
�dential VMs using ephemeral vTPMs. In Annual Computer Security
Applications Conference (ACSAC ’23), December 04–08, 2023, Austin, TX, USA.
ACM,NewYork, NY, USA, 12 pages. https://doi.org/10.1145/3627106.3627112

1 Introduction
Over the last two decades, public clouds have become an inescapable
building block of virtually every modern application. The move
to the cloud created a unique security challenge. Both application
vendors and end-users are required to trust the cloud infrastructure
that is often in charge of handling security and privacy-sensitive
data. Such trust is fragile as multi-tenant cloud environments are
operated by third party providers and include a large and complex
virtualization and storage stacks optimized for a wide variety of
hardware and software execution scenarios. Unfortunately, vulnera-
bilities in critical cloud software and infrastructure are unavoidable.

In the last decade, three widely deployed virtual machine moni-
tors (VMMs) – Xen, KVM, and VMware – that provide the founda-
tion of isolation and security in the cloud su�ered from 428 [26],
111 [10] and 154 [24] vulnerabilities each. Cloud software stacks like
Openstack and Cloudstack su�er from several vulnerabilities, some
resulting in total information disclosure and rendering resources
unusable [27, 28]. Moreover, physical access to the system opens
the door for a range of hardware attacks, e.g., memory extraction
such as cold-boot [80], RAMBleed [57, 74], etc.

In an e�ort to minimize the TCB of cloud applications, hardware
vendors and some cloud providers have introduced support for
hardware-protected trusted execution environments (TEEs) [3, 8,
35, 46, 54]. TEEs protect data in use from the host software stack
including the hypervisor and even the physical attacker. In e�ect,
TEEs remove the cloud provider from the TCB, even though the
provider still manages the lifecycle of an application.

Isolation alone, however, is not su�cient to protect a workload
or sensitive data. To ensure integrity, modern systems rely on a com-
bination of measured boot [65, 81] and runtime attestation [42, 53].
A measured boot protocol performs measurement of all binaries
involved in the boot of the system to ensure the integrity of all
boot-time components, i.e., the platform �rmware, bootloader(s),

732

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3627106.3627112
https://doi.org/10.1145/3627106.3627112
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3627106.3627112&domain=pdf&date_stamp=2023-12-04

ACSAC ’23, December 04–08, 2023, Austin, TX, USA Narayanan et al.

and the operating system kernel. Runtime attestation combines
measured boot with integrity measurement architecture (IMA) that
ensures integrity measurements of all binaries loaded and executed
by the system after it booted, i.e., dynamic kernel extensions, sys-
tem binaries, etc. Attestation works by comparing entries in the
measured boot and IMA logs with a pre-de�ned set of acceptable
values (called an attestation policy) and exposing any measurements
that do not conform to policy expectations.

Support for attestation requires a root of trust device, i.e., an
integrity-protected location that can store measurements in a trust-
worthy manner, extend them, and authenticate the measurement
logs to the user (remote attestation). On a physical machine, a
trusted platform module (TPM) chip can be used as the root of trust.
Some cloud providers o�er virtual machines with virtual TPMs
(vTPMS) attached to them [2, 6, 12, 22]. These vTPMs, however,
are emulated by the host virtualization stack. Using this kind of
emulated device requires trusting the service provider, which is
at odds with con�dential computing. In this paper, we show how
to implement a con�dential vTPM emulated inside a TEE, isolated
from both host and guest, linked to the root of trust of the enclave,
and providing similar properties to a physical TPM.

In this work, we design and implement a new virtual trusted
platform module (vTPM) that virtualizes the hardware root of trust
without requiring trust in the cloud provider. To ensure the secu-
rity of a vTPM in a provider-controlled environment, we leverage
unique isolation properties of the SEV-SNP hardware that allows
us to execute secure services (such as vTPM) as part of the enclave
environment protected from the cloud provider. We further develop
a novel approach to the vTPM state management where the vTPM
state is not preserved across reboots. Speci�cally, we develop a
stateless ephemeral vTPM that supports remote attestation without
a persistent state on the host. This allows us to pair each con�-
dential VM with a private instance of a vTPM that is completely
isolated from the provider-controlled environment and other VMs.

We design vTPM around the following security requirements:

• Isolation: Physical TPMs are isolated at the hardware level. Typ-
ical vTPMs emulated on the host are isolated from the guest via
virtualization, but exposed to the trusted host. In addition, the
vTPM also needs isolation from the guest operating system, since
it acts as a root of trust device for attestation. A vTPM should be
isolated from both the host and the guest system.

• Secure communication: In a physical TPM, communication
is isolated at the hardware level, although these assurances can
sometimes be subverted [1, 40]. In a typical vTPM, the TPM
commands and responses are transmitted through the untrusted
hypervisor [33, 38, 55, 61, 70]. An attacker can interpose on the
channel and alter the request or response defeating the security
guarantees o�ered by a TPM [40]. Communication with vTPM
should be secure.

• Persistent state: Physical TPMs have a persistent identity that
is set when the device is manufactured. Maintaining persistent
state in a virtualized environment usually requires a centralized
management system to propagate and store vTPM state. The
management system is part of the TCB and is usually managed
by the cloud provider. vTPM’s state should be managed by the
client and protected from the cloud provider.

To implement isolation, we leverage unique properties of the
SEV-SNP execution environment. Our con�dential vTPM is emu-
lated inside the SEV-SNP enclave (hence it is isolated from the host
and the cloud provider). Moreover, we leverage Virtual Machine
Privilege Levels (VMPLs) to isolate vTPM from the guest and hence
ensure the integrity of remote attestation. Since our con�dential
vTPM is emulated inside the guest security context, the guest and
vTPM can communicate in plaintext without information being
exposed to the untrusted host. Moreover, we ensure that neither
the guest nor the hypervisor can tamper with the communication.
To avoid exposing sensitive vTPM state to a complex management
system, we develop a new ephemeral approach to vTPM state man-
agement, in which the state of the vTPM never leaves the enclave.

The above security properties allow us to implement a vTPM
that is comparable in security and functionality to a physical TPM.
Our vTPM does not violate the trust model of con�dential com-
puting and extends existing measurement capabilities to support
sophisticated attestation �ows, enabling the creation of cloud-native
workloads with a small TCB that can be rigorously audited.

Our work leverages the unique architectural properties of the
AMD SEV-SNP execution environment; however, we will discuss
how to generalize this solution at the end of the paper. We will also
expand on the properties of the ephemeral vTPM, which does have
certain restrictions. The limitations of an ephemeral vTPM do not
a�ect the attestation use cases described here.

Overall, we make the following contributions: We propose using
an ephemeral vTPM to remove attacks to the vTPM state. We are
the �rst to leverage the new features of AMD SEV to provide a
secure implementation of a vTPM. Finally, we demonstrate a com-
plete remote attestation work�ow for our SVSM-vTPM solution,
implicitly proving that remote attestation frameworks can provide
measured boot and remote attestation with an ephemeral vTPM.

2 Background and related work

2.1 Trusted execution environments
Ubiquitous nature of cloud computing as a de facto large-scale ap-
plication deployment paradigm resulted in a new security challenge
– protecting sensitive user data in a large, complex, and potentially
untrusted environment of a cloud provider. To address the growing
security concerns, academic [47] and industry [30, 45] projects pro-
posed the idea of trusted execution environments (TEEs) in which
the execution of a user program can be shielded from the rest of the
software and hardware stack of the cloud provider. TEEs provide
isolated environments, or enclaves, that ensure con�dentiality and
integrity of the user workload by relying only on the CPU.

Intel SkyLake architecture introduced software guard extensions
(SGX) that implement secure enclave for user-level applications
through a combination of novel architectural extensions and CPU
microcode. SGX su�ered from numerous vulnerabilities [63], rang-
ing from access to the secrets inside the enclave to extracting the
quoting enclave’s attestation keys that allowed attackers to forge
attestation reports [76].

In 2016, AMD introduced secure encrypted virtualization (SEV),
where the entire virtual machine — as opposed to just part of an
application — was encrypted with an ephemeral key managed by a
dedicated co-processor, AMD secure processor (AMD-SP). AMD-SP

733

Remote a�estation of confidential VMs using ephemeral vTPMs ACSAC ’23, December 04–08, 2023, Austin, TX, USA

takes care of the lifecycle management of the SEV VMs [31] and
serves as the integrated root of trust for the AMD processor [59].
By using a unique key per VM, SEV isolates the guest VMs from
the rest of the host operating system and from other guests.

Intel trust domain extensions (TDX) introduced their own ver-
sion of hardware-isolated encrypted virtual machines called trusted
domains (TDs). Intel TDX relies on an SGX-based quoting enclave
called the TD-quoting enclave to perform remote attestation of
trusted domains [8]. Unfortunately, the attestation keys used by
the quoting enclave are long-lived, and when leaked, a�ect millions
of devices.

ARM introduced con�dential compute architecture (CCA) with
their Armv9-A architecture, where the processor provides an iso-
lated hardware execution environment called Realms, for hosting
entire VMs in a secure space [35]. Similar to other TEEs [3, 8] ARM
CCA provides launch measurement for the realms and can do mea-
sured boot with their hardware enforced security (HES) module
speci�cation [34] which serves as the root of trust [36, 37].
AMD secure encrypted virtualization Since 2016, AMD has in-
crementally added additional protection features to SEV. SEV-ES
(SEV encrypted state) protects the register state in the virtual ma-
chine control block (VMCB) with encryption and integrity pro-
tection [16]. To communicate and share data with the hypervisor
during hypercalls, guest hypervisor communication block (GHCB)
was introduced [19] that would remain unencrypted. Finally, with
SEV-SNP (secure nested paging), AMD introduced a reverse map-
ping table (RMP) which performs page validation and keeps track
of page ownership to prevent replay attacks [5].
Virtual machine privilege levels To avoid relying on the host
infrastructure for running secure services for the con�dential VM,
AMD also introduced virtual machine privilege levels (VMPLs) in
SEV-SNP. Similar to protection rings in x86 architecture, VMPLs
allow a guest VM address space to be subdivided into four levels
with di�erent privileges (with VMPL0 being the highest privilege
level). VMPLs allow design and deployment of secure services that
are completely isolated from the untrusted host operating system
and the guest VM [5].

To standardize the communication between various services of-
fered by the software running at VMPL0 and the guest operating
system AMD introduced a speci�cation called Secure VM service
module (SVSM) [17]. The protocol uses registers to pass the argu-
ments and return values. In the absence of SVSM �rmware, the
entire guest VM can execute under VMPL0 unmodi�ed. However,
with SVSM, they run at a lower privilege level, corresponding to a
higher VMPL (i.e., 1-3), and require interaction with the SVSM for
some privileged operations.

2.2 Integrity
TEEs ensure con�dentiality of the workload but do not guarantee
integrity. The trusted platform module (TPM) is used along with
a TEE to implement a secure root of trust in hardware. A TPM
measures and records the cryptographic hash of the software during
the boot process and reliably veri�es the same at a later point in
time. TPM is implemented as a cryptographic co-processor chip that
is embedded on the motherboard of a platform. It provides several
cryptographic operations (e.g., encryption, signing, hashing) and
secure storage for small data such as keys.

Measured boot Measured boot is the process of recording the mea-
surements of all boot components during the system initialization
process. Hashes of all components are recorded in a log �le that is
authenticated using the TPM. This authentication works by extend-
ing TPM’s Platform Con�guration Registers (PCRs) with digests of
individual events in the boot log. A TPM-signed quote is used to
vouch for the accuracy of the log.

Runtime integrity Integrity measurement architecture (IMA) is a
Linux subsystem that implements the idea of measured boot after
the system is booted, e.g., measures hashes of all kernel extensions
before they are executed [69]. Together with measured boot, IMA
enables a remote attestation protocol to ensure the runtime in-
tegrity of the system. Speci�cally, it allows an outside observer to
ascertain speci�c properties of a set of devices/machines. As an
example, one might be interested to ascertain the booted kernel, on
a set of machines in a data center. These properties of interest are
cumulatively called an attestation policy. To ensure the integrity of
the measurements, IMA relies on the TPM, i.e., extends the mea-
surements into the TPM PCRs, similar to the measured boot log.

Measured boot and remote attestation are designed to stop an
attacker who has control over the boot sequence of a system, e.g., an
untrusted cloud provider, or an attacker who gains administrative
privileges and can load malicious kernel extensions, or downgrade
security critical subsystems to exploitable versions. These mech-
anisms complement a number of security mechanisms aimed to
prevent runtime exploitation of the system through a range of low-
level vulnerabilities [41], e.g., stack canaries [48], address space
randomization (ASLR) [71], data execution prevention (DEP) [77],
superuser-mode execution and access prevention [43, 49], and even
control-�ow [45] and code-pointer integrity [56].

Virtual trusted platform module (vTPM) A vTPM is a pure
software implementation of a TPM module as de�ned by the TPM
2.0 speci�cation [20]. vTPM enables the virtualization of a hard-
ware root of trust across multiple entities, i.e., virtual machines,
and is aimed at providing functionality identical to a hardware
TPM. Berger et al. [38] proposed the �rst design for virtualizing a
TPM that can be used for providing TPM functionalities to virtual
machines. Their design consists of a vTPM manager and a set of
vTPM instances, where the vTPM manager executes as part of the
VMM and takes care of multiplexing physical hardware across mul-
tiple VMs. Berger et al. extend the TPM command speci�cation to
include support for creating virtual instances and rely on hardware
TPM for establishing trust.

Stumpf et al. [72] proposed a virtual TPM design by applying
hardware virtualization techniques from Intel VT-x technology.
Their multi-context TPM contains di�erent modes of execution
and has a dedicated TPM control structure for every VM, which
would be loaded by the VMM before invoking the TPM commands.
Several vTPM architectures were proposed over the years: from a
generalized vTPM [70] to separating vTPM functionalities across
Xen domains with di�erent privileges [33, 55, 61]. Unfortunately,
existing designs either place trust on the host environment (VMM,
host OS) or rely on the hardware TPM for establishing trust. None
of those designs satis�es the security and con�dentiality require-
ments of con�dential computing. Recent vTPM designs move their
implementation inside a TEE such as Intel SGX [66, 73, 78, 79].

734

ACSAC ’23, December 04–08, 2023, Austin, TX, USA Narayanan et al.

Though this design o�ers protection from the cloud provider, the
state of the TPM must be securely stored and should be protected
against rollback attacks. Additionally, to avoid substitution attacks,
both the vTPM and the consuming VM must securely identify each
other before services can be provided.

Cloud vTPMs Cloud providers that o�er con�dential VMs typi-
cally provide virtual TPM device that can serve as a root of trust and
can also be used for remote attestation. Google cloud o�ers plain
SEV con�dential VMs and measured boot attestation via a vTPM
managed by the hypervisor [23]. Microsoft Azure cloud relies on
Azure attestation service for attesting con�dential VMs [12] that
generates a token to decrypt the vTPM state and the disk. Alibaba
cloud o�ers vTPM support on their elastic compute service VMs [2].
Amazon AWS provides Nitro TPM, a virtual TPM implementation
conforming to the TPM 2.0 speci�cation as part of their EC2 of-
fering [6]. Some of these providers use a qemu-backed vTPM that
runs on the host, and requires trust in the cloud provider. Addition-
ally, there is very limited public knowledge about the design and
implementation of the above cloud vTPMs what limits understand-
ing of their security guarantees. In contrast, our work results in
an openly available SVSM-vTPM implementation that is built on
top of other standard opensource components (i.e., Qemu, Linux,
and Keylime). As our SVSM-vTPM relies only on the hardware-
protected isolation environment o�ered by the AMD-SP hardware,
it allows cloud users to leverage our vTPM as SVSM �rmware and
hence completely eliminate the need for trusting the cloud provider.

TEE-based vTPMs Table 1 presents a summary of di�erences
between our SVSM-vTPM design and other TEE-based vTPMs. Co-
CoTPM proposes a uni�ed architecture for attestation of con�den-
tial VMs where the hypervisor launches a con�dential VM that acts
as a vTPM manager and handles all the vTPM instances [66]. Sev-
eral other projects rely on running vTPM under isolation provided
by other hardware TEE mechanisms such as Intel SGX [73, 78, 79]
and ARM Trustzone [67]. SvTPM aims to protect against NVRAM
replacement, and rollback attacks [78] by running the vTPM inside
an SGX enclave for KVM-based VMs, whereas eTPM manages sev-
eral enclave vTPMs in a Xen environment and relies on a physical
TPM to provide root of trust [73], similar to Berger et al. [38].

To estasblish root of trust, SvTPM relies on Intel SGX datacenter
attestation primitives (DCAP) mechanism whereas CoCoTPM uses
a self-signed certi�cate with which they sign the EK. SVSM-vTPM
establishes a chain of trust by generating an SEV-SNP attestation
report by passing the 3864BC (⇢ ?D1) as the user-data along with
the attestation request and thus relying only on the AMD hardware.

Both SvTPM and CoCoTPM persists the state of the TPM. SvTPM
leverages SGX sealing to tie the persistent state of the TPM to the
appropriate VM whereas CoCoTPM stores the state encrypted on
the host such that it can only be decrypted by the CoCoTPM. In
contrast, by implementing an ephemeral vTPM, we completely
eliminate the classes of attacks that come with state protection and
endpoint substitution.

Both CoCoTPM and SvTPM require modifying parts of the soft-
ware stack to implement transport layer security (TLS) for securing
the communication channel between a VM and its vTPM. We imple-
ment an interface where both the command request and response
are part of the encrypted VM pages and hence secure by design.

VMPL0

VMPL1

Guest OS

OVMF

SVSM-vTPM

SEV-SNP Confidential VM

Host OS

SVSM core

libtpm

libcrypto
libc

vTPM

SVSM-vTPM

3rd party libraries

Untrusted

Trusted/encrypted

Qemu/KVM

Figure 1: SVSM-vTPM architecture and its components
To manage the state machine of the vTPM instance and to main-

tain the association betweeen a VM and its vTPM, SvTPM and
CoCoTPM take di�erent approaches. SvTPM follows a decentral-
ized model where each vTPM instance is hosted on a separate
SGX enclave whereas CoCoTPM employs a central vTPM manager
where multiple vTPM instances are hosted on the same CoCoTPM
con�dential VM. Though the CoCoTPM VM is running inside a
con�dential VM, a central design su�ers from several attacks rang-
ing from denial of service to colluding with other con�dential VMs.
Though it is possible to launch a dedicated CoCoTPM for every
con�dential VM, it results in wastage of architectural resources
as the number of address space identi�ers (ASIDs) are limited. In
contrast, our SVSM-vTPM architecture equips each con�dential
VM with their own private vTPM instance by leveraging the SVSM
architecture that implements VM privilege levels. We propose a
minimalistic vTPM design that avoids the need to support secure
communication and management of persistent state. Also, by hav-
ing a self-contained design and a simple API interface for perform-
ing remote attestation, we avoid the complexities that are associated
with orchestrating a remote attestation protocol [44].

3 Threat model

We assume that an attacker has physical access to the machine and
unrestricted privileges on the software and �rmware executing on
the host machine, i.e., �rmware, hypervisor and virtualization stack,
and the host operating system. However, the memory of the con�-
dential VM is protected by the AMD SEV technology, i.e., encrypted
with a key only known to the AMD secure processor (AMD-SP).
We trust the AMD hardware and the implementation of SEV-SNP
and SVSM. We also assume the attacker can interact with software
services hosted on the con�dential VM (e.g., a key-value store, e-
commerce platform, etc) and can potentially exploit vulnerabilities
in the guest kernel (e.g., by crafting a malicious network packet).

Ciphertext side channel attacks [58, 60] on the SEV encrypted
VM (by building a dictionary of plaintext-ciphertext pairs) are
out of scope. Attacks against the integrity measurement architec-
ture (IMA) such as TOCTOU [39], other measurement gaps such
as code injected by extended berkeley packet �lter (eBPF) are out
of scope. Also, runtime attacks exploiting stack or heap over�ows
such as return-oriented programming on the guest VM are out of
scope as IMA measures only the persistent �les.

735

Remote a�estation of confidential VMs using ephemeral vTPMs ACSAC ’23, December 04–08, 2023, Austin, TX, USA

Table 1: Feature comparison of SVSM-vTPM and other TEE-based vTPMs
Trust anchor Persistent State Secure communication Rollback protection TPM management

SvTPM [78] SGX ->vTPM Encrypted (SGX-Seal) SSL Yes Self-contained
CocoTPM [66] Self-signed sub-CA Encrypted (on disk) SSL Yes Central
SVSM-vTPM AMD ->vTPM Ephemeral Secure by design N/A Self-contained

4 TPM virtualization with SVSM
SVSM-vTPM is a secure virtual TPM designed to enable remote
attestation and runtime integrity measurement in a provider-
controlled con�dential computing environment backed by an AMD
SEV hardware. Speci�cally, we do not trust any software on the
host machine. To achieve strong isolation from the host, we lever-
age unique capabilities of AMD SEV environment and execute a
virtual TPM instance along with the guest system inside a hardware-
protected TEE enclave (Figure 1). The entire SEV-SNP con�dential
VM memory is encrypted by the AMD-SP. SVSM-vTPM runs inside
the VM privilege level 0 (VMPL0), which allows us to both isolate
it from the rest of the guest system and provide secure commu-
nication between the guest and the TPM. Speci�cally, we load a
minimal bare-metal execution environment in VMPL0 when a new
con�dential VM is created. Finally, we completely eliminate the
burden of TPM state management such as preserving the state,
injecting it to the correct con�dential VM during boot-up, and also
prevent a whole class of attacks based on ex�ltration of the TPM
state with a novel idea of an ephemeral TPM – our TPM instances
have no persistent state to save or guard against.

4.1 Isolation
As vTPM o�ers a virtual root of trust for the virtual machine, it has
to be hosted in an environment that provides strong isolation of its
state and is designed to minimize the attack surface for a potential
attacker. Arguably, two design �aws undermine the security of
existing vTPMs to be used in a con�dential computing environment.

First, until recently, the cloud provider was a de facto part of the
trust domain. vTPMs were often managed and implemented as a
component inside the hypervisor [38] or as a part of the virtual-
ization stack [33, 55, 61]. To reduce the attack surface on the com-
ponent hosting the vTPM, several alternative vTPM architectures
were proposed. Triglav vTPM utilized dynamic root of trust (DRTM)
as a mechanism to ensure the integrity of the hypervisor [64]. An-
other vTPM solution utilized x86 system management mode (SMM)
for isolation and protection of the TPM [62]. Though such designs
o�er some form of protection against a non-malicious cloud en-
vironment, they do not satisfy the requirements of con�dential
computing where the entire host environment is untrusted. Recent
TEE-based vTPMs run the vTPM manager and several instances
in a hardware isolated TEE such as SGX [73, 78, 79], AMD SEV
con�dential VM [66] or in ARM Trustzone [67].

Second, historically, virtualization of TPM relied on a cen-
tralized architecture. The core part of the vTPM, a vTPM man-
ager, responsible for instantiating a TPM, multiplexing the com-
munication between multiple VMs and vTPMs, and saving the
TPM state in a secure location was shared across all vTPM in-
stances [33, 38, 55, 61, 66]. As the manager handles the lifecycle of
all vTPMs on a machine and has access to the physical TPM hard-
ware, it naturally becomes a central point for attack. A malicious
VM can launch attacks ranging from a simple denial-of-service to

VMPL0

VMPL1

Guest OS

OVMF

SVSM-vTPM

SEV-SNP Confidential VM

Host OS

Guest owner

Guest image1

2

3

4

5

Request SP

SNP_REPORT_REQ
user_data: digest(EKpub)

Attestation Report

Retrieve attestation report

Qemu/KVM

Figure 2: Generating SEV-SNP attestation report inside SVSM-vTPM
sophisticated attacks trying to ex�ltrate the secrets by exploiting
the vulnerabilities in a centralized vTPM manager. If exploited, the
security of all the vTPMs handled by the manager is compromised.

Private, isolated TPMs Instead of relying on a central vTPM
manager that manages several instances of vTPM in an untrusted
environment, we base our design on two insights. First, to provide
strong isolation of the vTPM code, we leverage the architectural
support o�ered by AMD SEV. Second, to avoid centralized manage-
ment, we rely on SVSM speci�cation that o�ers a way to implement
secure services inside the guest VM.

Speci�cally, to ensure isolation, we leverage the VM privilege
levels inside the con�dential VM address space provided by the
SVSM speci�cation as part of the SEV-SNP architecture. In our
architecture, every con�dential VM has its own private vTPM that
runs at a higher privilege level (i.e., VMPL0) inside each con�den-
tial VM and is encrypted by AMD-SP and has the same isolation
guarantees of an encrypted VM.

By running our vTPM within an isolated privilege level within
the guest address space, we eliminate all the attacks that could
be mounted on the component that runs the vTPM. Additionally,
operating at the VMPL0 o�ers additional protection that it cannot
be interfered by the guest or the host OS.

We use Qemu/KVM environment for running the con�dential
VM. Figure 2 shows how a con�dential VM is launched. A user
provides the boot-time binaries (typically SVSM and OVMF) to
be loaded as part of the guest image (1�). Qemu communicates
with the KVMwhich communicates with the SEV �rmware running
inside the AMD-SP through an API interface to create a con�dential
VM (2�). The SVSM �rmware is placed in VMPL0 and the OVMF
�rmware and the rest of the guest environment (i.e., the kernel and
initrd in case of direct boot) is placed at VMPL1.

Unlike a regular programming environment that provides oper-
ating system abstractions (e.g., syscalls, timers, etc) and feature-rich
libraries, SVSM �rmware runs on a restrictive bare-metal environ-
ment without access to such features. Enclave environments often

736

ACSAC ’23, December 04–08, 2023, Austin, TX, USA Narayanan et al.

come with such restrictions, for instance, one would need a so-
phisticated library OS [75] to run unmodi�ed applications inside
SGX. However, in a bare-metal environment such as SVSM, one
does not have operating system abstractions such as timers/clocks,
availability of crypto libraries, etc. However, a vTPM needs to have
access to timers, random numbers, and cryptographic libraries for
realizing a software TPM module. We manually port the necessary
libraries to satisfy the dependencies of the TPM module. Due to
the encrypted code pages and the lack of interfaces between the
debugger and Qemu to install breakpoints inside the encrypted
pages, we had to rely on print statements during development for
debugging.

4.2 Communication between VM and vTPM
The communication channel between a VM and a corresponding
vTPM is a potential target for a range of security attacks, e.g., by
altering the TPM command requests and response bu�ers it is possi-
ble to subvert measured boot and runtime attestation protocols [40].
One way to mitigate such attacks is to secure the communication
channel by implementing standards such as TPM HMAC and en-
cryption [20] or DMTF secure protocol and data model (SPDM)
speci�cation [18]. Though the TPM speci�cation describes encryp-
tion and HMAC security layers, there are very few TPM imple-
mentations that support them. Developing a complex secure com-
munication protocol such as SPDM requires a large engineering
e�ort. Recent vTPM designs that rely on a hardware-protected TEEs
implement secure communication channel using transport layer
security (TLS) protocol [15]. Unfortunately, even a standard TLS
protocol negatively a�ects the TCB size of the TPM.
Secure communication Instead of implementing a secure commu-
nication protocol, we rely on the mechanism provided by AMD SEV
and its ability to pass execution between virtual machine privilege
levels. While the transition between VMPL1 and VMPL0 triggers an
exit into an untrusted hypervisor controlled by the cloud provider,
the internals of the message remain protected inside the hardware-
encrypted memory. Moreover, AMD SEV speci�cation ensures that
the hypervisor can only resume execution of the VM at a corre-
sponding privilege level, i.e., VMPL0, if the guest system triggers an
exit into the hypervisor. Hence, the hypervisor is unable to suppress
messages unless the whole VM is halted.

We rely on a generic platform device to interact with the SVSM-
vTPM which simply uses a page in memory for communicating the
request and response between the con�dential VM and the SVSM-
vTPM [29]. The guest kernel triggers an exit into the hypervisor,
after every write to the TPM command page. Upon re-entry, the
hypervisor puts the vCPU in VMPL0 where SVSM-vTPM handler
looks for TPM command ready �ag and inturn invokes the appro-
priate TPM command API to formulate the response bu�er. Then,
the vCPU exits into VMPL1 and continues with the execution of
the guest VM. We also make modi�cations to the TPM driver in
OVMF to interact with our SVSM-vTPM.

4.3 vTPM state
A discrete physical TPM stores all the persistent state of the module
inside the chip’s non-volatile (NV) store which holds the seeds for
generation of endorsement key (EK), storage root key (SRK) and
also retains other values such as NV Index values, objects made

persisted by the TPM user, and state saved when TPM is shutdown.
The TCG speci�cation requires a TPM implementation to have some
amount of non-volatile storage for the operation of the TPM [20].

As opposed to a physical TPM where the state of the TPM is
securely stored inside the TPM hardware chip inside a non-volatile
RAM (NVRAM), a vTPMmustmanage its state in software. Software
vTPMs typically implement the NV store in a disk-backed �le [33,
38, 55, 61, 66, 67, 78]. Along with the software that implements the
vTPM, this NVRAM �le is part of the trusted computing base. When
a vTPM is �rst initialized, the state �le has to be created on-the-�y
or loaded from a �le that is pre-created.

However, the state stored in the �le needs to be secured against
tampering and rollback attacks [50]. This could be achieved by
encrypting the NV store �le such that it could be decrypted only
by the vTPM module. This design calls for securely storing the
secret key used to encrypt/decrypt the NV state and inject it as a
secret during the boot-up of vTPM module. This brings in several
complexities in the context of con�dential computing as the secret
could only be injected during the launch phase. First the user has
to verify the launch measurement of the load-time components (i.e.,
�rmware, OVMF, etc.) before delivering the encrypted TPM state
along with the key to decrypt the TPM state. The booting of the
platform is blocked, waiting for the user to inject the secret. Addi-
tional care has to be taken to not give up the state to a con�dential
VM that is under the control of an attacker.
Ephemeral vTPM Instead, our design choice of using an ephemeral
vTPM is much more simplistic and pragmatic. The vTPM goes
through the manufacturing process to generate a fresh set of seeds,
keys on every boot. We avoid all the problems of handling persis-
tent state, injecting it on every boot, and guarding the encrypted
state �le by designing an ephemeral vTPM with no state. First,
ephemeral vTPM is simple to implement: the NV storage becomes
a volatile storage and does not preserve any values across power
cycles. Second, it does not require any form of secrets to boot-up
the vTPM and the platform. Though there are downsides to this
design such as: secrets cannot be preserved across reboots, this
o�ers much more �exibility as there is no secret to guard against
the aforementioned attacks. Moreover, the programming environ-
ment for SVSM is extremely constrained in terms of capabilities. To
save the TPM state on shutdown and to load the state on a reboot,
the SVSM should implement additional software to encrypt and
decrypt the state �le.

4.4 SVSM-vTPM provisioning
After launching the con�dential VM, the hypervisor �rst loads and
executes the SVSM binary in VMPL0. Our modi�ed SVSM follows
the standard manufacturing process of instantiating a vTPM in-
stance as speci�ed by the TPM2.0 speci�cation [20]. First, we create
a new endorsement key (EK) pair h⇢ ?D1 , ⇢ ?A8Ei from random
seeds. However, we do not create an endorsement key certi�cate
(⇢ 24AC) or a platform certi�cate, as there is no entity to sign these
certi�cates.

A signi�cant, and much under discussed problem in Con�dential
Computing is seeding the random number generator. A VMwhen it
boots has no natural sources of entropy that are not under the con-
trol of the untrusted host. In an ordinary VM, the x86 instructions
RDRAND and RDSEED cause VMEXITs; however, in con�dential VMs, these

737

Remote a�estation of confidential VMs using ephemeral vTPMs ACSAC ’23, December 04–08, 2023, Austin, TX, USA

instructions are guaranteed to provide direct access to the CPU
hardware random number in a way that the host cannot in�uence.
We use these instructions as the initial random number entropy
source for generating the random seeds.

4.5 Adding vTPM to the trust chain
Since our SVSM-vTPM module is instantiated with random seeds
and does not come with a manufacturer’s certi�cate to verify the
identity of the TPM, we need to ensure the following security
properties:

S1 Certify that the SVSM-vTPM is running in a real con�dential
VM on genuine AMD hardware

S2 Certify that the vTPM module is not tampered with.
S3 Communicate ⇢ ?D1 in a secure, tamper-proof way.

To ensure these security properties, we rely on the attestation report
from the AMD-SP hardware.

SEV-SNP a�estation report Software running at any VMPL level
can request an attestation report by sending a message to the SEV
�rmware running inside the AMD-SP. The request structure con-
tains the VMPL level and 512-bits of space for user-provided data
which would be included as part of the attestation report signed by
the AMD hardware.

Figure 2 shows the steps involved in getting an attestation report.
On receiving a request to launch a VM, the platform loads the image
and cryptographically measures the contents of the image (1�).
Once the guest image is launched, the hypervisor puts the vCPU in
VMPL0 mode passing control to the SVSM �rmware (after 2�). The
SVSM �rmware initializes the guest CPU, memory and sets up a
pagetable for execution and �nally instantiates a vTPM. The vTPM
is provisioned as described in Section 4.4. Then, the vTPM module
requests an attestation report by sending a SNP_REPORT_REQ message
to the AMD-SP hardware (3�). We place the digest of the public
part of the generated endorsement key (i.e., ⇢ ?D1) in the user-data
�eld of the request to communicate the identity of the TPM to the
guest VM. The request message is encrypted with the appropriate
VM platform communication key (VMPCK) for that VMPL level and
prepended with a message header which is integrity protected with
authenticated encryption (AEAD). The AMD-SP hardware decrypts
the message, veri�es the integrity and responds with an attestation
report(4�) that contains the launch measurements, VMPL level and
the user-data (i.e., 3864BC

⇣
⇢ ?D1

⌘
). We write this report into the

NVIndex where the TPM would normally place its EK certi�cate.
We can retrieve the saved attestation report at any point in time
(5�) as long as the guest VM is operational. If needed, the guest
VM can also place a report request to the AMD-SP hardware from
other VMPL levels to generate a new attestation report.

Ensuring S1 We can easily verify S1 because the attestation report
is generated by the AMD-SP processor and signed using AMD’s
versioned chip endorsement keys (VCEK) [32]. Verifying that the
attestation report is genuine implicitly guarantee that we obtained
it from a genuine AMD processor, within a con�dential VM.

Ensuring S2 Before launching the con�dential VM, the AMD-SP
hardware measures all the load-time binaries as part of the launch
measurement. This includes the SVSM and our SVSM-vTPM code.
By verifying these measurements that are included as part of the

attestation report, we can ensure that our SVSM-vTPM binary, and
anything else running in VMPL0, has not been tampered.
Ensuring S3 By verifying that the report request originated from
VMPL0, we can con�rm that the report was requested by a legit-
imate SVSM-vTPM, based on S2. By including the 3864BC (⇢ ?D1)
as part of the attestation report (via user-data �eld), we o�er a
tamper-proof way to communicate the identify of the TPM (⇢ ?D1)
to the entities interacting with this speci�c vTPM. Since ⇢ ?D1
and ⇢ ?A8E are generated from random seeds provided by the hard-
ware (i.e., RDRAND and RDSEED), as long as the generator is tamper-proof,
no entity can recreate ⇢ ?A8E and impersonate this vTPM.

5 Implementation
We base our implementation on the software stack recommended by
AMD which is publicly available on github [4]. It consists of Qemu,
Open Virtual Machine Firmware (OVMF) and Linux kernel for both
the host and the guest, all of which aremodi�ed to support the AMD
SEV-SNP architecture and will eventually be upstreamed. We make
minor modi�cations to the open-source framework Keylime [9] for
performing remote attestation of VMs that has the SVSM-vTPM in
the root of trust.

To implement SVSM-vTPM, we extend the open-source SVSM
implementation [11] with a minimal C library (a stripped-down
version of Musl [13]), WolfSSL library [25] for cryptographic prim-
itives, and Microsoft’s TPM that provides a software reference
implementation of TCG’s TPM 2.0 speci�cation [14].

5.1 Software TCB
We add 1500 lines of code to the existing SVSM implementation in
Rust. To implement vTPM, we utilize third party libraries: a minimal
C library, WolfSSL crypto library and Microsoft’s reference TPM
implementation [14]. The software TCB of our implementation is
very similar to that of a physical TPM consisting of a processor
core (e.g., ARM SecureCore) that can host the software components
such as crypto libraries and TPM state machine. Also, the APIs we
expose is similar to a hardware TPM implementing a CRB interface.

We measure the SVSM code and other third-party crates that are
part of the dependency chain as everything is open source. We also
assume thatWolfSSL andMicrosoft’s TPM implementations are bug-
free. It should be noted that the Microsoft reference implementation
TPM is also the codewhich is running in �rmware inside a hardware
TPM. For this reason, we expect our vTPM to have the same security
characteristics as a hardware TPM: state ex�ltration is prevented
by the VPML0 SNP security so the only attack vector is via the TPM
command interface.

5.2 Remote attestation with Keylime
We use Keylime for remote attestation. Keylime is designed to
perform both boot-time and runtime attestation on a �eet of sys-
tems, using the attested nodes’ TPM devices as the root of trust [9].
Keylime is comprised of three major components: A Keylime agent
is installed on every attested node. The agent announces itself with
a Keylime registrar when it starts up. The Keylime veri�er is in
charge of performing attestations on every node.
Registration protocol The purpose of Keylime registration is to
record the availability of the registering agent for attestation and to
establish mutual trust between the agent and the registrar. To this

738

ACSAC ’23, December 04–08, 2023, Austin, TX, USA Narayanan et al.

Keylime agent Keylime registrar

UUID, EKpub, AIKpub, or
Enrollment

EncEK(H(AIKpub), Ke)
Challenge

HMACKe(UUID)
Proof AIK tied to EK

Keylime verifier

nonce, PCRmask

QuoteAIK(nonce, {PCRs})
 IMAlog, MeasuredBootlog

Validate AIK

Attestation request

SVSM-vTPM

RequestQuote<nonce, PCRmask>

QuoteAIK(nonce, {PCRs})

Registration protocol

ActivateCredential(EncEK,(H(AIKpub), Ke))

* Validate
 - Quote/measurements
* Check measurements
 against the policyAttestation protocol

* Verify or

SVSM-vTPM
protocol

AttreportEKcert

regular protocol

EKcert Attreport

* MakeCredential(Ke, H(AIKpub), EKpub)

Ke

Figure 3: Remote attestation of a con�dential VM using keylime and SVSM-vTPM
end the agent’s credentials are checked and an attestation key is ne-
gotiated between the agent and the registrar for use for subsequent
attestation challenges. As shown in Figure 3, the agent initiates the
enrollment process by sending its TPM credentials - i.e., the public
part of its endorsement key (EK) and attestation identity key (AIK),
as well as the EK certi�cate, and the node’s UUID to the registrar.
The registrar veri�es that the TPM’s identity and authenticity using
the public EK and the EK certi�cate. Next, the validity of the AIK is
established through theMakeCredential/ActivateCredential function
pair by using a carefully constructed secret that can only survive
the registrar to agent roundtrip when both the TPM, AIK and UUID
are authentic. Identity veri�cation of a normal TPM device involves
checking that the EK certi�cate correctly signs the public EK, and
furthermore that the EK certi�cate (⇢ 24AC) is signed by a trusted
root (such as a manufacturer key or an intermediary key).

A�estation protocol Having successfully registered with the reg-
istrar, the agent is now ready to service attestation challenges. The
Keylime veri�er initiates the attestation protocol by sending a TPM
quote request to the agent, containing a nonce (to guard against
replay attacks) and a PCR mask (list of PCRs). The agent sends back
the requested quote signed by the TPM, using the AIK associated
during the registration phase. In addition, a number of logs (e.g.
measured boot log, IMA log) are sent back with the quote. The ver-
i�er validates the TPM quote by decrypting it with the registered
AIK; validates the logs by testing them against the PCRs contained
in the quote; and �nally checks the contents of the logs against the
attestation policy to render a trustworthy/untrustworthy verdict.

Protocol changes to handle SVSM-vTPMs Since Keylime is built
around interaction with TPM devices, we needed to make only mi-
nor modi�cations in the code to handle SVSM-vTPMs. Basically, we
only had to modify how the Keylime veri�er checks the authenticity
of a TPM device (function check_ek). As mentioned above, a “normal”
TPM device is authenticated through its EK certi�cate, which signs
the public EK and in turn is veri�ed by a manufacturer certi�cate.
Keylime carries a list of acceptable manufacturer certi�cates, and
any TPM in use by Keylime has to be signed by one of these. Our
ephemeral SVSM-vTPM, by its very nature, is not provisioned with
an EK certi�cate. However, the (ephemeral) public EK is signed

by the SEV attestation report, which we validate by checking it
against the platform manufacturer’s signature (i.e., AMD). In order
to minimize the required changes in Keylime, we decided to simply
replace the EK certi�cate with an SEV attestation report (�CCA4?>AC)
in our SVSM-vTPM (that is, we reuse the NVIndex in the TPM
where the EK certi�cate normally resides). The agent reads and
submits the attestation report instead of the EK certi�cate during
registration. The modi�ed registrar validates the attestation report
(ensuring that it is signed by an authentic AMD platform) instead
of the validating the EK certi�cate (marked by a di�erent color
in Figure 3). No other parts of the registration/attestation protocols
require changes for correct Keylime function.

6 Evaluation
We ran all our experiments on publicly-available Cloudlab infras-
tructure [68]. We utilize a Dell Poweredge R6525 server equipped
with two AMD EPYC 7543 32-core processor and 256 GiB RAM.
The host machine runs a 64-bit Ubuntu 20.04 Linux with v5.19
kernel and Qemu v6.1.50, whereas the con�dential guest VM runs
a 64-bit Ubuntu 22.04 Linux with a v5.17 kernel with Open Virtual
Machine Firmware (OVMF) version edk2-stable202208, all of which
are modi�ed to enable SEV-SNP [4]. We have also evaluated our
software stack on a Lenovo ThinkServer equipped with an AMD
EPYC 7763 64-core processor and 128 GiB RAM.

6.1 Performance analysis
To understand the overheads of commonly used TPM function-
alities, we study the performance of several TPM commands on
SVSM-vTPM and compare that with a vanilla virtual machine that
utilizes a vTPM hosted by Qemu. We rely on Qemu/KVM to launch
both the regular and con�dential VM. Qemu-vTPM setup uses the
native TPM CRB interface as its frontend with an swtpm backend
where the backed communicates with the vTPM running on the
host userspace via a UNIX socket interface. The SVSM-vTPM setup
uses a generic platform driver [29] to communicate with the vTPM
inside the SVSM (as discussed in Section 4.2) running under VMPL0.

We compare the performance of four di�erent TPM commands
which are essential for remote attestation, i.e., PCRREAD, PCREXTEND,
TPM2_QUOTE, CREATEPRIMARY:

739

Remote a�estation of confidential VMs using ephemeral vTPMs ACSAC ’23, December 04–08, 2023, Austin, TX, USA

0

25

50

PCRREAD PCREXTEND TPM2_QUOTE CREATEPRIMARY

La
te

nc
y

(m
ic

ro
se

co
nd

s) SVSM-vTPM
Qemu-vTPM

3.3 2.4

10.2 8.5

15.4

4.4

49.5

30.4

Figure 4: Performance overhead of SVSM-vTPM vs Qemu-vTPM
• PCR read This command reads the platform con�guration reg-
isters of the TPM. A TPM may maintain multiple banks of PCR,
where each bank is a collection of PCRs extended with a speci�c
hashing algorithm (e.g., sha1, sha256). In our benchmark, we read
all the PCR values from all the banks (i.e., sha1, sha256, sha384).

• PCR extend performs an extend operation on a speci�c PCR
from a bank, i.e., it computes the hash of the old PCR value
concatenated with the input data, i.e.,
%⇠'=4F = ⌘0B⌘(%⇠'>;3 | |8=?DC_30C0). We extend a single PCR
register from a sha256 bank.

• Quote A TPM quote contains a subset of PCRs from a bank
and a nonce (to prevent replay attacks) signed by the attestation
key (AIK) of the TPM. We request a quote of three PCRs (16-18)
from two di�erent banks (sha1 and sha256).

• Create primary The TPM command creates a primary object
under the chosen hierarchy (Endorsement, Platform, Owner or
NULL) and loads it into the TPM. The TPM returns only a context
with which one can interact with this object and the public and
private portions of the key are not returned. We create an ECC
keypair with the default curve (ecc256).
We perform all the experiments by booting the con�dential VM

with the corresponding setup (Qemu or SVSM), and invoke the
TPM commands from the guest user space using the tpm2-tools

package [21]. For each TPM command, we ran the benchmark for
3000 iterations. We ran these experiments three times to measure
the average latency (Figure 4). SVSM-vTPM incurs 5x lower latency
than Qemu-vTPM on PCRREADs and to get a TPM2_QUOTE. We incur
1.8x and 3.5x lower latency on PCREXTEND and CREATEPRIMARY TPM
operations respectively. Both qemu-hosted vTPM and SVSM-vTPM
incur an exit into the hypervisor to communicate with the TPM.
Our SVSM-vTPM su�ers from much less overhead compared to the
qemu-hosted vTPM as the latter involves communicating with the
TPM emulator backend (i.e., swtpm) through the socket interface.

For completeness, we also ran the same experiments on a ma-
chine that has an on-board physical TPM 2.0 device (Nuvoton
NPCT75x). On an average, TPM2_QUOTE and CREATEPRIMARY is 25,000
times slower compared to our emulated SVSM-vTPM at 262,143 `s
and 192,918 `s respectively whereas PCRREAD is 9,000 times slower
(30,026 `s), and PCREXTEND is 3,900 times slower (9,359 `s). In general,
physical TPMs are an order of magnitude slower than emulated
ones because they are often connected to the mainboard via a low-
bandwidth bus such as serial peripheral interface (SPI).

6.2 Security Analysis
A regular physical TPM is fully-isolated from the CPU and has its
own crypto engine, TPM state machine and a secure RNG inside
the chip. Moreover they do not store any of the TPM secrets on the
DRAM and are not vulnerable to memory attacks. The gist of our

security argument is that we are tying an ephemeral vTPM to the
AMD-SP hardware’s root of trust to perform runtime attestation. In
this section we examine a number of potential security attacks that
are impossible to perform with a physical TPM and explain how
our vTPM design prevents them. Our hypothetical attacker’s goal
would be to in�ltrate and alter a guest con�dential VM without
being detected by the remote attestation system (Keylime).

Fake vTPM The guest con�dential VM boots with the SVSM
�rmware containing our SVSM-vTPM as part of the VM launch
process. The essence of this attack is that after the system is booted
and the keylime agent is registered, an attacker could spawn a new
software vTPM in the guest userspace to hijack all the vTPM com-
mands and redirect to the newly spawned vTPM. The new fake
software vTPM is no longer running at a higher privilege level
and can be controlled by the attacker to forge TPM quotes in an
attempt to authenticate fake boot and IMA logs, and therefore hide
unauthorized software alterations from keylime.

Once the registration protocol is complete, the keylime registrar
has associated the ⇢ of our ephemeral vTPM with the �� that
would be used for signing the TPM quote. With the above redirec-
tion of TPM commands to a fake vTPM an attacker would not be
able to forge the TPM quote, as the fake vTPM has no access to the
private �� of the original vTPM, safely hidden by VMPL0.

The attacker could possibly force the registration protocol to
restart where an attacker could feed the TPM credentials from the
newly created vTPM. Again, keylime would detect this because
of the mismatch of the fake TPM’s ⇢ ?D1 with its digest in the
attestation report. A fake attestation report cannot be generated
because the report contains the VMPL of the entity that requested
it, and the guest is not running at VMPL0.

Fake SEV-SNP a�estation report We save the attestation report
requested by SVSM-vTPM at the same NVIndex as the ⇢ 24AC to
make it available to the keylime agent. The essence of this attack is
that the attacker could overwrite this NVIndex with either garbage
data or another attestation report after compromising the guest.
Garbage data would be detected by the keylime registrar, resulting
in attestation failure. When overwritten with a genuine attestation
report, an attacker can potentially change the identity of the vTPM,
i.e., create another vTPM (similar to Fake vTPM attack) with a new
set of keys and record the new ⇢ ?D1 as part of the user-data �eld
of the attestation report. If successful, they can perform all the
attacks mentioned under the "Fake vTPM" attack (i.e., spoof PCRs,
forge quotes, etc).

Even though one could retrieve an attestation report from a
di�erent VM privilege level, the platform guarantees that no one
could spoof the VMPL level in the attestation report as it could
be generated only by the software running inside VMPL0 (i.e., the
keys for encrypting the request message is available only at the
corresponding level). Thus, the replaced attestation report, if valid,
would contain a VMPL level greater than 0. To prevent this attack,
we check the VMPL level while validating the attestation report to
ensure the requester VMPL level is set to zero.

An attacker can overwrite the attestation report NVIndex with
a genuine attestation report o� another con�dential VM or from
a previous boot of this con�dential VM. Though the attestation
report is signed by the AMD hardware, the user-data will not match

740

ACSAC ’23, December 04–08, 2023, Austin, TX, USA Narayanan et al.

with the digest of ⇢ ?D1 we have inside the SVSM-vTPM, making
the attack detectable.
Con�dential VMs with no SVSM Though VMPL levels are sup-
ported in the SEV-SNP speci�cation, it cannot be enforced by the
end-user on a provider-controlled environment. A malicious cloud
provider could host a regular SEV VM and pretend that it is running
with an SEV-SNP �rmware. In this scenario, the con�dential VM
would run without the SVSM �rmware, where the entire guest op-
erating system will run under VMPL0. This makes it possible for a
guest VM to generate its own attestation report where the requester
VMPL level is set to 0. To prevent this attack, the user could verify
that the con�dential VM is booted with the SVSM �rmware run-
ning at VMPL0 by measuring the boot-time binaries that includes
the SVSM �rmware running at VMPL0 and validate it against the
measurements reported in the attestation report provided by the
cloud provider. If the measurements do not match, the con�dential
VM is likely booted without the SVSM �rmware.
Weaknesses in random number generator (RNG) AMD hard-
ware has su�ered from a buggy HWRNG in the past where RDRAND

instruction gave out a constant value instead of a random num-
ber [7]. An attacker could exploit a weak or buggy HWRNG im-
plementation to guess the initial seeds of the vTPM and create the
same secret keys as the vTPM. For example, by guessing the attes-
tation key, one could forge TPM quotes and break the guarantees
of remote attestation. To be resilient to such hardware bugs, we
can seed the RNG with additional sources of entropy such as the
hash of a key derived by the AMD-SP upon user’s request along
with the RDSEED instruction.

6.3 Case Studies
Full disk encryption Full disk encryption (FDE) protects the con-
�dentiality and integrity of data at-rest. To prevent accidental dis-
closure of the secret key (e.g., disk encryption key), it is a standard
practice to encrypt the secret key (wrap operation) such that it
can be decrypted only by the TPM (unwrapping). The wrapping
key (i.e., the key which wraps the secret) is often the storage root
key (SRK) present in the TPM.

However, in our ephemeral vTPM, there are no persistent storage
keys in the TPM to support unwrapping of keys. Figure 5 shows the
steps involved in supporting FDE on an ephemeral vTPM. To sup-
port FDE, we create an intermediary storage key 8((a restricted
decryption key with sensitiveDataOrigin [51]). Now, we perform
a TPM seal operation on the disk encryption key by parenting it
to the storage key (8() we just created, outputting a sealed blob
which can be unsealed only by a TPM with the same key. On plat-
form boot, the vTPM would generate an ephemeral endorsement
key (4⇢:) and an ephemeral storage root key (4('). By retrieving
the public part of the eSRK (1� in Figure 5), we can wrap the
intermediary key 8(with 4(' ?D1 to create a wrapped key that
can be decrypted only by our vTPM (2� in Figure 5). It has to be
noted that all the above operations can be performed on any TPM,
i.e., the user need not necessarily perform these on the vTPM of the
con�dential VM. Now, the disk encryption key is wrapped to the
parent key and the parent is in turn wrapped to the eSRK, forming
a hierarchy under the ephemeral storage root key (3� in Figure 5).
It is also possible to wrap the parent key with ⇢ ?D1 instead to
create a hierarchy under the ephemeral endorsement key.

SVSM-vTPM

Kisk
TPMSeal

Sealed blob

eEk
eSRKpriv

eSRKpub

Retrieve eSRKpub

Wrap Kisk with eSRKpub

Kisk

Dk
Dk

Dk

Key hierarchy of
SVSM-vTPM

eSRK

Kisk

Dk
Diskkey

Ephemeral keys
Permanent keys

3

2

1

Figure 5: Full disk encryption in an ephemeral vTPM
As both the disk encryption key and its parent key are wrapped

for our speci�c vTPM, they are no longer a secret and can be de-
livered to the con�dential VM in the clear. Since the sealed disk
encryption key is invariant, we can embed this into the initrd. Fi-
nally, we can deliver the wrapped parent key (2� in Figure 5) to
the con�dential VM once we have performed the initial attestation
of the platform to ensure its trustworthiness.
Storing secrets We cannot store secrets directly by wrapping the
keys on our ephemeral SVSM-vTPM as the EK and SRK would be
newly generated on every boot. One could use a similar technique
we used for FDE to form a hierarchy of keys under an intermediary
storage key. Once the system is booted, we can parent the interme-
diary key to the ephemeral SRK or EK forming a hierarchy under
the chosen key. Using this technique, one could store a hierarchy
of keys, as we do with a regular persistent TPM.

7 Discussion
Applicability to other TEEs With SVSM-vTPM, we rely on a
VM privilege level provided by the SVSM speci�cation that o�ers
a secure environment where we implement our vTPM. If there
is a hardware feature that guarantees this level of isolation on
other TEEs such as Intel TDX, SGX, or ARM CCA, then we can
follow similar design choices to build an ephemeral vTPM on those
platforms. However, if such mechanisms do not allow a protected
space within the TEE, the vTPM could be run in a sibling TEE that
can host the vTPM and communicate with the enclave/con�dential
VM, similar to CoCoTPM.
Supported functionalities We do not store the persistent state
with our ephemeral vTPM. Nonetheless, all other TPM functionali-
ties are supported. Similar to a regular TPM one can store persistent
keys, but they go through an extra step (similar to the reparenting
mechanism with the disk encryption keys). In terms of the TCB, we
no longer need the persistent state support which includes storing,
encryption/decryption, and verifying the state etc.

8 Conclusions
The landscape of cloud security is changing with the growing need
to remove the cloud provider from the trust domain. Hardware
vendors lay the foundation for implementing this vision through a
collection of mechanisms that ensure con�dentiality of a cloud exe-
cution, i.e., encryption of application memory, but, unfortunately,
lack support for ensuring runtime integrity. Our work develops a
novel approach for virtualizing the hardware root of trust through
a combination of hardware mechanisms and a new ephemeral

741

Remote a�estation of confidential VMs using ephemeral vTPMs ACSAC ’23, December 04–08, 2023, Austin, TX, USA

approach to managing the TPM state. We demonstrate how an
ephemeral vTPM can be used for providing remote attestation of a
con�dential VM. In the spirit of transparency, our implementation
is open source and can be audited, veri�ed, and extended. As more
and more cloud providers are gearing up to o�er con�dential VMs,
we believe our SVSM-vTPM architecture would provide a reference
point for implementing a vTPM on SEV-SNP infrastructure.

Acknowledgments
We would like to thank ACSAC 2023 reviewers for numerous sug-
gestions helping us to improve this work. This research is supported
in part by the National Science Foundation under OAC-2341138.
Vikram Narayanan is partly supported by an IBM PhD fellowship.

References
[1] 2022. Add integrity and security to TPM2 transactions. https://www.spinics.net/

lists/linux-integrity/msg24093.html. Online; accessed Dec 17, 2022.
[2] 2022. Alibaba Cloud Security White Paper. Online; accessed Dec 17, 2022.
[3] 2022. AMD Memory encryption. https://amd.wpenginepowered.com/wordpress/

media/2013/12/AMD_Memory_Encryption_Whitepaper_v9-Public.pdf. Online;
accessed Dec 19, 2022.

[4] 2022. AMD Secure Encrypted Virtualization. https://github.com/AMDESE. On-
line; accessed Nov 11, 2022.

[5] 2022. AMD SEV-SNP: Strengthening VM Isolation with Integrity Protection and
More. https://www.amd.com/system/�les/TechDocs/SEV-SNP-strengthening-
vm-isolation-with-integrity-protection-and-more.pdf. Online; accessed Dec 17,
2022.

[6] 2022. AWS Nitro System. https://aws.amazon.com/ec2/nitro/. Online; accessed
Dec 17, 2022.

[7] 2022. How a months-old AMD microcode bug destroyed my weekend.
https://arstechnica.com/gadgets/2019/10/how-a-months-old-amd-microcode-
bug-destroyed-my-weekend/. Online; accessed Dec 7, 2022.

[8] 2022. Intel Trust Domain CPU Architectural Extensions. https:
//www.intel.com/content/dam/develop/external/us/en/documents/intel-
tdx-cpu-architectural-speci�cation.pdf. Online; accessed Dec 17, 2022.

[9] 2022. Keylime. https://github.com/keylime/keylime. Online; accessed Nov 11,
2022.

[10] 2022. KVM CVEs. https://nvd.nist.gov/vuln/search. Online; accessed Dec 17,
2022.

[11] 2022. Linux SVSM for secure x86 virtualization in Rust. https://github.com/
AMDESE/linux-svsm. Online; accessed Nov 11, 2022.

[12] 2022. Microsoft Azure Attestation. https://learn.microsoft.com/en-us/azure/
attestation/overview. Online; accessed Dec 6, 2022.

[13] 2022. Musl libc. https://musl.libc.org/. Online; accessed Dec 17, 2022.
[14] 2022. O�cial TPM 2.0 Reference Implementation (by Microsoft). https://github.

com/microsoft/ms-tpm-20-ref. Online; accessed Dec 17, 2022.
[15] 2022. OpenSSL. https://github.com/openssl/openssl. Online; accessed Nov 11,

2022.
[16] 2022. Protecting VM register state with SEV-ES. https://www.amd.com/system/

�les/TechDocs/Protecting%20VM%20Register%20State%20with%20SEV-ES.pdf.
Online; accessed Dec 17, 2022.

[17] 2022. Secure VM Service Module for SEV-SNP Guests. https://developer.amd.
com/wp-content/resources/58019.pdf. Online; accessed Dec 17, 2022.

[18] 2022. Security Protocol and Data Model (SPDM) Speci�cation. https://www.dmtf.
org/sites/default/�les/standards/documents/DSP0274_1.1.0.pdf. Online; accessed
Dec 17, 2022.

[19] 2022. SEV-ES Guest-Hypervisor Communication Block Standardization. https:
//developer.amd.com/wp-content/resources/56421.pdf. Online; accessed Dec 17,
2022.

[20] 2022. TPM 2.0 library. https://trustedcomputinggroup.org/resource/tpm-library-
speci�cation/. Online; accessed Dec 17, 2022.

[21] 2022. Trusted Platform Module (TPM2.0) tools. https://github.com/tpm2-
software/tpm2-tools. Online; accessed Dec 17, 2022.

[22] 2022. Validating instances using Cloud Monitoring. https://cloud.google.com/
compute/con�dential-vm/docs/monitoring. Online; accessed Dec 6, 2022.

[23] 2022. Virtual Trusted Platform Module for Shielded VMs: security in plain-
text. https://cloud.google.com/blog/products/identity-security/virtual-trusted-
platform-module-for-shielded-vms-security-in-plaintext. Online; accessed Dec
6, 2022.

[24] 2022. VMWare CVEs. https://www.vmware.com/security/advisories.html. On-
line; accessed Dec 17, 2022.

[25] 2022. WolfSSL Embedded SSL/TLS Library. https://github.com/wolfSSL/wolfssl/.
Online; accessed Dec 17, 2022.

[26] 2022. Xen vulnerability statistics. https://www.cvedetails.com/product/23463/
XEN-XEN.html?vendor_id=6276. Online; accessed Dec 17, 2022.

[27] 2023. Apache Cloudstack CVEs. https://www.cvedetails.com/vulnerability-
list/vendor_id-45/product_id-23458/Apache-Cloudstack.html. Online; accessed
May 20, 2023.

[28] 2023. Openstack CVEs. https://www.cvedetails.com/vulnerability-list/vendor_id-
11727/Openstack.html. Online; accessed May 20, 2023.

[29] 2023. [RFC 0/3] Enlightened vTPM support for SVSM on SEV-SNP.
https://lore.kernel.org/all/acb06bc7f329dfee21afa1b2�080fe29b799021.camel@
linux.ibm.com/. Online; accessed May 20, 2023.

[30] Tiago Alves. 2004. Trustzone: Integrated hardware and software security. Infor-
mation Quarterly 3 (2004), 18–24.

[31] AMD. 2022. Secure Encrypted Virtualization API Version 0.24. https://www.
amd.com/system/�les/TechDocs/55766_SEV-KM_API_Speci�cation.pdf. Online;
accessed Dec 17, 2022.

[32] AMD. 2023. Versioned Chip Endorsement Key (VCEK) Certi�cate and KDS
Interface Speci�cation. https://www.amd.com/system/�les/TechDocs/57230.pdf.
Online; accessed May 17, 2023.

[33] Melvin J Anderson,MichaMo�e, Chris I Dalton, et al. 2007. Towards Trustworthy
Virtualization Environments: Xen Library OS Security Service Infrastructure.
Trusted Systems Laboratory, HP Laboratories Bristol (2007), 88–111.

[34] ARM Inc. 2022. ARM CCA Security Model 1.0. https://developer.arm.com/
documentation/DEN0096/latest. Online; accessed Dec 17, 2022.

[35] ARM Inc. 2022. Introducing Arm Con�dential Compute Architecture. https:
//developer.arm.com/documentation/den0125/0200. Online; accessed Dec 19,
2022.

[36] ARM Inc. 2022. Runtime Security Subsystem (RSS). https://tf-m-user-guide.
trusted�rmware.org/platform/arm/rss/readme.html. Online; accessed Dec 17,
2022.

[37] Tamas Ban. 2022. Attestation and Measured Boot. https://www.trusted�rmware.
org/docs/Attestation_and_Measured_Boot.pdf. Online; accessed Dec 17, 2022.

[38] Stefan Berger, Ramón Cáceres, Kenneth A. Goldman, Ronald Perez, Reiner Sailer,
and Leendert van Doorn. 2006. vTPM: Virtualizing the Trusted Platform Module.
In Proceedings of the 15th Conference on USENIX Security Symposium (USENIX
Security 06). Article 21, 305–320 pages.

[39] Felix Bohling, Tobias Mueller, Michael Eckel, and Jens Lindemann. 2020. Sub-
verting Linux’ Integrity Measurement Architecture. In Proceedings of the 15th
International Conference on Availability, Reliability and Security (ARES 20). Article
27, 10 pages. https://doi.org/10.1145/3407023.3407058

[40] Jeremy Boone. 2018. TPM Genie: Interposer Attacks Against the Trusted Platform
Module Serial Bus. White paper. NCC Group. https://www.nccgroup.com/
globalassets/about-us/us/documents/tpm-genie.pdf.

[41] Haogang Chen, Yandong Mao, Xi Wang, Dong Zhou, Nickolai Zeldovich, and
M. Frans Kaashoek. 2011. Linux Kernel Vulnerabilities: State-of-the-Art Defenses
and Open Problems. In Proceedings of the Second Asia-Paci�c Workshop on Systems
(APSys ’11). 1–5. https://doi.org/10.1145/2103799.2103805

[42] George Coker, Joshua Guttman, Peter Loscocco, Amy Herzog, Jonathan Millen,
Brian O’Hanlon, John Ramsdell, Ariel Segall, Justin Sheehy, and Brian Sni�en.
2011. Principles of remote attestation. International Journal of Information
Security 10, 2 (2011), 63–81.

[43] Jonathan Corbet. 2012. Supervisor mode access prevention. https://lwn.net/
Articles/517475/. Online; accessed Dec 17, 2022.

[44] Intel Corporation. 2019. Intel® SGX Data Center Attestation Primitives (Intel®
SGX DCAP). https://download.01.org/intel-sgx/sgx-dcap/1.7/linux/docs/Intel_
SGX_DCAP_ECDSA_Orientation.pdf.

[45] Intel Corporation. 2022. Intel® 64 and IA-32 Architectures Software Developer’s
Manual. https://software.intel.com/content/www/us/en/develop/download/intel-
64-and-ia-32-architectures-sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-
3d-and-4.html.

[46] Victor Costan and Srinivas Devadas. 2016. Intel SGX Explained. Cryptology
ePrint Archive, Paper 2016/086. https://eprint.iacr.org/2016/086 https://eprint.
iacr.org/2016/086.

[47] Victor Costan, Ilia Lebedev, and Srinivas Devadas. 2016. Sanctum: Minimal
Hardware Extensions for Strong Software Isolation. In 25th USENIX Security
Symposium (USENIX Security 16). 857–874. https://www.usenix.org/conference/
usenixsecurity16/technical-sessions/presentation/costan

[48] Crispin Cowan, Calton Pu, Dave Maier, Heather Hinton, and Jonathan Walpole.
1998. StackGuard: Automatic Adaptive Detection and Prevention of Bu�er-
Over�ow Attacks. In Proceedings of the 7th USENIX Security Symposium. 63–78.

[49] Stephen Fischer. 2011. Supervisor Mode Execution Protection. NSA Trusted
Computing Conference.

[50] Trusted Computing Group. 2019. Trusted Platform Module Library
Part 1: Architecture. See [52], Chapter 37.7.2 External NV, 232–
233. https://trustedcomputinggroup.org/wp-content/uploads/TCG_TPM2_
r1p59_Part1_Architecture_pub.pdf

[51] Trusted Computing Group. 2019. Trusted Platform Module Library
Part 1: Architecture. See [52], Chapter 25.2.3 "sensitiveDataOrigin",

742

https://www.spinics.net/lists/linux-integrity/msg24093.html
https://www.spinics.net/lists/linux-integrity/msg24093.html
https://amd.wpenginepowered.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v9-Public.pdf
https://amd.wpenginepowered.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v9-Public.pdf
https://github.com/AMDESE
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://aws.amazon.com/ec2/nitro/
https://arstechnica.com/gadgets/2019/10/how-a-months-old-amd-microcode-bug-destroyed-my-weekend/
https://arstechnica.com/gadgets/2019/10/how-a-months-old-amd-microcode-bug-destroyed-my-weekend/
https://www.intel.com/content/dam/develop/external/us/en/documents/intel-tdx-cpu-architectural-specification.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/intel-tdx-cpu-architectural-specification.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/intel-tdx-cpu-architectural-specification.pdf
https://github.com/keylime/keylime
https://nvd.nist.gov/vuln/search
https://github.com/AMDESE/linux-svsm
https://github.com/AMDESE/linux-svsm
https://learn.microsoft.com/en-us/azure/attestation/overview
https://learn.microsoft.com/en-us/azure/attestation/overview
https://musl.libc.org/
https://github.com/microsoft/ms-tpm-20-ref
https://github.com/microsoft/ms-tpm-20-ref
https://github.com/openssl/openssl
https://www.amd.com/system/files/TechDocs/Protecting%20VM%20Register%20State%20with%20SEV-ES.pdf
https://www.amd.com/system/files/TechDocs/Protecting%20VM%20Register%20State%20with%20SEV-ES.pdf
https://developer.amd.com/wp-content/resources/58019.pdf
https://developer.amd.com/wp-content/resources/58019.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0274_1.1.0.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0274_1.1.0.pdf
https://developer.amd.com/wp-content/resources/56421.pdf
https://developer.amd.com/wp-content/resources/56421.pdf
https://trustedcomputinggroup.org/resource/tpm-library-specification/
https://trustedcomputinggroup.org/resource/tpm-library-specification/
https://github.com/tpm2-software/tpm2-tools
https://github.com/tpm2-software/tpm2-tools
https://cloud.google.com/compute/confidential-vm/docs/monitoring
https://cloud.google.com/compute/confidential-vm/docs/monitoring
https://cloud.google.com/blog/products/identity-security/virtual-trusted-platform-module-for-shielded-vms-security-in-plaintext
https://cloud.google.com/blog/products/identity-security/virtual-trusted-platform-module-for-shielded-vms-security-in-plaintext
https://www.vmware.com/security/advisories.html
https://github.com/wolfSSL/wolfssl/
https://www.cvedetails.com/product/23463/XEN-XEN.html?vendor_id=6276
https://www.cvedetails.com/product/23463/XEN-XEN.html?vendor_id=6276
https://www.cvedetails.com/vulnerability-list/vendor_id-45/product_id-23458/Apache-Cloudstack.html
https://www.cvedetails.com/vulnerability-list/vendor_id-45/product_id-23458/Apache-Cloudstack.html
https://www.cvedetails.com/vulnerability-list/vendor_id-11727/Openstack.html
https://www.cvedetails.com/vulnerability-list/vendor_id-11727/Openstack.html
https://lore.kernel.org/all/acb06bc7f329dfee21afa1b2ff080fe29b799021.camel@linux.ibm.com/
https://lore.kernel.org/all/acb06bc7f329dfee21afa1b2ff080fe29b799021.camel@linux.ibm.com/
https://www.amd.com/system/files/TechDocs/55766_SEV-KM_API_Specification.pdf
https://www.amd.com/system/files/TechDocs/55766_SEV-KM_API_Specification.pdf
https://www.amd.com/system/files/TechDocs/57230.pdf
https://developer.arm.com/documentation/DEN0096/latest
https://developer.arm.com/documentation/DEN0096/latest
https://developer.arm.com/documentation/den0125/0200
https://developer.arm.com/documentation/den0125/0200
https://tf-m-user-guide.trustedfirmware.org/platform/arm/rss/readme.html
https://tf-m-user-guide.trustedfirmware.org/platform/arm/rss/readme.html
https://www.trustedfirmware.org/docs/Attestation_and_Measured_Boot.pdf
https://www.trustedfirmware.org/docs/Attestation_and_Measured_Boot.pdf
https://doi.org/10.1145/3407023.3407058
https://www.nccgroup.com/globalassets/about-us/us/documents/tpm-genie.pdf
https://www.nccgroup.com/globalassets/about-us/us/documents/tpm-genie.pdf
https://doi.org/10.1145/2103799.2103805
https://lwn.net/Articles/517475/
https://lwn.net/Articles/517475/
https://download.01.org/intel-sgx/sgx-dcap/1.7/linux/docs/Intel_SGX_DCAP_ECDSA_Orientation.pdf
https://download.01.org/intel-sgx/sgx-dcap/1.7/linux/docs/Intel_SGX_DCAP_ECDSA_Orientation.pdf
https://software.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4.html
https://software.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4.html
https://software.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4.html
https://eprint.iacr.org/2016/086
https://eprint.iacr.org/2016/086
https://eprint.iacr.org/2016/086
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/costan
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/costan
https://trustedcomputinggroup.org/wp-content/uploads/TCG_TPM2_r1p59_Part1_Architecture_pub.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG_TPM2_r1p59_Part1_Architecture_pub.pdf

ACSAC ’23, December 04–08, 2023, Austin, TX, USA Narayanan et al.

198. https://trustedcomputinggroup.org/wp-content/uploads/TCG_TPM2_
r1p59_Part1_Architecture_pub.pdf

[52] Trusted Computing Group. 2019. Trusted Platform Module Library Part 1: Ar-
chitecture (level 00 revision 01.59 ed.). https://trustedcomputinggroup.org/wp-
content/uploads/TCG_TPM2_r1p59_Part1_Architecture_pub.pdf

[53] Vivek Haldar, Deepak Chandra, and Michael Franz. 2004. Semantic Remote
Attestation: A Virtual Machine Directed Approach to Trusted Computing. In
Proceedings of the 3rd Conference on Virtual Machine Research And Technology
Symposium - Volume 3 (VM 04). 29–41.

[54] Guerney D. H. Hunt, Ramachandra Pai, Michael V. Le, Hani Jamjoom, Sukadev
Bhattiprolu, Rick Boivie, Laurent Dufour, Brad Frey, Mohit Kapur, Kenneth A.
Goldman, Ryan Grimm, Janani Janakirman, John M. Ludden, Paul Mackerras,
Cathy May, Elaine R. Palmer, Bharata Bhasker Rao, Lawrence Roy, William A.
Starke, Je� Stuecheli, Enriquillo Valdez, and Wendel Voigt. 2021. Con�dential
Computing for OpenPOWER. In Proceedings of the Sixteenth European Conference
on Computer Systems (EuroSys 21). 294–310. https://doi.org/10.1145/3447786.
3456243

[55] Xin Jin, Li-na Wang, Rong-wei Yu, Peng Kou, and Cheng-lin Shen. 2010. Ad-
ministrative Domain: Security Enhancement for Virtual TPM. In 2010 Interna-
tional Conference on Multimedia Information Networking and Security. 767–771.
https://doi.org/10.1109/MINES.2010.162

[56] Volodymyr Kuznetsov, László Szekeres, Mathias Payer, George Candea, R. Sekar,
and Dawn Song. 2014. Code-Pointer Integrity. In Proceedings of the 11th USENIX
Conference on Operating Systems Design and Implementation (OSDI 14). 147–163.

[57] Andrew Kwong, Daniel Genkin, Daniel Gruss, and Yuval Yarom. 2020. RAMBleed:
Reading Bits in Memory Without Accessing Them. In 2020 IEEE Symposium on
Security and Privacy (SP). 695–711. https://doi.org/10.1109/SP40000.2020.00020

[58] Mengyuan Li, Luca Wilke, Jan Wichelmann, Thomas Eisenbarth, Radu Teodor-
escu, and Yinqian Zhang. 2022. A Systematic Look at Ciphertext Side Channels
on AMD SEV-SNP. In 2022 IEEE Symposium on Security and Privacy (SP). 337–351.
https://doi.org/10.1109/SP46214.2022.9833768

[59] Akash Malhotra. 2022. AMD RYZEN pro 5000 series mobile processors. https://
www.amd.com/system/�les/documents/amd-security-white-paper.pdf. Online;
accessed Dec 17, 2022.

[60] Mengyuan Li and Yinqian Zhang and Huibo Wang and Kang Li and Yueqiang
Cheng. 2021. CIPHERLEAKS: Breaking Constant-time Cryptography on AMD
SEV via the Ciphertext Side Channel. In 30th USENIX Security Symposium (USENIX
Security 21). 717–732. https://www.usenix.org/conference/usenixsecurity21/
presentation/li-mengyuan

[61] Derek Gordon Murray, Grzegorz Milos, and Steven Hand. 2008. Improving
Xen Security through Disaggregation. In Proceedings of the Fourth ACM SIG-
PLAN/SIGOPS International Conference on Virtual Execution Environments (VEE
08). 151–160. https://doi.org/10.1145/1346256.1346278

[62] Eugene DMyers. 2018. Using the Intel STM for Protected Execution. https://www.
platformsecuritysummit.com/2018/speaker/myers/STMPE2Intelv84a.pdf. On-
line; accessed Dec 17, 2022.

[63] Alexander Nilsson, Pegah Nikbakht Bideh, and Joakim Brorsson. 2020. A survey
of published attacks on Intel SGX. arXiv preprint arXiv:2006.13598 (2020).

[64] Wojciech Ozga, Do Le Quoc, and Christof Fetzer. 2021. TRIGLAV: Remote
Attestation of the Virtual Machine’s Runtime Integrity in Public Clouds. In
2021 IEEE 14th International Conference on Cloud Computing (CLOUD). 1–12.
https://doi.org/10.1109/CLOUD53861.2021.00013

[65] Bryan Parno, Jonathan M. McCune, and Adrian Perrig. 2010. Bootstrapping Trust
in Commodity Computers. In 2010 IEEE Symposium on Security and Privacy (SP).
414–429. https://doi.org/10.1109/SP.2010.32

[66] Joana Pecholt and Sascha Wessel. 2022. CoCoTPM: Trusted Platform Modules
for Virtual Machines in Con�dential Computing Environments. In Proceedings of
the 38th Annual Computer Security Applications Conference (ACSAC 22). 989–998.
https://doi.org/10.1145/3564625.3564648

[67] Himanshu Raj, Stefan Saroiu, Alec Wolman, Ronald Aigner, Jeremiah Cox, Paul
England, Chris Fenner, Kinshuman Kinshumann, Jork Loeser, Dennis Mattoon,
Magnus Nystrom, David Robinson, Rob Spiger, Stefan Thom, and David Wooten.
2016. fTPM: A Software-Only Implementation of a TPM Chip. In 25th USENIX
Security Symposium (USENIX Security 16). 841–856. https://www.usenix.org/
conference/usenixsecurity16/technical-sessions/presentation/raj

[68] Robert Ricci, Eric Eide, and CloudLab Team. 2014. Introducing CloudLab: Scien-
ti�c Infrastructure for Advancing Cloud Architectures and Applications. ; login::
the magazine of USENIX & SAGE 39, 6 (2014), 36–38.

[69] Reiner Sailer, Xiaolan Zhang, Trent Jaeger, and Leendert Van Doorn. 2004. Design
and implementation of a TCG-based integrity measurement architecture.. In 13th
USENIX Security Symposium (USENIX Security 04). 223–238.

[70] Vincent Scarlata, Carlos Rozas, Monty Wiseman, David Grawrock, and Claire
Vishik. 2008. TPM Virtualization: Building a General Framework. Vieweg+Teubner,
43–56. https://doi.org/10.1007/978-3-8348-9452-6_4

[71] Hovav Shacham, Matthew Page, Ben Pfa�, Eu-Jin Goh, Nagendra Modadugu,
and Dan Boneh. 2004. On the e�ectiveness of address-space randomization. In
Proceedings of the 11th ACM conference on Computer and Communications Security
(CCS 04). 298–307. https://doi.org/10.1145/1030083.1030124

[72] Frederic Stumpf and Claudia Eckert. 2008. Enhancing Trusted Platform Modules
with Hardware-Based Virtualization Techniques. In 2008 Second International
Conference on Emerging Security Information, Systems and Technologies. 1–9.
https://doi.org/10.1109/SECURWARE.2008.23

[73] Haonan Sun, Rongyu He, Yong Zhang, RuiyunWang,Wai Hung Ip, and Kai Leung
Yung. 2018. eTPM: A Trusted Cloud Platform Enclave TPM Scheme Based on
Intel SGX Technology. Sensors 18, 11 (2018). https://doi.org/10.3390/s18113807

[74] Chihiro Tomita, Makoto Takita, Kazuhide Fukushima, Yuto Nakano, Yoshiaki
Shiraishi, and Masakatu Morii. 2022. Extracting the Secrets of OpenSSL with
RAMBleed. Sensors 22, 9 (2022). https://doi.org/10.3390/s22093586

[75] Chia-Che Tsai, Donald E. Porter, and Mona Vij. 2017. Graphene-SGX: A Practical
Library OS for Unmodi�ed Applications on SGX. In Proceedings of the 2017
USENIX Conference on Usenix Annual Technical Conference (USENIX ATC 17).
645–658.

[76] Jo Van Bulck, Marina Minkin, O�r Weisse, Daniel Genkin, Baris Kasikci, Frank
Piessens, Mark Silberstein, Thomas F Wenisch, Yuval Yarom, and Raoul Strackx.
2018. Foreshadow: Extracting the Keys to the Intel SGX Kingdom with Transient
Out-of-Order Execution. In 27th USENIX Security Symposium (USENIX Security
18). 991–1008.

[77] Arjan van de Ven. [n. d.]. New Security Enhancements in Red Hat Enterprise
Linux v.3, update 3. https://static.redhat.com/legacy/f/pdf/rhel/WHP0006US_
Execshield.pdf.

[78] Juan Wang, Jie Wang, Chengyang Fan, Fei Yan, Yueqiang Cheng, Yinqian Zhang,
Wenhui Zhang, Mengda Yang, and Hongxin Hu. 2023. SvTPM: SGX-Based Virtual
Trusted Platform Modules for Cloud Computing. IEEE Transactions on Cloud
Computing 11, 3 (2023), 2936–2953. https://doi.org/10.1109/TCC.2023.3243891

[79] Juan Wang, Feng Xiao, Jianwei Huang, Daochen Zha, Chengyang Fan, Wei Hu,
and Huanguo Zhang. 2018. A Security-Enhanced vTPM 2.0 for Cloud Computing.
In Information and Communications Security (ICICS 2017). 557–569.

[80] Stephen Weis. 2014. Protecting data in-use from �rmware and physical attacks.
Black Hat (2014).

[81] Richard Wilkins and Brian Richardson. 2013. UEFI secure boot in modern com-
puter security solutions. In UEFI forum. 1–10.

743

https://trustedcomputinggroup.org/wp-content/uploads/TCG_TPM2_r1p59_Part1_Architecture_pub.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG_TPM2_r1p59_Part1_Architecture_pub.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG_TPM2_r1p59_Part1_Architecture_pub.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG_TPM2_r1p59_Part1_Architecture_pub.pdf
https://doi.org/10.1145/3447786.3456243
https://doi.org/10.1145/3447786.3456243
https://doi.org/10.1109/MINES.2010.162
https://doi.org/10.1109/SP40000.2020.00020
https://doi.org/10.1109/SP46214.2022.9833768
https://www.amd.com/system/files/documents/amd-security-white-paper.pdf
https://www.amd.com/system/files/documents/amd-security-white-paper.pdf
https://www.usenix.org/conference/usenixsecurity21/presentation/li-mengyuan
https://www.usenix.org/conference/usenixsecurity21/presentation/li-mengyuan
https://doi.org/10.1145/1346256.1346278
https://www.platformsecuritysummit.com/2018/speaker/myers/STMPE2Intelv84a.pdf
https://www.platformsecuritysummit.com/2018/speaker/myers/STMPE2Intelv84a.pdf
https://doi.org/10.1109/CLOUD53861.2021.00013
https://doi.org/10.1109/SP.2010.32
https://doi.org/10.1145/3564625.3564648
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/raj
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/raj
https://doi.org/10.1007/978-3-8348-9452-6_4
https://doi.org/10.1145/1030083.1030124
https://doi.org/10.1109/SECURWARE.2008.23
https://doi.org/10.3390/s18113807
https://doi.org/10.3390/s22093586
https://static.redhat.com/legacy/f/pdf/rhel/WHP0006US_Execshield.pdf
https://static.redhat.com/legacy/f/pdf/rhel/WHP0006US_Execshield.pdf
https://doi.org/10.1109/TCC.2023.3243891

	Abstract
	1 Introduction
	2 Background and related work
	2.1 Trusted execution environments
	2.2 Integrity

	3 Threat model
	4 TPM virtualization with SVSM
	4.1 Isolation
	4.2 Communication between VM and vTPM
	4.3 vTPM state
	4.4 SVSM-vTPM provisioning
	4.5 Adding vTPM to the trust chain

	5 Implementation
	5.1 Software TCB
	5.2 Remote attestation with Keylime

	6 Evaluation
	6.1 Performance analysis
	6.2 Security Analysis
	6.3 Case Studies

	7 Discussion
	8 Conclusions
	Acknowledgments
	References

