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Abstract The Moon generated a long-lived core dynamo magnetic field, with intensities at least episodically
reaching ~10-100 pT during the period prior to ~3.56 Ga. While magnetic anomalies observed within impact
basins are likely attributable to the presence of impactor-added metal, other anomalies such as those associated
with lunar swirls are not as conclusively linked to exogenic materials. This has led to the hypothesis that some
anomalies may be related to magmatic features such as dikes, sills, and laccoliths. However, basalts returned from
the Apollo missions are magnetized too weakly to produce the required magnetization intensities (>0.5 A/m).
Here, we test the hypothesis that subsolidus reduction of ilmenite within or adjacent to slowly cooled mafic
intrusive bodies could locally enhance metallic FeNi contents within the lunar crust. We find that reduction
within hypabyssal dikes with high-Ti or low-Ti mare basalt compositions can produce sufficient FeNi grains to
carry the minimum >0.5 A/m magnetization intensity inferred for swirls, especially if ambient fields are >10 pT
or if fine-grained Fe-Ni metals in the pseudo-single domain grain size range are formed. Therefore, there exists a
possibility that certain magnetic anomalies exhibiting various shapes such as linear, swarms, and elliptical
patterns may be magmatic in origin. Our study highlights that the domain state of the magnetic carriers is an
under-appreciated factor in controlling a rock's magnetization intensity. The results of this study will help guide
interpretations of lunar crustal field data acquired by future rovers that will traverse lunar magnetic anomalies.

Plain Language Summary While the Moon does not have a magnetic field today, some parts of its
crust such as impact basins and bright and sinuous features called “lunar swirls” are still magnetized. Strongly
magnetized regions observed within impact basins could be related to iron-rich material derived from impactors.
However, other magnetized regions, such as those associated with lunar swirls, are not as conclusively linked to
externally added materials. It has been proposed that the strongly magnetic regions associated with lunar swirls
are related to lunar igneous intrusive rocks. Here, we experimentally test the hypothesis that the thermal
alteration of FeTiO5 grains to TiO, grains and metallic iron within or next to slowly cooled igneous intrusive
features while the Moon had a magnetic field, could explain the strong magnetic regions associated with lunar
swirl. We show that the lunar swirl minimum magnetization intensity can be reached from the thermal alteration
of ilmenite, especially if ambient fields are strong enough or if fine-grained Fe-Ni metals are formed. This study
will help interpret data acquired by future rovers traversing magnetic anomalies on the lunar surface.

1. Introduction

Paleomagnetic studies have suggested that the Moon may have generated a core dynamo magnetic field at least
intermittently between ~4.25 and ~1.5 Ga, with intensities reaching ~40-110 pT prior to ~3.56 Ga (Tikoo &
Evans, 2022; Weiss & Tikoo, 2014; Wieczorek et al., 2023). The absence of magnetization within young lunar
breccias suggests that the dynamo likely ceased between 1.92 and 0.80 Ga ago (Mighani et al., 2020). Whether the
dynamo operated continuously and exactly when the lunar dynamo ceased remain uncertain (Evans et al., 2018;
Tarduno et al., 2021). The dynamo history of the Moon is also evident from its remanent crustal magnetism
(Hood, 2011; Hood et al., 2021; Purucker et al., 2012; Wieczorek et al., 2023). Intense magnetic anomalies within
impact basins are likely caused by impactor-added metal within melt sheets (Oliveira et al., 2017), but anomalies
associated with lunar swirls such as the archetypal Reiner Gamma (Denevi et al., 2016; Hemingway & Garrick-
Bethell, 2012; Oliveira et al., 2024) and Airy albedo features (Blewett et al., 2011) are more difficult to un-
equivocally attribute to exogenic metal.

The bulk of remanent magnetization on the Moon is likely recorded within grains of metallic iron and iron-nickel
alloys within crustal and upper mantle rocks (Weiss & Tikoo, 2014; Wieczorek, 2018). Anomalies on the
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Table 1
Run Conditions and Hysteresis Analyses of Starting Materials and Experimental Run Products
Temp Duration Ilmenite M, M, B, B, Hysteresis
Exp °C) fO, (days) diameter (mm) (Amzlkg) (Amszg) M. /M (mT) (mT) B./B. Geik Ilm Hem mass (mg)
S.M. ~1-3 n/a 0.00 n/a 0.00 n/a n/a 48.65 48.77 2.58 34
H155 800 IW-1 16 ~1-3 343 %1072 1.65x 107> 4.81 x 1072 16.90 17400 1030 52.41 4579 1.80 14
H154 800  IW-1 4 ~1-3 320x 1072 250 x 107 7.80 X 1072 17.70  75.00  4.24 21
H158 800 w-2 4 ~1-3 1.94 524x 1072 270 x 1072 230 22.00 9.57  57.17 43.10 0.00 28
J137 800 IW-1 8 ~1-3 731x 107 823 x 107 1.13x 107" 1840 62.00 337 5095 49.44 0.00 32
J138 800 IW-1 2 ~1-3 550x 107 1.17 x 107 2.13x 107" 27.10 300.00  11.07 50.33 46.32 3.35 17
H171 800-500  IW- 6.2 ~1-3 (3), 8.13 6.50 x 107" 8.01 x 1072 4.10  10.00 244 7843 21.00 0.57 9
0.5 ~0.5 (10)
H174 1000~ IW-1 8.9 ~1-3 (3), 413 x 107" 120x 1072 2.90 x 107> 4.80 47.00 979 5115 4843 0.41 10
500 ~0.5 (15)
HI181_S 800-500 IW-1 6.2 0.86-0.47 478 x 107" 8.55x 107 1.79 x 107" 13.70  46.30 338  64.35 33.08 2.57 31
H181_M 800-500 IW-1 6.2 1.37-1.11 277 % 107" 491 x 107> 1.77x 107" 1630 53.20 3.26 31
HI181_L 800-500 IW-1 6.2 3.97-1.96 240 % 107" 450 % 107> 1.88x 107" 8.70 33.60 3.86 31
HI82_S 800-500 IW-1 6.2 1.09-0.52 1.41 133% 107" 943 %1072 6.00 14.80 247 62.11 3422 3.66 19
H182_M 800-500 IW-1 6.2 1.61-1.23 841 x 107" 815x 1072 9.69x 107> 530 27.00 5.09 6221 34.78 3.01 31
H182_L 800-500 IW-1 6.2 3.97-1.96 6.66 X 107" 6.08 x 1072 9.13x 107> 4.80 16.60 3.46 31

Note. S.M. stands for starting material. Experimental runs H171 and H174 were held at 800 and 1000°C respectively for 48 hr then cooled to 500°C by 3°C/hr;
experimental runs H181 and H182 were held at 800°C for 48 hr and then cooled by 3°C/hr to 500°C. Geikielite, ilmenite, and hematite compositions were approximated
because they were calculated from EPMA spot analyses. See Supporting Information S1 on how Geik, Ilm, and Hem compositions were calculated.

For the first batch of experiments, all experiments were conducted at 800°C and fO, = IW-1 with different time
duration (2, 4, 8, and 16 days). Ilmenite grain sizes for the first batch of experiments ranged between 1 and 3 mm.
For the second batch of cooling experiments, we used multiple cooling paths. One experiment involved heating
ilmenite at 800°C for 48 hr and then cooling it to 500°C at a rate of 3°C/hr (fO, = IW-0.5) (experimental run
H171), while a second experiment in this batch involved heating at 1000°C for 48 hr and then cooling to 500°C at
a rate of 3°C/hr (fO, = IW-1) (experimental run H174). The fO, sensor was removed before the temperature
dropped below 800°C for the cooling experiments to protect the fO, sensor. The fO, sensor was only rated for
below 1,200 mV and decreasing temperature would increase the absolute mV values to greater than 1,200 mV. In
the third batch of experiments ilmenite grain sizes were systematically varied. In addition to 1-3 mm ilmenite
chips, we also included 10-15 0.5 mm diameter ilmenite pieces in these two experiments. For the third batch of
experiments with different grain sizes of ilmenite (experimental runs H181 and H182), all experiments were
heated at 800°C for 48 hr and then cooled to 500°C at 3°C/hr (fO, = IW-1). The fO, sensor was removed before
the temperature dropped below 800°C during these experiments as well. Since the degree of subsolidus reduction
may depend on the exposed surface area to volume ratio of a given ilmenite grain, the starting materials for each
set of experiments were divided into small, medium, and large to study the relationship between starting materials'
grain sizes and magnetization properties. Experimental runs H181_S and H182_S involved ilmenite grain sizes
ranging between 0.5 and 1.0 mm in diameter. Ilmenite grain sizes in runs H181_M and H181_M were between 1.2
and 1.6 mm in diameter. Finally, starting materials grain sizes in runs H181_L and H181_L ranged between ~2.0
and 4.0 mm in diameter. Table 1 summarized the run conditions including the initial temperature, duration,
cooling rate, grain size, oxygen fugacity, and experimental temperatures for all experiments.

Rock magnetic experiments (magnetic hysteresis and backfield remanence) were performed on ilmenite starting
material as well as reduced products using a LakeShore 8600 Vibrating Sample Magnetometer (VSM) instrument
at the Institute for Rock Magnetism at the University of Minnesota. These experiments elucidate the grain size of
magnetic minerals and the magnetization carrying capacity of a sample. During a magnetic hysteresis experiment,
a sample was placed within a VSM in an initial zero field. The field (B) was increased to an intensity of +1 Tesla
(T) in the positive direction before being reduced in intensity and then applied in the reverse direction to the same
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Table 3

Metal Compositions (at.%) for Experiments That Formed >5 ym Metals

3.2. Reduction Isothermal Experiments (800°C) Time Series at

No. of analyses

H158 12
H171 5
H182_M 7
H182_L 1

Constant fO,

Fe* Ni* The reduced experiments run for different experimental durations had M,
97.99 201 values of 5.50 x 107> Am?/kg (experimental run J138 for 2-day), 2.50 x 10~>
50 a7 Am?/kg (experimental run H154 for 4-day), 8.23 x 10~ Am*/kg (experi-

mental run J137 for 8-day), and 1.65 X 10™> Am*/kg (experimental run H155
et g for 16-day). Following our initial IW-1 experiments, M, values increased
98.59 1.41 substantially from the zero value of the starting material, indicating that

Note. The FeNi metals were all close to the bee regime and not close to the  kamacite was likely the created phase rather than taenite (the latter is para-

fee regime. See Supporting Information S1 on how Fe and Ni compositions  magnetic at room temperature for <30% Ni). Within this batch of experi-
& iti 1 S . .

were calculated. “These compositions were approximated because they were ments, there was no obvious correlation between the M, values and the

calculated from EPMA spot analyses that overlapped with ilmenite.

experimental durations (Figure 3). We posit that the observed variations in
M, were most likely dominated by the nonuniform density of random internal
fractures inherent in the starting material that can differ between subsamples.

3.3. Reduction Experiments With Slow Cooling

To study the actual cooling process of ilmenite in the Moon's crust, we conducted two cooling experiments from
800 to 500°C at fO, = IW-0.5 (experimental run H171) and 1000-500°C at fO, = IW-1 (experimental run
H174). Despite the uncertainties on the fO, conditions (as this run was initially intended to take place at IW-1),
H171 had M, values at least 1 order of magnitude higher than the other isothermal experiments, and H174 had
M, values similar to the other isothermal experiments (Table 1). The origin of the high M, value of the
fO, = IW-0.5 experiment was unclear, but it may be possible that the starting material for this experimental run
included either smaller than average grain sizes or grains with a high degree of internal fracturing that could have
yielded higher surface area to volume ratios for reduction to occur. Therefore, we conducted more experiments
using the same temperature and oxygen fugacity conditions but with different ilmenite grain sizes to explore the
latter possibility.

3.4. Reduction Experiments With Varying Grain Sizes of Starting Materials

To study the effect of surface area on the extent of ilmenite reduction and metal creation, we conducted two sets of
cooling experiments from 800 to 500°C at fO, = IW-1 for three different ilmenite grain size ranges (experimental
runs H181 and H182). In general, we found that, within each experimental set, the M, values decreased with
increasing ilmenite grain size for both H181 and H182 (Figure 4).

We also compared the other two cooling experiments (experimental runs H171 and H174) and our most reducing
isothermal experiment ran at fO, = IW-2 (experimental run H158) with experimental runs H181 and H182
(Table 1) to study the interplay between cooling rate and ilmenite grain size effecting on the magnetization
properties of the reduction product. Experimental run H174 had the lowest M, values which might be attributable
to its high starting temperature at 1000°C that could have led to the production of larger, more multidomain (MD)
metal grains within the sample. Experimental run H171 had the highest M, values among all experiments. The
M., values for the small (H181_S and H182_S) and medium (H181_M and H182_M) ilmenite grain size ex-
periments were much higher than the experimental run H158's M, value, and the large ilmenite grain size
(H181_L and H182_L) experiments' M., values were comparable to H158's M, value (Table 1). Although the
oxygen fugacity of H158 was more reduced compared to experimental runs H171, H181, and H182, slow-cooled
experiments still showed higher M, values with smaller grain sizes and comparable M, values with similar grain
sizes. The reduction products, Fe and rutile, were larger and more visible in the BSE images of the slow-cooled
experiments too (Figures 1c and 1d).

4. Discussion
4.1. Ilmenite Subsolidus Reduction Creates FeNi Metal

Reduction of ilmenite to rutile and FeNi metals was observed in some Apollo samples. For reduction products in
Apollo crystalline rock samples, the metal phases consisted entirely of kamacite (El Goresy et al., 1972). There
were two steps in the proposed subsolidus reduction reaction: (a) ulvospinel reduced to ilmenite and metallic iron,
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High-Ti Basalts with PSD magnetic carrier
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Figure 5. Different scenarios of percentages of calculated M,, values that are over the minimum requirement for lunar swirls
(0.5 A/m) with magnetizing field ranging from 10 to 100 pT with a dike width = 100 m. Blue line: high-Ti basalts with
pseudo-single domain (PSD) magnetic carriers; blue dashed line: high-Ti basalts with multidomain magnetic carriers; black
line: low-Ti basalts with PSD magnetic carriers; black dashed line: low-Ti basalts with multidomain magnetic carriers.

cs B M
M, =——", 3)

a

where M was 1.715 x 10° A m™" (Dunlop & Ozdemir, 2015), and ¢ was the volumetric concentration of Fe
reduced from low-Ti and high-Ti mare basalts. The amounts of metallic Fe can be estimated by the reduction of
ilmenite from low-Ti and high-Ti basalts using mass balance and densities. B ranged from 10 to 100 uT because
~100 pT was the upper limit of lunar paleointensities that had been inferred from paleomagnetic studies of Apollo
samples. Constant a varied from ~2,810 pT for multidomain samples to ~3,770 puT for single-domain and
pseudo-domain samples (Weiss & Tikoo, 2014; Wieczorek et al., 2023). The squareness s was the ratio of the
saturation remanent magnetization (M,,) and saturation magnetization (M) of the experimental samples and mare
basalts. To understand the boundaries between domain states, we assumed M, /M, < 0.05 was MD; between 0.05
and 0.5 was PSD, and >0.5 was SD (see Figure 7 of Strauss et al. (2021)). M, /M values from our experiments are
listed in Table 1. We selected the experiments that were conducted under fO, = IW-1 and IW-2 and there were
EPM analyses on the metallic irons (Table 3). The mean M, /M, value from these experiments was 0.295 (PSD).
We found that FeNi grains formed during our subsolidus reduction experiments were on average smaller (PSD;
M /M, ~0.1) (Table 1) than those naturally occurring within mare basalts (multidomain; M, /M, ~0.001-0.01). A
typical M, /M, value for mare basalts was ~0.0064 (Fuller & Cisowski, 1987). This was of interest because PSD
grains can more efficiently record thermal remanent magnetization than multidomain grains for a given ambient
field intensity (Figure 5). We noted that in a natural setting, protracted cooling on timescales far exceeding the
durations of our laboratory experiments may result in the growth of MD grains rather than PSD grains. While it
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