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1 Introduction

A crucial ingredient in the S-matrix bootstrap program is the relation between the modulus
of an amplitude F (z) and its phase, as constrained by unitarity. An important question is, is
it always possible to find a phase given the magnitude of a scattering amplitude, and, if so, is
that phase unique? If an algorithm were known to find the phase, then it could be applied
to physical data, from the differential cross section, to reconstruct the underlying quantum
mechanical amplitude. It is generally believed that the amplitude is uniquely fixed, up to the
trivial ambiguity, F (z) → −F (z)⋆, provided one has access to the differential cross section
across all energies and all angles [1, 2].1 In a more realistic setting such information is never

1The proof [1] assumes that the external particles are scalars, that the amplitude is symmetric under
crossing, and finally that there are no bound states.
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known, so we can ask how much information about the phase can be deduced from scattering
data in a limited range of energies, or even at fixed energy. Even at fixed energy, and even in
the elastic scattering regime where only 2 → 2 scattering is possible, the problem of finding
the amplitude from the differential cross section is a hard one [3–5]. For inelastic scattering
with an infinite number of partial waves, there can be continuous families of phases with the
same modulus [6–8]; for inelastic scattering with L partial waves there are at most 2L phases
for a given modulus [9]; for elastic scattering, the number of phase-ambiguous solutions is
expected to be at most two [10]. The question of how to constrain the phase given the cross
section has been around since the 1960s, but not much progress has been made since the
1970s. Given the revitalization of the S-matrix bootstrap program [11], partly inspired by
modern computational techniques, we propose to revisit some of the questions using modern
tools such as machine learning. We focus here on a clear well-defined problem: given a
differential cross-section of a scalar 2 → 2 scattering process in the elastic region (energy
below the first inelastic threshold), under what circumstances does an underlying complex
amplitude producing it exists and under what circumstances is the amplitude unique?

We focus on the elastic scattering regime at fixed energy. Since energy is fixed, a 2 → 2
amplitude is a function only of the scattering angle θ and we use z ≡ cos θ throughout. We
write F (z) for the amplitude, B(z) ≡ |F (z)| for its modulus, and ϕ(z) for its phase. The
partial wave decomposition of the amplitude is

F (z) = B(z)eiϕ(z) =
∞∑

ℓ=0
(2ℓ + 1)fℓPℓ(z), (1.1)

where Pℓ(z) are the standard Legendre polynomials of spin ℓ. In this notation, unitarity
requires Imfℓ = |fℓ|2 for all ℓ.2 Writing the partial waves as fℓ = sin δℓe

iδℓ , unitarity is
equivalent to all the phase shifts δℓ being real. The differential cross section depends only
on |F (z)|2 = B(z)2, so up to trivial kinematic factors the differential cross section and
modulus are equivalent.

Although the partial-wave decomposition is general, if there are an infinite number of
partial waves it may not be so useful. One can instead phrase the unitarity condition as an
integral equation for the modulus B(z) and phase ϕ(z) [14, 15]:

sin ϕ(z) =
∫ 1

−1
dz1

∫ 2π

0
dϕ1

B(z1)B(z2)
4π B(z) cos

[
ϕ(z1) − ϕ(z2)

]
(1.2)

where

z2(z, z1, ϕ1) ≡ zz1 +
√

1 − z2
√

1 − z2
1 cos ϕ1 . (1.3)

2This unitarity relation holds for elastic scattering of non-identical scalar particles AB → AB. The
relationship between F (z) and the standard amplitude ⟨p3, p4|T̂ |p2, p1⟩ = (2π)4δ4(p1 + p2 − p3 − p4)T (s, t)

at fixed s, see e.g. [12, 13], is F (z) ≡ 1
16π

√
s−4m2

s
T
(

s, − s−4m2

2 (1 − z)
)

, where in writing this formula we
assumed for simplicity that all particles have equal mass m. For scattering of identical particles AA → AA

only even spin partial waves appear in the sum (1.1), so that F (z) = F (−z), and the relationship to the

standard scattering amplitude becomes F (z) ≡ 1
32π

√
s−4m2

s
T
(

s, − s−4m2

2 (1 − z)
)

.
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By evaluating eq. (1.2) at z = 1 so that z2 = z1 we immediately get a necessary condition
on B(z) to be a valid modulus, namely∫ 1

−1
dz1

B(z1)2

2B(1) ≤ 1. (1.4)

This “dual” bound already severely restricts the space of allowable B(z).
Given B(z) it is in general very difficult to solve eq. (1.2) to find ϕ(z). Indeed, there

are two closely related, but unanswered, questions we can ask

1. For which B(z) is there a solution to eq. (1.2)? That is, which elastic-scattering cross
sections can conceivably be realized in a unitary quantum field theory?

2. For which B(z) can there be more than one solution to eq. (1.2)? That is, when is the
phase unique?

Both of these questions were studied some time ago and only partially answered, as we
now review.

The sharpest statements so far have been made by applying the contraction mapping
principle to the unitarity equation, where the search for a phase solution can be recast
as a problem of finding the mapping’s associated fixed point [14–16]. The current bounds
on both existence and uniqueness have been derived based on the integrated form of the
kernel in eq. (1.2)

K(z) ≡
∫ 1

−1
dz1

∫ 2π

0
dϕ1

B(z1)B(z2)
4π B(z) . (1.5)

The maximum of this function was denoted by Martin as

sin µ ≡ max
−1≤z≤1

K(z) . (1.6)

To motivate this, we note that since | cos[ϕ(z1) − ϕ(z2)]| ≤ 1 eq. (1.2) implies

| sin ϕ(z)| ≤ sin µ . (1.7)

If the phase ϕ(z) is constant then by eq. (1.2) B(z) must be constant as well and sin ϕ =
sin µ = B, so this bound is saturated. Furthermore, since ϕ must be real we have that for
constant phases, sin µ ≤ 1 and B ≤ 1. It has also been proven that as long as sin µ ≤ 1 for
any given B(z), a corresponding phase always exists. The proof treats the eq. (1.2) as a
non-linear operation ϕn+1 = O(ϕn), and applies the Leray-Schauder principle to argue for
the existence of a fixed point [3]. We discuss this approach more in section 3.1. Conversely,
there exist differential cross sections with sin µ > 1 for which no phase exists, the simplest
example being constant B > 1. So one cannot hope to push this sufficient criterion for the
existence of a phase further. If sin µ > 1 there is no known test to determine whether or
not a phase exists for a given B(z) beyond (1.4).

Regarding the question of uniqueness, the contraction mapping principle was applied
to demonstrate that any solution with sin µ <

√√
5−1
2 ≈ 0.79 is unique [3, 14], while further

refinements [17] pushed the bound up to sin µ < 0.86. For polynomial amplitudes (finite
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number of partial waves) sin µ ≤ 1 is enough to ensure both existence and uniqueness [3]. For
polynomial amplitudes, it has also been shown that if the average modulus σT = 1

2
∫ 1

−1 dzB2(z)
satisfies σT < 1.38 then uniqueness is guaranteed. For general amplitudes with an infinite
number of partial waves, it has been conjectured [3, 15] but not proven or disproven that
uniqueness should still hold if sin µ < 1. In the elastic scattering region that we consider, any
nontrivial (i.e. excluding F (z) → −F (z)⋆) phase ambiguity is expected to be twofold at most,
as has been proven for genuine entire functions (i.e not a polynomial) [18], see also [10].

A modulus with two corresponding phases was found by Crichton in 1966 [19]. Crichton’s
solution has only the L = 2 partial waves and sin µ = 3.2. Shortly after, the complete set of
L = 2 phase ambiguous solutions was characterized [20]. The lowest value of sin µ among
these was 2.6. Solutions with L = 3 and L = 4 have also been studied [21, 22]. These
solutions are discussed in section 4.

Phase-ambiguous solutions have also been found with an infinite number of partial waves
in [23]. The lowest published value of sin µ among these, to our knowledge, is sin µ ≈ 2.15.
These results are reviewed in more detail in section 5. Applying modern numerical methods
we are able to find a phase-ambiguous solution with sin µ ≈ 1.67.

In this paper, we revisit some of these old questions about phase determination in the
elastic regime using modern numerical methods and machine learning. Recent advances in
machine learning have given rise to a multitude of applications in physics, from jet tagging
algorithms [24], to fast detector simulators [25] or AI-driven symbolic regression [26, 27] and
give us the perfect tool for tackling hard numerical problems for which classical algorithms
are challenging to design. In particular, machine learning has already been useful for
studying some of the structure of the S-matrix relevant to hadron physics. There, classifiers
have been trained to predict the pole structure of scattering amplitudes and identify the
associated physical states [28–30]. It is well known that neural networks are universal
function approximators [31] and as such are ideal candidates for solving integro-differential
equations. In particular Physics-informed neural networks have been shown to be able to
resolve multi-dimensional differential equations [32], where they act as a functional ansatz
and have a loss function given by the differential equation of interest. The extension to
integral equations usually involves a discretization scheme for the actual integral and has
been studied and implemented in various libraries [33–36]. In the following, we will explore
how similar techniques can be applied to study and solve the unitarity integral equation
eq. (1.2), demonstrating how to numerically recover the phase corresponding to a given input
differential cross section. We will highlight the interesting duality between the convergence
properties of the machine learning algorithm and the kernel function, making the link with
bounds derived in the literature. Finally, we will deploy various neural networks and impose
a repulsive loss in order to probe the uniqueness of the recovered solution.

We begin in section 2 by describing the machine learning setup and approach we take
to establishing consistency between a modulus and a phase. The unitarity constraint is
encoded in eq. (1.2). There are different ways to solve this equation. Given a known
modulus B(z), for example from experimental cross-section data or some S-matrix-bootstrap
computation, one can then search for a phase ϕ(z) consistent with unitarity. To find moduli
with phase ambiguities, one can alternatively search for 3 functions B(z), ϕ1(z) and ϕ2(z)
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all consistent with unitarity. To guarantee that ϕ1(z) and ϕ2(z) are not trivially equivalent
(e.g. by ϕ1(z) = π − ϕ2(z)), we will also need to add a repulsive loss to keep the solutions
apart. Section 3 discusses how to use our machine learning set-up to find ϕ(z) given B(z).
Section 4 discusses the case of phase-ambiguous solutions for amplitudes with a finite number
of partial waves and section 5 the infinite partial-wave case. By exploring this space through
a combination of a machine learning search and a refinement using a classical algorithm
capable of high precision, we find a large number of new phase-ambiguous solutions. The
lowest sin µ among these is sin µ ≈ 1.67, a value significantly closer to sin µ = 1 than the best
previously known example sin µ ≈ 2.15. A summary and conclusions are in section 6.

2 Machine Learning implementation

Finding a unitary amplitude for a given input differential cross section boils down to solving
the eq. (1.2). Solving differential or integral equations with machine learning is a problem
that has already been tackled efficiently in the literature, through the use of Physics-Informed
Neural Networks (PINNs) [32]. In a PINN the idea is to use a neural network uσ(x⃗) as a
surrogate of the solution u(x⃗). Here uσ is a neural network that takes as input the data
x⃗ and has parameters (weights and biases) described by σ. The precise architecture of uσ

can be fine-tuned given the problem at hand but typical setups consider simple feed-forward
neural networks. Having the neural network ansatz allows one to take derivatives efficiently
with respect to the inputs, a desirable property for solving differential equations. Indeed
the loss function for PINNs is usually taken to be the differential equation itself, evaluated
at a set of collocation points.

In our problem, we have a few notable particularities that depart from the typical
PINN use case:

1. We are solving an integral equation as opposed to a differential equation. In practice,
this is done by approximating the integral, for instance with Gaussian quadrature or a
trapezoidal rule, which will inevitably lead to some numerical errors.

2. We will be interested in understanding whether the phase solution is unique. Probing
this property could be done by training different neural networks that are initialized
with different random seeds. Another approach, which is one that we will prefer, is
to add a repulsion term in the loss function. This allows us to simultaneously train
different neural networks, each corresponding to a distinct solution of the integral
equation.

3. We are not always guaranteed to find a solution for any given B(z), so our networks
are not always expected to converge to low loss values. This will lead us to study the
loss landscape in more detail for simple input differential cross sections.

4. We are interested in parsing through the space of differential cross sections to probe
existence and uniqueness criteria. When explicitly looking for ambiguous solutions we
will see that after parameterizing the amplitude in some simple way we are able to
learn both the phase ϕ(z) and the modulus B(z).

– 5 –
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Figure 1. We utilize a neural network ansatz for parametrizing the phase solution. The feedforward
neural network has a series of layers with learnable parameters σ ending with a final Tanh activation
function, constraining the outputs to lie within the range [−π, π].

Similarly to PINNs however we will parametrize the phase ϕ(z) by a neural network ϕσ

and ask for it to solve the eq. (1.2). The parameterized phase ϕσ(z) shown in figure (1) is
a network that takes in a single input and depends on a set of neural network parameters
σ. These parameters are to be updated and optimized to satisfy a given objective or loss
function, typically given by the unitarity integral equation. Contrarily to PINNs, we will
not have any specific boundary condition to satisfy, rather we will force the output of ϕσ(z)
to lie within the range [−π, π]. This is done by adding a scaled sigmoid or tanh activation
function at the end of the network. Since we are interested in solving a formal equation we
are free to take any z point as part of our training data, provided z ∈ [−1, 1].

2.1 Implementation details

Following the discussion of the previous section we parametrize ϕ(z) by a network with a
simple feed-forward architecture, which we implement with PyTorch [37]. We will restrict
ourselves to small architectures, typically 4 layers with 64 nodes each using Rectified Linear
Unit (ReLU) activation functions. The outputs are constrained in the [−π, π] range by
adding a scaled hyperbolic tangent function after the final layer.3 The loss function is taken
to be the Mean Squared Error (MSE) of the integral equation, averaged over a set of Nc

randomly sampled collocation points, namely:

LE = Ez

∣∣∣∣∣∣∣∣B(z) sin ϕ(z) − 1
4π

∫ 1

−1
dz1

∫ 2π

0
dϕ1B(z1)B(z2) cos (ϕ(z1) − ϕ(z2))

∣∣∣∣∣∣∣∣2 . (2.1)

In practice, the expectation value Ez appearing in the loss is estimated by averaging over
the set of collocation points {zc} as Ez ∼ N−1

c

∑
z∈{zc}. The two-dimensional integral is also

estimated, discretizing the integrand over a grid in (z1, ϕ1) space. For training, we will also
consider a scaled version of this loss defined as

LS
E = Ez

∣∣∣∣∣∣∣∣sin ϕ(z) − 1
4πB(z)

∫ 1

−1
dz1

∫ 2π

0
dϕ1B(z1)B(z2) cos (ϕ(z1) − ϕ(z2))

∣∣∣∣∣∣∣∣2 (2.2)

which has the desirable feature of having terms of order 1. When learning B(z) this loss will
also discourage the network from learning arbitrarily small moduli. One could be tempted

3If we are in the sin µ < 1 regime, where existence is guaranteed, we can further restrict the range to
[−π/2, π/2] in order to eliminate the trivial ambiguity relating ϕ(z) → π − ϕ(z).

– 6 –
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Parameter class Parameter type Value

Architecture
Activation ReLU
Layers [64,64,64,64]
Final layer π tanh(z)

Optimizer

Optimizer name Adam
β1 0.9
β2 0.999
Learning rate 3 · 10−3

Scheduler MultiplicativeLR with 0.999 decay

Training loss
Batch size 64
Integral approximator Trapezoidal rule
Integral sampling points 25 × 25

Table 1. Model architecture and hyperparameters used for the parameterization of the phase ϕσ(z)
with a single neural network.

to further normalize and divide the loss function by sin ϕ(z), but this leads to numerical
instabilities if the expected phase value nears 0.

During training the expectation value in the loss function is approximated by averaging
over a batch of 64 randomly sampled {zc} collocation points. Random sampling ensures that
the entire angle range is properly resolved and not overfitted. The network parameters are
updated at the end of each epoch, defined here by the complete processing of a single batch.
The parameter update is done via the Adam optimizer [38] where we set the coefficients
β1 = 0.9 and β2 = 0.999 to their default values. These coefficients correspond to the
exponential decay rates of respectively the first and second moment estimates of the gradient.
In order to calculate the loss function and the relevant two-dimensional integrals we have to
resort to a numerical approximation. We use the trapezoidal rule,4 where at each fixed z value
we pick out 25 × 25 reference points, linearly spaced out in the z1 and ϕ1 directions, giving us
an evaluation grid for approximating the two-dimensional integral. In general the trapezoidal
rule for a function f(x) will give a numerical error scaling as KN−2, where N is the number
of points picked along a single direction and |f ′′(x)| < K. In our problem of interest, with
our choice of points, we expect the trapezoidal rule to give errors in the range of 10−4 − 10−6

at different z values. This implies that as LE ∼ 10−8 the loss becomes of the order of the
numerical precision that we operate at. Our default model choice and hyperparameters are
summarized in table 1 and any deviation from those in the numerical experiments will be
mentioned explicitly. Different choices of hyperparameters have been considered but those
listed ended up giving the best performance after a brief optimization search.

3 Single phase determination

We start our analysis by probing the question of existence of ϕ(z) given B(z). That is, we
will be interested in training a single neural network to recover a phase ϕ(z), which is a

4The trapezoidal rule is implemented in PyTorch directly which ensures that we will end up with a final
loss that is fully differentiable and supports backpropagation.
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solution to eq. (1.2), assuming that the modulus B(z) is a known function. We will start by
verifying that the network can be trained to recover solutions in the regime where sin µ < 1,
where we have guarantees on the existence of the function. Focusing on simple polynomial
differential cross sections, we will illustrate that the loss landscape is sensitive to the value
of sin µ and that the existence bounds are respected. We will also demonstrate that our
method is able to recover solutions when sin µ > 1, taking examples where the amplitudes
are parameterized by an either finite or infinite partial wave decomposition.

3.1 Warmup: simple examples

To get started, we first consider simple polynomial forms for the modulus. We consider a
linear function B(z) = (z + 4)/10 and a quadratic function B(z) = (z2 + 1)/2. Both moduli
are positive across the z range and have sin µ values that are respectively sin µ1 = 47

90 ≈ 0.522
and sin µ2 = 13

15 ≈ 0.867, guarantying the existence of a solution. Their integrated kernels
K(z) (cf. eq. (1.5)) whose maximum gives sin µ are shown in figure 2. We implement different
neural networks following the setup described in section 2 and let them run for 5000 epochs.
The final performance is evaluated on a test set of 100 linearly spaced out z points. We show
at the bottom of figure 2 the predicted phases for both cases considered. The final evaluation
losses are both of the order of LS

E ∼ 10−8, thus at the order of the numerical precision which
is supported by the numerical integration scheme. For moduli satisfying sin µ < 1 such as
these, the numerical fixed point iteration [15] applies and we have verified with a classical
algorithm that the solutions agree with the ones found by our framework.

In figure 2, we can observe that for both the linear and quadratic cases, the phases
ϕ(z) look a lot like the integrated kernel K(z). This is straightforward to understand.
When ϕ(z) ≪ 1, one can expand the unitarity equation eq. (1.2) using sin ϕ(z) ≈ ϕ(z) and
cos[ϕ(z1) − ϕ(z2)] ≈ 1 to see that ϕ(z) = K(z) to first order in ϕ(z). Indeed, one can then
expand to second order in ϕ(z) giving

ϕ(z) = K(z) +
∫ 1

−1
dz1

∫ 2π

0
dϕ1

B(z1)B(z2)
4π B(z)

1
2[K(z1) − K(z2)

]2 + · · · (3.1)

and so on. This is actually just a version of the fixed-point iteration scheme starting with
ϕ(z) = 0. One can in principle use this procedure even if ϕ(z) is not small. There the
iterative scheme takes ϕn+1 = Φ(ϕn) where

Φ(ϕn) = arcsin
( 1

4π

∫ 1

−1
dz1

∫ 2π

0
dϕ1

B(z1)B(z2)
B(z) cos[ϕ(z1) − ϕ(z2)]

)
(3.2)

and aims at finding the fixed point ϕ⋆ = Φ(ϕ⋆). However, if sin µ > 1 then K(z) > 1 for
some z and sin ϕ(z) = K(z) has no solution for real phases ϕ(z). This is one reason we only
expect phase ambiguities for sin µ > 1. Generally, we find that for sin µ < 1 the iteration
tends to converge fairly quickly (although we cannot prove it is independent of the initial
condition for the iteration), but when sin µ > 1 it often does not converge at all.

The unitarity equation also implies the bound sin ϕ(z) ≤ K(z), which is respected in our
results, giving an important cross-check. For these simple polynomial amplitudes, we can
see from figure 2 that K(z) ≈ B(z)−1. This is once again expected in the regime where the

– 8 –
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Figure 2. We warm up by determining the phase ϕ(z) for a linear modulus B(z) = z+4
10 (left) and a

quadratic modulus B(z) = z2+1
2 (right). Top panels show the integrated kernel K(z) and its maximum

sin µ. Bottom panels show B(z) and the phase ϕ(z) found with machine learning.

integral appearing in eq. (1.5) is slowly varying. In particular, for the linear modulus, we have

K(z)B(z) =
∫ 2π

0
dϕ1

∫ 1

−1

B(z1)B(z2)
4π

= z + 48
300 (3.3)

Since −1 < z < 1 this function is essentially constant and K(z) ≈ c
B(z) for some c results.

As a side note, when ϕ(z) is a solution then so is π − ϕ(z). These solutions are said to
be trivially related and either could have been expected. Changing the initialization seed
of the networks is a way to recover such alternative solutions.

3.2 Scanning the loss landscape

Having validated our method on two simple polynomial examples, we can now look into the
performance of our implementation on families of B(z). We consider two families: a linear one,
B(z) = az +b and a quadratic one B(z) = cz2 +d. For each value of a and b or c and d we can
search for a phase. Although the network cannot tell us for sure whether unitarity is exactly
satisfied, the loss of the neural network provides a good proxy for satisfaction. We thus explore
the loss landscape and compare it to other indicators of whether unitarity can be satisfied.
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Figure 3. Scaled loss landscape for the two-parameter family of moduli B(z) = az + b. For each a

and b we find a phase ϕ(z). Red regions indicate that no solution is likely. The black curve is sin µ = 1
and delimits the region within which we are guaranteed the existence of a solution. The grey curve
delimits the bound of eq. (1.4) and solutions cannot be found outside of its enclosed region.

3.2.1 Linear functions

We consider the family B(z) = az + b with a and b real and b > |a|, which ensures positivity
of B(z) for all z values. Although B(z) is a polynomial, the amplitude F (z) = B(z)eiϕ(z)

will generally not be. Indeed, this parameterization for B(z) is not compatible with any
unitary polynomial F (z) (see appendix A). As such, any numerical solution for ϕ(z) has to
be understood as possessing an infinite partial wave decomposition.

We conduct a scan over this family of B(z) by taking a 75 × 60 grid over different a, b

values, with a ∈ [−0.5, 2.0] and b ∈ [0, 2.0]. For every parameter pair, we train a new neural
network using the scaled loss function of eq. (2.2) for 2000 epochs. We then evaluate the base
and scaled losses, eqs. (2.1) and (2.2), on the resulting solutions. In figure 3 we show the
complete scaled loss landscape, along with the sin µ = 1 and

∫ 1
−1 B(z1)2 = 2B(1) contours.

Those are contours for respectively guaranteeing and excluding solutions. A zoomed-in
perspective on the regions of low losses is shown in figure 4. sin µ < 1 seems to give a good
indication that a solution exists or not. This is non-trivial — the ML algorithm knows
nothing about sin µ and there could equally well have been an entirely different functional
of B(z) which characterized the existence of a solution. The correspondence of sin µ = 1
with the boundary of the allowed region is further explored in the bottom panels. There
we also show the values of sin µ across this linear B(z) family.

On the bottom right we show that the boundaries of sin µ ∼ 1 and LS
E ∼ 10−5 almost

perfectly overlap. As the loss crosses this threshold it rapidly grows by many orders of
magnitude, up to 10−4 − 10−2, indicative of a regime where the network is unable to find a
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(c) sin µ landscape. (d) Cut on the scaled log loss landscape.

Figure 4. Zoom on the loss landscapes for the two-parameter family of moduli B(z) = az + b. Black
and grey curves follow figure 3. Top panels show the base loss and scaled loss. Panel (c) shows a heat
map of sin µ values over the family B(z) = az + b (no phase is determined or needed). Right shows
the scaled loss landscape with a hard cut of LS

E ∼ 10−5. This loss boundary agrees very well with the
sin µ = 1 boundary.

solution outside of sin µ > 1 for linear moduli. In particular, the bottom boundary of sin µ = 1
overlaps with the dual exclusion bound, across which the network has LS

E > 10−5 and does
not find any solutions. However, near the top sin µ = 1 boundary, we have a very thin region
of potential solutions with sin µ > 1. All of these solutions fall within the grey region and are
not forbidden by the dual exclusion bound. Additional dual bounds constraints are explored
in appendix D but do not go beyond the simple exclusion bound we have considered.

3.2.2 Quadratic functions

Next, we consider the family of symmetric quadratic moduli with B(z) = c + dz2. To keep
B(z) positive we restrict to c > |d|. We proceed in a similar fashion as in the previous section,
constructing a grid of 45 × 180 points for c ∈ [0, 1.5] and d ∈ [−0.5, 5.5], where we train a
new neural network at each point for 2000 epochs.

In figures 5–6 we repeat the same plots as for the linear function: the loss landscapes for
the base and scaled losses along with the sin µ values and the LS

E cut. Within the sin µ < 1
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Figure 5. Scaled loss landscape for the two-parameter family of moduli B(z) = cz2 + d. For each c

and d we find a phase ϕ(z). Red regions indicate that no solution is likely. The black curve is sin µ = 1
and delimits the region within which we are guaranteed the existence of a solution. The grey curve
delimits the bound of eq. (1.4) and solutions cannot be found outside of its enclosed region.

region, where a solution is guaranteed, the loss is generally small and LS
E < 10−5 is always

satisfied. This is a strong sign that our network is able to properly find the expected solutions
in this region. We notice however that the network still finds approximate numerical solutions
with LS

E ∼ 10−5 up to sin µ ∼ 1.1 − 1.2.
In figure 6 we can see two regions of low loss away from sin µ < 1: two small islands

circled in panel d and an additional one-dimensional curve along which the loss is around
LS

E ∼ 10−6 − 10−5. Both regions are significantly outside of the sin µ = 1 boundary.
As shown in appendix A the two islands correspond to the genuine finite partial wave

solutions of order L = 2, which have quadratic differential cross sections. Although genuine
solutions, their associated loss is around LS

E ∼ 10−5 as their corresponding sin µ values are
quite high, around 2.95 and 3.67 respectively. Indeed, as sin µ grows the networks become
harder to train as can be understood from the structure of the loss function of eq. (2.2). For
sin µ > 1 the cosine term in the integral needs to precisely modulate the kernel function in
order to have a value that can be matched with | sin ϕ(z)| < 1. This difficulty is intrinsic
to the unitarity loss and is responsible for the failure of the classical fixed point iterative
scheme as sin µ > 1. Since our neural networks converge slower in that regime, we thus
require either a higher number of training epochs or a further fine-tuning of hyperparameters
to resolve these high sin µ solutions with better accuracy. Alternatively, provided one knows
that a finite partial wave solution is expected, it is also possible to first parametrize the
unitarity amplitude as in eq. (1.1). One can then fit the phase shifts δℓ by ensuring that
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(c) sin µ landscape. (d) Cut on the scaled log loss landscape.

Figure 6. Loss landscapes for the two-parameter family of moduli B(z) = cz2 + d. Black and grey
curves follow figure 3. For each c and d we find a phase ϕ(z). Red regions indicate that no solution is
likely. Top panels show the base loss and scaled loss. Panel (c) shows a heat map of sin µ values over
the family B(z) = cz2 + d. Right shows the scaled loss landscape with a hard cut of LS

E ∼ 10−4.5,
along with the L = 2 finite partial wave solutions circled in black. The 1D curve corresponds to finite
L > 2 solutions.

modulus |F (z)| matches the B(z) given as input. In that context, one can go back and
forth between the machine learning scans and the classical fitting algorithm in order to
fully characterize the low loss landscape.

Similarly, as described in appendix A, the 1D curve of sin µ > 1 solutions is associated
with finite partial wave solutions of order L ̸= 2. Their corresponding moduli are numerically
well approximated by a quadratic B(z) in the z ∈ [−1, 1] region. Thus, even though their
moduli are not quadratic per see, these spurious solutions show up in our scans and are
associated with low loss values.
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3.3 Extremal amplitudes

Up until now, we have considered only toy amplitudes where the modulus is a low order
polynomial. Here we demonstrate that the same technique can also be applied when using
differential cross sections obtained in the context of the nonperturbative S-matrix bootstrap
program, see e.g. [39–41]. One class of amplitudes of interest are “extremal” amplitudes
that maximize or minimize the value of the amplitude at the crossing-symmetric point
λ = 1

32π T (4m2

3 , 4m2

3 ), which intuitively measures the strength of the interaction between
particles. One can place bounds on this coupling by combining the so-called primal and
dual methods [42]. The primal method consists of optimizing for the value of the coupling
while satisfying all relevant constraints such as analyticity, crossing and unitarity. Any
coupling within the primal bounds is defined to be in the allowed region. This approach
is complementary to the dual method which places bounds on the excluded region. There
one optimizes for the coupling while breaking the constraints as softly as possible. Since
any coupling in the excluded region yields an unphysical theory, the extremal coupling is
asserted to be between the primal and dual bounds. Numerically the maximal value of
the coupling was obtained to be

2.66 ≤ max λ ≤ 2.73, (3.4)

whereas for the minimal coupling [41], the current bound is

−8.02 ≤ min λ ≤ −7.0. (3.5)

It was also found that when maximizing/minimizing various couplings, while elastic unitarity
was not imposed it effectively emerged with a good precision in the extremization process.
This structure was further explored in [43]. In the context of the present work, it is therefore
interesting to consider the differential cross-sections produced by the extremal amplitudes
and check that elastic unitarity can indeed be satisfied by finding the appropriate ϕ(z).

To analyze this case in more detail, we take the numerical results from [40] and use
them to compute B(z) that we then use as input. The functions B(z) computed in this way
are more physical than our toy functions in that they come from amplitudes that satisfy
analyticity, unitarity and crossing at all energies. Due to the fact that they describe the
scattering of identical particles, they obey B(z) = B(−z). This symmetry is also respected by
the expected phase, and we force our networks to output a symmetric result by considering
[ϕσ(z) + ϕσ(−z)]/2 as the final output. In order to expedite the numerical evaluations of the
input B(z) functions, we will fit them by symmetric polynomials of finite order.

We find that more interesting results arise from the amplitudes that are closer to
minimizing the coupling. Using the primal bootstrap results of [40] for Nmax = 26, we get
λ ≈ −6.48. We choose energies to be s = 4.5m2 and s = 8m2 and extract the appropriate
B(z) functions. Those are fitted by symmetric polynomials of order 14 and 40 respectively,
which are then fed as inputs to our networks. Training is done over 5000 epochs, minimizing
the scaled unitarity loss and using the default architecture and hyperparameters. The input
B(z) and associated phases are plotted on the top panels of figure 7, where we also include the
phase predictions from the bootstrap amplitudes. At s = 4.5m2 the modulus has sin µ = 0.64,
while at s = 8m2 the modulus is associated with sin µ = 1.64.
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(a) Amplitudes at s = 4 + 1/2m2.
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(b) Amplitudes at s = 8m2.
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(c) Unitarity loss at s = 4 + 1/2m2.
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(d) Unitarity loss at s = 8m2.

Figure 7. (Top pannels) B(z) moduli and associated ϕ(z) phases coming from the bootstrap program
of [40] for the amplitude with λ ≈ −6.48 and Nmax = 26. We extract B(z) at different s energies and
use a neural network to predict the associated phase. (Bottom panels) Evaluation of the unitarity loss
of eq. (2.2) on the predicted amplitudes coming from the bootstrap program and the trained neural
networks.

To verify the accuracy of our results we also plot the evaluation of the unitarity loss of
eq. (2.2) on the bottom panels of figure 7. This is done for both the trained networks and the
bootstrap predictions and allows us to verify to which extent unitarity is broken in both cases.
We can immediately notice that at s = 4.5m2 the bootstrap and the neural network phases
agree with one another and that in both cases unitarity is well respected. The unitarity loss
is lower for the phase coming from the neural network as it has been specifically trained to
minimize this quantity, while in the case of the bootstrap program elastic unitarity is only an
emergent property. At s = 8m2 the difference between the neural network and bootstrap
phases is more pronounced. Unitarity is not respected with very good accuracy, in particular
for the bootstrap phase. At the z = ±1 edges the loss reaches the order of 10−2 and indicates
that numerically the emergent elastic unitarity property does not hold accurately.5

5This is further confirmed by numerically calculating K(z) of eq. (1.5). For unitarity to hold we must have
sin ϕ(z) < K(z), which is respected by the neural network prediction. However, for the bootstrap phase, this
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4 Phase ambiguities: finite partial waves

So far we considered the existence question: given a modulus B(z) when does there exist a
phase ϕ(z) so that the amplitude F (z) = B(z)eiϕ(z) is unitary? A related question is: when
are there two possible phases for the same B(z)? These phases should not be related by
the redefinition, ϕ(z) → π − ϕ(z) (such redefinition is called a trivial ambiguity). The value
of sin µ is often considered as an indicator of whether ambiguous solutions may exist. The
best bound in the literature [17] guarantees uniqueness for sin µ < 0.89, and it has been
conjectured [3] that uniqueness should hold up to sin µ = 1. In practice, however, most known
examples have sin µ values much higher (above 2.0) and require a dedicated construction. In
the following sections, we will see how machine learning can be used in conjunction with
classical algorithms in order to study these ambiguous solutions. In this section, we focus on
finite partial wave phase ambiguities and consider the infinite partial wave case in section 5.

In the finite L case, we both review known results and then discuss how machine learning
can help. For finite L, the first phase-ambiguous solution was found by Crichton in 1966
and has L = 2, so the amplitude is quadratic in z. As we will see, for finite L there are an
infinite number of phase-ambiguous solutions which decompose into 1d curves in the space
of phase-shifts. The low dimensionality of the solution space makes the machine learning
approach challenging. In the infinite L case, the solution space is higher-dimensional and
easier to explore with gradient descent.

4.1 Classical solutions

We first review what is known about the finite L phase-ambiguous solutions classically, i.e.
without machine learning. When there are a finite number of partial waves in an amplitude,
the question of whether there are multiple phases for the same amplitude reduces to whether
a finite set of equations can be solved simultaneously. For finite L we write the amplitude as

F (z) =
L∑

ℓ=0
(2ℓ + 1)eiδℓ sin(δℓ)Pℓ(z) (4.1)

where Pℓ(z) are Legendre polynomials and δℓ ∈ R are the phase shifts. This parameterization
in terms of real phases guarantees that the amplitude is unitary. We are looking for another
amplitude

F̃ (z) =
L∑

ℓ=0
(2ℓ + 1)eiδ̃ℓ sin(δ̃ℓ)Pℓ(z) (4.2)

with the same norm as F (z). We are interested in non-trivial ambiguities.
To find non-trivial ambiguities we need two sets of phases δℓ and δ̃ℓ not all equal (and

not all opposite) for which B(z) = |F (z)|2 = |F̃ (z)|2 is the same. Since Pℓ(z) is a polynomial
of degree ℓ, |F (z)|2 is a polynomial of degree 2L. So setting the coefficients of zj from |F (z)|2

equal to those of |F̃ (z)|2 gives 2L + 1 equations for the 2L + 2 real phase shifts δℓ and δ̃ℓ.
This generically leads to a 1-dimensional solution space. Indeed, the finite L solutions for
every L correspond to a set of 1D curves in 2L + 1 dimensions.

is broken near the z = ±1 edge of the angle range.
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The term associated with z2L in |F (z)|2 is (2L + 1)2|PL(z)|2 sin2 δL. For this to be the
same with δℓ and δ̃ℓ requires δL = δ̃L so that the highest phase shift for the two solutions
must be equal. There may or may not be one of the 1D curves which has a given value of δL.
However, if we find a point on one of these curves with a given δL we can then move along
the curve unambiguously to determine all the other connected solutions.

For example, with L = 1 equating the expression for |F (z)|2 using the two sets of
phase shifts gives

|F (z)|2 = sin2 δ0 − 6z cos(δ0 − δ1) sin δ0 sin δ1 + 9z2 sin δ2
1 (4.3)

= sin2 δ̃0 − 6z cos(δ̃0 − δ̃1) sin δ̃0 sin δ̃1 + 9z2 sin δ̃2
1 (4.4)

Matching the coefficients of z0, z1 and z2 gives 2L + 1 = 3 equations for the 4 phase shifts
δ0, δ1, δ̃0 and δ̃1. The z2 term forces δ1 = δ̃1 and the z0 forces δ0 = δ̃0 so that there are
no nontrivial solutions with L = 1.

The L = 2 case is already fairly complicated. A non-trivial solution with L = 2 was
found by Crichton [19]:

Set 1 :


δ0 = − 7

54π

δ1 = − 869
3600π

δ2 = 1
9π

and Set 2 :


δ̃0 = 659

1200π

δ̃1 = − 59
400π

δ̃2 = 1
9π

(4.5)

that give rise to two amplitudes F (z) and F̃ (z) which share the same differential cross section.
Shortly after Crichton’s paper, Atkinson, Johnson, Mehta and de Roo found the complete

set of L = 2 solutions [20]. These form a 1D curve in the space of phase shifts, as expected.
The value of sin µ for these solutions is shown in figure 8 with Crichton’s point indicated.
Crichton’s solution has sin µ = 3.2. For L = 3 the complete space of solutions is also known.
For L = 4 only a handful of solutions are known.

Rather than attempting to improve these analytic results, we simply take a brute-force
approach to finding solutions. To do so we first pick a random δL = δ̃L. Then we search for a
solution to the remaining 2L equations and 2L unknows close to random seed points for the
other δℓ and δ̃ℓ. Once the equations are solved, we then confirm that the solutions are not
trivially related. By sampling enough points one can see the emergence of a set of curves
(one can also move along the curves to find connected solutions if desired).

Results for L = 2, 3, 4 and 5 are shown in figure 8. Interestingly we observe that the
minimum value of sin µ with δL ̸= 0 does not seem to decrease with L.6 For L = 2, the
lowest value has sin µ ≈ 2.63. For L = 3 it is sin µ ≈ 3.41. The lowest value for L = 3 is
when δ3 = 0 which reduces it to L = 2. Such points do not show up in our search since they
must have δL = 0 exactly which will never occur in a random scan. For L = 4 and L = 5,
the lowest values we found with δL ̸= 0 are sin µ ≈ 3.58 and sin µ ≈ 3.83 respectively. Based
on these observations, we do not believe that going to higher finite L will reveal ambiguous
solutions with sin µ values smaller than those from L = 2.

6We have tentatively explored up to L = 10. For L > 4 there are so many curves that an enormous number
of samples would be required to resolve them.
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Figure 8. Finite partial-wave amplitudes with phase ambiguities separate into non-intersecting 1D
curves in the L + 1 dimensional space of phase shifts. For L = 2 there is only one curve. These plots
show a projection of these curves into the sin µ, δL plane for L = 2, 3, 4, 5. The point on the L = 2
plot is Crichton’s original ambiguity with δ2 = π

9 . The solid curves are analytic solutions when known.
The blue dots are a random scan. The red line gives the minimum sin µ in each case.

4.2 Machine learning with repulsive loss

One might hope to use machine learning to find lower values of sin µ for finite L. This
becomes difficult because the solution space is one-dimensional. Thus, if one starts on a
particular curve and does gradient descent in sin µ, one will only find the local minimum of
that curve and never be able to jump to other curves. Fortunately, this is only a problem for
finite L. Ambiguous solutions with infinite L fill higher dimensional regions which are easier
to explore. The finite L case is still useful for exploring the machine learning approach as we
have some exact phase ambiguous solutions, such as the Crichton one. So we will use finite
L as a testbed for constructing a neural network capable of finding phase ambiguities. The
lessons learned from these examples can then be applied to the more promising infinite L case.

We first attempt to recover both of Crichton’s L = 2 solutions. To begin, we simply try to
find the phase multiple times and hope to get different answers based on different initialization
seeds. We fix B(z) = |F (z)| from Crichton’s solution, as shown in figure 9(a). We first
simply define two independent neural networks (ϕ1(z) ϕ2(z)) and train them according to
the principles of section 3 with different random initializations. We let the networks run
for 5000 epochs using the loss of eq. (2.1). We do find two phases this way, as displayed
in figure 9(b) alongside the theoretical solution coming from using the second set of phase

– 18 –



J
H
E
P
0
5
(
2
0
2
4
)
2
0
0

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
z

0.0

0.5

1.0

1.5

2.0

2.5

3.0

B(
z)

 o
r K

(z
)

B(z)
K(z)
sin =3.231

(a) Crichton’s modulus and integrated kernel.
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(b) Redundant neural network phase solutions.

Figure 9. Crichton ambiguity: naively training using two independently initialized neural networks.
On the right panel, we notice that the two phases are trivially ambiguous.

shifts δ̃. Unfortunately, the phases are trivially related: ϕ1(z) = π − ϕ2(z). As we randomly
initialize new neural networks we can end up recovering either solution (or the second
Crichton solution). What is apparent from this simple experiment is that we need a way
to avoid trivial ambiguities.

In order to study the uniqueness property associated with a given differential cross
section we devise a methodology for consistently recovering different solutions with our neural
networks. The setup is almost identical to the one used in section 3, where we start by
independently initializing various neural networks that aim to solve the unitarity equation,
minimizing the losses of either eq. (2.1) or eq. (2.2). The main deviation from this simple
setup follows previous work in the literature [44] and consists in introducing a new repulsive
term in the loss function. The role of this term will be to push apart the various neural
network solutions and ensure that they do not overlap.

To introduce the repulsion term we must first define a measure for the closeness of two
solutions ϕ1(z) and ϕ2(z). This measure should account for the periodicity properties of the
phases to avoid boundary effects. One choice is to first define

d(ϕ1, ϕ2) = Ez

∣∣∣∣∣∣[ cos ϕ1(z) − cos ϕ2(z)
]2 +

[
sin ϕ1(z) − sin ϕ2(z)

]2∣∣∣∣∣∣ (4.6)

as a distance between two phase solutions.
For the repulsive loss itself, we will consider two alternatives. The first one, the kick

repulsion, follows [44] and consists in introducing the pairwise loss

L(1,2)
R1 =

[
d(ϕ1, ϕ2)

]−p +
[
d(ϕ1, π − ϕ2)

]−p (4.7)

where p is some hyperparameter to be fixed. The first term in this loss ensures that we
do not get exactly the same solutions, while the second term pushes us away from the
trivial ambiguity. Since this repulsive term is always non-null, it will only be included in
the loss function at intermediate epochs. More precisely, we let the networks first train
for ei epochs, then activate the repulsion and then turn it off after a total of ef epochs.
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Repulsive loss type Parameter Parameter description

Kick repulsion
p Strength of the inverse power law repulsion
ei, ef Start and end epochs where the repulsion is active
λR Repulsion loss to unitarity loss relative strength

Decaying repulsion

c0 Initial repulsive factor
sf Total scaling of the repulsive factor
ef Epoch timescale where the repulsive factor grows
λR Repulsion loss to unitarity loss relative strength

Table 2. Hyperparameters to be tuned for the different repulsive losses considered.

In that way, this repulsive term in the loss function acts like a kick that pushes the two
solutions apart but doesn’t prevent the network from achieving arbitrary low loss even when
the solutions are similar.

At a given epoch t the full loss function for N networks now reads

LK =


N∑
i

L(i)
E + λR

N∑
i<j

L(i,j)
R1 for ei < t < ef

N∑
i

L(i)
E for t < ei or t > ef

(4.8)

where λR is another hyperparameter defining the relative repulsion strength and LE is the
unitarity loss. At the end of the training run, we can then evaluate the repulsion term to
check if the two solutions found are indeed not identical or correspond to the trivial ambiguity.

The second loss that we considered is a decaying repulsion. It consists of an interaction
term that is not singular even when the solutions overlap. This is done by adding the loss term

L(1,2)
R2 = 2 − tanh[c(t)d(ϕ1, ϕ2)] − tanh[c(t)d(ϕ1, π − ϕ2)] (4.9)

where c(t) is some hyperparameter. In order to precisely fit the different solutions we want the
repulsion to be inconsequential as the training nears the end. This is achieved by making the
parameter c(t) epoch dependent, increasing throughout the training. In particular, we will take

c(t) = ∆1 tanh
(

t

a
− b

)
+ ∆2 (4.10)

where the parameters are chosen such that c(t) starts at c(0) = c0 and reaches 99% of its
maximal final value cf after ef epochs, with c(ef ) = 0.99c0sf where sf is the total scale
factor.7 At a given epoch t the full loss function for N networks now reads

LD =
N∑
i

L(i)
E + λR

N∑
i<j

L(i,j)
R2 (4.11)

7Additionally we ask for c′(t) to be maximum at ef /2. These constraints fix the parameters of c(t) to be
a = ef /(2 arctanh [(100 − 99sf )/(100 − 101sf )]), b = ef /(2a), ∆1 = c0(100 + 99sf )/200 and ∆2 = c0(−100 +
101sf )/200.
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Figure 10. Recovering the Crichton ambiguity with the addition of a repulsive loss. On the left
panel, we show the two distinct ambiguous phases recovered by our networks. On the right panel, we
compare the evolution of the two repulsive losses introduced in eq. (4.8) and eq. (4.11).

where the repulsive loss term is always included.8 We summarize the hyperparameters for
the two types of repulsive losses in table 2.

Adding the repulsive loss LR1, we train a neural network for 10000 epochs using the
unitarity loss of eq. (2.1). After a quick search of the hyperparameter space, we use p = 2,
ei = 200, ef = 300 and λR = 1.0, although other values could be considered with additional
fine-tuning. The phases recovered by the networks are shown in figure 10(a) and are plotted
against Crichton’s prediction of the finite partial wave parameterization. The final losses for
each phase are around LS

E ∼ 10−5, in good agreement with the expected answer. We note that
for the solid blue curve in figure 10(a) we represent the phase coming from using Crichton’s
phase shifts −δl, which corresponds to representing the trivial ambiguity associated with
Crichton’s first solution.

We also train another neural network with the LR2 repulsive loss using c0 = 2, sf =
16, ef = 1000 and λR = 50.0. The resulting phases also have a final loss around LS

E ∼ 10−5.
We compare the loss functions using the kick and decaying repulsion in figure 10(b), where
we use a moving average window of 10 epochs to smooth the plot. Whereas the decaying
repulsion has a smoothly decreasing loss we can indeed verify that the kick repulsion sharply
boosts the loss across a given window.

5 Infinite partial wave ambiguities

Looking for amplitudes with ambiguous phases that have an infinite number of partial waves
has also been explored classically. We first review some results in this direction, then apply
machine learning to the infinite L case.

8In practice when the repulsive loss starts to be smaller than a tenth of the unitarity loss we will discard
it to facilitate training. This check is to be performed throughout training and the repulsive loss can be
reactivated as soon as we breach that threshold.
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5.1 Classical solutions

One approach to finding phase ambiguities with infinite L is based on partially factorizing
the amplitude and conjugating some of its zeros. The following discussion follows [23].

Any amplitude can be written (non-uniquely) as

F (z) = g(z)
L∏

ℓ=1

z − zℓ

1 − zℓ
(5.1)

for some L and some g(z). When g(z) = 1 the amplitude is a polynomial with a finite
number of phase shifts. For L = 0, this is just F (z) = g(z) an arbitrary function. This
form is still useful, since if we conjugate any number of zℓ the amplitude will have the same
norm. In particular, the amplitude

F̃ (z) = g(z)
L∏

ℓ=1

z − z⋆
ℓ

1 − z⋆
ℓ

(5.2)

has |F (z)| = |F̃ (z)|. Constructing amplitudes in this way guarantees they have the same
norm but does not guarantee unitarity. And moreover, even if F (z) is unitary, F̃ (z) generally
will not be.

In order to make progress, one needs to restrict the class of functions searched. Ref. [23]
focused exclusively on the simplest case where two amplitudes differ by a single zero. Doing
a partial wave decomposition of g(z) we can write

F (z) = z − z1
1 − z1

∞∑
ℓ=0

(2ℓ + 1)
(

γℓ − 1
2i

)
Pℓ(z)

F̃ (z) = z − z⋆
1

1 − z⋆
1

∞∑
ℓ=0

(2ℓ + 1)
(

γℓ − 1
2i

)
Pℓ(z) = z − z⋆

1
z − z1

1 − z1
1 − z⋆

1
F (z) (5.3)

This is similar to a normal partial wave decomposition

F (z) =
∞∑

ℓ=0
(2ℓ + 1)

(
Sℓ − 1

2i

)
Pℓ(z) (5.4)

where Sℓ = e2iδℓ so that the unitarity condition δℓ ∈ R is equivalent to |Sℓ| = 1. Because
of the z−z1

1−z1
prefactor the unitarity condition is not |γℓ| = 1 but rather |Sℓ| = 1. Solving

for the Sℓ in terms of the γℓ gives

Sℓ = 1
1 − z1

[(ℓ + 1)γℓ+1 + ℓγℓ−1
2ℓ + 1 − z1γℓ

]
(5.5)

The condition that |Sℓ| = 1 then gives a recursion relation among the γℓ. Writing

γℓ = 1 − ϵℓ (5.6)

this relation can be written in descending form:

ϵℓ−1 = 2ℓ + 1
ℓ

ϵℓ Re(z1) − ℓ + 1
ℓ

ϵℓ+1 + 2ℓ + 1
ℓ

(1 − Re z1)
[
1 ±

√
1 + (Im z1)2

(Re z1 − 1)2 ϵℓ(2 − ϵℓ)
]

(5.7)
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or equivalently in ascending form:

ϵℓ+1 = − ℓ

ℓ + 1ϵℓ−1 + 2ℓ + 1
ℓ + 1 ϵℓ Re(z1) + 2ℓ + 1

ℓ + 1 (1 − Re z1)
[
1 ±

√
1 + (Im z1)2

(Re z1 − 1)2 ϵℓ(2 − ϵℓ)
]

(5.8)
Note the sign ambiguity: there are generally two solutions at each step leading to 2n sign
choices. Generally, only one of them will give finite amplitudes, with εℓ → 0 as ℓ → ∞. There
is nevertheless no clear criterion for deciding which sign to choose at each recursion step.

As discussed by [23] an additional necessary condition for the unitarity of F (z) following
from |Sℓ| = 1 and finiteness is that

Im(γ⋆
ℓ γℓ−1) = 0 (5.9)

This means that each pair of successive γℓ must have the same phase. The phase can only
change if γL = 0 for some L, in which case the γL−1 and γL+1 can have different phases. So
overall the series of γℓ comprises sequences with the same phase separated by zeros. Moreover,
for the amplitude to be finite γℓ → 1 as ℓ → ∞, which means that there has to be some
L beyond which all of the γℓ are real. Since some γℓ has to be complex (or else F (z) and
F̃ (z) are complex conjugates), we conclude that γL−1 = 0 for some L and γℓ ∈ R for ℓ ⩾ L.
Atkinson et al. call such solutions class L.

Class 2 amplitudes have γ0 ∈ C, γ1 = 0 and γℓ ∈ R for ℓ > 1. One way to find such
solutions for a given z1 is by guessing a γ2 ∈ R and recursing upwards. Given z1 and γ2 we
can solve for γ0 using the downward recursion relations. This gives

|γ0| =
∣∣∣∣1 − z1

z1

∣∣∣∣ , Re(γ0) = 1
4γ2

(
9|1 − z1|2 −

∣∣∣∣1 − z1
z1

∣∣∣∣2 − 4γ2
2

)
(5.10)

From here, one can iterate upwards from γ2 demanding that γℓ be real for ℓ > 2. It is only
possible for γℓ to be real if the upward-iterating discriminant is real, which implies

1 −
√

(z1 − 1)(z⋆
1 − 1)

(Im z1)2 ≤ εℓ ≤ 1 +
√

(z1 − 1)(z⋆
1 − 1)

(Im z1)2 (5.11)

This must hold for all ℓ so, in particular, it gives an allowed range for ε2 = 1 − γ2. For a given
value of γ2 and z1 as one iterates upwards one may find that some higher γ is imaginary.
If this happens for all choices of signs in the recursion relation then that value of γ2 is
disallowed. This approach is called the ascending iteration. Although ref. [23] found the
ascending iteration inefficient, we find it can actually work quite well.

An alternative search procedure is the descending iteration. There one starts at large ℓ

where |εℓ| ≪ 1 and one can linearize the recursion relation. Solving the linearized version
exactly gives εℓ = CQℓ

(
Re z1 + Im2 z1

Re z1−1

)
with Qℓ(x) the Legendre polynomial of the second

kind and C a constant. One can then take this form for εL and εL+1 for some large L and
iterate downwards. Only for some value of C will γ1 = 0. Thus one can search for γ1 = 0 via
the shooting method, as one might search for eigenfunctions of a differential equation.

We find that both the ascending and descending solutions are computationally extremely
intense, sometimes requiring 60+ digits of precision to converge to a trustworthy solution.
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Figure 11. The left panel shows the region in z1 space where non-polynomial amplitude pairs with a
single conjugated zero are possibly allowed. The smaller green region is the possibly-allowed region
for class 2 amplitudes where γ1 = 0. Points are solutions found in [23] labelled by their values of
sin µ. Different colours correspond to different choices of signs in the descending iteration. The right
panel shows solutions we found using the descending iterative scheme of ref. [23]. Different colours
are different regions corresponding to different sign choices at various steps in the iteration. Class 2,
L = 2, 3 partial waves polynomial amplitudes are also represented.

The choice of which sign to pick on each step of the recursion is problematic as the search
tree grows exponentially. The descending solution is inferior in the sense that it can never
produce an exact solution since the asymptotic form is assumed to be reached at some finite
L; the ascending solution can give an exact answer if the seed at low γℓ is exact. In addition,
we find that in some cases, the asymptotic behaviour at large ℓ is approached very slowly:
even at ℓ = 100, the partial wave coefficients are not exponentially small. In particular, this
happens for solutions that are strongly peaked at z = ±1 requiring large numbers of modes
in their partial wave decomposition. Such solutions happen to be the ones which we found
with low values of sin µ (see figure 15 below).

In ref. [23], Atkinson et al. focused exclusively on parameterizations of the form of
eq. (5.3) with one zero conjugated. They showed that non-polynomial solutions are only
possible if |z1| > 1, |Im z1| < 1 and if in the region where |Re z1| > 1 the additional constraint√

|z1|2 − 2|Re z1| + 1 ≤ 1 holds. The majority of the examples were class 2 (which has γ1 = 0)
for which one can impose the stronger constraints |1 − z1| ≥ 3

2

∣∣∣1−z1
z1

∣∣∣ (|z1| − 1
3)|Im z1| and

|1 − z1| ≥ 3
2

∣∣∣1−z1
z1

∣∣∣ (|z1| − 1
3)
√

|z1|2 − 2|Re z1| + 1 in the |Re z1| > 1 region. These regions
and the explicit points Atkinson et al. found are shown in figure 11. The lowest value of
sin µ listed was sin µ = 2.15.

A challenge with the iterative approach is that there is no clear prescription for which sign
to choose at each step in the iteration. When using the descending iteration ref. [23] defined
Region I to have all positive signs in the recursion relation in eq. (5.7). Region II is defined by
choosing − for ℓ = 2 and + for all other ℓ in eq. (5.7). Region III has a minus sign for ℓ = 2, 3
only, while region IV has minus signs at ℓ = 2, 3, 4. We also define a new region V which has
a minus sign for ℓ = 3 only. The points belonging to these respective regions are coloured
differently in figure 11. We extend this study by searching for solutions in a 80×40 grid in z1
space. Our results are shown on the right side of figure 11. Although not clear from the figure,
we find that the regions overlap: some points have solutions for the same z1 but different sign
choices in the iteration. Note that such pairs of solutions have different moduli so there are
still only at most two phases for a given modulus (it is only z1 which the solutions share).
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Although Atkinson and collaborators found a number of phase-ambiguities at infinite L,
they could only consider a small class of functions. They restricted to a single zero conjugated,
as in eq. (5.3), and moreover looked exclusively at class 2 amplitudes where γ1 = 0 in their
numerical work. Even with these assumptions, searching through the different regions is
tedious, and trying to generalize to other classes or multiple conjugated zeros would be a
herculean task. We next explore how machine learning can search more efficiently for solutions.

5.2 Machine learning complex functions

For the machine learning approach, we start with the class of functions in eq. (5.3) with
a single conjugated zero. However, we do not need to do a partial wave decomposition.
So we write simply

F (z) = z − z1
1 − z1

f(z), F̃ (z) = z − z⋆
1

1 − z⋆
1

f(z) (5.12)

where f(z) is the function to be learned and z1 will be treated as a fixed input. The function
f(z) is parametrized by a neural network, closely following the implementation of section 2,
however for this application we need f(z) to be a complex function instead of a real phase.
In order to avoid complex numbers we have two obvious choices: have the network learn
the modulus and phase of f(z) or have it learn the real and imaginary parts of f(z). We
tried both approaches but found that learning the real and imaginary parts was the most
promising so we restrict to that choice in the following discussion.

For our neural network implementation, we modify the neural network depicted in figure 1
by removing the final Tanh layer and having two final outputs instead of one. Removing the
Tanh layer is justified since we are now predicting the real and the imaginary part of the
amplitude directly and thus do not need to constrain them within a given finite range. The
two amplitudes are then reconstructed following the eq. (5.12) and training is done using
the unitarity loss of eq. (2.2) and the decaying repulsion of eq. (4.9).

Although the iterative algorithm described in section 5.1 and the machine learning
implementation try to find similar solutions, the approaches differ in several key points:

1. The iterative algorithm requires the choice of a particular coefficient γL that is to be
set to zero, yielding a class L amplitude. In the machine learning implementation, the
same neural network is used to recover any type of solution. For the same z1 there
can be phase-ambiguous solutions of different classes. Whereas these different class
solutions can be individually picked out by the classical algorithm, the machine learning
implementation will naturally tend to yield the one that is easiest to train, typically
the one that has the lowest sin µ value.

2. The classical algorithm requires the choice of signs for the discriminant at each step
in the iteration. So for L steps, there are 2L choices, leading to 2L “regions”. Most of
these choices will not yield solutions, but there is no clear way to restrict the search.
In the machine learning approach, the regions play no role: the algorithm will find
solutions in all regions automatically.
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3. In the iterative algorithm unitarity is automatically enforced by the partial wave
decomposition. However, the iteration may yield divergent results. A shooting method
is used to find a sensible boundary condition for the iteration. In the machine learning
implementation unitarity is enforced by minimizing a loss function. In practice one has
to impose a cutoff on the loss LE in order to assess whether the learned amplitudes do
indeed respect unitarity.

4. In the iterative algorithm, it is easy to see if the iterative solution yields a trivial
ambiguity since the complex coefficients are known. In the machine learning approach,
a repulsive loss has to be used to avoid trivial ambiguities. This makes the resolution
of ambiguous solutions that are naturally close to one another more difficult.

5. Finding a solution with the classical algorithm can require high numerical precision.
For example, we found that to confirm solutions close to the boundary of allowed z1
values (where sin µ is minimized) one can require 60 digits of precision or more. On
the machine learning side, the precision is limited by the numerical integration scheme
required when calculating the unitarity constraint of eq. (2.1). One generally cannot
expect to have more than 5-10 digits of precision at best. However, to explore the
space of solutions, high numerical precision is not required, as we could see in previous
examples in section 3 or section 4.2.

In summary, the ML algorithm has the advantage of not needing a bunch of discrete choices
and special cases to search. Thus it has the potential to search for a much broader class of
solutions than the classical algorithm. On the other hand, its numerical precision is limited:
you can never know if it actually finds a solution or not. An optimal approach may be to
combine the two approaches: exploring the landscape of solutions with machine learning and
then using a classical algorithm to refine particular solutions we find.

5.3 Resolving the z1 landscape with ML

As a warm-up, we take one of the points and solutions found in [23] which belongs to region
I: z1 = 6

5 + 3
5 i. With this z1 value, we train a network for 5000 epochs with the unitarity

loss of eq. (2.2) and using the decaying repulsion with c0 = 2, sf = 16, ef = 1000 and
λR = 2.0. We extract the phases corresponding to the amplitudes of eq. (5.12) along with
their respective moduli (which are identical by construction). We show these in figure 12,
along with the solutions recovered by the iterative algorithm. The final loss values are
around LS

E ∼ 10−6 for both solutions, and we observe good agreement with the answer
derived from the classical approach.

We note that the amplitudes and phases for this solution are similar to the ones that we
obtained when solving for the Crichton ambiguity in section 4.1. This observation will hold
for a major part of the z1 plane (where solutions are expected to be found) and prompts us to
implement a better initialization for our neural network. When searching for another solution
along the z1 plane, it will be advantageous to initialize the network with a solution from a
neighbouring point. The main training run will then be done over a smaller number of epochs
and will not consider any repulsion term for the loss function. Since the phase solutions will
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Figure 12. Phase-ambiguous solutions rediscovered with machine learning compared to previous
results from [23]. This solution has the form of eq. (5.12) with z1 = 6

5 + 3
5 i.
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Figure 13. Loss landscape and sin µ values in the search for phase ambiguities in amplitude pairs
with a single conjugated root. The solid black lines delimit the region reachable with the descending
algorithm of [23]. Class 2 amplitudes (those with γ1 = 0) are only allowed between the grey dashed
line and the lower black line |z1| = 1. The low-loss points outside of the lower black curve (|z1| = 1)
correspond to finite-L solutions. Right panel shows the sin µ landscape for low losses LS

E < 10−4.5

and non degenerate solutions LR2 < 0.99.

be seeded at initialization as being properly distinct, we do not expect further training to
modify them drastically and, instead, we will recover the two genuine ambiguous solutions.9

Next, we explore the space of z1 values with phase ambiguities. To do so, we create a
grid of 80 × 40 points in the complex z1 plane with Re z1 ∈ [0, 2] and Im z1 ∈ [0, 1]. This
region is motivated by the known bound on the allowed range of z1 (see figure 11), but as
we will see, that region will be rediscovered independently by the network. At each point,
we train for 500 epochs where the new neural networks are initialized with the trained
networks of a nearest neighbor.10

9One can view this property as starting the training run near the correct minimum of the loss landscape,
as opposed to near a spurious minimum corresponding to a trivial ambiguity. In practice, after training, we
will explicitly verify the nature of the solutions, for example by computing the value of the repulsion loss at
evaluation.

10We start the procedure at the point z1 = 6
5 + 3

5 i, which we associate with the trained networks shown in
figure 12. A point is only trained if one of its neighbours has been previously resolved.
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The loss landscape from our scan is displayed on the left in figure 13. The black curves
here are an analytical bound on possible solutions: all possible infinite-L single-conjugated-
root solutions must lie within those curves. That does not mean that the entire region is
allowed. The bounds also do not apply to the finite-L polynomial solutions which can (and
do) have |z1| < 1, as discussed in appendix B. From the figure, we can clearly see a region of
low loss within the allowed region. In addition we recover a small domain with |z1| < 1 that
has low loss, which is associated with polynomial solutions. We also note that not all of the
allowed region has low loss. Indeed, for Re(z1) ∈ [1, 1.2] and Im(z1) ∈ [0, 0.3] the networks
all have high evaluation losses with LS

E > 10−3, indicating a failure to recover ambiguous
solutions in that area. However, the iterative classical algorithm shows that some of the points
should correspond to genuine solutions (see regions IV, V in figure 11). Upon inspection
we see that the solutions in this region are highly oscillatory — they do not resemble the
functions obtained in the region I. Since these solutions are sufficiently dissimilar they cannot
hope to be resolved by neural networks that have been initialized following another class
of solutions and would require independent training and optimization trials in order to be
recovered. This is certainly possible. But these solutions also have sin µ values that are much
higher than in the other domains of the z1 plane. Because of the higher sin µ values, this
region is of no particular interest and we have not pursued its exploration further.

One feature distinguishing the machine learning loss landscape from the solution space
of the classical algorithm is its continuity. The loss landscape does not suffer from the sharp
boundaries that the classical algorithm experiences and is smooth across the domain in the z1
plane that it resolves. Deforming z1 slightly will result in another solution with a similar phase
and differential cross section and the machine learning algorithm can do that interpolation
easily. This is to be contrasted with the landscape emerging from the descending algorithm
which struggles at the boundaries of the different regions, requiring enormous precision and
fine-tuning to find solutions there. This is seen most clearly in the region near Re z1 = 1 where
regions I, II and III can possibly overlap (see figure 11). The machine learning algorithm
has no trouble in this region whereas the classical descending algorithm requires either an
increasing number of partial waves or a broader search for its shooting method.

On the right of figure 13 we show the sin µ values for the points in our scans where we
only retain points that have LS

E < 10−4.5. Additionally, we discard points corresponding to
identical or trivial solutions. These points are characterized by having either of the terms
in the loss of eq. (4.9) above 0.99. We note that possible phase-ambiguous solutions which
happen to be very similar, such as those with Re z1 > 1.5 and small Im z1, are discarded
by this second cut.

From this study, we see that the smallest sin µ values tend to be close to the |z1| = 1 curve.
The lowest value of sin µ that we found with this initial scan is sin µ = 2.13 at z1 = 0.56+0.84i

and is located in the region where the loss of the network starts to near LS
E ∼ 10−4.5. To get

a lower value we can use the fact that the sin µ landscape is continuous, allowing one to do a
constrained gradient descent on it. The constraint that we have to respect here is one where
the descent does not take us into regions of high loss. To implement the gradient descent we
numerically estimate ∇z1 sin µ(z1) by using a central difference. This is done by training four
networks at z1 ± h and z1 ± ih for 500 epochs with h = 10−3 and calculating the respective
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Figure 14. Gradient descent in the z1 plane for minimizing sin µ. The left panel shows the value
of sin µ along the trajectory, along with the scaled loss LS

E at each point. The right panel displays
the trajectory in the z1 plane. The point with the minimal sin µ is found with the classical ascending
algorithm by extending the gradient descent trajectory.

sin µ value at those points. In order to accelerate convergence each network is initialized with
the solved network at the z1 point considered. We then take a step in the z1 plane following11

znew
1 =

(
Re znew

1
Im znew

1

)
=
(

Re zold
1

Im zold
1

)
− λr

2h

(
sin µ(zold

1 + h) − sin µ(zold
1 − h)

sin µ(zold
1 + ih) − sin µ(zold

1 − ih)

)
. (5.13)

A new network is then trained at znew
1 and the process is iterated. In figure 14 we show

such a gradient descent trajectory of 150 points where we used the learning rate λr = 0.005.
The minimal value of sin µ along the trajectory is 1.99, noticeably lower than in the initial
scan. This is due to the fact that the region with the low sin µ values is better resolved. The
gradient descent takes small steps in the problematic region and the networks are trained to
lower loss values, remaining under LS

E ∼ 10−5 as can be verified in the left panel of figure 14.
Following this procedure, we can then use the classical ascending algorithm to further

refine the lowest sin µ point in a systematically improvable way. Following the gradient
descent curve we are led to a point at z1 = 1.001e0.4πi = 0.31 + 0.95i. When implementing
the ascending algorithm we choose the Region II solution. The amplitude and phases for
this point are shown in figure 15. It has sin µ ≈ 1.67. This is the lowest known sin µ value
with phase ambiguous solutions. The phase shifts for this solution are given in table 3. At
large ℓ the phase shifts in this solution oscillate and decay exponentially δℓ ∼ (−1)ℓℓae−bℓ

with b ≈ 0.076 and a ≈ 0.45.
Looking at this solution it appears that B(z) is peaked near z = ±1 and the phases are

roughly linear going between π
2 at z = 1 to either π or 2π at z = −1. By exploring this

structure, we can consider a toy amplitude of the form

F (z) = aeiϕaδ(z − 1) + beiϕbδ(z + 1) (5.14)

11If |znew
1 | < 1 we project out of the unit circle by considering 1.01 znew

1 /|znew
1 | instead. This allows us to

remain in regions of relatively low loss where we can trust our gradient descent.
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Figure 15. Left panel shows the modulus and unitary phases for the amplitude with sin µ ≈ 1.67.
Notice that it is peaked both in the forward, z = 1, and backwards, z = −1, directions with B(1) ≈ 3.53
and B(−1) ≈ 44.2. For z = 1 both phases approach π

2 , whereas for z = −1 they approach π and 2π

correspondingly. Curiously, the same features are exhibited by the simple toy model (5.14). Right
panel shows the integrated kernel whose maximum is sin µ. This is the lowest known value of sin µ for
which a phase ambiguity exists.

with a, b, ϕa and ϕb real numbers. Unitarity then implies

sin ϕa = a2 + b2

2a
, sin ϕb = a cos(ϕa − ϕb), sin µ = max

(
a2 + b2

2a
, a

)
(5.15)

Recall that the expected lower bound on sin µ for which there are ambiguous solutions is
sin µ = 1. If a < 1 then the condition sin µ = 1 automatically leads to the value ϕa = π

2
and then the second constraint in eq. (5.14) becomes sin ϕb = a sin ϕb. Since we assumed
a < 1 we must have ϕb = π, 2π. Remarkably, these are exactly the z = ±1 endpoints of the
phases we found, see figure 15. That is, we find two solutions

F±(z) = aiδ(z − 1) ±
√

2a − a2δ(z + 1) (5.16)

with a < 1. Unfortunately, these two solutions are related by F+ = −F ⋆
− which is a trivial

ambiguity. Based on this feature, it is interesting to contemplate a scenario in which any
family of phase-ambiguous solutions will approach the trivial ambiguity as sin µ → 1. It
would be very interesting to explore this further.

5.4 Extensions beyond one zero

So far we have concentrated our efforts on finding solutions where a single zero z1 is complex
conjugated. This is only a small subset of all possible ambiguous solutions. In general, one
could consider probing ambiguous solutions constructed from complex conjugating multiple
different zeros. With the classical approach, one could try to construct an iterative algorithm
in the style of [23]. With more zeros, there is a larger space to search and many more discrete
choices to make. While progress is possible, it seems extraordinarily tedious to search this
way. The complexity of the classical approach is to be contrasted with the flexibility of the
machine learning implementation, where one simply needs to modify the parametrization
of eq. (5.12) by taking out the appropriate number of zeros z1, . . . , zn. Training can then
proceed in the exact same way with no additional conceptual work.
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δ0 -0.7435785523
δ1 0.3847784634

δ̃0 -0.1982113969
δ̃1 0.5583871796

δ2 -0.314656996
δ3 0.20231948
δ4 -0.16811695
δ5 0.14018563

δ6 -0.12099793
δ7 0.10455316
δ8 -0.091873270
δ9 0.080754325
δ10 -0.071709663
δ11 0.063677489
δ12 -0.056937764
δ13 0.050906239
δ14 -0.045741950
δ15 0.041096977

δ16 -0.037063302
δ17 0.033422548
δ18 -0.030227979
δ19 0.027337227
δ20 -0.024780662
δ21 0.022462722
δ22 -0.020400075
δ23 0.018527050
δ24 -0.016852096
δ25 0.015329178

Table 3. Here we present first 25 phase shifts for the sin µ ≈ 1.67 solution with two possible phases.
Only the first two phase shifts differ between the two amplitudes. To find the results we ran the
ascending algorithm with ∼ 100 − 200 modes and checked that the significant figures quoted above
are convergent, in that they are not sensitive to how many modes are included.

As a warm-up with multiple zeros, we show that a known ambiguous L = 3 solution can
be reproduced with the same ML construction. Ref. [21] considered cases where one root
z3 is held fixed and the other two roots z1 and z2 are conjugated:

F (z) = a
(z − z1)(z − z2)(z − z3)
(1 − z1)(1 − z2)(1 − z3) (5.17)

F̃ (z) = a
(z − z⋆

1)(z − z⋆
2)(z − z3)

(1 − z⋆
1)(1 − z⋆

2)(1 − z3) (5.18)

For the machine learning setup, we parameterize

F (z) = (z − z1)(z − z2)
(1 − z1)(1 − z2)f(z) (5.19)

F̃ (z) = (z − z⋆
1)(z − z⋆

2)
(1 − z⋆

1)(1 − z⋆
2)f(z) (5.20)

we can then take z1 and z2 as inputs and learn a single complex function f(z) as we did
in the case of one zero.

To be concrete, one example solution found in [21] had a ≈ 2.80+4.67i, z1 ≈ −0.74−0.06i,
z2 ≈ 0.19 + 0.03i and z3 ≈ 1.32 + 0.95i. We take only z1 and z2 from this known solution and
then train to find f(z). We train the network for 5000 epochs using the decaying repulsion
with the parameters of section 5.3. To speed up training we also seed the neural network
for f(z) by the one that has been trained on the z1 = 6

5 + 3
5 i point. The result is shown

in figure 16. We find that the phases and moduli of the two solutions agree with those
found in [21]. The agreement is robust, with an evaluation loss around LS

E ∼ 10−5 indicating
that we indeed recovered the expected solution. We note that although the phases in the
left panel of figure 16 appear to be discontinuous, the functions predicted by the network,
Ref(z) and Imf(z), are themselves continuous. This translates into the real and imaginary
parts of the amplitude F (z) being continuous, as displayed on the right panel of figure 16.
The modulus and integrated kernel K(z) are also shown. The sin µ value comes from the
maximum of K(z), which gives sin µ ≈ 18 for this example.
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Figure 16. Resolving the ambiguous solutions associated with a finite L = 3 partial wave differential
cross section. The two solutions differ by complex conjugation of two of their zeros. We display
the phase outputs of the neural network compared to the exact solutions (top left panel) and the
prediction for the real and imaginary parts of the first solution’s amplitude F (z) (top right panel).
The bottom panels show the learned modulus B(z) and the corresponding kernel K(z).
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Figure 17. Gradient descent in the z1, z2 space for minimizing sin µ. The left panel displays the
trajectories of both the z1 and z2 roots for the points along the descent where LS

E remains small. The
right panel shows the value of sin µ along the trajectory, along with the scaled loss LS

E at each point.
The gradient descent trajectory cannot be trusted once the evaluation loss blows up.
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Following the procedure outlined in section 5.3 one can also proceed to do gradient
descent in the z1, z2 space in order to minimize sin µ. An example of a gradient descent
trajectory is displayed in figure 17 where both roots are simultaneously updated at each point
of the descent. The main difficulty we encounter is ensuring that the gradient descent follows
a trajectory of low loss. As can be observed in the right panel of figure 17, the evaluation loss
associated with our trained networks starts to blow up at a given point along the trajectory,
after which we cannot trust that viable ambiguous solutions are being recovered. The last
value that can be trusted yields an ambiguous solution with sin µ ≈ 2.57. In order to reach a
trustworthy lower value of sin µ one could envision modifying the gradient descent update
of eq. (5.13) by forbidding updates that increase LS

E substantially. Given this constraint
or a modification of the loss function used, along with a more powerful neural network
architecture, one can then imagine searching through the z1, · · · , zn space and resolving an
ambiguous solution with a smaller sin µ value than the one of table 3. While finding low
sin µ phase-ambiguous solutions in this way is conceivable, our initial assessment suggests
that the amount of oversight required for this approach outweighs its probability for success,
so we have not pursued this direction further.

6 Conclusions

In this paper, we have explored the problem of determining the phase of an amplitude from
its modulus using modern machine learning. In the elastic scattering regime, the modulus
and phase of an amplitude are constrained by a non-linear integral equation which enforces
unitarity. Although the equation is difficult to solve analytically or with traditional numerical
methods, it is easily solved with machine learning. Given a modulus B(z) with z the cosine
of the scattering angle, a phase ϕ(z) for the amplitude can be parameterized as a neural
network, then determined from unitarity through gradient descent. Using this technique
we were able to reproduce known results for finite partial wave amplitudes, infinite partial
wave amplitudes, and amplitudes determined by other S-matrix bootstrap principles. A
few obvious extensions of our work include focusing on the scattering of identical particles,
considering elastic scattering of spinning and/or flavored particles which would lead to a
coupled system of unitarity equations, as well as doing the computation in the general number
of spacetime dimensions d.

More generally, it would be very interesting to apply machine learning to explore the full
amplitude in both energy and angle, as in the classic analysis of pion scattering in [45], or
more recent explorations of the space of nonperturbative amplitudes starting from [39]. This
would require imposing in addition to unitarity the constraints of analyticity and crossing. In
fact, methods very similar to the ones used to analyse elastic scattering at fixed energy were
developed for the full amplitude by Atkinson, see e.g. [46–49], and were recently successfully
implemented numerically [43]. They are based on iterations of unitarity and are expected to
converge only for a small subset of admissible amplitudes. More powerful gradient-descent
type methods to construct the full amplitude have not been developed yet and it is to be
seen if machine learning could be useful to tackle this problem.

Coming back to the present paper, there are two important open questions in S-matrix
theory which we have shown machine learning approaches can address. The first is whether a
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phase ϕ(z) exists at all for a given differential cross section, or equivalently, a given modulus
B(z) of the scattering amplitude. This problem is solvable in a straightforward manner with
machine learning. Code to find ϕ(z) from B(z) is available here https://github.com/aurelie
ndersy/S-Matrix-Bootstrap. It has been proposed that a functional sin µ which involves a
non-linear integral over B(z) (see eq. (1.6)) is a good criterion for whether a solution exists.
It has been shown that for sin µ < 1 a solution always exists. If sin µ > 1 there are three
possibilities 1) no phase may exist 2) a unique phase may exist 3) two non-trivially related
phases may exist. Examples are known in all three cases. No clear criterion is known however
to determine which case applies for a given B(z) in general. Only options 2) and 3) are
possible for sin µ < 1 but no criterion is known to decide which. The analytical bound is
that uniqueness must hold if sin µ < 0.86 or the average modulus 1

2
∫ 1

−1 dzB2(z) is less than
1.38. In the literature, ambiguous solutions are known with at best sin µ ≈ 2.15. Using
machine learning, we have found B(z) with ambiguous phases with sin µ ≈ 1.67. This is
the first improvement on this bound in 50 years.

The machine learning approach offers several distinct advantages over classical approaches.
The framework we have developed for solving the unitarity integral equation is general and
recovering a phase can be attempted for any input modulus. This is to be contrasted with
classical fixed point iteration schemes, which only converge if sin µ < 1. This straightfor-
wardness has enabled us in section 3.1 to extensively explore various polynomial moduli and
determine which ones are consistent with unitarity. We confirmed the existence bounds set
by sin µ < 1 and identified the region in moduli space where sin µ > 1 solutions could be
expected. Extending the setup to probe the uniqueness of the solution space was equally
conceptually simple and only required the addition of a repulsive term to the loss function.
Classical approaches have instead focused only on analytically solvable cases, such as fi-
nite partial waves of low order, or on specific parametrizations for the amplitudes. One
such parametrization proposed in [23] was reviewed in section 5.1 and contrasted with a
machine-learning solution of the same problem. Whereas the classical algorithm required
multiple discrete choices of parameters, carving out separate solution regions, the machine
learning algorithm was able to smoothly interpolate across the whole solution landscape.
This flexibility comes at a cost, lack of numerical precision, but allows a complementarity
approach to traditional numerical methods. It is in that spirit that we have demonstrated
in section 5.3 that one can utilize the smoothness of the machine learning loss landscape to
perform gradient descent and find ambiguous solutions with low sin µ. There the inflexible,
but powerful, classical algorithms allowed further refinement in order to obtain the lowest
possible solution precisely. Extensions to other amplitude parameterizations are immediate
with our machine learning framework whereas developing the corresponding classical iterative
schemes (if possible) would require considerable amounts of effort.

Although here we focused on the narrow problem of the relationship between the modulus
of an amplitude and its phase in the elastic scattering regime, a similar methodology can
be used for much broader questions. The S-matrix bootstrap approach attempts to apply a
set of general constraints such as unitarity, analyticity, and crossing to constrain the form of
amplitudes. Implementing these constraints directly12 is a nontrivial task and the subject

12The so-called primal approach, see e.g. the discussion in [42].

– 34 –

https://github.com/aureliendersy/S-Matrix-Bootstrap
https://github.com/aureliendersy/S-Matrix-Bootstrap


J
H
E
P
0
5
(
2
0
2
4
)
2
0
0

of many ongoing works, see e.g. [39–41, 43]. Machine learning offers the potential to search
through a broad class of functions and perform the gradient descent efficiently, as we have
seen here for phase-ambiguities in the elastic regime. In addition, a similar methodology
could help in the inelastic regime, where given particle production one can ask whether it
is possible to reconstruct the associated scattering amplitude by solving a similar unitarity
equation [50]. Finally, the methods developed in this paper could also be useful to the
analytic S-matrix bootstrap which applies constraints such as collinear limits or possible
locations of singularities to perturbative scattering amplitudes. The classical approach has
already been very successful, bootstrapping the 6-point amplitude in N = 4 super-Yang-Mills
theory to 6 loops this way [51]. Additional constraints are known, such as those on sequential
discontinuities [52], but have not been incorporated. Machine learning could make it easier
to apply additional constraints and it would be very interesting to explore the potential of
machine learning for the S-matrix bootstrap further. This paper represents just a small
first step into a field with enormous possibilities.
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A Finite partial wave decomposition

In our study of polynomial amplitudes, we were mainly concerned with recovering solutions
that admitted an infinite partial wave decomposition. In order to verify this point we
characterize here the space of unitary amplitude solutions that admit a finite partial wave
decomposition and a corresponding polynomial B(z). We start our analysis by looking for
solutions that could have a corresponding linear B(z) = az + b. Since B(z)2 is a polynomial
of order 2, our finite partial wave solution must be of order 1 and parameterized as

F1(z) = eiδ0 sin δ0 + 3eiδ1 sin δ1z (A.1)

where we used the explicit representation for the first two Legendre polynomials. Equating
|F1(z)|2 = (az + b)2 we find the system

a2 = 9 sin2 δ1
b2 = sin2 δ0

2ab = 6 sin δ0 sin δ1 cos(δ0 − δ1)
(A.2)

which can only be realized for a = 3b with δ0 = δ1. Then we have F1(z) = ±eiδ0
(
az + a

3
)

that
satisfies the unitarity constraint and |F1(z)|2 = |a|2|z + 1

3 |2. The corresponding modulus is
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B(z) = |az+ a
3 | where the absolute value is necessary to ensure positivity for −1 < z < 1. Thus

we do not have a simple finite partial wave amplitude that is associated with B(z) = az + b

where b > |a| as was considered in section 3.2.1.
For the quadratic modulus B(z) = az2 + c we can proceed in a similar fashion, pa-

rameterizing
F2(z) = eiδ0 sin δ0 + 3eiδ1 sin δ1z + 5

2eiδ2 sin δ2(3z2 − 1) (A.3)

and deriving a similar system of equations

a2 = 225
4 sin2 δ2

0 = sin δ1 sin δ2 cos(δ1 − δ2)
2ac = 9 sin2 δ1 − 2

3a2 + 15 sin δ0 sin δ2 cos(δ0 − δ2)
0 = sin δ1 sin δ0 cos(δ0 − δ1)
c2 = sin2 δ0 + a2

9 − 5 sin δ2 sin δ0 cos(δ0 − δ2)

(A.4)

We have 3 different solution sets. The first one with δ1 = 0 does not lead to a valid
solution with both a > 0 and c > 0. The second solution set has δ0 = 0 and δ1 = δ2 ± π

2 . For
δ1 = δ2 − π

2 we can have a = 15
4

√
3
7 with a = 3c that leads to a valid quadratic differential

cross section. The third solution set has δ1 = δ2 ± π
2 and δ0 = δ1 ± π

2 . For δ1 = δ2 − π
2 and

δ0 = δ1 − π
2 we can have a = 5

2

√
3
2 with a = 5c that leads to a valid solution. Summarizing,

for B(z) = az2 + c we have two valid solutions with a > 0 and c > 0:

F a
2 (z) = − 15z

2
√

7
e

−i sin−1
(

5
2

√
7

)
+ 5

4

√
3
7
(
3z2 − 1

)
e

i sin−1
(

1
2

√
3
7

)
(A.5)

F b
2 (z) = 1√

6
e

i sin−1
(

1√
6

)
−
√

15
2 ze

−i sin−1
(√

5
6

)
+ 5

2
√

6

(
3z2 − 1

)
e

i sin−1
(

1√
6

)
(A.6)

which are respectively associated with the moduli

Ba
2 (z) = 5

4

√
3
7
(
3z2 + 1

)
(A.7)

Bb
2(z) =

√
3
8
(
5z2 + 1

)
(A.8)

As discussed in section 3.2.2, scans over quadratic moduli revealed a 1D curve of low
loss, whose corresponding B(z) do not match any of the ones of eq. (A.7)–(A.8). Upon
closer inspection, the low loss values are explained by the numerical closeness of the input
moduli with ones corresponding to finite partial wave solutions with L ̸= 2. For instance
the modulus Bc

2(z) = 22
29z2 + 26

29 has a loss LE
S < 10−6 and is numerically within 0.3% of

another modulus corresponding to the L = 3 solution

F3(z) = sin δ0eiδ0 + 3z sin δ1eiδ1 + 5
2(3z2 − 1) sin δ2eiδ2 + 7

2(5z3 − 3z) sin δ3eiδ3 . (A.9)

For the best fit values of δ0 = 2.051, δ1 = 0.4578, δ2 = −3.131, δ3 = −3.128, we have an
associated B3(z) that is numerically close to Bc

2(z) which we display on the figure 18(a).
We refine the phase learned during our quadratic scans by letting the network run for 5000
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Figure 18. Comparison between the exact L = 3 finite partial wave solution and the machine-learned
one associated with the quadratic input modulus Bc

2(z). On the left panel, we display the numerical
closeness of the two moduli and on the right panel we compare the exact L = 3 phase and the machine
learned one associated with the input Bc

2(z).

epochs with Bc
2(z) as input. We then compare the resulting phase to the exact L = 3 solution

as shown in figure 18(b). The agreement between the learned phase and the finite L = 3
solution explains why the associated loss value is so low for this spurious solution. Along the
1D curve of low loss, all of the factious solutions found have the same property in that their
quadratic modulus is well approximated by a finite partial wave solution with L ̸= 2. It is
to be noted that the finite partial wave solutions of figure 18(b) look qualitatively different
from the infinite partial wave solutions found in the sin µ < 1 region, with one example
displayed in the bottom right panel of figure 2.

B Phase shift ambiguities with finite partial waves

Whereas the main convergence region of the algorithm by Atkinson et al. is limited to |z1| > 1
for solutions with a large number of non-zero partial waves, it can also resolve a select few
solutions within the unit circle, corresponding to true finite partial wave amplitudes. Finite
partial wave ambiguities can be resolved exactly when the number of partial waves is small, as
has been described in the literature for L = 2, 3, 4 [20–22]. In particular, the L = 2 ambiguous
solutions are all of the type described by ref. [23]. At L = 2 the two ambiguous amplitudes
F (z) and F̃ (z) are polynomials of order 2 and possess one common root z2. The other root
is distinct and is respectively z1 and z⋆

1 . Since the difference F (z) − (−F̃ ⋆(z)) is a linear
polynomial in z, the amplitudes correspond to genuine class 2 solutions. We represent in
figure 19(a) the roots associated with these ambiguous amplitudes, noticing that we have
the real part of z1 that precisely equates 4

5 . As expected we have recovered solutions both
outside the z1 unit circle but also inside of it. All of these solutions can be recovered by both
the classical descending algorithm and our machine learning implementation.

At L = 3 we have two different families of ambiguous amplitude solutions which share
two roots z2, z3 and differ only by a single root, z1 and z⋆

1 . One family has Im(z2 + z3) = 0

– 37 –



J
H
E
P
0
5
(
2
0
2
4
)
2
0
0

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Real part

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
Im

ag
in

ar
y 

pa
rt

z1 roots
z2 roots

(a) L = 2.

2.0 1.5 1.0 0.5 0.0 0.5 1.0
Real part

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Im
ag

in
ar

y 
pa

rt

z1 roots: class 2
z2 roots: class 2
z3 roots: class 2
z1 roots: class 3
z2 roots: class 3
z3 roots: class 3

5 4 3
0.2

0.0

0.2

(b) L = 3.

Figure 19. Roots of the ambiguous polynomial ambiguities at L = 2, 3. We only represent solutions
where the two ambiguous amplitudes have a single distinct root, respectively z1 and z⋆

1 . At L = 2 the
solutions are all of Ref’s. [23] class 2, as described in section 5.1. At L = 3 the solutions can be class 2
or class 3.

and the other family has Im(z2 + z3) ̸= 0. In the first case the difference F (z) − (−F̃ ⋆(z))
is a linear polynomial in z, a class 2 solution, while in the second case, the same difference
is a quadratic polynomial, hence a class 3 solution. The first family is resolved by the
original implementation of the descending algorithm while the second family would require a
shooting method that aims at finding γ2(C) = 0 for γ2 appearing in eq. (5.3). Both family
and their respective roots are displayed in figure 19(b), where notably we have a plethora
of points lying within |z1| < 1.

C Scaled and non-scaled losses

The difference between using the non-scaled or scaled losses of respectively eq. (2.1) and
eq. (2.2) becomes apparent when studying edge cases. One example of interest concerns
differential cross sections that are almost vanishing at a particular z value, making sin µ blow
up. The B(z) term in the denominator of eq. (2.2) makes the whole loss expression close to
singular in that case. A simple example to probe this is to take B(z) = z2/2+ϵ. The differential
cross section is positive but almost vanishes at z = 0, such that sin µ = (60ϵ2 + 20ϵ + 1)/(60ϵ).
For ϵ < (10 −

√
85)/30 we have sin µ > 1 and the existence of a solution is not guaranteed.

In particular, the classical fixed point iterative scheme of [15] does not converge.
We can compare how the choice of the loss function plays a role in this edge case scenario,

by training different neural networks using either eq. (2.1) or eq. (2.2) as a loss function.
We create a series of different ϵ values, distributed in ϵ ∈ [10−5, 10−1], and train a neural
network for 2000 epochs at each point, using either loss function. We show in figure 20(a) the
scaled loss LS

E at evaluation and in figure 20(b) the non-scaled loss LE at evaluation. In the
sin µ < 1 region the networks trained using the scaled loss (orange curves) perform better on
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(a) Scaled loss of eq. (2.2) at evaluation.
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(b) Non-scaled loss of eq. (2.1) at evaluation.

Figure 20. Training on the input modulus B(z) = az2 + ϵ using either a scaled (orange) or a
non-scaled (blue) loss function. The panels compare the different loss metrics at evaluation time. The
dashed black line indicates the transition between moduli with sin µ < 1 and moduli with sin µ > 1.

both evaluation metrics and accurately recover the phase solutions. In the sin µ > 1 region
the networks trained with a scaled loss also perform better overall. In particular, we observe
a dip in the evaluation losses around ϵ ∼ 10−3, where LS

E < 10−4 and LE < 10−7. For the
networks trained with the non-scaled loss (blue curves), no such dip is observed and instead,
the scaled loss at evaluation blows up when ϵ < 10−2, as shown in figure 20(a).

To understand this point better we can plot the learned phases at a few specific values of
ϵ. In figure 21(a) and figure 21(b) we plot the phases learned at respectively ϵ = 0.04715 and
ϵ = 0.00091 where the former corresponds to a point in the sin µ < 1 region and the latter to
the dip in the sin µ > 1 region. For sin µ < 1, both phases are identical and both networks
properly resolve the phase solution. However, as sin µ > 1, the phases learned by the two
networks become drastically different. The networks trained on the base loss LE will learn a
simple deformation of the phase solution while the networks trained on LS

E will learn a brand
new phase shape. The dip in the evaluation losses that we observed can be explained by
the numerical proximity of the phase to a genuine finite partial wave solution, as discussed
in appendix A. This feature will only be able to be captured by the networks trained using
the scaled loss. It is important to mention however that in most circumstances (including
for physical differential cross sections) we do not expect B(z) to be close to vanishing and
thus both training losses will perform similarly.

D Simple dual bounds

Let us consider the following problem: can a given function B(z) be an elastic differential
cross-section? One obvious requirement is that B(z) ≥ 0 but there are more constraints.

Let us show that not any B(z) can arise as a differential cross-section. We consider
the following integral ∫ 1

−1
dzF (z)F ∗(z) =

∫ 1

−1
dzB(z)2. (D.1)
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Figure 21. Learned phases for the input modulus B(z) = z2/2 + ϵ where networks are trained using
either a scaled (orange) or non-scaled (blue) loss function. On the left panel we use ϵ ∼ 0.047 where
sin µ < 1 and on the right panel we use ϵ ∼ 9.1 × 10−4 where sin µ > 1. On the right panel, the
network trained with the non-scaled loss does not lead to a physical phase.

By plugging the partial wave expansion for F (z) into the integral we get∫ 1

−1
dzF (z)F ∗(z) = 2

∞∑
ℓ=0

(2ℓ + 1)|fℓ|2 = 2
∞∑

ℓ=0
(2ℓ + 1)Imfℓ = 2ImF (1), (D.2)

where we used elastic unitarity Imfℓ = |fℓ|2. Using the fact that B(1) = |F (1)| ≥ ImF (1)
we thus get the simplest constraint

2B(1) ≥
∫ 1

−1
dzB(z)2, (D.3)

which also immediately follows from considering elastic unitarity equation at z = 1.
Consider next the next to simplest integral with spin one Legendre polynomial∫ 1

−1
dzP1(z)F (z)F ∗(z) =

∫ 1

−1
dzP1(z)B(z)2. (D.4)

This time we get a product of three Legendre polynomials which produces the Wigner
3j-symbol. It is only non-zero when ℓ − ℓ′ = ±1.

Plugging the explicit expression we get∫ 1

−1
dzP1(z)F (z)F ∗(z) =

∞∑
ℓ=0

2(ℓ + 1)
(
fℓ+1f∗

ℓ + f∗
ℓ+1fℓ

)
= 2

∞∑
ℓ=0

2(ℓ + 1) (Imfℓ+1Imfℓ + Refℓ+1Refℓ) .

(D.5)

Consider next the following sum
∞∑

ℓ=0
2(ℓ + 1)

(
|fℓ+1|2 + |fℓ|2 − 2(Imfℓ+1Imfℓ + Refℓ+1Refℓ)

)
≥ 0 . (D.6)
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We then notice that using elastic unitarity
∞∑

ℓ=0
(ℓ + 1)

(
|fℓ+1|2 + |fℓ|2

)
=

∞∑
ℓ=0

(2ℓ + 1)Imfℓ = ImF (1). (D.7)

As before, using the fact that B(1) = |F (1)| ≥ ImF (1), we thus get from (D.6) (and its
analog where we flip sign in front of the second term)

2B(1) ≥
∫ 1

−1
dzP1(z)B(z)2 ≥ −2B(1). (D.8)

This bound is correct but it is trivially satisfied given (D.3).
To get better bounds we need to put more constraints. Imagine that we know that B(z)2

is a polynomial of a maximal degree N . We can then consider zero projections∫ 1

−1
dzPℓ>N (z)B(z)2 = 0. (D.9)

We can try to add these zero projections to the argument above. Consider for example
the spin three zero projection ∫ 1

−1
dzP3(z)B(z)2 = 0 (D.10)

∞∑
ℓ=0

d1,ℓ

(
fℓ+1f∗

ℓ + f∗
ℓ+1fℓ

)
+

∞∑
ℓ=0

d3,ℓ

(
fℓ+3f∗

ℓ + f∗
ℓ+3fℓ

)
= 0, (D.11)

where in the second line we rewrote it in terms of partial waves.
We can now derive bounds by considering the following positive semi-definite problem,

see e.g. [53] for a similar analysis in the case of dispersion relations,

c± I ± T +
∑

i

niNi ≽ 0, (D.12)

where Ni are zero projection matrices f∗Nif = 0, T is the target quantity that we want to
bound t = f∗Tf , and I is the diagonal matrix with elements being 2ℓ + 1.

If we have found c± and ni such that the matrix above is positive semi-definite, we
get the bound

−c−B(1) ≤ t ≤ c+B(1) . (D.13)

Numerically, this can be done first by truncating in spin, and then extrapolating the cut-off
to infinity.

Implementing the spin-3 zero projection constraint we get that

Spin 3: 1.56B(1) ≥
∫ 1

−1
dzP1(z)B(z)2 ≥ −1.56B(1), (D.14)

which is an improvement of the previous bound. Similarly, we can consider the spin-four
zero projection ∫ 1

−1
dzP4(z)B(z)2 = 0, (D.15)
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and repeat the derivation above. This time we get the following bound

Spin 4: 1.24B(1) ≥
∫ 1

−1
dzP2(z)B(z)2 ≥ −0.67B(1). (D.16)

For polynomial cross-sections we have infinitely many null constraints which we could try
to use to derive the dual bounds. These bounds must be satisfied and they do not depend
on the existence of the actual solution.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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