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Background: Brain-computer interface (BCI) systems currently lack the required robustness for long-term daily
use due to inter- and intra-subject performance variability. In this study, we propose a novel personalized scheme
for a multimodal BCI system, primarily using functional near-infrared spectroscopy (fNIRS) and electroen-
cephalography (EEG), to identify, predict, and compensate for factors affecting competence-related and inter-
fering factors associated with performance.

Method: 11 (out of 13 recruited) participants, including five participants with motor deficits, completed four
sessions on average. During the training sessions, the subjects performed a short pre-screening phase, followed by
three variations of a novel visou-mental (VM) protocol. Features extracted from the pre-screening phase were
used to construct predictive platforms using stepwise multivariate linear regression (MLR) models. In the test
sessions, we employed a task-correction phase where our predictive models were used to predict the ideal task
variation to maximize performance, followed by an interference-correction phase. We then investigated the
associations between predicted and actual performances and evaluated the outcome of correction strategies.
Result: The predictive models resulted in respective adjusted R-squared values of 0.942, 0.724, and 0.939 for the
first, second, and third variation of the task, respectively. The statistical analyses showed significant associations
between the performances predicted by predictive models and the actual performances for the first two task
variations, with rhos of 0.7289 (p-value = 0.011) and 0.6970 (p-value = 0.017), respectively. For 81.82 % of the
subjects, the task/workload correction stage correctly determined which task variation provided the highest
accuracy, with an average performance gain of 5.18 % when applying the correction strategies.

Conclusion: Our proposed method can lead to an integrated multimodal predictive framework to compensate for
BCI performance variability, particularly, for people with severe motor deficits.

1. Introduction

Despite significant progress in the development of brain-computer
interface (BCI) systems, long-term use of BCIs for the purpose of
providing people with severe motor impairments a means of commu-
nication remains a challenge. Enthusiasm for BCI systems diminishes
when the technology is translated from the laboratory to the patients’
bedsides [1]. In addition to inter-subject variability, day-to-day intra--
subject BCI performance variations have been reported, limiting the
robustness and efficacy of these systems [2,3]. Furthermore, most

current BCI systems fail to provide reliable performance for completely
locked-in patients who have lost all voluntary muscle control, including
oculomotor movements [4]. One major reason for this inefficacy is the
variability of disease-related conditions and environmental factors
across end-users.

To meet long-term subjective demands in a real-world environment,
BCI systems must be customized with respect to individual conditions
and circumstances [2]. To achieve user satisfaction, all BCI users would
need to be able to freely communicate and control their environments,
regardless of the degree of their motor deficits and the progression of
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their disease [5,6]. Given the variation in individual characteristics,
there is current interest in subject-specific systems, where the machine
learns individual characteristics and adjusts the processing pipeline to
optimize the system for different persons or sessions accordingly [7].
These subject-dependent BCI systems are ultimately the most realistic
solution for convenient long-term BCI use at patients’ bedsides [2,8].

2. Related work
2.1. Variability factors

To compensate for intra- and inter-subject variability, the first step is
to identify the major causes of these variabilities. Two major types of
confounds have been identified in the literature: Competence and
interfering factors.

2.1.1. Competence factors

The first type of confound involves the subject’s competence factors,
i.e. confounds affecting their ability to perform the tasks. These include
cognitive, physiological, and neurological confounds associated with the
subject’s abilities to perform a BCI task, including mental states and
anatomical functions [9,10]. 15-30 % of users are reported to be unable
to elicit task-specific responses robust enough to control a BCI [11].
Different users may also adopt various cognitive strategies to perform
the same task, which can further lead to inter-subject performance
variability [12]. Moreover, time-variant cognitive confounds such as
fatigue, attention, and working memory load can result in inconsistent
intra-subject BCI performance [13,14]. Thus, incorporating the mental
state of a user [15,16] can serve as a valuable compensative component
in BCI design to account for performance variabilities. In addition to
direct brain-related factors, other physiological confounds have been
reported to impact BCI users’ performance competence. For instance,
impaired eye gaze control can negatively impact visual evoked
potential-based BCI performance, including the widely used P300
Speller, a communicative electroencephalography (EEG)-based BCI
system [17]. Furthermore, vital signs, such as heart rate (HR), respira-
tion rate, or blood oxygen saturation (SpO2), have been reported to be
associated with BCI performance [18,19]. While some studies have re-
ported individual competency confounds associated with BCI perfor-
mance, there is a need to develop an integrative approach that combines
several measures to construct a unified predictive framework to
compensate for performance variability.

Moreover, in practical, non-laboratory settings, BCI users are not
exclusively focused on the instructed task. Instead, they may experience
changes in mental workload. Background distractions can also occur in
parallel with the main BCI task. As a result, the isolated laboratory
settings common to P3Speller studies cannot practically be assumed [16,
20]. In their study, Ke et al. (2015) introduced mental operations, such
as the n-back task and mental arithmetic, alongside the conventional
flashing task in P3Speller. This approach served as an interfering factor
to simulate the (negative) impact of additional workload in a realistic
environment [21]. Furthermore, in addition to the external non-task
related workload affecting the BCI task, studies have reported varia-
tions in task-related workload among BCI users. These studies have also
investigated associated neuromarkers [16]. Variations in cognitive loads
or mental overloads have been shown to impact BCI performance
differently, either due to different cognitive capacities in subjects or
different strategies used by participants to perform the tasks [22,23].
Different levels of task difficulty have also been reported to impact BCI
performance [24,25]. However, despite previous exploratory in-
vestigations into the impact of workload, few attempts have been made
in the BCI field to compensate for workload-associated variations in BCI
performance.

Despite reports of parallel non-motor dysfunctions, little has been
done to investigate how these cognitive declines can specifically impact
the BCI performance of users with severe motor deficits. For example,
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verbal fluency and executive functioning impairments have been
demonstrated in people with ALS [26,27], but their possible associations
with BCI performance have not yet been investigated in this cohort. In
one case, Perez et al. (2020) reported a significantly lower number of
responses in two verbal fluency tasks in an ALS cohort compared to the
control group [28], but this study did not involve a BCI component.
Another ALS study using functional near-infrared spectroscopy (fNIRS)
and diffusion tensor imaging (TDI) reported disease-specific associations
with homotopic resting state functional connectivity [29], but did not
investigate any possible impact on their BCI performance. On the other
hand, Shahriari et al. (2019) showed that temporal and spectral EEG
features were correlated with performance variability in a longitudinal
assessment of P3 Speller performance in a cohort of ALS patients but did
not investigate connections with possible cognitive impairments.
Although we reported significant differences in non-motor electro-
physiological and hemodynamic features between the ALS and neuro-
typical groups during a visuo-mental BCI task in our previous works [17,
301, the association with performance was not evaluated.

2.1.2. Interfering factors

The second confound involves interfering factors, which are con-
founds affecting the quality of the acquired signal independent of the
tasks [13,31,32]. Besides task-specific cognitive confounds,
time-varying physiological interfering factors can also contribute to
both inter- and intra-subject BCI performance variability. Interfering
factors are subject-related physiological confounds that affect the
quality of the recorded signals independently of the subject’s brain ac-
tivity. For instance, in most common BCI systems that rely on EEG,
physiological artifacts such as eye movements and facial muscle tension
can decrease the signal-to-noise ratio (SNR) of the data and conse-
quently diminish task-driven EEG neuromarkers [33,34]. For example,
Florich et al. (2015) reported the adverse effects of muscle artifacts on
imagery BCI performance [33]. Electro-oculogram (EOG)-related arti-
facts have also been shown to impact P3 speller performance [35].
Similarly, in BCI systems relying on hemodynamic responses, including
fNIRS, the acquired responses are often heavily contaminated by su-
perficial physiological signals such as blood pressure, respiratory, and
cardiac artifacts. This contamination occurs because the optical mea-
surement path includes layers of highly vascularized skin, the skull, and
hair [36,37]. These physiological interferences can be misinterpreted as
task-driven neural responses, consequently increasing both false posi-
tive and negative rates [38,39]. Therefore, considering physiological
interferences is an important factor in a real-world BCI design, as it may
compensate for the variability of performance variability across subjects
and sessions.

2.2. Current compensative solutions

One early solution to compensate for performance variability was to
conduct training sessions prior to the main tasks/sessions, aimed at
improving the subject’s ability to perform the task [40]. However, the
required training sessions and runs for each use of the BCI are tedious
[41]. Additionally, repeating the same task may increase the risk of
losing the response strength due to habituation effect [42]. Therefore,
new BCI designs equipped with machine learning techniques were
proposed to reduce the need for excessive training sessions, wherein a
model is calibrated based on data collected at the beginning of each
session [43,44]. For instance, transfer learning techniques have been
proposed to leverage very few training samples from the target group
[45,46] before proceeding to the actual experiment [47,48]. Blankertz
et al. (2001) reported that resting-state alpha activity can be associated
with performance in subsequent motor imagery (MI)-based BCI tasks.
Similarly, Sannelli et al. (2019) found that resting-state EEG markers can
be used to categorize sensorimotor rhythm (SMR)-based BCI users,
enabling them to adapt to a better subject-dependent training strategy
[49]. Subsequently, the constructed inter-subject performance
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predictors, sometimes referred to as inter-subject associativity [41],
could be incorporated into BCI design [45,50] to enhance BCI system
efficacy [51,52]. Although markers extracted from calibration re-
cordings at the beginning of a session have been shown to be associated
with performance in subsequent BCI tasks within the same session, an
integrative experimental scheme that uses those individual markers
acquired prior to the main BCI tasks in a predictive framework to
compensate for the upcoming BCI performance variability has rarely
been introduced.

On the other hand, automated removal of interfering factors has also
been investigated to improve BCI performance. Thompson et al. (2019)
tried ten different automated EOG removal methods to compensate for
P3 speller performance, though the tested methods in fact all reduced
performance [35]. Integrated EEG + EOG designs have also been pro-
posed to compensate for occular artifacts in BCI systems [53,54].
Similarly, other types of hybrid BCI designs [55], such as electromyog-
raphy (EMG) + EEG [56] or EEG + fNIRS [17,57] have been introduced
to integrate the compensative nature of different recording modalities to
improve performance. While the combination of different pairs of mo-
dalities has shown benefits in the BCI system, little work has been done
to investigate the advantages of multimodal designs in which more than
two modalities are integrated. Further, lacking the consideration of
subject- and session-specific variabilities in performing BCI tasks makes
these designs less robust for long-term daily use.

Here, we have proposed a customizable multimodal BCI design to
address performance variability in both neurotypical BCI users and
people with severe motor deficits. Our goal in this study is to design and
validate an integrative subject-dependent closed-loop predictive scheme
that identifies markers affecting subjects’ performance, predicts possible
variabilities in upcoming sessions, and subsequently employs correction
strategies to compensate for the identified sources of variability, i.e.
competence and interfering factors. Accordingly, we propose a novel
experimental scheme in which a quick pre-test screen (pre-screen) is
conducted before the main BCI protocol to construct a predictive plat-
form that enhances the robustness of BCI systems. This is achieved by
exploring the associations of BCI performance variation with the
markers extracted from the pre-screen. To reduce variability in the main
BCI task performance, we have provided new variations of a single trial
fNIRS-EEG BCI paradigm by extending a novel visuo-mental (VM) pro-
tocol previously shown to be effective in facilitating communication in
people with severe motor deficits [17,30]. Adopting such a paradigm
offers several advantages, including: a) providing a feasible BCI
communication platform where conventional BCIs fail, specifically for
patients without fine eye-gaze control; b) identifying potential cognitive
issues in people with motor deficits due to the dual-task nature of the
paradigm; c) better simulating the interfering non-task related work-
loads which makes the setting more reflective of patients’ daily needs;
and d) providing the flexibility to adjust the task-related workload using
different variations of the VM task. These steps enables the predictive
platform to adapt to intra- and inter-subject variations in task perfor-
mance capacity by augmenting the visuo-spatial P3Speller task with a
controllable mental arithmetic component.

Our proposed predictive platform employs two correction strategies.
First, a task correction strategy is employed, wherein the best task
variation with the highest performance for a specific subject and session
is selected. This selection relies on the features extracted from the pre-
screen. Then, the platform employs a subject-dependent interference
correction strategy to compensate for the impact of physiological
interference. Unlike most BCI studies, which conduct preprocessing for
correction of interfering confounds without considering the subjects’
status or the type of BCI tasks, the correction strategies used here are
applied with respect to the task-specific and subject-dependent terms
appearing in the corresponding predictive models. The outcomes of the
proposed experimental scheme from this study can advance the under-
standing of intra- and inter-subjective BCI performance variabilities and
provide personalized correction strategies necessary for developing
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long-term personalized BCI systems. These systems would rely on
embedded adaptive correction strategies tailored to each user’s status.

3. Subjects, materials, and methods
3.1. Participants

13 participants (5 female) were recruited for this study, with an
average age of 57.85 + 6.00 years old. The participant group consisted
of six diagnosed with amyotrophic lateral sclerosis (ALS) (age: 57.71 +
6.80 years old, 2 female) and seven healthy (H) subjects with no known
motor deficit (age: 58.5 + 5.55, 3 females). All participants acknowl-
edged no history of non-motor deficits including visual, mental, or
substance-related disorders, that would otherwise impact their ability to
perform the experimental tasks. Demographic and clinical information,
including age, sex, disease duration, disability score, medication, and
education level, is listed in Table 1. All participants except for one
healthy subject (HO4) had at least some post-secondary education. The
Revised ALS Functional Rating Scale (ALSFRS-R) scores, a validated
screen for the dysfunctional progression of the ALS disease, averaged
26.17 4+ 15.36 (min 0, and max 42) on a 48-point scale. The highest
score [48] reflects normal function in activities of daily living (ADL),
and the lowest score (0) represents a complete loss of function [58].
Patient disease durations were 6.3 + 3.4 years on average. One patient
(ALS-05) had both gastrostomies and tracheostomies. One of the healthy
(H-07) and one of the ALS (ALS-06) participants withdrew from the
study after finishing their familiarization session. Others completed on
average 4.0 + 0.8 sessions of recording, including at least one famil-
iarization and one test session. All procedures were in accordance with
the study protocol approved by the Institutional Review Board (IRB) of
the University of Rhode Island (URI). All participants provided informed
consent or assent prior to the experiment and were financially
compensated. All participants in the ALS group were tested in either
their homes or care centers, while the healthy cohort participated in the
experiments at the NeuralPC lab at URL

To construct our predictive models, we integrated the training data
of all subjects without considering the motor deficits in our participants.
The rationale behind this approach was to avoid imposing any a priori
disease-related hypothesis about the impact of motor deficits on build-
ing our predictive models. Instead, we allowed the model itself to reveal
disease-related confounds that could potentially reflect the possible
impact of motor deficit on the performance variability. In other words, if
there are any neurophysiological and cognitive differences between the
two groups, these differences should be reflected in the features we
extract and use in the model. The ideal predictive models should
incorporate all the important features and mirror these differences. Our
ideal model should provide predictive power for both groups.

3.2. The proposed experimental scheme overview

Fig. 1 illustrates the proposed experimental scheme, which centers
around conducting a pre-screen recording prior to the main BCI task
based. This pre-screen recording enables us to predict performance
(variability) in the upcoming BCI run and, based on the prediction,
implement appropriate performance correction strategies. Each subject
participated in 4 (3-5) sessions of recording on average, including at
least one familiarization session, two training sessions (except for
ALSO01), and one test session. For BCI tasks, our design focused on our
proposed VM paradigm, which has been previously demonstrated as a
feasible and effective paradigm for communication purposes, especially
for people with severe motor deficits [17]. To achieve this, we designed
three different variations of the VM task, aiming to address individual
differences in task performance and to account for potential
session-to-session cognitive variations that might impact the partici-
pants’ competence in BCI task performance. As a result, we constructed
three predictive models, each based on the features extracted from the
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Table 1
Participant’s demographic information.
ALSFRS-R Duration (years) Age (years) Gender Post- Secondary Education Medication #Sessions

HO1 N/A 0 44 M Y N 4
HO02 N/A 0 60 M Y N 4
HO03 N/A 0 62 F Y N 4
HO04 N/A 0 57 M N N 4
HO5 N/A 0 64 F Y N 4
HO06 N/A 0 55 M Y N 4
ALSO1 42 4 56 F Y Y 3
ALS02 32 12 58 M Y Y 4
ALS03 29 4 69 M Y N 4
ALS04 37 4 54 M Y Y 5
ALSO05 0 5 56 F Y N 5

pre-screen runs in the training sessions. These models provided three
different performance predictions for each of the three VM task varia-
tions. In the test session, we adopted two phases of correction. First, we
applied task correction, and subsequently interference correction
(correction related to physiological interfering factors), as explained in
the following sections with more comprehensive details.

3.2.1. Training sessions
As illustrated in Fig. 1 (Top), each training session consisted of two
sections: a pre-screen and the main BCI tasks, as explained below.

3.2.1.1. Pre-screening phase. Integrating our previous works [30,59,
60], with other similar BCI studies [10,19,48], we incorporated three
steps in our pre-screening phase: a cognitive questionnaire, a
resting-state recording, and a standard P3Speller recording. The com-
ponents of the pre-screen are as follows: 1) Cognitive questionnaire: To
assess the internal cognitive status of the end-user, the first step is to
identify the appropriate cognitive screens reported to be associated with
cognitive impairments, particularly for people with motor deficits. For
the cognitive screens, we adopted the Cognitive Behavioral Screening
(CBS) test, a shorter cognitive battery developed specifically for ALS
patients as one of the end-users for our proposed experimental scheme.
The CBS was conducted at the beginning of each run to assess attention,
concentration, tracking/monitoring, and linguistic initiation and
retrieval (fluency test). In instances where our participants were unable
to answer the CBS questions orally, they used their own eye-tracking
systems to answer the questions. 2) Resting-state: All subjects were
instructed to focus on a dot on the screen while in a relaxed state. In each
run, 5 min of resting state fNIRS-EEG data were acquired, which pro-
vided a sufficient recording duration to obtain robust functional con-
nectivity in resting-state brain networks [61]. 3) P3Speller: All subjects
performed the standard P3Speller paradigm, where a 6 x 6 matrix of
letters was used, and each row/column was randomly intensified with a
picture of a celebrity face superimposed over the letters for 93.75 ms,
followed by a 62.5 ms inter-stimulus-interval (ISI). An eye tracking
device (TOBII) was used to monitor participants’ eye gaze during the
pre-screen P3Speller task.

3.2.1.2. Visuo-mental (VM) task variations. Extending our previous
works, where we demonstrated the feasibility and effectiveness of using
our proposed visuo-mental (VM) paradigm for communicative BCI
communication, especially for people with severe motor deficits [17],
we developed three variations of our previously introduced VM para-
digm to include varying levels of mental task workload as follows (see
Fig. 2 (B)): 1) VM task variation 1 (VM-v1): This variation extended the
conventional oddball P3Speller paradigm, by displaying a 2 x 2 matrix
of digits (1-9) over the intensified letter. Each subject was instructed to
focus on a target character, resulting in 14 targets per run. Upon each
target intensification, subjects were instructed to perform predefined
mental arithmetic tasks. Specifically, they were asked to add pairs of
numbers in the matrix either diagonally (at the first target flash) or

vertically (at the second target flash), and then double the larger result.
The stimulation intensification time was set to 300 ms, and each
intensification was followed by a 5-s inter-stimulus interval (ISI). 2) VM
task variation 2 (VM-v2): At each target intensification, instead of dis-
playing a 2 x 2 matrix, a 2-digit number within the range of 11-29
appeared over the letters. Subjects were required to start with a given
3-digit number and continuously subtract the numbers that appeared
over the specified target. They subtracted the number presented as the
current target intensification from the result of the previous target
intensification. 3) VM task variation 3 (VM-v3): At each target intensi-
fication, the subject observed a 2 x 2 matrix containing four single-digit
numbers. After the first flash, the task was to add up the upper row,
compare the sum with the number seven, and multiply the larger value
by two. After the second flash, the subjects were instructed to add up the
lower row, compare it with the number seven, and multiply the larger
value by two. To avoid order effects, we counterbalanced the order of
the task variations within each session.

3.2.2. Test session

Fig. 1 (Bottom) illustrates the experimental flow in the test sessions.
In the test session, the pre-screen was conducted following the same
procedure as previously described. Then, the predictive model was fed
features extracted from the pre-screen to predict which variation of the
task would yield the highest performance for each specific subject. Based
on this prediction, we selected the optimum VM task variation (VM-
Vmax) for the test session of each subject. Afterward, the subject per-
formed the chosen VM task variation, and the customized correction
strategies were applied based on the interfering terms that appeared in
the predictive model of the selected variation. For instance, if a blink
related feature appeared in the predictive model for a task variation, we
applied blink correction to the corresponding data.

3.3. Data acquisition

EEG data were recorded simultaneously using a g.USBamp amplifier
(g.tec Medical Tech.) and digitized at 256 Hz. f{NIRS data were recorded
using a NIRScout (NIRx Inc.) with two NIR lights (760 nm and 850 nm
wavelengths) and digitized at 7.81 Hz. Fig. 2 (A) shows a schematic head
model of the fNIRS-EEG sensors’ placement. As depicted in this figure,
eight emitters and seven (long-channel) detectors acquired 14 fNIRS
channels covering the pre/frontal region and two channels on tempo-
parietal areas to capture higher cognitive functions associated with
mathematical operation paradigms. To cancel hemodynamic-related
systemic noise, we used an 8x short-channel detector measurement
bundle with each detector mounted around each emitter, all connected
to a single detector attached to the back of the cap. The distances be-
tween source and detector were 30 and 7.5 mm for long-distance (LD)
and short-distance (SD) channels, respectively. Following the Modified
Combinatorial Nomenclature (MCN) montage, emitters were placed at
Fz, F3, F4, AF3, AF4, Fpl, Fp2, CP5, and CP6 and detectors at F1, F2,
AFz, Fpl, Fp2, P5, and P6. EEG was recorded from 16 channels: Fz*, F5*,
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Training Sessions (for each ofthe three BCl task variations)
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Fig. 1. The Proposed Experimental Scheme. The top part demonstrates the task flow in the training sessions. Firstly, a pre-screening phase consisting of cognitive-
behavioral screening (CBS), a resting run, and P3Speller is conducted prior to the main BCI tasks. Next, three variations of the VM task are performed, and a
predictive model is constructed for each of the variations based on features extracted from the pre-screening phase along with the performances of each variation.
The bottom part demonstrates the experimental flow for the test session. The features extracted from the pre-screening phase are fed to the previously constructed
predictive models to provide the prediction for performances (P1, 2, and 3). The task variation with the highest predicted performance, i.e. VM-Vmax, is then selected
to be run (task correction). Subsequently, an appropriate interference correction strategy is applied concerning the terms appearing in the predictive model for the

selected variation (PR-Vmax).

F6*, Fpl*, Fp2*, Cz, P3, Pz, P4, T7, T8, P7, P8, PO7, PO8, and Oz to
include all commonly used channels in conventional P300 paradigms as
well as pre/frontal and temporal channels to capture possible responses
to mental aspects of the VM tasks (star (*) denotes the nearest electrode
placement to fNIRS occupied channels according to the 128-channel
montage). Extending our previous works [17,30], this montage was
intended to capture both aspects of the visuo-mental task variation as
well as resting-state activity and activity related to the P3S in the
pre-screen. All experimental protocols, data acquisition, and stimulus
presentation labels were controlled using BCI2000 and NIRStar
software.

Additionally, simultaneous to neuroimaging modality recordings (i.

e. EEG and fNIRS), we measured multiple vital and potential interfering
signals as shown in Fig. 2 (B). For this purpose, HR and SpO2 were
recorded using a g.SpO2sensor (g.tec Medical Tech.) with pulse fre-
quency 0-300 bpm attached to g.USBamp. For respiration rate, we used
the Respiration Effort Sensor (g.tec Medical Tech.) attached to a chest-
belt to measure changes of the circumference of the torso related to
breathing activity. Furthermore, to capture physiological interfering
factors contaminating EEG signal, we recorded four facial electromyo-
gram (EMG) channels and one electro-oculogram (EOG) channel
simultaneous to EEG and fNIRS signals using the g.USBamp amplifier
and digitized at 256 Hz. In the P3S run, to assess the level of eye-gaze
control in the subjects, we bundled the Tobii Pro Nano eye-tracking
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5 Seconds >

BRAINCO(R)

Fig. 2. (A) Schematic head model showing placements of 16 EEG, four EMG, and one EOG electrodes, as well as fNIRS optodes, including eight sources, eight long-
distance (LD), and eight short-distance (SD) detectors. One of the long-distance detectors was placed on the back of the head to collect all short-distance channel data,
here, labelled as short-distance collector (SDC). (B) The visuo-mental (VM) task with 300 ms intensification time and 5-s inter-stimulus interval (ISI) with three

variations, VM-v1, VM-v2, and VM-v3.

device with our EEG recording system through BCI2000. In this run, due
to the interference between fNIRS emitters and the eye-tracking system,
we did not record any hemodynamic data along with EEG.

3.4. Data analysis

3.4.1. Pre-screening feature extraction

The pre-screen features were extracted in two phases: competency
features (36 in total) and interfering features (16 in total), as described
below.

3.4.1.1. Competency features. Cognitive and Behavioral Screen
(CBS): Individual scores in each category, including 1) Attention, 2)
Concentration, 3) Tracking/monitoring, and 4) Fluency, i.e.linguistic
initiation and retrieval (fluency test), and 5) Sum of these individual
scores, resulting in a total of 5 features for each session/subject.

Resting-State: Replicating our previous work [59], 30 s of the 5-min
segments were cut from the beginning and end of data to avoid any
potential non-relaxing state of the subject in the beginning and the
boredom in the end, resulting in 4-min of data. Eye-blinks in the frontal
EEG channels were, first, extracted using cues of EOG signal peaks, using
MATLAB’s findpeaks function, with prominence over 80% and within
the range of its width, and then interpolated. Similar to another study
[62], the prominence threshold was selected to guarantee that only
peaks with high prominence could be selected, as eye-blinks are typi-
cally the strongest artifacts on frontal EEG channels. Then, EEG power
spectra were extracted from the Delta (1-3 Hz), Theta (4-7 Hz), Alpha
(8-12 Hz), and Beta (13-30 Hz) frequency bands using a set of 30
complex Morlet wavelets ranging from 1 to 30 Hz with 3-10 cycles and a
1 s time-window were used for time-frequency decomposition. To
reduce feature space dimensionality, spectral power in each band was
averaged over four regions of interest (ROIs): Frontal (F), including Fz,
F5 and F6, Centro-Parietal (CP), including Cz, P3, Pz, and P4,
Temporo-Parietal (TP), including T7, T8, P7, and P8, and Occipital (O),
including PO7, PO8, and Oz. In total, we extracted 16 EEG features (4
(power-band) * 4 (ROI)) denoted as band-ROI (e.g., Alpha-F referring to
frontal Alpha) for each session/subject.

To extract fNIRS features, the nirs-toolbox was used to deploy an
autoregressive integrative (ARI) algorithm to remove statistical outliers,
including both spike and shift variations of motion artifacts in fNIRS
data [63]. Oxygenated hemoglobin (HbO2) and deoxygenated hemo-
globin (HbR) concentration changes were extracted from raw optical
intensity data using the modified Beer—Lambert law [64,65]. Then, we
applied short-separation filtering to the hemodynamic responses [66]
through nirs-toolbox. SD channel data were projected out of the LD

channels to bolster the brain signals [37,63]. Then, the outcome was
bandpass-filtered using a 0.01-0.09 Hz passband commonly used in
resting-state fNIRS studies [59,67] to remove higher frequency physio-
logical artifacts, including respiratory artifacts (0.2-0.3 Hz) [68], car-
diac signals (0.8-1.3 Hz), and mayer waves (~0.1 Hz). In contrast to
EEG, spectral analysis of fNIRS data has been shown to reflect little
non-motor functional dynamics of the brain [59]. Thus, in this study, we
adopted correlation-based connectivity analysis relying on time samples
for our fNIRS data. To reduce dimensionality, we first averaged the
hemodynamic responses across channels in four ROIs: left frontal (LF),
right frontal (RF), left temporal (LT), and right temporal (RT), and then
calculated Pearson’s correlation coefficient for all pairs of ROIs,
constituting five pair connectivity features (i.e., RF-LF, RF-RT, RF-LT,
LF-RT, LF-LT). We did not include inter-temporal connectivity (RT-LT)
in our connectivity feature lists, as it was rarely reported to be cogni-
tively interesting, particularly in people with motor deficits. Given that
the HbO2 signal has been shown to better characterize resting-state
blood flow dynamics than the HbR signal, and that significant connec-
tivity results in similar studies are primarily HbO2-based [69,70] we
focused on HbO2 features. Additionally, the mean of (resting) HR, SpO2,
and respiration rate were extracted from the data recorded during the
resting-state task.

P3Speller: Replicating our previous work [60], features related to
performance were extracted from EEG data. To calculate the perfor-
mances, stepwise linear discriminant analysis (SWLDA) classifiers were
used to derive features related to P3Speller performance. Through for-
ward and backward stepwise regression using the fitdiscr and stepwisefit
functions in MATLAB, the best predictors (p < 0.1) were selected and the
least significant predictors (p > 0.15) were removed. This procedure was
repeated for up to 60 steps, or until no additional terms satisfied the
entry/removal criteria [71]. However, compared to neurotypical users,
people with motor deficits, particularly those with ALS, are known to
exhibit trial-by-trial latency variability in their P300 responses,
commonly referred to as latency jitter [60,72]. Accordingly, we included
jitter in our P3Speller feature list as it has been reported to be negatively
correlated with BCI Performance [72,73]. To extract jitter-related fea-
tures, we adopted the approach proposed by Thompson and colleagues
[73] known as classifier-based latency estimation (CBLE). In CBLE, a
classifier is trained as usual, and then time-shifted epochs are fed to this
classifier. For instance, if the 0-800 ms post-stimulus epoch is used for
classification, then time-shifted epochs from the —100 ms-700 ms epoch
through the 100 ms-900 ms epoch could be classified. Then, for each
target flash, the time shift corresponding to the highest classifier score
(the probability that the flash was a target flash) is extracted as the la-
tency shift for that particular flash. This approach allows us to estimate
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the latency jitter for each target flash during the P3Speller task. The
variance of these latency shifts within a session, denoted as vCBLE,
reliably measures latency jitter [73]. In sum, the following features were
extracted from P3Speller runs: 1) vCBLET: A measure of latency jitter
using the variance of latency shifts for target epochs calculated with
CBLE; 2) QDJitter: Another measure of latency jitter calculated as the
difference between third and first quartile (Q3 and Q1) of latency shifts
for target epochs using CBLE; 3) P3S-Acc: Stimulation (target) accuracy
(representing correctly classified epochs); 4) Default Precision: Flash/-
target precision (the number of correctly classified targets divided by the
number of all returned results); and 5) 1stFlash-Acc: The character se-
lection accuracy using the first trial epochs (both row and column
flashes) per character. To assess subjects’ gaze-control, along with
P3Speller, we used an eye-tracking system and accordingly extracted
two features: 1) Eye-Acc: The accuracy of target selection based on the
eye-gaze data, and 2) Eye-msd: The mean of standard deviation of
eye-gaze data during each character’s intensifications.

3.4.1.2. Interfering factors. EEG Interfering Factors: As mentioned
before, we recorded two types of cue signals to identify the EEG inter-
fering factors using EOG and EMG. For EMG, we selected the resting-
state runs to extract the relevant interfering features to target non-
task-related facial muscle tensions. In contrast, for EOG, we wanted to
extract variables to quantify the representative blinking behavior of the
subject during the VM task. Eye blink metrics from the resting state data
were considered non-representative of behavior during the VM task
since subjects were instructed to stare at a point in the former task,
which would reduce the number of the blinks. Two features were
extracted from the EOG signal recorded during P3 Speller task, including
the total number of blinks (#blinks), and the mean (excessive) blink
artifact peak amplitude. For EMG, first, the EMG signal recorded during
the resting-state task was segmented into two bandpassed frequency
ranges of low frequency (EMG-LF, < 20 Hz) and high frequency (EMG-
HF, 20 < f < 100 Hz). Then, simple square integral (SSI) [74] and
variance of the entire time course of both EMG-LF and EMG-HF were
extracted as EMG features.

fNIRS Interfering Factors: Two major cues to represent fNIRS
interfering factors were extracted from the resting-state signal
(segmented into a 4-min window as mentioned in the resting-state
feature extraction section): 1) Peak-to-peak (LD-p2p): the sum of the
difference between the maximum and minimum of the HbO2 signal in
all LD channels, and 2) Mean of the short-separation (SS) contribution
coefficients: Two methods were used to calculate the SS contribution to
the hemodynamic responses in the LD channels, considering both HbO2
and HbR, as both are important in the SS context. In the first method, the
contribution was calculated through regression as below:

«; =< SD;.LD; >< SD;.SD; > (€8]

where <.> operator is the dot product, «; is a temporal correlation
factor between each (LD) channel i and associated SD, LDi is the he-
modynamic response of the long-distance channel (i), and SDi is the
short-distance (SD) channel attributed to the emitter of corresponding
LD channel (i) [39]. We calculated the mean of «; over all LD channels
for both HbO2 and HBR signals. In the second method, we used a
combination of principal component analysis (PCA) and general linear
model (GLM) regression analysis to extract the contribution coefficients
[75]. First, up to two of the first principal components (PCs) of the SD
channels were fed to GLM regression. The component selection was
based on the elbow criterion. In cases where a short channel was not
useable due to poor connection in the calibration phase, the SD signal
was replaced with the average of other SD channels. For constructing the
GLM model we used the regress function in MATLAB:

LD, =X+ p,+¢ @

where f; is the contribution of short-channel PCs in the LDi channels
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data, X is the matrix of two short-distance PCs with a constant column 1
for the intercept term, and ¢ is the residual error of the regression. We
calculated the mean of f; s over all LD channels for both HbO2 and HbR
signals.

3.4.2. Performance calculations

For each VM task variation, we calculated the performance similar to
the method used in our previous work [17] with several extensions.
First, we focused on hybrid (fNIRS-EEG) linear discriminant analysis
(LDA) classification by first extracting seven EEG and 17 fNIRS features,
as described in our previous work [17], from each target and non-target
epoch for each channel. To balance the number of features from both
modalities, we selected the optimum five EEG and two fNIRS channels to
retain 35 (=7*5) EEG and 34 (=17*2) fNIRS features. For EEG, the
optimum channels were selected using Pearson correlation between
target/non-target epochs and the class labels. For fNIRS channel opti-
mization, we used the GLM-statistical parametric mapping (SPM)
method as explained in our previous work for each fold [17]. We per-
formed 3-fold cross-validation for classification, since we required the
continuous signal to apply the GLM regression method-with seven total
characters to-be-spelled. Using a 70 % ratio for the training set (five
characters in each fold for training and the remaining for the test), only
three training sets could be constituted: the first, middle, and last five
characters. For each training fold, we repeated the GLM-SPM process
and extracted fold-specific optimum channels. Then, the EEG and fNIRS
features were concatenated and 50 % of the highest correlated features
(Pearson correlation) were selected as optimum features. To build up a
fair comparison between the task variation performances and also to
exclude lower than chance level results, we picked the highest accu-
racies with the corresponding maximum area under the curve (AUC)
value as the task’s performance metric to be used further in constructing
the proposed predictive model.

3.4.3. Predictive model

As illustrated in Fig. 1 (Top), after extracting the pre-screen features
and performances in all training sessions, we constructed the predictive
model for each task variation resulting in a total of three predictive
models for each of the three VM task variations. The predictive model of
each task variation (VM-v1,2, and 3) was constructed based on the
training sessions of all subjects in two stages, including the predictive
model (PR) built based on both competency and interfering features,
hereinafter known as PR-CI. The predictive model relating the pre-
screen features to each task variation performance was constructed
through the following multivariate linear regression (MLR) model:

Pi=fy+pyxX+e 3)

where Pi is the performance ith VM task variation, f;, is the intercept
term, f; is the regression coefficient for task variation i, ¢ is the residual
error, and X is the matrix containing the pre-screen features, including
competence and the interfering factors. We used stepwise MLR algo-
rithm through the stepwiselm function in MATLAB. Stepwise multivar-
iate regression uses a systematic method to add and remove terms from a
linear model based on their statistical significance in explaining the
response variable (Fig. 3). It starts with a constant (intercept-only)
model and then automatically adds to or trims the model with respect to
a criterion, which we set to be the p-value (<0.05 for inclusion and >0.1
for exclusion) for the F-test of the change in the sum of squared error
(SSE) that results from adding or removing a term. Terms from the set of
variable terms not in the model with the smallest p-value are added
iteratively subject to an entrance tolerance p-value threshold. Similarly,
if any of the available terms in the model have p-values greater than an
exit tolerance, they will be removed with the largest p-value and return
to the above step. We did not consider any limit for the number of steps.
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Fig. 3. The flowchart of recursive feature selection through stepwise multivariate linear regression (MLR). P is the performance of VM task and each Xi refers to a
pre-screen feature. Inclusion and exclusion criteria determine if a feature would be added or removed from the model.

3.4.4. Correction strategies

With respect to the two major sources affecting BCI performance, i.e.
competence and interference, two correction strategies were taken
accordingly: task/workload correction and interference correction.

3.4.4.1. Task correction. As explained before and illustrated in Fig. 1
(Bottom), the variations in the task have been designed to compensate
for variabilities in the cognitive- and neural-related confounds affecting
the competence of the subjects to perform a certain BCI task. Therefore,
to predict which variation of the VM task leads to the highest perfor-
mance for a specific subject in a specific test session, we used the three
models previously trained with features collected from the pre-screen to
predict task performance. The variation with the highest predicted
performance was selected as the optimum task variation for a specific
subject for that specific subject’s test session.

3.4.4.2. Interference correction. To compensate for the impact of phys-
iological interfering factors, we applied different correction methods to
the signal acquired during the selected task variation, i.e. the outcome of
the task correction phase. The strategies listed below were adopted
based on the presence of the relevant terms in the predictive model
corresponding to the selected optimum task variation. For example, if
the predicted model of the selected task variation included QDJitter
appeared in its model terms, latency jitter would be identified as an
important factor affecting performance. Consequently, a jitter correc-
tion strategy was applied to the corresponding data in this specific
instance.

Correction for EEG Interfering Factors: Jitter Correction: to
compensate for jitter or variance of event-related potential (ERP) la-
tencies, we extended the window range for extraction of EEG-ERP fea-
tures by adding the QDJitter value to both ends of the corresponding
ERP window. First, we extracted QDJitter from the P3Speller run during
the pre-screening phase, by computing the difference between the third
and first quartiles (Q3 and Q1) of latency shifts. These latency shifts
were calculated for target epochs using CBLE [73], as explained in more
detail in the pre-screening feature extraction section (Section 3.4.1).
Then, we extended the time windows used to extract ERPs by the
QDJitter value at both ends for the performance calculation of the pri-
mary BCI tasks. Consistent with our previous works [17,30], we initially
employed the following time window: 250-400 ms post-stimulus for
calculating the P300 component, 350 and 560 ms post-stimulus for the

N400, and 650-800 ms post-stimulus for the P600 component. Thus, if a
participant QDJitter value were 20 ms, then the time windows would be
extended to 230-420 ms post-stimulus for the P300, 330-580 ms
post-stimulus for the N400, and 630 to 820 post-stimulus for the P600.

Blink and EMG Removal: We used Independent Component Anal-
ysis (ICA) for blink and EMG removal using EEGLAB fastica algorithm.
The components with the highest correlation with the EOG and EMG
signals were removed and the denoised EEG was reconstructed based on
the remaining components. An example of an EEG signal, before and
after blink removal, is illustrated in the supplementary material
(Fig. S5).

Correction for fNIRS Interfering Factors: Similar to what was
explained in the resting-state analysis section (Section 5.3.1.1), we
applied short-separation filtering to the hemodynamic responses using
the ShortDistanceFilter function in nirs_toolbox. SD channel data were
projected out of the LD channels to bolster the brain signals. An example
of corrected HbO2 t-scores, before and after short-separation filtering, is
illustrated in the supplementary material (Fig. S6).

3.4.5. Statistical analysis

For the evaluation of the predictive model, we calculated the root
mean squared error (RMSE), R-squared, Adjusted R-squared, and the
statistical significance (p-values) of each selected term in the model in
addition to the F-statistic evaluating if the overall model provides a
better fit to the data in comparison to a model that contains no inde-
pendent variables. Additionally, the standard error (SE), t-score (tStat),
and p-value of the coefficients appearing in the models were calculated
for statistical evaluation. We calculated the variance inflation factor
(VIF) metric by deriving the diagonal elements of the inverse of the
correlation matrix of each model’s independent variables [76] to assess
the impact of multicollinearity on the models [77,78].

To evaluate the task correction outcomes, we performed all the task
variations within the test session and then compared the predicted
performances with the actual performances in each variation of the task.
Accordingly, we assessed if the variation selected by the predictive
models corresponded with the highest performance in the actual runs in
the test session. Additionally, for each variation, we ran a non-
parametric Spearman correlation analysis to investigate the associa-
tions between predicted performances and the actual performances
across all subjects.

To investigate any significant difference in the predictors’ values
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between subjects without and with motor deficit (i.e., ALS), the
between-group intra-subject average measures, i.e. the average of each
predictor’s value over all sessions of each subject in each group, were
compared using Mann-Whitney U tests (Wilcoxon rank-sum test),
appropriate for non-normal distributions and small, potentially uneven
samples.

4. Results
4.1. Predictive models

Table 2 displays the predictive models constructed for each task
variation (VM-v1, VM-v2, and VM-v3) using the training sessions of all
subjects in two stages. In the first stage, we built the predictive model
(PR) based solely on competency features, referred to as PR-C. Subse-
quently, in the second stage, we extended the model to include both
competency and interfering features, namely PR-CI. The rationale
behind separating these steps was that the interfering factors may, hy-
pothetically, equally impact the tasks performed within the same session
as they are present in all of the task variations. Therefore, we con-
structed models in two steps to investigate the influence of interfering
factors on the predictive power of our models. To streamline the pre-
sentation of results, we reported the final predictive models, i.e. PR-CI,
in the main body of the text. The model that does not include interfering
factors (PR-C models) was included in the supplementary materials.

4.1.1. Task variation 1 (VM-v1)

Table 3 illustrates the terms and estimated coefficients (8) as well as
their corresponding standard error (SE), t-score (tStat) and p-value for
the predictive model, i.e., PR-CI, of the first task variation. In the PR-CI
model, in addition to attention, RF-RT, and Eye-msd, Delta-TP from EEG
resting-state, P3S-Acc from P3S Speller remained in the model. Addi-
tionally, the number of blinks (#blink) feature from EOG and LD-p2p
feature related to fNIRS interfering features together with the interac-
tion term between LD-p2p and RF-RT appeared in the model. The
model’s RMSE was 0.0154, R-squared and Adjusted R-squared values
were respectively 0.967 and 0.942 for PR-CI model, and the model’s F-

Table 2

The ultimate predictive models constructed for each variation (VM-v1, VM-v2,
and VM-v3). The models are categorized into two groups: first, considering
only competence features (PR-C), and then with the inclusion of interfering
features (PR-CI). Each formula in the table represents an expansion of equation
[3] as described in the method section. The "P’ in the equation represents the
performance, which serves as the response variable on the left side of the
equation. The first coefficient represents the intercept, while the other co-
efficients represent the weights assigned to the selected pre-screen features
derived through the process of stepwise multivariate linear (MLR) model con-
struction. As described in the feature extraction section, the features used in the
models are as follows: Attention, Fluency, and Concentration which are
extracted from cognitive-behavioral screen (CBS); HR is heart rate; Delta-TP
which refers to the EEG spectral power in the delta band in temporal-parietal
region; LF-LT or RF-RT representing fNIRS connectivity in annotated ROIs;
P3S_Acc and QDJitter, which are extracted from P3Speller run; #blinks,
Eye_msd, and LD_p2p are extracted interfering features.

VM- PR-C  P=0.92+ 0.05 « Attention — 0.24 « LF_RF — 0.24 « RF_RT + 0.24 x
vl Eye_msd
PR- P=0.62+ 0.06 * Attention — 0.01 * Deltarp — 0.79 * RF_RT +
CI 0.51 « P3S_Acc + 0.26 « Eye_msd — 0.01 % #Blink — 0.01
LD_p2p + 0.01 « RF_RT x LD_p2p
VM- PR-C  P=2.38+0.06 « Fluency — 0.17 « LF_LT — 0.01 = QDJitter — 1.54
v2 P3S_Acc
PR- P=2.38+0.06 * Fluency — 0.17 « LF_LT — 0.01 = QDJitter — 1.54
CI P3S_Acc
VM- PR-C P=0.43 + 0.04 * Concentration + 0.01 * HR — 0.71 « LF_RF —
v3 0.01 « QDJitter — 0.67  Eye_msd
PR- P=0.88+ 0.03 * Concentration + 0.01 * HR — 0.72 x LF_RF +
CI 0.01 « QDJitter — 2.01 * Eye_msd + 0.02 « HR  Eye_msd
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score was 39.8 (p-value «0.01). VIF values were all less than 5 which
raised no multicollinearity concern.

Fig. 4 (and Table S2) shows the predicted accuracies using PR-CI
model versus the actual performance in the VM-v1 test session across
all subjects. The spearman correlation analysis showed significant as-
sociations between the performance predicted by the PR-CI model and
the actual performance with a rho of 0.7289 (p-value = 0.011) in the
VM-v1 task.

4.1.2. Task variation 2 (VM-v2)

Table 4 shows the terms and estimated coefficients as well as their
corresponding SE, t-score (tStat), and p-value of the proposed PR-CI
predictive model of the second task variation. In this model, fluency
from CBS test, LF-LT from fNIRS resting-state connectivity, QDJitter and
P3S-Acc from P3Speller remained in the model. As mentioned, none of
the interference features appeared in the model. The RMSE was 0.0343,
and R-squared and Adjusted R-squared values were 0.785 and 0.724 for
the PR-CI model, respectively. The F-score as opposed to the constant
model was 12.8 (p-value<0.01). VIF values for QDJitter and P3S-Acc
were marginally greater than five, which should be considered
cautiously due to multicollinearity concerns. However, as multi-
collinearity does not in principle affect prediction accuracy, we post-
poned exclusion of either of those factors until checking the ultimate
predictive power of the model.

Fig. 5 (and Table S4) shows the predicted accuracies using the pro-
posed PR-CI model versus the actual performances in the VM-v2 test
session across all subjects. The correlation analysis showed significant
associations between the performances predicted by the model and
actual performances with a rho of 0.6970 (p-value = 0.017) in the VM-
v2 task. With the significant association of the predictive performances
with actual ones, none of the predictors were excluded from the model
due to the multicollinearity concern.

4.1.3. Task variation 3 (VM-v3)

Table 5 demonstrates the terms and estimated coefficients as well as
their corresponding standard error (SE), t-score (tStat) and p-value of
the proposed predictive model of the third task variation. From the
competence features, concentration from the CBS battery, HR from the
vital recordings, LF-RF from fNIRS connectivity measurements, QDJitter
from the P3S speller features, and Eye-msd from the eye-tracking fea-
tures, remained in the model. In addition to the competence terms, the
LD-p2p term from the fNIRS interfering features and an interaction term
between HR and Eye-msd were added to the model. The RMSE was
0.0147 for the proposed PR-CI model, while the R-squared and Adjusted
R-squared values were, respectively, 0.964 and 0.939, and the F-score
was 38.6 (p-value « 0.01). VIF values were all less than five which raised
no multicollinearity concern.

Fig. 6 (and Table S6) shows the predicted accuracies using the pro-
posed PR-CI model versus the actual performance in the VM-v3 test
session across all subjects. For this variation, the associations between
the performances predicted by the PR-CI model and the actual perfor-
mances were not statistically significant with a rho of 0.2883 (p-value =
0.390).

4.2. Correction

4.2.1. Task correction

Table 6 demonstrates how the proposed predictive model could
predict which variation leads to the highest performance for each sub-
ject. For each variation, the table lists the actual performance in the test
session compared with the predicted performance using the proposed
PR-CI model. The variation with the highest accuracy for each subject
was selected and then compared to the variation with the highest pre-
dicted accuracy based on the PR-CI model. Overall, the PR-CI model
achieved 81.8 % correct variation selection, outperforming the PR-C
model, which achieved 72.7 % correct variation selection (Tables 6
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Table 3
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Predictive model constructed from both competency and Interfering features (PR-CI) model for the first variation of VM task (VM-v1).

Predictive Model’s Terms and Statistical Terms

Intercept Attention Delta-TP RF-RT P3S-Acc Eye-msd #Blink LD-p2p RF-RT * LD-p2p
B 0.62 0.06 «0.01 -0.79 0.51 0.26 <-0.01 <-0.01 <0.01
SE 0.20 0.01 «0.01 0.15 0.18 0.05 «0.01 «0.01 «0.01
tStat 3.01 11.09 ~3.50 ~5.34 2.76 4.75 ~4.84 -3.17 3.70
p-value 0.01 «0.01 <0.01 <0.01 0.02 <0.01 <0.01 <0.01 <0.01
VIF NA 1.98 1.35 1.37 1.86 2.45 1.14 2.24 NA
and S7). Both the F1- and Kappa-scores were also improved in the PR-CI
VM'V]. model as compared to the PR-C model (Table 7).
100 4.2.2. Interference correction
§ 80 f With respect to the terms appearing in the PR-CI model of each
g .—A“.‘* V variation, we took the corresponding correction strategy. For example,
3 60 for task variation 1 (VM-v1), as #blink and LD-p2p appeared in its
© associated PR-CI model, we applied blink removal and short-separation
8 40 filtering, respectively. For task variation 2 (VM-v2), as QDJitter and LF-
O 20 LT appeared in its model, we applied jitter correction as well as short-
< separation filtering, respectively. For task variation 3 (VM-v3), as
0 QDJitter and LD-p2p appeared in the corresponding PR-CI model, we
g g g g g g ?2 ':E ?2 |:E ?2 applied jitter-correction and short-separation filtering, respectively.
= N W A~ 1 O '-8 ‘8 8 8 '-8 Fig. 7 (and Table S8) shows the performance (accuracy) changes
= N W b~ U after applying both task and interference correction strategies. As
demonstrated, except for two subjects (HO6 and ALS-02), the correction
=@=Actual PR-CI strategies led to a higher performance for all the subjects. Interference

Fig. 4. Comparison of actual accuracy (%) of the 1st VM task variation (VM-v1)
and the respected predicted accuracy (%) based on PR-CI predictive model in
the test session across all subjects (See also Tables S1 and S2, and Fig. S1 for
comparison with PR-C model predictions).

Table 4
Predictive model constructed from both cognitive and interfering features PR-CI
model specification for variation 2 of VM task (VM-v2).

Predictive Model’s Terms and Statistical Parameters

Intercept Fluency LF-LT QDJitter P3S-Acc
B 2.38 0.06 -0.17 —0.01 —1.54
SE 0.71 <0.01 0.06 <0.01 0.67
tStat 3.35 6.38 -3.11 —3.24 —2.29
p-value <0.01 «0.01 <0.01 <0.01 0.04
VIF 1.22 1.11 5.82 5.62
VM-v2
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Fig. 5. Comparison of actual accuracy (%) of the 2nd VM task variation (VM-
v2) and the respected predicted accuracy (%) based on PR-CI predictive model
in the test session across all subjects (See also Tables S3 and S4, and Fig. S2 for
comparison with PR-C model).

correction did not result in any change in performance in the two
identified subjects. On average, the correction strategies led to 5.16 %
gain in the performance accuracies over all subjects.

5. Discussion

In this work, as an extension of our previously developed fNIRS-EEG
spelling BCI [17,30], we proposed a novel multimodal experimental
scheme. This predictive scheme involves conducting a quick
pre-screening phase prior to the main BCI protocol to produce a feature
set. This feature set is then used to predict the appropriate task and
artifact correction approaches for the specific subject and session, using
a predictive platform trained on data from previous sessions. To actu-
alize and evaluate this scheme, we designed three variations of our
previously proposed VM task to account for possible intra- and
inter-subject variation arising from differences in the competence and
strategies adopted to perform BCI task-related activities. Then, in the
task-correction phase, our predictive models predicted which of the
variations would lead to the highest performance for each subject on
that specific session. This phase was followed by an interference
correction phase in which correction strategies were adopted with
respect to the terms appearing in the predictive model with the highest
performance.

5.1. Impact of the constructed models for people with ALS

To construct our predictive model, we integrated the training data of
all subjects without consideration of the motor deficits in our subjects.
The rationale behind this approach was twofold; the first reason was to
avoid the imposition of any a priori disease-related hypothesis about the
impact of motor deficits on the predictive power of our models and allow
the model to reveal disease-related confounds which can potentially
reflect the possible impact of motor deficit on performance. The second
reason for constructing the models without reference to the degree of
motor deficit was that the statistical analysis did not reveal any signif-
icant between-group difference in either the cognitive competence (CBS
score) or the eye-gaze control (eye tracking) features, the major com-
petencies needed for performing VM protocol. It is notable that
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Table 5
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Predictive model constructed from competency and interfering features PR-CI model for third variation of VM task (VM-v3).

Predictive Model’s Terms and Statistical Parameters

Intercept Concentration HR LF-RF QDJitter Eye-msd HR* Eye-msd LD-p2p
B 0.88 0.03 <0.01 -0.72 <0.01 -2.01 0.02 «0.01
SE 0.19 0.01 <0.01 0.06 <0.01 0.53 <0.01 «0.01
tStat 4.67 3.40 1.87 —~11.94 4.37 -3.81 2.57 3.36
p-value <0.01 <0.01 0.09 «0.01 <0.01 <0.01 0.03 <0.01
VIF NA 1.10 2.54 1.21 2.37 2.16 NA 1.62
VM-v3
Accuracy Improvement
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Fig. 6. Comparison of actual accuracy (%) of the 3rd variation of the VM task
(VM-v3) and the respective predicted accuracy (%) based on both predictive
models (PR-C and PR-CI) in the test session across all subjects (See also
Tables S5 and S6, and Fig. S3 for comparison with PR-C model).

Table 6
Comparison of correctness of the task selection by the predictive models.
Actual PR-CI Correctness

HO1 v2 v2 1
HO02 vl,3 vl 1
HO3 vl v3 0
HO04 vl vl 1
HO5 v3 v3 1
HO06 v2 vl 0
ALSO1 v3 v3 1
ALS02 vl,2 vl 1
ALS03 vl vl 1
ALS04 v1,2,3 vl 1
ALSO5 vl vl 1
Accuracy (%) 81.8%

Table 7
The performance metrics for PR-C and PR_CI models, including accuracy, F1-,
and Kappa-score.

Predictive Model’s Performance

Accuracy (%) F1 (%) Kappa
PR-C 71.7 72.5 0.515
PR-CI 81.8 81.3 0.660

performing the VM protocol requires mental arithmetic and visuo-
spatial tasks which involve the user’s cognitive competence and eye-
gaze control. We also observed no statistically significant association
between the ALSFRS-R score of the ALS subjects and their CBS score or
eye-tracking features, meaning that, at least in our sample population,
the presence of motor deficits had no significant association with task-
related competencies.

However, the terms that ultimately appeared in the models could

11

M no correction with correction

Fig. 7. Accuracy (%) changes after applying task- and interference-correction
across all subjects (See also Table S8 and Fig. S4).

potentially elucidate how the variation of performance could manifest in
a larger patient sample size. The terms retained in the proposed model
after variable selection can potentially reflect important information
about the association between ALS pathological measures and BCI
classification accuracy. For example, verbal fluency, the term that
appeared in the predictive model of the second task variation, is a
confound reported to be impaired in ALS patients and associated with
executive dysfunction [26,28]. Latency jitter, appearing in the models of
the 2nd and 3rd task variations, has also been reported to be signifi-
cantly increased in individuals with ALS and negatively correlated with
BCI performance (P3Speller) in both ALS and control participants [60,
73]. fNIRS connectivity features, which appeared in all of our models,
were identified as confounding factors in other studies, showing be-
tween group differences in comparisons between ALS cohorts and
healthy controls [59,79]. Kopitzki et al. (2016) have reported significant
association between interhemispheric resting-state functional connec-
tivity and ALS pathology [29]. Additionally, fronto-temporal atrophy
associated with impaired executive function has been reported in several
ALS studies [27,80,81]. While we could not observe any significant
between-group performance differences in our relatively small sample
size, all previously mentioned features appeared in our models,
including the eye-gaze features shown to be impaired in the late stages of
ALS [82]. Such findings indicate that it may be possible to predict the
most appropriate BCI task for a particular user even in the broader
population of individuals with ALS with reference to the range of motor
deficits present in these individuals. In future works, including more
participants with motor deficits and with more variance in their cogni-
tive and clinical scores could help achieve a more robust between-group
categorization in BCI performance variability.
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5.2. Scalability of the method

Considering all subjects’ inclusion during model training has another
methodological advantage in that it could provide us with a unified and
comprehensive model in which the training sessions from other subjects
could potentially predict the performance of another subject with no
training session. This reduces the need for excessive training sessions for
each participant and potentially implies that the sources of performance
variability could be common among different subjects. This is aligned
with recent BCI designs equipped with generic machine learning tech-
niques proposed with the same goal of reducing the need for excessive
training sessions [43,44]. For instance, Kang et al. (2014) proposed to
replace conventional subject-by-subject training with a multi-subject
EEG classification scheme to capture subject-to-subject information
transfer by exploiting a linear combination of common spatial patterns
(CSP) [45]. Lu et al. (2010) similarly proposed an aggregation of regu-
larized CSP algorithms to give an integrated solution compensating for
sample-based covariance matrix estimation shortfalls in a small-sample
setting. Transfer learning methods have also been proposed to overcome
the need for excessive training runs through utilizing machine
learning-based techniques to transfer data from previous sessions or
subjects to a new session or subject [46,83]. For example, Kraudelant
et al. (2008) have used clustering methods to extract similar CSP filters
across sessions and subjects to move towards a zero-training scheme for
trained BCI users [83]. Fahimi (2019) suggested an inter-subject transfer
learning framework using a deep convolutional neural network (CNN)
where the network first learns a general model based on the data from a
subject pool, then transfers the trained information to a new subject
[46]. Interestingly, our proposed scheme showed the potential to be
used in an inter-subject or subject-to-subject transfer learning approach.
Regarding this matter, although two of our subjects had no or insuffi-
cient training sessions (specifically on the third task variation), the
constructed models could still correctly predict how well those subjects
perform that task variation in the test session without previous training.
This shows the potential of our proposed scheme to be extended to a
broader population by constructing a reference model to obviate the
need for excessive training sessions for all subjects.

5.3. Efficacy of pre-screening

The cornerstone of our proposed scheme was constructing models to
predict BCI performance using a quick pre-screen recording collected at
the beginning of each session. Our designed pre-screen recording con-
sists of three parts: the CBS battery, a resting-state recording, and the
standard P3Speller. The CBS provided important features in building our
proposed predictive model. This is aligned with other studies that have
reported similar associations between cognitive battery scores and BCI
performance. For example, the ability to better concentrate on per-
forming a task has been demonstrated to have a positive correlation with
motor imagery (MI)-based BCI accuracy [31]. Motivational factors have
also been reported to be associated with BCI performance in ALS pa-
tients [84]. Furthermore, the retention of resting-state features in our
predictive models is aligned with studies that have also suggested that
integrating resting-state features into BCI design may advance our un-
derstanding of task-specific neural dynamics and provide methodolog-
ical advantages [48,85]. For instance, Blankertz et al. (2018) have
reported that higher resting-state Alpha activity can be associated with
larger power decreases when performing MI BCI tasks. While other
studies have reported individual confounds associated with BCI perfor-
mance, we propose an integrative predictive framework to aggregate
both competence-related and interfering factors to construct a single
unified multimodal predictive tool to compensate for performance
variability.
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5.4. Model variability across different task variations

The different terms appearing in the models of different task varia-
tions might be attributed to the differences in the strategies taken by
participants and in the competence of subjects to handle different task
difficulty levels or workloads. This statement is supported by several
previous studies. For example, individual performance in ERP-based
BCIs has been reported to be sensitive to variations of cognitive loads
[22]. Gu et al. (2020) have reported different effects of adding mental
workload to motor imagery-based BCIs when compared with BCIs
relying on motor execution [86]. Mental overload has also been reported
to negatively impact BCI performance as a result of both subject-related
characteristics and task-related components [87], either due to the
learning interactivity level in the task (intrinsic) or the method of
stimulus presentation (extrinsic) [23]. Differences in the tasks may lead
to the allocation of different resources to handle the workload depend-
ing on the components of the task [88] and variability across subjects in
capacity-limits in working memory [23] or short-memory [89]. The
appearance of eye-blink features among interfering factors in the models
is aligned with other studies observing that eye-blink interval is asso-
ciated with mental workload or alertness [90]. Our integrative model is
aligned with the Ryu et al. (2005) non-BCI study in which the authors
showed a combination of Alpha power, eye-blink and heart rate vari-
ability can categorize the workload of four different difficulty levels or
workload of a mental arithmetic task [88]. The main advantage of our
work is that the terms retained in our models were selected automati-
cally from a broad physiological and interference feature set based on
the statistical evaluation of the training data within the context of a
machine learning platform, while they selected the terms a priori in-
dependent of any training data.

5.5. Task correction

Our subject-dependent task correction is a novel methodological
approach to adapt to different effects of mental workload across
different subjects and tasks. Providing task variations compensated for
the baseline performance variation (VM-v1) in approximately 36% of
our participants. Although multiple studies have reported physiological
factors associated with BCI workload or difficulty level [24,86], few
correction strategies have been proposed to adapt for the corresponding
variation in performance. Our proposed method notably accomplishes
this using a predictive platform during a calibration and pre-screen
phase rather than the main BCI task. In a study with the aim to simu-
late a practical P3Speller setting where a subject performs the spelling in
presence of other mental processes, Ke et al. (2016) and Chen et al.
(2017) suggested interleaving two mental tasks (n-back and mental
arithmetic) into the P3Speller task and showed that adding mental task
features into the training set may enhance speller performance and
compensate for the augmented workload [16,91]. Our proposed method
has the following advantages compared to their suggested methodology:
1) Their augmented mental dimension is intentionally designed to
diminish the oddball response in order to simulate a realistic multi-
tasking setting and is present throughout the entire task. In contrast, our
VM paradigm is designed such that the mental task is performed only
during target intensifications and is additive to the oddball effect. 2)
While their suggested paradigm relies on visual competence, our pro-
posed VM protocol eschews this reliance on gaze control by including
simultaneous fNIRS recordings. fNIRS has been shown to be synergistic
for conventional EEG-only BCIs, particularly for individuals in the
late-stage locked-in state, as this modality relies less on eye-gaze
competence [17]. 3) Our predictive platform and task correction
approach attempts to adopt the best task variation for each subject,
while their proposed method lacks subject-specific or session-specific
considerations. 4) As previously mentioned, our reliance on features
extracted from the pre-screening phase rather than features from the
main BCI task can alleviate the tedium of the task or prevent the
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within-session habituation effect resulting from repetition of the main
BCI task during calibration.

In summary, the proposed predictive scheme was fruitful in the task/
workload correction stage by correctly predicting which of the varia-
tions of the VM task leads to the highest accuracy for 81.82 % of the
subjects. Even for the two subjects where the optimal task was not
correctly predicted by the model, the interference correction approaches
suggested by the predictive framework could be used to compensate for
the error imposed by the identified interfering factors and ultimately led
to a higher than baseline performance. In particular, the predicted
performances for VM-v1 and VM-v2 could be significantly associated
with the actual performances observed in each task, meaning that this
framework could potentially be used to estimate inter-subject variance
within each task variation. Additionally, both the F1- and Kappa-scores
were improved in the PR-CI model as compared to the PR-C model. The
kappa score for the PR-CI model indicated substantial agreement be-
tween predictions and ground truth for ideal variation selection
(0.61-0.80), while the PR-C model showed moderate agreement
(0.41-0.60). Kappa scores in both models could have been improved
further, if, in our dataset, we had more samples from each variation, as
the subjects’ optimal task.

5.6. Interference correction

Among interference features, the ‘number of blinks’ feature from the
EOG feature set appeared in some of our models, while no EMG features
were retained in any of the models. One explanation could be that none
of the participants exhibited facial muscle tension that could cause dif-
ferences in features extracted from targets as opposed to non-targets.
Applying short-separation filtering as a step in our interference correc-
tion approach demonstrated promising improvements aligned with
other fNIRS studies that similarly show improvements when using short-
distance channel information in the preprocessing stage [92,93]. The
subject-dependent adoption of correction methods can provide a more
efficient processing pipeline as opposed to excessive pre/processing
methods blind to the dynamics of the task-related demands, interfering
factors, and intra- and inter-subject variations.

5.7. Conclusion

Overall, with methodological emphasis on the pre-screen stage, our
proposed experimental scheme showed efficacy in predicting, identi-
fying, and compensating for performance variability factors in a BCI
task. In particular, it showed fruitfulness for people with ALS, with the
potential of being extended to a broader population with other motor
deficits. As, to the best of our knowledge, no reliable communicative BCI
design currently exists for people in a completely locked-in state, our
proposed variations of a novel visuo-mental task within our predictive-
corrective framework constitute one more step towards a practical and
ideal BCI platform. While few similar studies have sparsely reported
individual confounds associated with BCI performance variations, we
proposed an integrative predictive framework to aggregate both
competence-related and interfering factors to construct a single unified
multimodal predictive tool which then compensates for performance
variability. In addition to the integrative approach, the subject-
dependent adoption of correction strategies was a novel aspect of this
work. Finally, the simple predictive models constructed from a
comprehensive pre-screening feature could provide a dynamic ground to
customize experimental designs based on variability across subjects and
sessions.

5.8. Future work and limitations
However, to extend this work to capture intra-subject longitudinal

variation, we must record from the same participant for longer periods
to validate our constructed models, although our current results indicate
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that information about the sources of intra-subject variability could
potentially be transferred from information about sources of inter-
subject variability. Furthermore, the scalability of our study was
limited by its small sample size due to the rare nature of the disease and
the difficulty of conducting a longitudinal activity-based paradigm with
partly/completely locked-in ALS patients. For future work, replicating
our results with larger sample sizes would facilitate the generalizability
of the reported outcome. Additionally, it may be informative to repeat
this experiment using a broader range of tasks designed to involve
greater degrees of cognitive complexity. For instance, as lengthening the
stimulation time may make numbers available for longer time, it might
provide a controlling factor for adjusting the difficulty of the task and
correspondingly compensating performance variability. This approach
could provide the benefits of capturing greater variability in the stra-
tegies used by participants to complete the tasks and explore different
facets of participant BCI task competence, subsequently offering more
degrees of freedom to the constructed models. In future recordings, the
findings in this work can be used to customize the experimental design
based on each subject’s data. For instance, in the BCI-task runs, we can
reduce the recording of fNIRS and EEG channels in the test sessions
based on the optimum channels extracted in their training runs. Addi-
tionally, we can reduce the number of channels or ROI based on the
terms that appeared in the predictive model. This reduction of channels
can ease the recording set up which can particularly benefit people with
severe motor deficits using these systems on a daily basis. Moreover,
using alternative classification methods, such as Support Vector Ma-
chine (SVM), Neural Networks (e.g., CNN) and deep learning techniques
(e.g., DNN) may enhance individual performances for each subject and
session. It is essential to consider that the relative difference between
performances and their variability might remain consistent. As a result,
comparatively, the reported results should not be significantly affected.
Furthermore, while our correction stage can be considered a hyper-
parameter optimization stage [94] since it adjusts the calculation of
certain parameters/features, there is room for further improvement by
incorporating additional hyperparameters. Future works could explore
the use of additional hyperparameters, particularly in the stepwise
feature entrance and removal process. To investigate the stability of our
proposed method and to address concerns about its dependency on the
recorded data, it would be helpful to replicate the methodology with a
different dataset. In this regard, we have examined available similar BCI
datasets, such as the largest SCP dataset [95] and BCI Competition
IV-2a&b [96,97]. However, to the best of our knowledge, none of these
datasets could serve the evaluative purpose. Among the available BCI
datasets, none of them a) had a pre-screen run before the main BCI task,
b) were tested on people with severe motor deficits, or c) recorded an
interfering modality for applying interference correction. Additionally,
since these datasets neither were multimodal nor included the mental
non-motor aspect in the tasks, even applying our method could not
conclusively address the stability problem. The comparability of these
datasets to our own is thus too compromised to be an effective test of our
method at this time. Future recording with the same experimental
scheme as proposed in this work will help to draw more robust con-
clusions about the stability of the reported results. Extending the pro-
posed scheme to a real-time platform would be the next step to validate
its applicability on a daily basis.
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