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A B S T R A C T   

Background: Brain-computer interface (BCI) systems currently lack the required robustness for long-term daily 
use due to inter- and intra-subject performance variability. In this study, we propose a novel personalized scheme 
for a multimodal BCI system, primarily using functional near-infrared spectroscopy (fNIRS) and electroen
cephalography (EEG), to identify, predict, and compensate for factors affecting competence-related and inter
fering factors associated with performance. 
Method: 11 (out of 13 recruited) participants, including five participants with motor deficits, completed four 
sessions on average. During the training sessions, the subjects performed a short pre-screening phase, followed by 
three variations of a novel visou-mental (VM) protocol. Features extracted from the pre-screening phase were 
used to construct predictive platforms using stepwise multivariate linear regression (MLR) models. In the test 
sessions, we employed a task-correction phase where our predictive models were used to predict the ideal task 
variation to maximize performance, followed by an interference-correction phase. We then investigated the 
associations between predicted and actual performances and evaluated the outcome of correction strategies. 
Result: The predictive models resulted in respective adjusted R-squared values of 0.942, 0.724, and 0.939 for the 
first, second, and third variation of the task, respectively. The statistical analyses showed significant associations 
between the performances predicted by predictive models and the actual performances for the first two task 
variations, with rhos of 0.7289 (p-value = 0.011) and 0.6970 (p-value = 0.017), respectively. For 81.82 % of the 
subjects, the task/workload correction stage correctly determined which task variation provided the highest 
accuracy, with an average performance gain of 5.18 % when applying the correction strategies. 
Conclusion: Our proposed method can lead to an integrated multimodal predictive framework to compensate for 
BCI performance variability, particularly, for people with severe motor deficits.   

1. Introduction 

Despite significant progress in the development of brain-computer 
interface (BCI) systems, long-term use of BCIs for the purpose of 
providing people with severe motor impairments a means of commu
nication remains a challenge. Enthusiasm for BCI systems diminishes 
when the technology is translated from the laboratory to the patients’ 
bedsides [1]. In addition to inter-subject variability, day-to-day intra-
subject BCI performance variations have been reported, limiting the 
robustness and efficacy of these systems [2,3]. Furthermore, most 

current BCI systems fail to provide reliable performance for completely 
locked-in patients who have lost all voluntary muscle control, including 
oculomotor movements [4]. One major reason for this inefficacy is the 
variability of disease-related conditions and environmental factors 
across end-users. 

To meet long-term subjective demands in a real-world environment, 
BCI systems must be customized with respect to individual conditions 
and circumstances [2]. To achieve user satisfaction, all BCI users would 
need to be able to freely communicate and control their environments, 
regardless of the degree of their motor deficits and the progression of 
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their disease [5,6]. Given the variation in individual characteristics, 
there is current interest in subject-specific systems, where the machine 
learns individual characteristics and adjusts the processing pipeline to 
optimize the system for different persons or sessions accordingly [7]. 
These subject-dependent BCI systems are ultimately the most realistic 
solution for convenient long-term BCI use at patients’ bedsides [2,8]. 

2. Related work 

2.1. Variability factors 

To compensate for intra- and inter-subject variability, the first step is 
to identify the major causes of these variabilities. Two major types of 
confounds have been identified in the literature: Competence and 
interfering factors. 

2.1.1. Competence factors 
The first type of confound involves the subject’s competence factors, 

i.e. confounds affecting their ability to perform the tasks. These include 
cognitive, physiological, and neurological confounds associated with the 
subject’s abilities to perform a BCI task, including mental states and 
anatomical functions [9,10]. 15–30 % of users are reported to be unable 
to elicit task-specific responses robust enough to control a BCI [11]. 
Different users may also adopt various cognitive strategies to perform 
the same task, which can further lead to inter-subject performance 
variability [12]. Moreover, time-variant cognitive confounds such as 
fatigue, attention, and working memory load can result in inconsistent 
intra-subject BCI performance [13,14]. Thus, incorporating the mental 
state of a user [15,16] can serve as a valuable compensative component 
in BCI design to account for performance variabilities. In addition to 
direct brain-related factors, other physiological confounds have been 
reported to impact BCI users’ performance competence. For instance, 
impaired eye gaze control can negatively impact visual evoked 
potential-based BCI performance, including the widely used P300 
Speller, a communicative electroencephalography (EEG)-based BCI 
system [17]. Furthermore, vital signs, such as heart rate (HR), respira
tion rate, or blood oxygen saturation (SpO2), have been reported to be 
associated with BCI performance [18,19]. While some studies have re
ported individual competency confounds associated with BCI perfor
mance, there is a need to develop an integrative approach that combines 
several measures to construct a unified predictive framework to 
compensate for performance variability. 

Moreover, in practical, non-laboratory settings, BCI users are not 
exclusively focused on the instructed task. Instead, they may experience 
changes in mental workload. Background distractions can also occur in 
parallel with the main BCI task. As a result, the isolated laboratory 
settings common to P3Speller studies cannot practically be assumed [16, 
20]. In their study, Ke et al. (2015) introduced mental operations, such 
as the n-back task and mental arithmetic, alongside the conventional 
flashing task in P3Speller. This approach served as an interfering factor 
to simulate the (negative) impact of additional workload in a realistic 
environment [21]. Furthermore, in addition to the external non-task 
related workload affecting the BCI task, studies have reported varia
tions in task-related workload among BCI users. These studies have also 
investigated associated neuromarkers [16]. Variations in cognitive loads 
or mental overloads have been shown to impact BCI performance 
differently, either due to different cognitive capacities in subjects or 
different strategies used by participants to perform the tasks [22,23]. 
Different levels of task difficulty have also been reported to impact BCI 
performance [24,25]. However, despite previous exploratory in
vestigations into the impact of workload, few attempts have been made 
in the BCI field to compensate for workload-associated variations in BCI 
performance. 

Despite reports of parallel non-motor dysfunctions, little has been 
done to investigate how these cognitive declines can specifically impact 
the BCI performance of users with severe motor deficits. For example, 

verbal fluency and executive functioning impairments have been 
demonstrated in people with ALS [26,27], but their possible associations 
with BCI performance have not yet been investigated in this cohort. In 
one case, Perez et al. (2020) reported a significantly lower number of 
responses in two verbal fluency tasks in an ALS cohort compared to the 
control group [28], but this study did not involve a BCI component. 
Another ALS study using functional near-infrared spectroscopy (fNIRS) 
and diffusion tensor imaging (TDI) reported disease-specific associations 
with homotopic resting state functional connectivity [29], but did not 
investigate any possible impact on their BCI performance. On the other 
hand, Shahriari et al. (2019) showed that temporal and spectral EEG 
features were correlated with performance variability in a longitudinal 
assessment of P3 Speller performance in a cohort of ALS patients but did 
not investigate connections with possible cognitive impairments. 
Although we reported significant differences in non-motor electro
physiological and hemodynamic features between the ALS and neuro
typical groups during a visuo-mental BCI task in our previous works [17, 
30], the association with performance was not evaluated. 

2.1.2. Interfering factors 
The second confound involves interfering factors, which are con

founds affecting the quality of the acquired signal independent of the 
tasks [13,31,32]. Besides task-specific cognitive confounds, 
time-varying physiological interfering factors can also contribute to 
both inter- and intra-subject BCI performance variability. Interfering 
factors are subject-related physiological confounds that affect the 
quality of the recorded signals independently of the subject’s brain ac
tivity. For instance, in most common BCI systems that rely on EEG, 
physiological artifacts such as eye movements and facial muscle tension 
can decrease the signal-to-noise ratio (SNR) of the data and conse
quently diminish task-driven EEG neuromarkers [33,34]. For example, 
Florich et al. (2015) reported the adverse effects of muscle artifacts on 
imagery BCI performance [33]. Electro-oculogram (EOG)-related arti
facts have also been shown to impact P3 speller performance [35]. 
Similarly, in BCI systems relying on hemodynamic responses, including 
fNIRS, the acquired responses are often heavily contaminated by su
perficial physiological signals such as blood pressure, respiratory, and 
cardiac artifacts. This contamination occurs because the optical mea
surement path includes layers of highly vascularized skin, the skull, and 
hair [36,37]. These physiological interferences can be misinterpreted as 
task-driven neural responses, consequently increasing both false posi
tive and negative rates [38,39]. Therefore, considering physiological 
interferences is an important factor in a real-world BCI design, as it may 
compensate for the variability of performance variability across subjects 
and sessions. 

2.2. Current compensative solutions 

One early solution to compensate for performance variability was to 
conduct training sessions prior to the main tasks/sessions, aimed at 
improving the subject’s ability to perform the task [40]. However, the 
required training sessions and runs for each use of the BCI are tedious 
[41]. Additionally, repeating the same task may increase the risk of 
losing the response strength due to habituation effect [42]. Therefore, 
new BCI designs equipped with machine learning techniques were 
proposed to reduce the need for excessive training sessions, wherein a 
model is calibrated based on data collected at the beginning of each 
session [43,44]. For instance, transfer learning techniques have been 
proposed to leverage very few training samples from the target group 
[45,46] before proceeding to the actual experiment [47,48]. Blankertz 
et al. (2001) reported that resting-state alpha activity can be associated 
with performance in subsequent motor imagery (MI)-based BCI tasks. 
Similarly, Sannelli et al. (2019) found that resting-state EEG markers can 
be used to categorize sensorimotor rhythm (SMR)-based BCI users, 
enabling them to adapt to a better subject-dependent training strategy 
[49]. Subsequently, the constructed inter-subject performance 
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predictors, sometimes referred to as inter-subject associativity [41], 
could be incorporated into BCI design [45,50] to enhance BCI system 
efficacy [51,52]. Although markers extracted from calibration re
cordings at the beginning of a session have been shown to be associated 
with performance in subsequent BCI tasks within the same session, an 
integrative experimental scheme that uses those individual markers 
acquired prior to the main BCI tasks in a predictive framework to 
compensate for the upcoming BCI performance variability has rarely 
been introduced. 

On the other hand, automated removal of interfering factors has also 
been investigated to improve BCI performance. Thompson et al. (2019) 
tried ten different automated EOG removal methods to compensate for 
P3 speller performance, though the tested methods in fact all reduced 
performance [35]. Integrated EEG + EOG designs have also been pro
posed to compensate for occular artifacts in BCI systems [53,54]. 
Similarly, other types of hybrid BCI designs [55], such as electromyog
raphy (EMG) + EEG [56] or EEG + fNIRS [17,57] have been introduced 
to integrate the compensative nature of different recording modalities to 
improve performance. While the combination of different pairs of mo
dalities has shown benefits in the BCI system, little work has been done 
to investigate the advantages of multimodal designs in which more than 
two modalities are integrated. Further, lacking the consideration of 
subject- and session-specific variabilities in performing BCI tasks makes 
these designs less robust for long-term daily use. 

Here, we have proposed a customizable multimodal BCI design to 
address performance variability in both neurotypical BCI users and 
people with severe motor deficits. Our goal in this study is to design and 
validate an integrative subject-dependent closed-loop predictive scheme 
that identifies markers affecting subjects’ performance, predicts possible 
variabilities in upcoming sessions, and subsequently employs correction 
strategies to compensate for the identified sources of variability, i.e. 
competence and interfering factors. Accordingly, we propose a novel 
experimental scheme in which a quick pre-test screen (pre-screen) is 
conducted before the main BCI protocol to construct a predictive plat
form that enhances the robustness of BCI systems. This is achieved by 
exploring the associations of BCI performance variation with the 
markers extracted from the pre-screen. To reduce variability in the main 
BCI task performance, we have provided new variations of a single trial 
fNIRS-EEG BCI paradigm by extending a novel visuo-mental (VM) pro
tocol previously shown to be effective in facilitating communication in 
people with severe motor deficits [17,30]. Adopting such a paradigm 
offers several advantages, including: a) providing a feasible BCI 
communication platform where conventional BCIs fail, specifically for 
patients without fine eye-gaze control; b) identifying potential cognitive 
issues in people with motor deficits due to the dual-task nature of the 
paradigm; c) better simulating the interfering non-task related work
loads which makes the setting more reflective of patients’ daily needs; 
and d) providing the flexibility to adjust the task-related workload using 
different variations of the VM task. These steps enables the predictive 
platform to adapt to intra- and inter-subject variations in task perfor
mance capacity by augmenting the visuo-spatial P3Speller task with a 
controllable mental arithmetic component. 

Our proposed predictive platform employs two correction strategies. 
First, a task correction strategy is employed, wherein the best task 
variation with the highest performance for a specific subject and session 
is selected. This selection relies on the features extracted from the pre- 
screen. Then, the platform employs a subject-dependent interference 
correction strategy to compensate for the impact of physiological 
interference. Unlike most BCI studies, which conduct preprocessing for 
correction of interfering confounds without considering the subjects’ 
status or the type of BCI tasks, the correction strategies used here are 
applied with respect to the task-specific and subject-dependent terms 
appearing in the corresponding predictive models. The outcomes of the 
proposed experimental scheme from this study can advance the under
standing of intra- and inter-subjective BCI performance variabilities and 
provide personalized correction strategies necessary for developing 

long-term personalized BCI systems. These systems would rely on 
embedded adaptive correction strategies tailored to each user’s status. 

3. Subjects, materials, and methods 

3.1. Participants 

13 participants (5 female) were recruited for this study, with an 
average age of 57.85 ± 6.00 years old. The participant group consisted 
of six diagnosed with amyotrophic lateral sclerosis (ALS) (age: 57.71 ±
6.80 years old, 2 female) and seven healthy (H) subjects with no known 
motor deficit (age: 58.5 ± 5.55, 3 females). All participants acknowl
edged no history of non-motor deficits including visual, mental, or 
substance-related disorders, that would otherwise impact their ability to 
perform the experimental tasks. Demographic and clinical information, 
including age, sex, disease duration, disability score, medication, and 
education level, is listed in Table 1. All participants except for one 
healthy subject (H04) had at least some post-secondary education. The 
Revised ALS Functional Rating Scale (ALSFRS-R) scores, a validated 
screen for the dysfunctional progression of the ALS disease, averaged 
26.17 ± 15.36 (min 0, and max 42) on a 48-point scale. The highest 
score [48] reflects normal function in activities of daily living (ADL), 
and the lowest score (0) represents a complete loss of function [58]. 
Patient disease durations were 6.3 ± 3.4 years on average. One patient 
(ALS-05) had both gastrostomies and tracheostomies. One of the healthy 
(H-07) and one of the ALS (ALS-06) participants withdrew from the 
study after finishing their familiarization session. Others completed on 
average 4.0 ± 0.8 sessions of recording, including at least one famil
iarization and one test session. All procedures were in accordance with 
the study protocol approved by the Institutional Review Board (IRB) of 
the University of Rhode Island (URI). All participants provided informed 
consent or assent prior to the experiment and were financially 
compensated. All participants in the ALS group were tested in either 
their homes or care centers, while the healthy cohort participated in the 
experiments at the NeuralPC lab at URI. 

To construct our predictive models, we integrated the training data 
of all subjects without considering the motor deficits in our participants. 
The rationale behind this approach was to avoid imposing any a priori 
disease-related hypothesis about the impact of motor deficits on build
ing our predictive models. Instead, we allowed the model itself to reveal 
disease-related confounds that could potentially reflect the possible 
impact of motor deficit on the performance variability. In other words, if 
there are any neurophysiological and cognitive differences between the 
two groups, these differences should be reflected in the features we 
extract and use in the model. The ideal predictive models should 
incorporate all the important features and mirror these differences. Our 
ideal model should provide predictive power for both groups. 

3.2. The proposed experimental scheme overview 

Fig. 1 illustrates the proposed experimental scheme, which centers 
around conducting a pre-screen recording prior to the main BCI task 
based. This pre-screen recording enables us to predict performance 
(variability) in the upcoming BCI run and, based on the prediction, 
implement appropriate performance correction strategies. Each subject 
participated in 4 (3–5) sessions of recording on average, including at 
least one familiarization session, two training sessions (except for 
ALS01), and one test session. For BCI tasks, our design focused on our 
proposed VM paradigm, which has been previously demonstrated as a 
feasible and effective paradigm for communication purposes, especially 
for people with severe motor deficits [17]. To achieve this, we designed 
three different variations of the VM task, aiming to address individual 
differences in task performance and to account for potential 
session-to-session cognitive variations that might impact the partici
pants’ competence in BCI task performance. As a result, we constructed 
three predictive models, each based on the features extracted from the 
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pre-screen runs in the training sessions. These models provided three 
different performance predictions for each of the three VM task varia
tions. In the test session, we adopted two phases of correction. First, we 
applied task correction, and subsequently interference correction 
(correction related to physiological interfering factors), as explained in 
the following sections with more comprehensive details. 

3.2.1. Training sessions 
As illustrated in Fig. 1 (Top), each training session consisted of two 

sections: a pre-screen and the main BCI tasks, as explained below. 

3.2.1.1. Pre-screening phase. Integrating our previous works [30,59, 
60], with other similar BCI studies [10,19,48], we incorporated three 
steps in our pre-screening phase: a cognitive questionnaire, a 
resting-state recording, and a standard P3Speller recording. The com
ponents of the pre-screen are as follows: 1) Cognitive questionnaire: To 
assess the internal cognitive status of the end-user, the first step is to 
identify the appropriate cognitive screens reported to be associated with 
cognitive impairments, particularly for people with motor deficits. For 
the cognitive screens, we adopted the Cognitive Behavioral Screening 
(CBS) test, a shorter cognitive battery developed specifically for ALS 
patients as one of the end-users for our proposed experimental scheme. 
The CBS was conducted at the beginning of each run to assess attention, 
concentration, tracking/monitoring, and linguistic initiation and 
retrieval (fluency test). In instances where our participants were unable 
to answer the CBS questions orally, they used their own eye-tracking 
systems to answer the questions. 2) Resting-state: All subjects were 
instructed to focus on a dot on the screen while in a relaxed state. In each 
run, 5 min of resting state fNIRS-EEG data were acquired, which pro
vided a sufficient recording duration to obtain robust functional con
nectivity in resting-state brain networks [61]. 3) P3Speller: All subjects 
performed the standard P3Speller paradigm, where a 6 × 6 matrix of 
letters was used, and each row/column was randomly intensified with a 
picture of a celebrity face superimposed over the letters for 93.75 ms, 
followed by a 62.5 ms inter-stimulus-interval (ISI). An eye tracking 
device (TOBII) was used to monitor participants’ eye gaze during the 
pre-screen P3Speller task. 

3.2.1.2. Visuo-mental (VM) task variations. Extending our previous 
works, where we demonstrated the feasibility and effectiveness of using 
our proposed visuo-mental (VM) paradigm for communicative BCI 
communication, especially for people with severe motor deficits [17], 
we developed three variations of our previously introduced VM para
digm to include varying levels of mental task workload as follows (see 
Fig. 2 (B)): 1) VM task variation 1 (VM-v1): This variation extended the 
conventional oddball P3Speller paradigm, by displaying a 2 × 2 matrix 
of digits (1–9) over the intensified letter. Each subject was instructed to 
focus on a target character, resulting in 14 targets per run. Upon each 
target intensification, subjects were instructed to perform predefined 
mental arithmetic tasks. Specifically, they were asked to add pairs of 
numbers in the matrix either diagonally (at the first target flash) or 

vertically (at the second target flash), and then double the larger result. 
The stimulation intensification time was set to 300 ms, and each 
intensification was followed by a 5-s inter-stimulus interval (ISI). 2) VM 
task variation 2 (VM-v2): At each target intensification, instead of dis
playing a 2 × 2 matrix, a 2-digit number within the range of 11–29 
appeared over the letters. Subjects were required to start with a given 
3-digit number and continuously subtract the numbers that appeared 
over the specified target. They subtracted the number presented as the 
current target intensification from the result of the previous target 
intensification. 3) VM task variation 3 (VM-v3): At each target intensi
fication, the subject observed a 2 × 2 matrix containing four single-digit 
numbers. After the first flash, the task was to add up the upper row, 
compare the sum with the number seven, and multiply the larger value 
by two. After the second flash, the subjects were instructed to add up the 
lower row, compare it with the number seven, and multiply the larger 
value by two. To avoid order effects, we counterbalanced the order of 
the task variations within each session. 

3.2.2. Test session 
Fig. 1 (Bottom) illustrates the experimental flow in the test sessions. 

In the test session, the pre-screen was conducted following the same 
procedure as previously described. Then, the predictive model was fed 
features extracted from the pre-screen to predict which variation of the 
task would yield the highest performance for each specific subject. Based 
on this prediction, we selected the optimum VM task variation (VM- 
Vmax) for the test session of each subject. Afterward, the subject per
formed the chosen VM task variation, and the customized correction 
strategies were applied based on the interfering terms that appeared in 
the predictive model of the selected variation. For instance, if a blink 
related feature appeared in the predictive model for a task variation, we 
applied blink correction to the corresponding data. 

3.3. Data acquisition 

EEG data were recorded simultaneously using a g.USBamp amplifier 
(g.tec Medical Tech.) and digitized at 256 Hz. fNIRS data were recorded 
using a NIRScout (NIRx Inc.) with two NIR lights (760 nm and 850 nm 
wavelengths) and digitized at 7.81 Hz. Fig. 2 (A) shows a schematic head 
model of the fNIRS-EEG sensors’ placement. As depicted in this figure, 
eight emitters and seven (long-channel) detectors acquired 14 fNIRS 
channels covering the pre/frontal region and two channels on tempo- 
parietal areas to capture higher cognitive functions associated with 
mathematical operation paradigms. To cancel hemodynamic-related 
systemic noise, we used an 8x short-channel detector measurement 
bundle with each detector mounted around each emitter, all connected 
to a single detector attached to the back of the cap. The distances be
tween source and detector were 30 and 7.5 mm for long-distance (LD) 
and short-distance (SD) channels, respectively. Following the Modified 
Combinatorial Nomenclature (MCN) montage, emitters were placed at 
Fz, F3, F4, AF3, AF4, Fp1, Fp2, CP5, and CP6 and detectors at F1, F2, 
AFz, Fp1, Fp2, P5, and P6. EEG was recorded from 16 channels: Fz*, F5*, 

Table 1 
Participant’s demographic information.   

ALSFRS-R Duration (years) Age (years) Gender Post- Secondary Education Medication #Sessions 

H01 N/A 0 44 M Y N 4 
H02 N/A 0 60 M Y N 4 
H03 N/A 0 62 F Y N 4 
H04 N/A 0 57 M N N 4 
H05 N/A 0 64 F Y N 4 
H06 N/A 0 55 M Y N 4 
ALS01 42 4 56 F Y Y 3 
ALS02 32 12 58 M Y Y 4 
ALS03 29 4 69 M Y N 4 
ALS04 37 4 54 M Y Y 5 
ALS05 0 5 56 F Y N 5  
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F6*, Fp1*, Fp2*, Cz, P3, Pz, P4, T7, T8, P7, P8, PO7, PO8, and Oz to 
include all commonly used channels in conventional P300 paradigms as 
well as pre/frontal and temporal channels to capture possible responses 
to mental aspects of the VM tasks (star (*) denotes the nearest electrode 
placement to fNIRS occupied channels according to the 128-channel 
montage). Extending our previous works [17,30], this montage was 
intended to capture both aspects of the visuo-mental task variation as 
well as resting-state activity and activity related to the P3S in the 
pre-screen. All experimental protocols, data acquisition, and stimulus 
presentation labels were controlled using BCI2000 and NIRStar 
software. 

Additionally, simultaneous to neuroimaging modality recordings (i. 

e. EEG and fNIRS), we measured multiple vital and potential interfering 
signals as shown in Fig. 2 (B). For this purpose, HR and SpO2 were 
recorded using a g.SpO2sensor (g.tec Medical Tech.) with pulse fre
quency 0–300 bpm attached to g.USBamp. For respiration rate, we used 
the Respiration Effort Sensor (g.tec Medical Tech.) attached to a chest- 
belt to measure changes of the circumference of the torso related to 
breathing activity. Furthermore, to capture physiological interfering 
factors contaminating EEG signal, we recorded four facial electromyo
gram (EMG) channels and one electro-oculogram (EOG) channel 
simultaneous to EEG and fNIRS signals using the g.USBamp amplifier 
and digitized at 256 Hz. In the P3S run, to assess the level of eye-gaze 
control in the subjects, we bundled the Tobii Pro Nano eye-tracking 

Fig. 1. The Proposed Experimental Scheme. The top part demonstrates the task flow in the training sessions. Firstly, a pre-screening phase consisting of cognitive- 
behavioral screening (CBS), a resting run, and P3Speller is conducted prior to the main BCI tasks. Next, three variations of the VM task are performed, and a 
predictive model is constructed for each of the variations based on features extracted from the pre-screening phase along with the performances of each variation. 
The bottom part demonstrates the experimental flow for the test session. The features extracted from the pre-screening phase are fed to the previously constructed 
predictive models to provide the prediction for performances (P1, 2, and 3). The task variation with the highest predicted performance, i.e. VM-Vmax, is then selected 
to be run (task correction). Subsequently, an appropriate interference correction strategy is applied concerning the terms appearing in the predictive model for the 
selected variation (PR-Vmax). 
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device with our EEG recording system through BCI2000. In this run, due 
to the interference between fNIRS emitters and the eye-tracking system, 
we did not record any hemodynamic data along with EEG. 

3.4. Data analysis 

3.4.1. Pre-screening feature extraction 
The pre-screen features were extracted in two phases: competency 

features (36 in total) and interfering features (16 in total), as described 
below. 

3.4.1.1. Competency features. Cognitive and Behavioral Screen 
(CBS): Individual scores in each category, including 1) Attention, 2) 
Concentration, 3) Tracking/monitoring, and 4) Fluency, i.e.linguistic 
initiation and retrieval (fluency test), and 5) Sum of these individual 
scores, resulting in a total of 5 features for each session/subject. 

Resting-State: Replicating our previous work [59], 30 s of the 5-min 
segments were cut from the beginning and end of data to avoid any 
potential non-relaxing state of the subject in the beginning and the 
boredom in the end, resulting in 4-min of data. Eye-blinks in the frontal 
EEG channels were, first, extracted using cues of EOG signal peaks, using 
MATLAB’s findpeaks function, with prominence over 80% and within 
the range of its width, and then interpolated. Similar to another study 
[62], the prominence threshold was selected to guarantee that only 
peaks with high prominence could be selected, as eye-blinks are typi
cally the strongest artifacts on frontal EEG channels. Then, EEG power 
spectra were extracted from the Delta (1–3 Hz), Theta (4–7 Hz), Alpha 
(8–12 Hz), and Beta (13–30 Hz) frequency bands using a set of 30 
complex Morlet wavelets ranging from 1 to 30 Hz with 3–10 cycles and a 
1 s time-window were used for time-frequency decomposition. To 
reduce feature space dimensionality, spectral power in each band was 
averaged over four regions of interest (ROIs): Frontal (F), including Fz, 
F5 and F6, Centro-Parietal (CP), including Cz, P3, Pz, and P4, 
Temporo-Parietal (TP), including T7, T8, P7, and P8, and Occipital (O), 
including PO7, PO8, and Oz. In total, we extracted 16 EEG features (4 
(power-band) * 4 (ROI)) denoted as band-ROI (e.g., Alpha-F referring to 
frontal Alpha) for each session/subject. 

To extract fNIRS features, the nirs-toolbox was used to deploy an 
autoregressive integrative (ARI) algorithm to remove statistical outliers, 
including both spike and shift variations of motion artifacts in fNIRS 
data [63]. Oxygenated hemoglobin (HbO2) and deoxygenated hemo
globin (HbR) concentration changes were extracted from raw optical 
intensity data using the modified Beer–Lambert law [64,65]. Then, we 
applied short-separation filtering to the hemodynamic responses [66] 
through nirs-toolbox. SD channel data were projected out of the LD 

channels to bolster the brain signals [37,63]. Then, the outcome was 
bandpass-filtered using a 0.01–0.09 Hz passband commonly used in 
resting-state fNIRS studies [59,67] to remove higher frequency physio
logical artifacts, including respiratory artifacts (0.2–0.3 Hz) [68], car
diac signals (0.8–1.3 Hz), and mayer waves (~0.1 Hz). In contrast to 
EEG, spectral analysis of fNIRS data has been shown to reflect little 
non-motor functional dynamics of the brain [59]. Thus, in this study, we 
adopted correlation-based connectivity analysis relying on time samples 
for our fNIRS data. To reduce dimensionality, we first averaged the 
hemodynamic responses across channels in four ROIs: left frontal (LF), 
right frontal (RF), left temporal (LT), and right temporal (RT), and then 
calculated Pearson’s correlation coefficient for all pairs of ROIs, 
constituting five pair connectivity features (i.e., RF-LF, RF-RT, RF-LT, 
LF-RT, LF-LT). We did not include inter-temporal connectivity (RT-LT) 
in our connectivity feature lists, as it was rarely reported to be cogni
tively interesting, particularly in people with motor deficits. Given that 
the HbO2 signal has been shown to better characterize resting-state 
blood flow dynamics than the HbR signal, and that significant connec
tivity results in similar studies are primarily HbO2-based [69,70] we 
focused on HbO2 features. Additionally, the mean of (resting) HR, SpO2, 
and respiration rate were extracted from the data recorded during the 
resting-state task. 

P3Speller: Replicating our previous work [60], features related to 
performance were extracted from EEG data. To calculate the perfor
mances, stepwise linear discriminant analysis (SWLDA) classifiers were 
used to derive features related to P3Speller performance. Through for
ward and backward stepwise regression using the fitdiscr and stepwisefit 
functions in MATLAB, the best predictors (p < 0.1) were selected and the 
least significant predictors (p > 0.15) were removed. This procedure was 
repeated for up to 60 steps, or until no additional terms satisfied the 
entry/removal criteria [71]. However, compared to neurotypical users, 
people with motor deficits, particularly those with ALS, are known to 
exhibit trial-by-trial latency variability in their P300 responses, 
commonly referred to as latency jitter [60,72]. Accordingly, we included 
jitter in our P3Speller feature list as it has been reported to be negatively 
correlated with BCI Performance [72,73]. To extract jitter-related fea
tures, we adopted the approach proposed by Thompson and colleagues 
[73] known as classifier-based latency estimation (CBLE). In CBLE, a 
classifier is trained as usual, and then time-shifted epochs are fed to this 
classifier. For instance, if the 0–800 ms post-stimulus epoch is used for 
classification, then time-shifted epochs from the − 100 ms–700 ms epoch 
through the 100 ms–900 ms epoch could be classified. Then, for each 
target flash, the time shift corresponding to the highest classifier score 
(the probability that the flash was a target flash) is extracted as the la
tency shift for that particular flash. This approach allows us to estimate 

Fig. 2. (A) Schematic head model showing placements of 16 EEG, four EMG, and one EOG electrodes, as well as fNIRS optodes, including eight sources, eight long- 
distance (LD), and eight short-distance (SD) detectors. One of the long-distance detectors was placed on the back of the head to collect all short-distance channel data, 
here, labelled as short-distance collector (SDC). (B) The visuo-mental (VM) task with 300 ms intensification time and 5-s inter-stimulus interval (ISI) with three 
variations, VM-v1, VM-v2, and VM-v3. 
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the latency jitter for each target flash during the P3Speller task. The 
variance of these latency shifts within a session, denoted as vCBLE, 
reliably measures latency jitter [73]. In sum, the following features were 
extracted from P3Speller runs: 1) vCBLET: A measure of latency jitter 
using the variance of latency shifts for target epochs calculated with 
CBLE; 2) QDJitter: Another measure of latency jitter calculated as the 
difference between third and first quartile (Q3 and Q1) of latency shifts 
for target epochs using CBLE; 3) P3S-Acc: Stimulation (target) accuracy 
(representing correctly classified epochs); 4) Default Precision: Flash/
target precision (the number of correctly classified targets divided by the 
number of all returned results); and 5) 1stFlash-Acc: The character se
lection accuracy using the first trial epochs (both row and column 
flashes) per character. To assess subjects’ gaze-control, along with 
P3Speller, we used an eye-tracking system and accordingly extracted 
two features: 1) Eye-Acc: The accuracy of target selection based on the 
eye-gaze data, and 2) Eye-msd: The mean of standard deviation of 
eye-gaze data during each character’s intensifications. 

3.4.1.2. Interfering factors. EEG Interfering Factors: As mentioned 
before, we recorded two types of cue signals to identify the EEG inter
fering factors using EOG and EMG. For EMG, we selected the resting- 
state runs to extract the relevant interfering features to target non- 
task-related facial muscle tensions. In contrast, for EOG, we wanted to 
extract variables to quantify the representative blinking behavior of the 
subject during the VM task. Eye blink metrics from the resting state data 
were considered non-representative of behavior during the VM task 
since subjects were instructed to stare at a point in the former task, 
which would reduce the number of the blinks. Two features were 
extracted from the EOG signal recorded during P3 Speller task, including 
the total number of blinks (#blinks), and the mean (excessive) blink 
artifact peak amplitude. For EMG, first, the EMG signal recorded during 
the resting-state task was segmented into two bandpassed frequency 
ranges of low frequency (EMG-LF, ≤ 20 Hz) and high frequency (EMG- 
HF, 20 < f < 100 Hz). Then, simple square integral (SSI) [74] and 
variance of the entire time course of both EMG-LF and EMG-HF were 
extracted as EMG features. 

fNIRS Interfering Factors: Two major cues to represent fNIRS 
interfering factors were extracted from the resting-state signal 
(segmented into a 4-min window as mentioned in the resting-state 
feature extraction section): 1) Peak-to-peak (LD-p2p): the sum of the 
difference between the maximum and minimum of the HbO2 signal in 
all LD channels, and 2) Mean of the short-separation (SS) contribution 
coefficients: Two methods were used to calculate the SS contribution to 
the hemodynamic responses in the LD channels, considering both HbO2 
and HbR, as both are important in the SS context. In the first method, the 
contribution was calculated through regression as below: 

∝i =< SDi.LDi >< SDi.SDi > (1)  

where <.> operator is the dot product, ∝i is a temporal correlation 
factor between each (LD) channel i and associated SD, LDi is the he
modynamic response of the long-distance channel (i), and SDi is the 
short-distance (SD) channel attributed to the emitter of corresponding 
LD channel (i) [39]. We calculated the mean of ∝i over all LD channels 
for both HbO2 and HBR signals. In the second method, we used a 
combination of principal component analysis (PCA) and general linear 
model (GLM) regression analysis to extract the contribution coefficients 
[75]. First, up to two of the first principal components (PCs) of the SD 
channels were fed to GLM regression. The component selection was 
based on the elbow criterion. In cases where a short channel was not 
useable due to poor connection in the calibration phase, the SD signal 
was replaced with the average of other SD channels. For constructing the 
GLM model we used the regress function in MATLAB: 

LDi =X ∗ βi + ε (2)  

where βi is the contribution of short-channel PCs in the LDi channels 

data, X is the matrix of two short-distance PCs with a constant column 1 
for the intercept term, and ε is the residual error of the regression. We 
calculated the mean of βi s over all LD channels for both HbO2 and HbR 
signals. 

3.4.2. Performance calculations 
For each VM task variation, we calculated the performance similar to 

the method used in our previous work [17] with several extensions. 
First, we focused on hybrid (fNIRS-EEG) linear discriminant analysis 
(LDA) classification by first extracting seven EEG and 17 fNIRS features, 
as described in our previous work [17], from each target and non-target 
epoch for each channel. To balance the number of features from both 
modalities, we selected the optimum five EEG and two fNIRS channels to 
retain 35 (=7*5) EEG and 34 (=17*2) fNIRS features. For EEG, the 
optimum channels were selected using Pearson correlation between 
target/non-target epochs and the class labels. For fNIRS channel opti
mization, we used the GLM-statistical parametric mapping (SPM) 
method as explained in our previous work for each fold [17]. We per
formed 3-fold cross-validation for classification, since we required the 
continuous signal to apply the GLM regression method–with seven total 
characters to-be-spelled. Using a 70 % ratio for the training set (five 
characters in each fold for training and the remaining for the test), only 
three training sets could be constituted: the first, middle, and last five 
characters. For each training fold, we repeated the GLM-SPM process 
and extracted fold-specific optimum channels. Then, the EEG and fNIRS 
features were concatenated and 50 % of the highest correlated features 
(Pearson correlation) were selected as optimum features. To build up a 
fair comparison between the task variation performances and also to 
exclude lower than chance level results, we picked the highest accu
racies with the corresponding maximum area under the curve (AUC) 
value as the task’s performance metric to be used further in constructing 
the proposed predictive model. 

3.4.3. Predictive model 
As illustrated in Fig. 1 (Top), after extracting the pre-screen features 

and performances in all training sessions, we constructed the predictive 
model for each task variation resulting in a total of three predictive 
models for each of the three VM task variations. The predictive model of 
each task variation (VM-v1,2, and 3) was constructed based on the 
training sessions of all subjects in two stages, including the predictive 
model (PR) built based on both competency and interfering features, 
hereinafter known as PR-CI. The predictive model relating the pre- 
screen features to each task variation performance was constructed 
through the following multivariate linear regression (MLR) model: 

Pi = βi0 + βi1 ∗ X + ε (3)  

where Pi is the performance ith VM task variation, βi0 is the intercept 
term, βi1 is the regression coefficient for task variation i, ε is the residual 
error, and X is the matrix containing the pre-screen features, including 
competence and the interfering factors. We used stepwise MLR algo
rithm through the stepwiselm function in MATLAB. Stepwise multivar
iate regression uses a systematic method to add and remove terms from a 
linear model based on their statistical significance in explaining the 
response variable (Fig. 3). It starts with a constant (intercept-only) 
model and then automatically adds to or trims the model with respect to 
a criterion, which we set to be the p-value (<0.05 for inclusion and >0.1 
for exclusion) for the F-test of the change in the sum of squared error 
(SSE) that results from adding or removing a term. Terms from the set of 
variable terms not in the model with the smallest p-value are added 
iteratively subject to an entrance tolerance p-value threshold. Similarly, 
if any of the available terms in the model have p-values greater than an 
exit tolerance, they will be removed with the largest p-value and return 
to the above step. We did not consider any limit for the number of steps. 
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3.4.4. Correction strategies 
With respect to the two major sources affecting BCI performance, i.e. 

competence and interference, two correction strategies were taken 
accordingly: task/workload correction and interference correction. 

3.4.4.1. Task correction. As explained before and illustrated in Fig. 1 
(Bottom), the variations in the task have been designed to compensate 
for variabilities in the cognitive- and neural-related confounds affecting 
the competence of the subjects to perform a certain BCI task. Therefore, 
to predict which variation of the VM task leads to the highest perfor
mance for a specific subject in a specific test session, we used the three 
models previously trained with features collected from the pre-screen to 
predict task performance. The variation with the highest predicted 
performance was selected as the optimum task variation for a specific 
subject for that specific subject’s test session. 

3.4.4.2. Interference correction. To compensate for the impact of phys
iological interfering factors, we applied different correction methods to 
the signal acquired during the selected task variation, i.e. the outcome of 
the task correction phase. The strategies listed below were adopted 
based on the presence of the relevant terms in the predictive model 
corresponding to the selected optimum task variation. For example, if 
the predicted model of the selected task variation included QDJitter 
appeared in its model terms, latency jitter would be identified as an 
important factor affecting performance. Consequently, a jitter correc
tion strategy was applied to the corresponding data in this specific 
instance. 

Correction for EEG Interfering Factors: Jitter Correction: to 
compensate for jitter or variance of event-related potential (ERP) la
tencies, we extended the window range for extraction of EEG-ERP fea
tures by adding the QDJitter value to both ends of the corresponding 
ERP window. First, we extracted QDJitter from the P3Speller run during 
the pre-screening phase, by computing the difference between the third 
and first quartiles (Q3 and Q1) of latency shifts. These latency shifts 
were calculated for target epochs using CBLE [73], as explained in more 
detail in the pre-screening feature extraction section (Section 3.4.1). 
Then, we extended the time windows used to extract ERPs by the 
QDJitter value at both ends for the performance calculation of the pri
mary BCI tasks. Consistent with our previous works [17,30], we initially 
employed the following time window: 250–400 ms post-stimulus for 
calculating the P300 component, 350 and 560 ms post-stimulus for the 

N400, and 650–800 ms post-stimulus for the P600 component. Thus, if a 
participant QDJitter value were 20 ms, then the time windows would be 
extended to 230–420 ms post-stimulus for the P300, 330–580 ms 
post-stimulus for the N400, and 630 to 820 post-stimulus for the P600. 

Blink and EMG Removal: We used Independent Component Anal
ysis (ICA) for blink and EMG removal using EEGLAB fastica algorithm. 
The components with the highest correlation with the EOG and EMG 
signals were removed and the denoised EEG was reconstructed based on 
the remaining components. An example of an EEG signal, before and 
after blink removal, is illustrated in the supplementary material 
(Fig. S5). 

Correction for fNIRS Interfering Factors: Similar to what was 
explained in the resting-state analysis section (Section 5.3.1.1), we 
applied short-separation filtering to the hemodynamic responses using 
the ShortDistanceFilter function in nirs_toolbox. SD channel data were 
projected out of the LD channels to bolster the brain signals. An example 
of corrected HbO2 t-scores, before and after short-separation filtering, is 
illustrated in the supplementary material (Fig. S6). 

3.4.5. Statistical analysis 
For the evaluation of the predictive model, we calculated the root 

mean squared error (RMSE), R-squared, Adjusted R-squared, and the 
statistical significance (p-values) of each selected term in the model in 
addition to the F-statistic evaluating if the overall model provides a 
better fit to the data in comparison to a model that contains no inde
pendent variables. Additionally, the standard error (SE), t-score (tStat), 
and p-value of the coefficients appearing in the models were calculated 
for statistical evaluation. We calculated the variance inflation factor 
(VIF) metric by deriving the diagonal elements of the inverse of the 
correlation matrix of each model’s independent variables [76] to assess 
the impact of multicollinearity on the models [77,78]. 

To evaluate the task correction outcomes, we performed all the task 
variations within the test session and then compared the predicted 
performances with the actual performances in each variation of the task. 
Accordingly, we assessed if the variation selected by the predictive 
models corresponded with the highest performance in the actual runs in 
the test session. Additionally, for each variation, we ran a non- 
parametric Spearman correlation analysis to investigate the associa
tions between predicted performances and the actual performances 
across all subjects. 

To investigate any significant difference in the predictors’ values 

Fig. 3. The flowchart of recursive feature selection through stepwise multivariate linear regression (MLR). P is the performance of VM task and each Xi refers to a 
pre-screen feature. Inclusion and exclusion criteria determine if a feature would be added or removed from the model. 
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between subjects without and with motor deficit (i.e., ALS), the 
between-group intra-subject average measures, i.e. the average of each 
predictor’s value over all sessions of each subject in each group, were 
compared using Mann-Whitney U tests (Wilcoxon rank-sum test), 
appropriate for non-normal distributions and small, potentially uneven 
samples. 

4. Results 

4.1. Predictive models 

Table 2 displays the predictive models constructed for each task 
variation (VM-v1, VM-v2, and VM-v3) using the training sessions of all 
subjects in two stages. In the first stage, we built the predictive model 
(PR) based solely on competency features, referred to as PR-C. Subse
quently, in the second stage, we extended the model to include both 
competency and interfering features, namely PR-CI. The rationale 
behind separating these steps was that the interfering factors may, hy
pothetically, equally impact the tasks performed within the same session 
as they are present in all of the task variations. Therefore, we con
structed models in two steps to investigate the influence of interfering 
factors on the predictive power of our models. To streamline the pre
sentation of results, we reported the final predictive models, i.e. PR-CI, 
in the main body of the text. The model that does not include interfering 
factors (PR-C models) was included in the supplementary materials. 

4.1.1. Task variation 1 (VM-v1) 
Table 3 illustrates the terms and estimated coefficients (β) as well as 

their corresponding standard error (SE), t-score (tStat) and p-value for 
the predictive model, i.e., PR-CI, of the first task variation. In the PR-CI 
model, in addition to attention, RF-RT, and Eye-msd, Delta-TP from EEG 
resting-state, P3S-Acc from P3S Speller remained in the model. Addi
tionally, the number of blinks (#blink) feature from EOG and LD-p2p 
feature related to fNIRS interfering features together with the interac
tion term between LD-p2p and RF-RT appeared in the model. The 
model’s RMSE was 0.0154, R-squared and Adjusted R-squared values 
were respectively 0.967 and 0.942 for PR-CI model, and the model’s F- 

score was 39.8 (p-value «0.01). VIF values were all less than 5 which 
raised no multicollinearity concern. 

Fig. 4 (and Table S2) shows the predicted accuracies using PR-CI 
model versus the actual performance in the VM-v1 test session across 
all subjects. The spearman correlation analysis showed significant as
sociations between the performance predicted by the PR-CI model and 
the actual performance with a rho of 0.7289 (p-value = 0.011) in the 
VM-v1 task. 

4.1.2. Task variation 2 (VM-v2) 
Table 4 shows the terms and estimated coefficients as well as their 

corresponding SE, t-score (tStat), and p-value of the proposed PR-CI 
predictive model of the second task variation. In this model, fluency 
from CBS test, LF-LT from fNIRS resting-state connectivity, QDJitter and 
P3S-Acc from P3Speller remained in the model. As mentioned, none of 
the interference features appeared in the model. The RMSE was 0.0343, 
and R-squared and Adjusted R-squared values were 0.785 and 0.724 for 
the PR-CI model, respectively. The F-score as opposed to the constant 
model was 12.8 (p-value<0.01). VIF values for QDJitter and P3S-Acc 
were marginally greater than five, which should be considered 
cautiously due to multicollinearity concerns. However, as multi
collinearity does not in principle affect prediction accuracy, we post
poned exclusion of either of those factors until checking the ultimate 
predictive power of the model. 

Fig. 5 (and Table S4) shows the predicted accuracies using the pro
posed PR-CI model versus the actual performances in the VM-v2 test 
session across all subjects. The correlation analysis showed significant 
associations between the performances predicted by the model and 
actual performances with a rho of 0.6970 (p-value = 0.017) in the VM- 
v2 task. With the significant association of the predictive performances 
with actual ones, none of the predictors were excluded from the model 
due to the multicollinearity concern. 

4.1.3. Task variation 3 (VM-v3) 
Table 5 demonstrates the terms and estimated coefficients as well as 

their corresponding standard error (SE), t-score (tStat) and p-value of 
the proposed predictive model of the third task variation. From the 
competence features, concentration from the CBS battery, HR from the 
vital recordings, LF-RF from fNIRS connectivity measurements, QDJitter 
from the P3S speller features, and Eye-msd from the eye-tracking fea
tures, remained in the model. In addition to the competence terms, the 
LD-p2p term from the fNIRS interfering features and an interaction term 
between HR and Eye-msd were added to the model. The RMSE was 
0.0147 for the proposed PR-CI model, while the R-squared and Adjusted 
R-squared values were, respectively, 0.964 and 0.939, and the F-score 
was 38.6 (p-value « 0.01). VIF values were all less than five which raised 
no multicollinearity concern. 

Fig. 6 (and Table S6) shows the predicted accuracies using the pro
posed PR-CI model versus the actual performance in the VM-v3 test 
session across all subjects. For this variation, the associations between 
the performances predicted by the PR-CI model and the actual perfor
mances were not statistically significant with a rho of 0.2883 (p-value =
0.390). 

4.2. Correction 

4.2.1. Task correction 
Table 6 demonstrates how the proposed predictive model could 

predict which variation leads to the highest performance for each sub
ject. For each variation, the table lists the actual performance in the test 
session compared with the predicted performance using the proposed 
PR-CI model. The variation with the highest accuracy for each subject 
was selected and then compared to the variation with the highest pre
dicted accuracy based on the PR-CI model. Overall, the PR-CI model 
achieved 81.8 % correct variation selection, outperforming the PR-C 
model, which achieved 72.7 % correct variation selection (Tables 6 

Table 2 
The ultimate predictive models constructed for each variation (VM-v1, VM-v2, 
and VM-v3). The models are categorized into two groups: first, considering 
only competence features (PR-C), and then with the inclusion of interfering 
features (PR-CI). Each formula in the table represents an expansion of equation 
[3] as described in the method section. The ’P’ in the equation represents the 
performance, which serves as the response variable on the left side of the 
equation. The first coefficient represents the intercept, while the other co
efficients represent the weights assigned to the selected pre-screen features 
derived through the process of stepwise multivariate linear (MLR) model con
struction. As described in the feature extraction section, the features used in the 
models are as follows: Attention, Fluency, and Concentration which are 
extracted from cognitive-behavioral screen (CBS); HR is heart rate; Delta-TP 
which refers to the EEG spectral power in the delta band in temporal-parietal 
region; LF-LT or RF-RT representing fNIRS connectivity in annotated ROIs; 
P3S_Acc and QDJitter, which are extracted from P3Speller run; #blinks, 
Eye_msd, and LD_p2p are extracted interfering features.  

VM- 
v1 

PR-C P= 0.92+ 0.05 ∗ Attention − 0.24 ∗ LF RF − 0.24 ∗ RF RT+ 0.24 ∗

Eye msd 
PR- 
CI 

P= 0.62+ 0.06 ∗ Attention − 0.01 ∗ DeltaTP − 0.79 ∗ RF RT+

0.51 ∗ P3S Acc+ 0.26 ∗ Eye msd − 0.01 ∗#Blink − 0.01 ∗

LD p2p+ 0.01 ∗ RF RT ∗ LD p2p 
VM- 

v2 
PR-C P= 2.38+ 0.06 ∗ Fluency − 0.17 ∗ LF LT − 0.01 ∗ QDJitter − 1.54 ∗

P3S Acc 
PR- 
CI 

P= 2.38+ 0.06 ∗ Fluency − 0.17 ∗ LF LT − 0.01 ∗ QDJitter − 1.54 ∗

P3S Acc 
VM- 

v3 
PR-C P= 0.43+ 0.04 ∗ Concentration+ 0.01 ∗ HR − 0.71 ∗ LF RF −

0.01 ∗ QDJitter − 0.67 ∗ Eye msd 
PR- 
CI 

P= 0.88+ 0.03 ∗ Concentration+ 0.01 ∗ HR − 0.72 ∗ LF RF+
0.01 ∗ QDJitter − 2.01 ∗ Eye msd+ 0.02 ∗ HR ∗ Eye msd  
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and S7). Both the F1- and Kappa-scores were also improved in the PR-CI 
model as compared to the PR-C model (Table 7). 

4.2.2. Interference correction 
With respect to the terms appearing in the PR-CI model of each 

variation, we took the corresponding correction strategy. For example, 
for task variation 1 (VM-v1), as #blink and LD-p2p appeared in its 
associated PR-CI model, we applied blink removal and short-separation 
filtering, respectively. For task variation 2 (VM-v2), as QDJitter and LF- 
LT appeared in its model, we applied jitter correction as well as short- 
separation filtering, respectively. For task variation 3 (VM-v3), as 
QDJitter and LD-p2p appeared in the corresponding PR-CI model, we 
applied jitter-correction and short-separation filtering, respectively. 

Fig. 7 (and Table S8) shows the performance (accuracy) changes 
after applying both task and interference correction strategies. As 
demonstrated, except for two subjects (H06 and ALS-02), the correction 
strategies led to a higher performance for all the subjects. Interference 
correction did not result in any change in performance in the two 
identified subjects. On average, the correction strategies led to 5.16 % 
gain in the performance accuracies over all subjects. 

5. Discussion 

In this work, as an extension of our previously developed fNIRS-EEG 
spelling BCI [17,30], we proposed a novel multimodal experimental 
scheme. This predictive scheme involves conducting a quick 
pre-screening phase prior to the main BCI protocol to produce a feature 
set. This feature set is then used to predict the appropriate task and 
artifact correction approaches for the specific subject and session, using 
a predictive platform trained on data from previous sessions. To actu
alize and evaluate this scheme, we designed three variations of our 
previously proposed VM task to account for possible intra- and 
inter-subject variation arising from differences in the competence and 
strategies adopted to perform BCI task-related activities. Then, in the 
task-correction phase, our predictive models predicted which of the 
variations would lead to the highest performance for each subject on 
that specific session. This phase was followed by an interference 
correction phase in which correction strategies were adopted with 
respect to the terms appearing in the predictive model with the highest 
performance. 

5.1. Impact of the constructed models for people with ALS 

To construct our predictive model, we integrated the training data of 
all subjects without consideration of the motor deficits in our subjects. 
The rationale behind this approach was twofold; the first reason was to 
avoid the imposition of any a priori disease-related hypothesis about the 
impact of motor deficits on the predictive power of our models and allow 
the model to reveal disease-related confounds which can potentially 
reflect the possible impact of motor deficit on performance. The second 
reason for constructing the models without reference to the degree of 
motor deficit was that the statistical analysis did not reveal any signif
icant between-group difference in either the cognitive competence (CBS 
score) or the eye-gaze control (eye tracking) features, the major com
petencies needed for performing VM protocol. It is notable that 

Table 3 
Predictive model constructed from both competency and Interfering features (PR-CI) model for the first variation of VM task (VM-v1).   

Predictive Model’s Terms and Statistical Terms 

Intercept Attention Delta-TP RF-RT P3S-Acc Eye-msd #Blink LD-p2p RF-RT * LD-p2p 

β 0.62 0.06 «-0.01 − 0.79 0.51 0.26 <-0.01 <-0.01 <0.01 
SE 0.20 0.01 «0.01 0.15 0.18 0.05 «0.01 «0.01 «0.01 
tStat 3.01 11.09 − 3.50 − 5.34 2.76 4.75 − 4.84 − 3.17 3.70 
p-value 0.01 «0.01 <0.01 <0.01 0.02 <0.01 <0.01 <0.01 <0.01 
VIF NA 1.98 1.35 1.37 1.86 2.45 1.14 2.24 NA  

Fig. 4. Comparison of actual accuracy (%) of the 1st VM task variation (VM-v1) 
and the respected predicted accuracy (%) based on PR-CI predictive model in 
the test session across all subjects (See also Tables S1 and S2, and Fig. S1 for 
comparison with PR-C model predictions). 

Table 4 
Predictive model constructed from both cognitive and interfering features PR-CI 
model specification for variation 2 of VM task (VM-v2).   

Predictive Model’s Terms and Statistical Parameters 

Intercept Fluency LF-LT QDJitter P3S-Acc 

β 2.38 0.06 − 0.17 − 0.01 − 1.54 
SE 0.71 <0.01 0.06 <0.01 0.67 
tStat 3.35 6.38 − 3.11 − 3.24 − 2.29 
p-value <0.01 «0.01 <0.01 <0.01 0.04 
VIF  1.22 1.11 5.82 5.62  

Fig. 5. Comparison of actual accuracy (%) of the 2nd VM task variation (VM- 
v2) and the respected predicted accuracy (%) based on PR-CI predictive model 
in the test session across all subjects (See also Tables S3 and S4, and Fig. S2 for 
comparison with PR-C model). 
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performing the VM protocol requires mental arithmetic and visuo- 
spatial tasks which involve the user’s cognitive competence and eye- 
gaze control. We also observed no statistically significant association 
between the ALSFRS-R score of the ALS subjects and their CBS score or 
eye-tracking features, meaning that, at least in our sample population, 
the presence of motor deficits had no significant association with task- 
related competencies. 

However, the terms that ultimately appeared in the models could 

potentially elucidate how the variation of performance could manifest in 
a larger patient sample size. The terms retained in the proposed model 
after variable selection can potentially reflect important information 
about the association between ALS pathological measures and BCI 
classification accuracy. For example, verbal fluency, the term that 
appeared in the predictive model of the second task variation, is a 
confound reported to be impaired in ALS patients and associated with 
executive dysfunction [26,28]. Latency jitter, appearing in the models of 
the 2nd and 3rd task variations, has also been reported to be signifi
cantly increased in individuals with ALS and negatively correlated with 
BCI performance (P3Speller) in both ALS and control participants [60, 
73]. fNIRS connectivity features, which appeared in all of our models, 
were identified as confounding factors in other studies, showing be
tween group differences in comparisons between ALS cohorts and 
healthy controls [59,79]. Kopitzki et al. (2016) have reported significant 
association between interhemispheric resting-state functional connec
tivity and ALS pathology [29]. Additionally, fronto-temporal atrophy 
associated with impaired executive function has been reported in several 
ALS studies [27,80,81]. While we could not observe any significant 
between-group performance differences in our relatively small sample 
size, all previously mentioned features appeared in our models, 
including the eye-gaze features shown to be impaired in the late stages of 
ALS [82]. Such findings indicate that it may be possible to predict the 
most appropriate BCI task for a particular user even in the broader 
population of individuals with ALS with reference to the range of motor 
deficits present in these individuals. In future works, including more 
participants with motor deficits and with more variance in their cogni
tive and clinical scores could help achieve a more robust between-group 
categorization in BCI performance variability. 

Table 5 
Predictive model constructed from competency and interfering features PR-CI model for third variation of VM task (VM-v3).   

Predictive Model’s Terms and Statistical Parameters 

Intercept Concentration HR LF-RF QDJitter Eye-msd HR* Eye-msd LD-p2p 

β 0.88 0.03 <0.01 − 0.72 <0.01 − 2.01 0.02 «0.01 
SE 0.19 0.01 <0.01 0.06 <0.01 0.53 <0.01 «0.01 
tStat 4.67 3.40 1.87 − 11.94 4.37 − 3.81 2.57 3.36 
p-value <0.01 <0.01 0.09 «0.01 <0.01 <0.01 0.03 <0.01 
VIF NA 1.10 2.54 1.21 2.37 2.16 NA 1.62  

Fig. 6. Comparison of actual accuracy (%) of the 3rd variation of the VM task 
(VM-v3) and the respective predicted accuracy (%) based on both predictive 
models (PR-C and PR-CI) in the test session across all subjects (See also 
Tables S5 and S6, and Fig. S3 for comparison with PR-C model). 

Table 6 
Comparison of correctness of the task selection by the predictive models.   

Actual PR-CI Correctness 

H01 v2 v2 1 
H02 v1,3 v1 1 
H03 v1 v3 0 
H04 v1 v1 1 
H05 v3 v3 1 
H06 v2 v1 0 
ALS01 v3 v3 1 
ALS02 v1,2 v1 1 
ALS03 v1 v1 1 
ALS04 v1,2,3 v1 1 
ALS05 v1 v1 1 
Accuracy (%)   81.8 %  

Table 7 
The performance metrics for PR-C and PR_CI models, including accuracy, F1-, 
and Kappa-score.   

Predictive Model’s Performance 

Accuracy (%) F1 (%) Kappa 

PR-C 71.7 72.5 0.515 
PR-CI 81.8 81.3 0.660  

Fig. 7. Accuracy (%) changes after applying task- and interference-correction 
across all subjects (See also Table S8 and Fig. S4). 
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5.2. Scalability of the method 

Considering all subjects’ inclusion during model training has another 
methodological advantage in that it could provide us with a unified and 
comprehensive model in which the training sessions from other subjects 
could potentially predict the performance of another subject with no 
training session. This reduces the need for excessive training sessions for 
each participant and potentially implies that the sources of performance 
variability could be common among different subjects. This is aligned 
with recent BCI designs equipped with generic machine learning tech
niques proposed with the same goal of reducing the need for excessive 
training sessions [43,44]. For instance, Kang et al. (2014) proposed to 
replace conventional subject-by-subject training with a multi-subject 
EEG classification scheme to capture subject-to-subject information 
transfer by exploiting a linear combination of common spatial patterns 
(CSP) [45]. Lu et al. (2010) similarly proposed an aggregation of regu
larized CSP algorithms to give an integrated solution compensating for 
sample-based covariance matrix estimation shortfalls in a small-sample 
setting. Transfer learning methods have also been proposed to overcome 
the need for excessive training runs through utilizing machine 
learning-based techniques to transfer data from previous sessions or 
subjects to a new session or subject [46,83]. For example, Kraudelant 
et al. (2008) have used clustering methods to extract similar CSP filters 
across sessions and subjects to move towards a zero-training scheme for 
trained BCI users [83]. Fahimi (2019) suggested an inter-subject transfer 
learning framework using a deep convolutional neural network (CNN) 
where the network first learns a general model based on the data from a 
subject pool, then transfers the trained information to a new subject 
[46]. Interestingly, our proposed scheme showed the potential to be 
used in an inter-subject or subject-to-subject transfer learning approach. 
Regarding this matter, although two of our subjects had no or insuffi
cient training sessions (specifically on the third task variation), the 
constructed models could still correctly predict how well those subjects 
perform that task variation in the test session without previous training. 
This shows the potential of our proposed scheme to be extended to a 
broader population by constructing a reference model to obviate the 
need for excessive training sessions for all subjects. 

5.3. Efficacy of pre-screening 

The cornerstone of our proposed scheme was constructing models to 
predict BCI performance using a quick pre-screen recording collected at 
the beginning of each session. Our designed pre-screen recording con
sists of three parts: the CBS battery, a resting-state recording, and the 
standard P3Speller. The CBS provided important features in building our 
proposed predictive model. This is aligned with other studies that have 
reported similar associations between cognitive battery scores and BCI 
performance. For example, the ability to better concentrate on per
forming a task has been demonstrated to have a positive correlation with 
motor imagery (MI)-based BCI accuracy [31]. Motivational factors have 
also been reported to be associated with BCI performance in ALS pa
tients [84]. Furthermore, the retention of resting-state features in our 
predictive models is aligned with studies that have also suggested that 
integrating resting-state features into BCI design may advance our un
derstanding of task-specific neural dynamics and provide methodolog
ical advantages [48,85]. For instance, Blankertz et al. (2018) have 
reported that higher resting-state Alpha activity can be associated with 
larger power decreases when performing MI BCI tasks. While other 
studies have reported individual confounds associated with BCI perfor
mance, we propose an integrative predictive framework to aggregate 
both competence-related and interfering factors to construct a single 
unified multimodal predictive tool to compensate for performance 
variability. 

5.4. Model variability across different task variations 

The different terms appearing in the models of different task varia
tions might be attributed to the differences in the strategies taken by 
participants and in the competence of subjects to handle different task 
difficulty levels or workloads. This statement is supported by several 
previous studies. For example, individual performance in ERP-based 
BCIs has been reported to be sensitive to variations of cognitive loads 
[22]. Gu et al. (2020) have reported different effects of adding mental 
workload to motor imagery-based BCIs when compared with BCIs 
relying on motor execution [86]. Mental overload has also been reported 
to negatively impact BCI performance as a result of both subject-related 
characteristics and task-related components [87], either due to the 
learning interactivity level in the task (intrinsic) or the method of 
stimulus presentation (extrinsic) [23]. Differences in the tasks may lead 
to the allocation of different resources to handle the workload depend
ing on the components of the task [88] and variability across subjects in 
capacity-limits in working memory [23] or short-memory [89]. The 
appearance of eye-blink features among interfering factors in the models 
is aligned with other studies observing that eye-blink interval is asso
ciated with mental workload or alertness [90]. Our integrative model is 
aligned with the Ryu et al. (2005) non-BCI study in which the authors 
showed a combination of Alpha power, eye-blink and heart rate vari
ability can categorize the workload of four different difficulty levels or 
workload of a mental arithmetic task [88]. The main advantage of our 
work is that the terms retained in our models were selected automati
cally from a broad physiological and interference feature set based on 
the statistical evaluation of the training data within the context of a 
machine learning platform, while they selected the terms a priori in
dependent of any training data. 

5.5. Task correction 

Our subject-dependent task correction is a novel methodological 
approach to adapt to different effects of mental workload across 
different subjects and tasks. Providing task variations compensated for 
the baseline performance variation (VM-v1) in approximately 36% of 
our participants. Although multiple studies have reported physiological 
factors associated with BCI workload or difficulty level [24,86], few 
correction strategies have been proposed to adapt for the corresponding 
variation in performance. Our proposed method notably accomplishes 
this using a predictive platform during a calibration and pre-screen 
phase rather than the main BCI task. In a study with the aim to simu
late a practical P3Speller setting where a subject performs the spelling in 
presence of other mental processes, Ke et al. (2016) and Chen et al. 
(2017) suggested interleaving two mental tasks (n-back and mental 
arithmetic) into the P3Speller task and showed that adding mental task 
features into the training set may enhance speller performance and 
compensate for the augmented workload [16,91]. Our proposed method 
has the following advantages compared to their suggested methodology: 
1) Their augmented mental dimension is intentionally designed to 
diminish the oddball response in order to simulate a realistic multi
tasking setting and is present throughout the entire task. In contrast, our 
VM paradigm is designed such that the mental task is performed only 
during target intensifications and is additive to the oddball effect. 2) 
While their suggested paradigm relies on visual competence, our pro
posed VM protocol eschews this reliance on gaze control by including 
simultaneous fNIRS recordings. fNIRS has been shown to be synergistic 
for conventional EEG-only BCIs, particularly for individuals in the 
late-stage locked-in state, as this modality relies less on eye-gaze 
competence [17]. 3) Our predictive platform and task correction 
approach attempts to adopt the best task variation for each subject, 
while their proposed method lacks subject-specific or session-specific 
considerations. 4) As previously mentioned, our reliance on features 
extracted from the pre-screening phase rather than features from the 
main BCI task can alleviate the tedium of the task or prevent the 
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within-session habituation effect resulting from repetition of the main 
BCI task during calibration. 

In summary, the proposed predictive scheme was fruitful in the task/ 
workload correction stage by correctly predicting which of the varia
tions of the VM task leads to the highest accuracy for 81.82 % of the 
subjects. Even for the two subjects where the optimal task was not 
correctly predicted by the model, the interference correction approaches 
suggested by the predictive framework could be used to compensate for 
the error imposed by the identified interfering factors and ultimately led 
to a higher than baseline performance. In particular, the predicted 
performances for VM-v1 and VM-v2 could be significantly associated 
with the actual performances observed in each task, meaning that this 
framework could potentially be used to estimate inter-subject variance 
within each task variation. Additionally, both the F1- and Kappa-scores 
were improved in the PR-CI model as compared to the PR-C model. The 
kappa score for the PR-CI model indicated substantial agreement be
tween predictions and ground truth for ideal variation selection 
(0.61–0.80), while the PR-C model showed moderate agreement 
(0.41–0.60). Kappa scores in both models could have been improved 
further, if, in our dataset, we had more samples from each variation, as 
the subjects’ optimal task. 

5.6. Interference correction 

Among interference features, the ‘number of blinks’ feature from the 
EOG feature set appeared in some of our models, while no EMG features 
were retained in any of the models. One explanation could be that none 
of the participants exhibited facial muscle tension that could cause dif
ferences in features extracted from targets as opposed to non-targets. 
Applying short-separation filtering as a step in our interference correc
tion approach demonstrated promising improvements aligned with 
other fNIRS studies that similarly show improvements when using short- 
distance channel information in the preprocessing stage [92,93]. The 
subject-dependent adoption of correction methods can provide a more 
efficient processing pipeline as opposed to excessive pre/processing 
methods blind to the dynamics of the task-related demands, interfering 
factors, and intra- and inter-subject variations. 

5.7. Conclusion 

Overall, with methodological emphasis on the pre-screen stage, our 
proposed experimental scheme showed efficacy in predicting, identi
fying, and compensating for performance variability factors in a BCI 
task. In particular, it showed fruitfulness for people with ALS, with the 
potential of being extended to a broader population with other motor 
deficits. As, to the best of our knowledge, no reliable communicative BCI 
design currently exists for people in a completely locked-in state, our 
proposed variations of a novel visuo-mental task within our predictive- 
corrective framework constitute one more step towards a practical and 
ideal BCI platform. While few similar studies have sparsely reported 
individual confounds associated with BCI performance variations, we 
proposed an integrative predictive framework to aggregate both 
competence-related and interfering factors to construct a single unified 
multimodal predictive tool which then compensates for performance 
variability. In addition to the integrative approach, the subject- 
dependent adoption of correction strategies was a novel aspect of this 
work. Finally, the simple predictive models constructed from a 
comprehensive pre-screening feature could provide a dynamic ground to 
customize experimental designs based on variability across subjects and 
sessions. 

5.8. Future work and limitations 

However, to extend this work to capture intra-subject longitudinal 
variation, we must record from the same participant for longer periods 
to validate our constructed models, although our current results indicate 

that information about the sources of intra-subject variability could 
potentially be transferred from information about sources of inter- 
subject variability. Furthermore, the scalability of our study was 
limited by its small sample size due to the rare nature of the disease and 
the difficulty of conducting a longitudinal activity-based paradigm with 
partly/completely locked-in ALS patients. For future work, replicating 
our results with larger sample sizes would facilitate the generalizability 
of the reported outcome. Additionally, it may be informative to repeat 
this experiment using a broader range of tasks designed to involve 
greater degrees of cognitive complexity. For instance, as lengthening the 
stimulation time may make numbers available for longer time, it might 
provide a controlling factor for adjusting the difficulty of the task and 
correspondingly compensating performance variability. This approach 
could provide the benefits of capturing greater variability in the stra
tegies used by participants to complete the tasks and explore different 
facets of participant BCI task competence, subsequently offering more 
degrees of freedom to the constructed models. In future recordings, the 
findings in this work can be used to customize the experimental design 
based on each subject’s data. For instance, in the BCI-task runs, we can 
reduce the recording of fNIRS and EEG channels in the test sessions 
based on the optimum channels extracted in their training runs. Addi
tionally, we can reduce the number of channels or ROI based on the 
terms that appeared in the predictive model. This reduction of channels 
can ease the recording set up which can particularly benefit people with 
severe motor deficits using these systems on a daily basis. Moreover, 
using alternative classification methods, such as Support Vector Ma
chine (SVM), Neural Networks (e.g., CNN) and deep learning techniques 
(e.g., DNN) may enhance individual performances for each subject and 
session. It is essential to consider that the relative difference between 
performances and their variability might remain consistent. As a result, 
comparatively, the reported results should not be significantly affected. 
Furthermore, while our correction stage can be considered a hyper
parameter optimization stage [94] since it adjusts the calculation of 
certain parameters/features, there is room for further improvement by 
incorporating additional hyperparameters. Future works could explore 
the use of additional hyperparameters, particularly in the stepwise 
feature entrance and removal process. To investigate the stability of our 
proposed method and to address concerns about its dependency on the 
recorded data, it would be helpful to replicate the methodology with a 
different dataset. In this regard, we have examined available similar BCI 
datasets, such as the largest SCP dataset [95] and BCI Competition 
IV-2a&b [96,97]. However, to the best of our knowledge, none of these 
datasets could serve the evaluative purpose. Among the available BCI 
datasets, none of them a) had a pre-screen run before the main BCI task, 
b) were tested on people with severe motor deficits, or c) recorded an 
interfering modality for applying interference correction. Additionally, 
since these datasets neither were multimodal nor included the mental 
non-motor aspect in the tasks, even applying our method could not 
conclusively address the stability problem. The comparability of these 
datasets to our own is thus too compromised to be an effective test of our 
method at this time. Future recording with the same experimental 
scheme as proposed in this work will help to draw more robust con
clusions about the stability of the reported results. Extending the pro
posed scheme to a real-time platform would be the next step to validate 
its applicability on a daily basis. 
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