Journal of Statistical
Mechanics: Theory and

20

Experiment SISSA S
PAPER You may also like

A functional renormalization group for signal 'g—sgfr_“ifi‘gniﬁé“ﬁSEZ";SPQQ'Z?S‘TSSS
detection and stochastic ergodicity breaking F Ghinawan, $ Nurrohmah and | Fithriani

- The Competition Role of Higher Education

. . . . in Entrepreneurship Empowerment within
To cite this article: Harold Erbin et al J. Stat. Mech. (2024) 083203 Global Market

Muhammad Usman and Razali Abdullah

- Application of the clustering algorithm to
the small and micro industrial companies
for mapping regions with k-medoids
Hendra Jatnika, Haris Jamaludin, Auliya
Rahman et al.

View the article online for updates and enhancements.

This content was downloaded from IP address 18.29.121.215 on 08/11/2024 at 15:36


https://doi.org/10.1088/1742-5468/ad5c5c
/article/10.1088/1742-6596/1725/1/012101
/article/10.1088/1742-6596/1725/1/012101
/article/10.1088/1742-6596/1725/1/012101
/article/10.1088/1742-6596/1232/1/012031
/article/10.1088/1742-6596/1232/1/012031
/article/10.1088/1742-6596/1232/1/012031
/article/10.1088/1742-6596/1933/1/012033
/article/10.1088/1742-6596/1933/1/012033
/article/10.1088/1742-6596/1933/1/012033

ournal of Statistical Mechanics: Theory and Experiment

An IOP and SISSA journal

PAPER: Classical statistical mechanics, equilibrium and non-equilibrium

A functional renormalization group
for signal detection and stochastic
ergodicity breaking

Harold Erbin'?3, Riccardo Finotello'*,
Bio Wahabou Kpera'*, Vincent Lahoche! and Dine
Ousmane Samary'*

! Université Paris-Saclay, CEA, LIST, Palaiseau, F-91120, France

2 Center for Theoretical Physics, Massachusetts Institute of Technology,
Cambridge, MA, 02139, United States of America

3 NSF AI Institute for Artificial Intelligence and Fundamental Interactions,
Cambridge, MA, 02139, United States of America

4 Faculté des Sciences et Techniques (ICMPA-UNESCO Chair) Université
d’Abomey-Calavi, Abomey-Calavi, 072 BP 50, Benin

E-mail: riccardo.finotello@cea.fr, erbin@mit.edu, wahaboukpera@gmail.com,

vincent.lahoche@cea.fr and dine.ousmanesamary@Qcipma.uac.bj

Received 25 January 2024
Accepted for publication 24 June 2024
Published 2 August 2024 CrossMark

Online at stacks.iop.org/JSTAT /2024/083203
https://doi.org/10.1088/1742-5468 /ad5cHe

Abstract. Signal detection is one of the main challenges in data science. As
often happens in data analysis, the signal in the data may be corrupted by noise.
There is a wide range of techniques that aim to extract the relevant degrees of
freedom from data. However, some problems remain difficult. This is notably the
case for signal detection in almost continuous spectra when the signal-to-noise
ratio is small enough. This paper follows a recent bibliographic line, which tackles
this issue with field-theoretical methods. Previous analysis focused on equilib-
rium Boltzmann distributions for an effective field representing the degrees of
freedom of data. It was possible to establish a relation between signal detection
and Zs-symmetry breaking. In this paper, we consider a stochastic field frame-
work inspired by the so-called ‘model A’, and show that the ability to reach, or
not reach, an equilibrium state is correlated with the shape of the dataset. In
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particular, by studying the renormalization group of the model, we show that the
weak ergodicity prescription is always broken for signals that are small enough,
when the data distribution is close to the Marchenko—Pastur law. This, in par-
ticular, enables the definition of a detection threshold in the regime where the
signal-to-noise ratio is small enough.

Keywords: functional renormalization group, Stochastic field theory,
Signal detection, random matrix theory.
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1. Introduction

In recent years, many authors have pointed out the connection between the renormal-
ization group (RG) and data science—see, for instance [1-15] and references therein.
This is not surprising, as for both techniques, the goal is the same: to extract large-scale
regularities and relevant features for a system with interacting (i.e. highly correlated)
degrees of freedom. Indeed, the RG aims to track a small number of relevant parameters
(‘couplings’), which describe the effective long-distance physics, in a quantum or stat-
istical system involving a large number of interacting degrees of freedom (like a field
theory). There are many incarnations of this idea: the most popular nowadays being
the Wilsonian point of view [16]. In this realization, RG transformations look at partial
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integration of fluctuations at the microscopic scale, that leave the long-distance phys-
ics unchanged but modify the effective couplings between infrared degrees of freedom.
The basic incarnation of this strategy is Kadanoff’s block spin construction where, at
each step, the effective spin variables are locally replaced by their average. Due to its
rather general scope, the RG finds applications in almost all physical domains, see [17]
and references therein for a general overview of RG applications, and [18, 19] for a
comprehensive presentation of concepts.

In some cases, the links between data science methods and the RG may look like a
formal analogue rather than a guiding principle. Recently, the point of view seems to
be evolving, and several authors have started to take the idea that a deeper connection
exists between the two very seriously. Moreover, the idea that some problems inherent
to big data analysis, and to artificial intelligence (AI) in general, can be approached as
physical systems is starting to gain ground. One can mention, for instance, the series
of papers [8-12] aiming to build an effective field theory model for artificial neural
networks, and studying their properties by analyzing the RG. Complementary, works
such as [20], enable the use of the exact RG as an optimal transport gradient flow,
with interesting applications to neural network training. Other approaches focus on
a comparison with so-called ‘explainable’ methods [21], such as principal component
analysis (PCA) [5, 22-25]. This paper follows the bibliographic line of the authors [26—
30] and is part of this dynamic. These works focus in particular on a problem where
the current analysis methods often fail: signal detection in nearly continuous spectra’
(see figure 1).

The idea behind this approach is based on the concept of universality. Totally noisy
spectra indeed have a universal character, close, for instance, to properties of large-size
Wishart matrices, whose spectra follow the Marchenko—Pastur (MP) law, see figure 2.
Basically, the spectra observed for high-dimensional data are usually completely ‘blind’
to the real nature of the degrees of freedom involved in these statistics, whether it is
the activity of biological neural networks [32], financial data [33], correlations between
genes in DNA| and so on. Hence, the path proposed in [26-30] leads to the idea that the
problem of signal detection can be equivalent to the RG study. We can then design an
analogue statistical field theory model as follows. Suppose we are able, for a particular
problem whose large-scale statistics are in the neighbourhood of a matrix universality
class, to propose an effective field theory model exploiting the specific nature of the
considered degrees of freedom. Furthermore, suppose that this field theory says some-
thing about the presence or absence of the signal. Hence, this same field theory must
be able to give the same kind of answer for any data in the neighbourhood of the same
universality class.

The usual example is an Ising-type model, for which one can easily build an effective
field theory once the moments of orders 1 and 2 are fixed. The minimal model (in the
sense of ‘less structured’: pioneer works on this topic of maximum entropy inference
in physics are those of Jaynes [34, 35]) for this field theory is the one of maximum
entropy, which takes the form of a Boltzmann law pe,[#] ~ e~5 for the field ¢, with

5 When only a few isolated spikes exist, detection is easy and general theorems exist, viewing the detection as a phase transition—the
so-called Baik-Ben Arous-Péché’ (‘BBP’) theorem, see [31].
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(a) Spectrum with localized spikes. (b) Spectrum with continuous deformation.

Figure 1. Depending on the nature of the underlying data, an empirical spectrum
can exhibit some localized spikes (a) out of a bulk (i.e. noise, in red) made of
delocalized eigenvectors (i.e. relevant information, in blue), in which case the cut-
off A provides a clean separation between delocalized eigenvectors and localized
ones. In the nearly continuous spectra (b), the position of the cut-off A is arbitrary,
and the separation of the signal can become impossible.

N =400 | P = 160 N = 5000 | P = 2000

206 N =100|P =40 >05-

10 15 20 25 30 0 0 10 15 20 2 5 0.0 10 15 20
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(a) N =100, P = 40. (b) N = 400, P = 160. (¢) N = 5000, P = 2000.

Figure 2. (a)—(c) Convergence towards the Marchenko—Pastur law for large-size
N x P Wishart matrices (P/N = 0.4).

a non-trivial Gaussian measure such that the 2-point function G is identified with the
covariance matrix C of the dataset (see also works in statistical inference, such as [36]).
We thus proposed an effective field theory, general in scope, and unconventional in the
construction of the RG due to the specific nature of the Gaussian kernel spectrum. This
field theory describes an abstract type of matter filling a one-dimensional space, and
whose interacting 2-point density spectrum is the data covariance matrix. See [30] for a
general and comprehensive review of the state of the art of this approach. In summary,
we can make the following empirical statements about RG analysis in the vicinity of
the Marchenko—Pastur law (see figure 3):

e For purely noisy data, only local quartic and sextic couplings can be relevant to mar-
ginal in the large eigenvalue region (IR) domain. Moreover, there is a non-vanishing
compact region around the Gaussian fixed point, where all trajectories end towards
the Zo symmetric phase;
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(a) Canonical dimensions. (b) IR effective potential.

Figure 3. The behaviour of the canonical dimensions (a) of local couplings (us,)
of ¢?" interaction for the Marchenko—Pastur law and the shape of the effective
potential in the deep IR (b), depending on the strength of the signal embedded in
a random Wishart matrix. Reproduced with permission from [30].

e A strong enough signal makes the quartic and sextic local couplings irrelevant.
Moreover, it induces a lack of symmetry restoration in the deep IR, for some tra-
jectories which end continuously towards a broken phase. Hence, the strength of the
signal plays the role of the inverse of the temperature 5 = 1/T in the familiar physics
of phase transitions.

These results seem to link the presence of a signal to macroscopic properties of the
associated field theory. However, this approach focuses by construction, on an equilib-
rium distribution, of maximum entropy. In this paper, we propose to study the stability
of this assumption regarding the presence of information in the spectrum, as the ratio
of the signal to noise remains small enough. More precisely, we aim to establish a link
between the stability of the maximal entropy distribution and the detection ability of
the information merged in the noise. Note that mathematically, what we mean by not
detectable is the presence of sufficiently localized eigenvectors in the spectrum.

The model we consider in this paper takes the form of a dissipative Langevin
equation, reminiscent of the so-called model A [37] encountered in out-of-equilibrium
statistical physics, and describing evolution of a real field with respect to a time variable
t, such that the equilibrium distribution for the field variable ¢(t) corresponds to the
maximum entropy estimator peq[¢]. This would incidentally not be the first occurrence
of a stochastic model in the analysis of correlations of large data systems. In [38], for
example, Langevin dynamics is considered to study Hebbian learning [39] and patterns
of synaptic activity in many connected biological neurons and, in particular, to study
the connection matrix in slow modes. In statistical physics, specifically in spin glass
theories, a dynamical point of view gives a complementary insight into the study of
metastable states appearing at large in these types of systems. The well-known Glauber
model gives an example of such dynamics for a system subjected to the influence of a
thermal bath inducing random transitions [40], and the so-called model A is nothing
but a coarse-grained description of Glauber dynamics. More generally, the properties of

https://doi.org/10.1088/1742-5468 /ad5che 5


https://doi.org/10.1088/1742-5468/ad5c5c

A Functional renormalization group for signal detection and stochastic ergodicity breaking

time evolution and the role of fluctuations near the transition temperature are import-
ant issues in the theory of phase transitions [41].

In these examples, however, time is always an external variable. But what about it
in general? Can we associate an abstract temporal dimension to a set of data, to get
a universal framework of Langevin-like dynamics? An interesting connection between
temporality and statistics, known as the ‘thermal time hypothesis’ in the literature, was
established in the 1990s [42]. The author points out the equivalence between the defin-
ition of a statistical equilibrium and the choice of a preferred time (i.e. a Hamiltonian
flow), especially for covariant systems for which such a choice does not exist a priori.
From this point of view, a clock is nothing other than a system in equilibrium with
the studied system, running linearly with the parameter of the Hamiltonian flow. This
point of view was generalized by Connes and Rovelli [43], who proved that, for quantum
systems, a one-parameter group of automorphisms (identified as a time stream) exists,
intrinsic to the von Neumann algebras, independently of the quantum state considered
(this is a corollary of the Tomita—Takahashi theorem [44]). Obviously, in these cases,
there is a notion of temporality at the beginning. For covariant systems, for example,
the thermal time hypothesis only explains why, once a notion of equilibrium is fixed, a
time stands out from the others and will tend to impose itself as a natural choice.

In our case, however, there is no notion of time at the beginning, and the question
is: can we think of a canonical notion of time hidden behind the distributions of big data
correlations? We do not answer that fundamental question in this article. We focus on a
particular regime of non-equilibrium behaviour, such that the equilibrium distribution
peq@] ~ eI is invariant to the notion of ‘time’ introduced in the article. Obviously,
there is no single model of a stochastic equation that satisfies this condition, and we
will keep things simple by considering a dissipative Langevin-type equation:

dp 9S8

q ——%—f—n(t), (1.1)

where 7(t) denote some Gaussian noise, with zero mean and the delta-correlated 2-
point function (n(t)n(t")) o< §(t —t'). Equation (1.1) is probably one of the simplest to
describe a dissipative process decreasing the energy. It has been abundantly considered
in the literature [37, 45]. Obviously, a safer approach would be to follow the strategy
described in [28], and deduce this equation from a particular problem, whose correlation
spectrum tends towards a large-scale universal law. In this way, we could still use the
same universality argument to justify this model, whatever the microscopic reality of
the problem under study. This is not the choice of this article, where we limit ourselves
to motivating the choice of a stochastic approach, and reserve the underlying physical
issues for a later work.

Once this framework is established, we will focus on the study of its equilibrium
dynamics for which we will be able to write a path integral, and build an RG d la Wilson
by partially integrating on the spectral degrees of freedom. Note that it would also be
possible to integrate jointly on the temporal degrees of freedom [46-48]. However, we
will not make this choice here, and the model presented in this article will be the subject
of further studies. We will use the Wetterich—Morris functional formalism, which is more
adapted to the non-perturbative analyses required for this type of theory [49-52].

https://doi.org/10.1088/1742-5468 /ad5che 6
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The main results of this article regarding the signal detection issue in nearly con-
tinuous spectra can be summed up as follows:

e We assume, in the derivation of our effective field theory, that the system possesses
non-translational invariance in time, and is in a large-time equilibrium dynamics
regime;

e For a totally noisy spectrum, in the vicinity of the MP’s universality class, we observe
that the system almost never returns to equilibrium and the flow diverges at a finite
scale, after a few RG steps (failure of the ergodic assumption);

e When the signal-to-noise ratio is low, the presence of a strong enough signal results
in a sudden disappearance of divergences, at least for a compact region of the phase
space around the Gaussian fixed point, no longer violating the assumption of a return
to equilibrium;

e The boundary between the two domains is marked by a critical value 3. of the signal-
to-noise ratio, which we are able to estimate.

In section 2 we define the model and conventions, and provide technical preliminaries.
In section 3, we provide a short presentation of the Wetterich—Morris formalism in this
specific context, to study the stochastic field theory in an equilibrium dynamics phase.
We furthermore introduce the local potential approximation (LPA) for analyzing the
RG equation near the phase transition. In section 4, we consider the previous formalism
for spectra near the Marchenko—Pastur law, and we show that, universally, ergodicity
is broken and equilibrium is (almost) never reached for small enough signals (domain
coarsening phase). Furthermore, near the detection size (i.e. for the temperature (5 near
the critical value 3.) a slowing down effect is observed and the correlation time becomes
arbitrarily large. Finally, we conclude by enumerating some open questions that we plan
to investigate in the future (section 5).

2. The model and associated path integral

This section provides the technical background underlying the study of this paper. In
the first part, we provide a short review of the framework and of the state of the art
in the domain. Next, we introduce the stochastic field theory model that we consider
in the rest of this paper. Furthermore, assuming to work in the equilibrium dynamics
regime, we use the Martin—Siggia—Rose (MSR) formalism to write the dynamics as a
path integral. In the second part, we introduce the Wetterich—-Morris equation and the
LPA, allowing us to investigate it in a non-perturbative regime.

2.1. Technical preliminaries

As recalled in the introduction, standard PCA tools work well for spectra involving
few discrete spikes isolated from the bulk. In that case, only a very small number of
eigenvalues are representative of a large fraction of the total variance, materialized by

https://doi.org/10.1088/1742-5468 /ad5che 7
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a gap in eigenvalues, for some K = A in the fraction:

K
C(K) %ef Z/L:O)\/l’
eC

where C denotes the covariance matriz and {\,} is the set of its eigenvalues. In practice,
we focus on datasets defined by N x P matrices X = {X,;}, where the indices a and i
run along the sets {1,..., P} and {1,..., N}, respectively. Basically, datasets are assumed
to be large sets of large vectors. Assuming that the matrix X is suitably mean-shifted,
the covariance C' looks like a Wishart N x N matrix:

XTX
P )
where T means standard transposition. Technically, since large variance contributions

should dominate the spectrum, it is again convenient to work with the correlation
matriz, whose entries are defined as:
Crj = —.
On the left of figure 1, we qualitatively illustrate the situation, where some discrete
spikes capture a large fraction of the covariance matrix. In [30], we introduced the idea
that the problem of distinguishing noisy from informational degrees of freedom for a
nearly continuous spectrum near a random matrix universality class can be transposed
to the RG study of an analogous field theory, describing an unconventional kind of
matter filling an abstract space of dimension 1.

As recalled in the introduction, it is interesting to notice that the definition of this
field theory does not depend on the specific nature of the data for which we aim to
study the correlations. Indeed, since we focus on the vicinity of a universal spectrum of
random matrices, any effective or analogue field theory able to represent correlations for
a specific problem can represent correlations for all datasets in the vicinity of the same
universality class, if its mathematical formulation is general enough. This is essentially
the meaning of the universality class, and a reflection of the fact that spectra are blind
to the ‘microscopic’ nature of the degrees of freedom that they describe. In this paper,
we follow the working methodology of [30]. As we aim to establish a link between the
properties of an effective field theory and signal detection, it is crucial in our numerical
experiment to keep the spectra that we investigate under control and, in particular,
the signal-to-noise ratio threshold. In practice, we have a parameter T'(= 87!) € [0,1],

such that, for T =0, X becomes a purely i.i.d%. random matrix of size N x P, and the

spectrum of C(T =0) goes towards MP law weakly as N, P — oo, keeping P/N At

a > 1 fixed. In formulas, denoting z; as the eigenvalues of C for T =0, we have [53]:

1 V=X ) —2) (2.4)

1
2mo? o) A=Al

(2.1)

C =

(2.2)

(2.3)

of 1
e () 2= 25 (z — i) = prp () =
1=1

6 T.e., the entries of the matrix are independent and identically distributed variables.

https://doi.org/10.1088/1742-5468 /ad5che 8
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where Ay = (14+/a)?, 0% is the variance of the random entries and 1y_.»,] vanishes
outside the domain x € [A_,\;]. In the continuum limit, we replace discrete sums by
integrals:

%Zf(mz) — /,MMP () f (z) dz. (2.5)

In the rest of this paper we consider that such continuum approximation also holds for
the experimental density spectra pex,(z) for T'# 1, which we assume to be an implicit
consequence of the nearly continuous approximation on which we focus in this paper.
Presuming to work in the vicinity of the MP law, the effective statistical field theory
considered in [30] describes correlations for the scalar field ¢(p) € R for p € R play-
ing the role of momenta. The energy spectrum p? is assumed to take N values, such
that, in the continuum limit N, P — oo, they are distributed according to an (a pri-
ori unknown) continuous bounded distribution p(p?). The model is described by the
probability density pe[¢] := e I?l/Z, the partition function being:

7 :/[d¢] o= 2, ¢(=p) (PP +u2)é(p)~Ulg] (2.6)

In the expression, [d¢] denotes the path integral measure and the potential U[¢] cor-
responds to a ‘local’ field theory [26]

U[d»]:NZ% > 6<Zpi>ﬂ¢(pi>. (2.7)

{p17"'~,P2n} =1

As in standard field theory, we call the real constants {u,} the couplings, and uy the
mass. Here, N is the size of the correlation matrix C (T'), the dependency being crucial
for the large N limit to be well-defined. In contrast with standard statistical or quantum
field theories, the bare action S is essentially unknown, but the correlation functions of
the theory are fixed ‘experimentally’ using a data-driven approach (this is very similar
to the approach of NN-QFT proposed in [10, 12]). Specifically, the 2-point function

G(p?),
G (p?) 2L ! e
(") == [ [dele™ o (p) 6 (—p), (2.8)
which includes quantum corrections (Dyson’s series) of the self-energy ¥ (p?):
1 1 1 1
G (p?) = + Y(p?) —— .=
(#) PPtus PP tu (p)p2+uz P +uz — X (p?)
is assumed to be equal, for each value of p, to an eigenvalue of the empirical correlation
function C(T'). For the Gaussian model, i.e. ug, =0Vn > 1, the correspondence shows

: (2.9)

7 Strictly speaking, there is no locality principle underlying this theory because there is no ‘background space’. We define locality
from the formal similarity with standard field theory in Fourier space.

https://doi.org/10.1088/1742-5468 /ad5che 9
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that 1/(p? + us) should be identified with some z;, and the mass ps corresponds to the
inverse of the largest eigenvalue A\, assuming we translated the spectrum such that
the smallest eigenvalue A_ is zero. If the variable z is distributed according to some
distribution pg(z), we call po(p?) the induced distribution for p? in the Gaussian limit.
For u,, # 0, the propagator receives quantum corrections through the self-energy ¥ (p?)
and, in general, p(p?) # po(p*). However, since we focus on the tail of the spectra, i.e. the
region for p? < 1, we expect the derivative expansion and LPA to work well. Basically,
we consider:

1
Gp)~—— 2.10
(p ) Zp2 +m2’ ( )
where Z 2% 1 — 5 (0) and m? ALy — 3(0). In this approximation, we can assume that

p? is distributed according to po(p?). Furthermore, in the strict LPA, Z =1, as in [30],
we explicitly check that this approximation indeed makes sense. Hence, we postulate
that all quantum corrections are included in the effective mass m?, and:

p(0*) = po (p*). (2.11)

The properties of the LPA for this model, and especially the relation between Zy sym-
metry breaking and the strength of the signal, were studied in [30] and references therein,
and we recalled the main results in the introduction. In this paper, we suggest another
point of view: we consider dynamical rather than equilibrium phase transitions. More
specifically, we aim to study the relationship between the presence of a detectable sig-
nal and the existence of equilibrium dynamics. We recalled a first observation, a phase
transition associated with the presence of a sufficiently strong signal, to which we can
attach (at least formally) a critical temperature. This has been investigated for an
equilibrium theory, but we have not discussed the conditions for the existence of this
equilibrium, or more precisely its stability. However, out-of-equilibrium systems of this
kind, associated with a system possessing different phases, exhibit a singular property
known as coarsening or phase ordering dynamics. If we move abruptly from a high-
temperature (ergodic) regime to a temperature T below the critical temperature T'c,
the system is free to choose between several values of the order parameter, in different
regions of the background space, and each region then evolves independently of the
others, so that the system never returns to equilibrium. The different phases ‘grow’ as
a function of time, with a scaling law R(t), but the system remains self-similar at every
instant [37]. This scale invariance also seems in line with what would be expected for a
totally noisy signal, and it would not be surprising if the effective field theory describ-
ing the large-scale collective behaviour of the degrees of freedom associated with such
a signal exhibited such invariance. We will see in the following that this is indeed the
case for the effective kinetic theory model we will be proposing. More precisely, we will
see that a totally noisy signal in the vicinity of the MP’s universality class never allows
a return to equilibrium, and the inverse of the critical temperature seems to cancel out
at this limit 75 ' = 0. When this noisy spectrum is corrupted by a sufficiently strong
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signal (albeit within the signal/noise small enough limit), this critical temperature sud-
denly takes on a non-zero value. Physically, it is tempting to interpret the existence of a
region of the phase space supporting the equilibrium assumption as the manifestation of
a macroscopic order which, in turn, one would like to consider as relevant information.

2.2. The model and Martin-Siggia—Rose formalism

In the previous section, we motivated the analysis of a stochastic model describing a
certain type of out-of-equilibrium process, suitably described by a Langevin equation
of a particular type. Because of the requirement that equilibrium theory corresponds
to the field theory ‘in equilibrium’ considered in [30], we state the following ‘model A
type’ candidate [41] equation defined in Fourier space:

4 (p,t) =— (P> +m*) ¢ (p,t)

- AUy 0 (:0), (2.12)

 Op(—pt

which describes the temporal evolution of the random field ¢(p,t), while keeping the
notation ¢ = ¢(p) for the equilibrium field variable. The white noise n(p,t) is assumed
to be Gaussian, with zero mean and variance:

(n(p,t)n(p't")) =2T b —pd(t—t'), (2.13)

where the notation (X) is the average over the normalized noise distribution du(n):

() Lt / du(n) X. (2.14)

The parameter T identifies the temperature of equilibrium states, and we set T'=1 in
the rest of this paper (see [19]). The stochastic process described by equation (2.12)
can be equivalently expressed in terms of the probability density P(¢,t)[d¢] for the field
to be in the functional domain [p, ¢ + [d¢]], starting from an initial condition at ¢ =0.
This density probability explicitly reads as:

P(pt) == <H5(son (p,t) —w(p))>, (2.15)

where ¢, (p,t) is a formal solution of equation (2.12), for a given n®. Furthermore, it
obeys a Fokker—Planck equation [19], whose stationary solutions are’

Peq [¢] = peq 9] ox exp (—% > o(=p) (P +m*) o (p)—U [cb]) =exp(=S[gl), (2.16)

8 Note that the solution is unique as soon as the initial conditions are fixed because the equation is first order with respect to time.
The probability density is obviously normalized to 1, due to the normalization of du(n).

9 For T #1, the equation is replaced by Peg[@] ~ e~S/T and we indeed identify T as the temperature for equilibrium states, as
soon as S is identified with the Hamiltonian.
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which is also the expected probability density for late time. Indeed, introducing the
At eS/2P, we have U = —H®, with

a1 0 1S\ [0 188
=3 (-5+30;) (3 +25) 247

~5/2

‘wave function’? ¥ =—

The fundamental state is such that H Py =0, namely Uy=e
only if, ¥ is normalizable,

, which exists if, and

(Walio) = [ [dg) 5 (218)
In that case, we expect the system to return towards equilibrium:
Jim P (6,1) = Py 6] (2.19)

In the equilibrium dynamics regime, the MSR [45, 54] formalism allows the repres-
entation of information about correlations of the field at different times as a partition
function defined by a path integral over two fields. This partition function Z[.J] can be
defined as follows:

Z[J] &L <ef dtzp<f<—p,t>sa<p,t)>, (2.20)
which, according to the MSR strategy, can be rewritten as:

2[7,7] = [ ldelldg] &SI, 0O, Kon200 - (2.1)

where we included a source term J for the auxiliary field ¢ as well. The MSR action is
defined as:

Slp, ) 2L /dtZ( t)+¢(—p,t) (z’gb(p,t)%—%%)). (2.22)

Notice that we use the Ito prescription for the computation of the path integral, impos-
ing, in particular, #(0) = 0 for the Heaviside theta function involved in the computation
of the average, equation (2.20), see [19]. In the literature, the auxiliary field is known as
a response field, for reasons that we do not explain here, though the interested reader
may consult [55].

3. Functional renormalization group

There are many incarnations of the original Wilson idea of the RG, but many of them are
not suitable for non-perturbative analysis, like the Polchinski equation, even if they are

10 The terminology makes sense in imaginary time.
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formally accurate. Nowadays, the most powerful approach for non-perturbative aspects
of the RG is the Wetterich—Morris formalism that we will use in this paper—for more
details on this topic, the reader may consult the standard [56]. In the first subsection,
we introduce this general formalism for the field theory that we constructed in the
previous section. Let us mention right away that, in our case, the Wetterich—Morris
equation cannot be solved exactly (as is often the case in physics!!), and approximations
will be necessary. We will describe them in the second subsection. More details on the
functional RG in this context can be found in the recent [47, 48] of the same authors
or the standard [17, 46, 57]. Some recent papers also cover the topic of the RG in and
out-of-equilibrium stochastic process, see for instance [58, 59].

3.1. Functional renormalization in a nutshell

Let us consider a field theory whose partition function is given by the path integral:

Z:/[d¢] e 5l (3.1)

In the Wilsonian point of view for the RG, microscopic degrees of freedom are integ-
rated out. The fundamental cut-off is rescaled at each step, to provide S-functions that
describe how partial integration changes the couplings involved in the classical action.
In the point of view proposed by Wetterich and Morris [56], however, the fundamental
scale remains fixed, but a running parameter playing the role of an infrared cut-off
suppresses large-scale contributions in the effective action of ultraviolet modes. This
infrared cut-off is denoted by k, and we modify the classical action as

Sl = Sl + ASk[4], (3-2)

where the regulator ASy[¢|, which is of degree 2 in the field ¢ looks formally as a
momentum and scale-dependent mass term, designed to decouple long-range energy
modes (with respect to the scale k). Explicitly, for a field theory in D dimensions
(r €eRP, ¢:RP - R):

AS,[¢] 2L %

[ 42ad?y6 () Bue - )6 0. (33)
A typical shape for (the Fourier transform of) the function Ry(x — y) is shown in figure 4.
In the figure, we also show the behaviour of the threshold function:

o) = 2Bele)
¢* + R (¢*)
where ¢ denotes the momentum in Fourier space. The function f; is the typical integrand

involved in the flow equation, and we see that the regulator reduces the windows on
momenta to a small domain around ¢ ~ k2.

(3.4)

1 This is essential. It is often pointed out that the solutions proposed in this framework are approximate, which is, however, a
characteristic of physics, not of the Wetterich formalism.
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Figure 4. The behaviour of the threshold function for a typical regulator Ry (the
dashed blue curve).

In practice, the regulator shape is designed such that:

e Ri(¢?) =0 as |qg| = 0, k— 0, meaning that all the modes are integrated out in the
deep infrared limit.

o Ri(¢?) — k* as |q|/k — 0, meaning that small energy modes decouple from long-
distance physics.

e Ri(¢?) ~0 as |g|/k > 1, meaning that high-energy modes remain unaffected by the
regulator and are integrated out.

The Wetterich approach focuses on the effective average action 'y, which can be defined
as the effective action for the ultraviolet modes (i.e. large with respect to the infrared
scale k). This effective action is defined as the slightly modified Legendre transform of
the free energy Wj:

Ly [M]+ AS, [M] = /dDmJ(a:)M(m) Wi lJ], (3.5)

where J(z) is the source field, M (z) is the classical field:

def  OWj
M (z) = 57 (@)’ (3.6)

and the free energy W; is defined as:

QWilJ] et / (] e=SIo1-ASeL+] o) (x). (3.7)

Given the properties of the regulator, the effective average action I'; is a smooth
interpolation between the fundamental classical action & and the full effective action
I'—that is, the true Legendre transform of the free energy when the regulator function
is removed. For an ultraviolet cut-off A > 1, we thus have:
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1. T'j—p ~ S because Rj_,p ~ A? and quantum fluctuations are almost frozen;
2. I'y—o =T because Rj—o=0 and all the fluctuations are integrated out.

The equation describing the variation of the interpolation I'j, is the Wetterich—Morris
equation, which explicitly reads as:

d 1 d
_ - dD D — _ G _ .
k‘—dklk— 2/ xd”y < dkRk(I y)) k($ y), (3 8)

where the 2-point function G} is the formal inverse of the 1PI 2-point function. In
momenta:

G (¢") =T (') + B (7). (3.9)
where an) denotes the 2n-th order functional derivative of I'; with respect to the clas-
sical field M. The flow equation (3.8) is ezact, but cannot be solved exactly in general,
and approximations are required. Our aim in this paper is to study the RG corres-
ponding to the MSR generating functional, equation (2.21). The method is described in
recent works [46-48], and the reader may consult them and references therein for more
details. The regulator has to be of the form:

AS; 2L /dtdt’Zrk (p°) x <i95(—p,t)p§:) (t—te(p,t')
p

(3.10)
L (2) N /
where 7y, (p?) is the Litim regulator [60] over the eigenvalues:
def
Tk (p2) = (k2 —p2) 0 (k:2 —p2) . (3.11)

Time reversal symmetry of the MSR classical action corresponds to the field trans-
formation:

O (0,1) 2= o (p,—t), @' (0,t) == 3 (p,—t) + 2 (p, —t). (3.12)

The requirement that the modified action, equation (3.2), remains invariant under time
reversal for all & implies:

o) (1) = o (=) + 57 (=) — 57 (1) = 0. (3.13)

In this paper we do not consider a coarse-graining over time (i.e. over frequencies),
and we set p,(:)(t) =1= p,(f) (t) = 0 because of equation(3.13). For a comparison between
p,(c” (t)=0vs p'ggl) (t) # 0 for a model close to the one considered in this paper, the reader
may consult [47]. We expect that our approximation is as accurate as necessary for a

proof of concept. In the next section, we discuss the LPA.
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3.2. Local potential approximation

In [28], we considered the LPA for the equilibrium theory. In this section, we introduce
the same formalism for the out-of-equilibrium field theory considered in this paper.
Once again, more details about computations can be found in [47] of the same authors.
In this approximation, we assume that the classical field has a macroscopic value x for
the deep IR component of the classical field M (p) corresponding to the average value

for the field ¢:
M (p) = v/ Nxdop- (3.14)

We furthermore assume the following ansatz for I';:

— de — 1 s oUj,
T [E] 2= Cpan [5] + §N/dtz it (—p,t) 7 (3.15)
p

oM (p,t)’

where Z = (@, M) collectively denotes the classical fields, i.e. the means values, respect-
ively, for the response field ¢ and the random field ¢, and:

P &2 [y (0 EELUEO0 i ) (v ) + 200 (00) ). (3.16)
p

Since we focus on strict LPA, we furthermore assume (see [56]):
Yi=Z,=1, Vk. (3.17)

Furthermore, the equilibrium average action is (m(p) here denotes the equilibrium clas-
sical field):

Chaqlm] = 3 Y m(-p)p’m () + 5 Ui [m?)
~ (3.18)
=5 m(=p) (p* + pzy (k) m(p) + O (m"),

and the physical mass ugq(k =0) is identified with the inverse of the largest eigenvalue

of the empirical density spectra fieg,(3) [30]'?. Furthermore, in the same reference, the
authors checked, for the equilibrium theory in particular, that wave function renormal-
ization is indeed a small correction, and we expect this approximation to make sense
for the purpose of this paper. For the classical configuration, equation (3.14), we have:

19U,
20M (p)

— U [M?] M (p), (3.19)

12 This is indeed a strong but crucial simplification of the LPA to store all the quantum fluctuations effects for the two-point
function into the effective mass.
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and Uy[M?] for a uniform macroscopic field is expected to admit a power expansion
around some (running) minimum x(k):

Uk(MQ):MQT(k)(MWQ—K>2+M3T(I€)(MWQ—K>3+'“. (3.20)

The flow equation for the effective potential U} can be derived from the Wetterich
equation (3.8), imposing condition, equation (3.14), on both sides of the equation. From
the truncation, we formally obtain:

d 1 d or, 1

where ds =L d(Ink). The last diagram corresponds to the right-hand side of the flow
equation (3.8): the black dots and black squares represent, respectively, the fields M
and @, the solid self-loop is the sum and time integral over the variable of < (p,t), the
dotted edge materializes the effective propagator Gy (equation (3.9)), and the crossed

circle represents the regulator. The 3-point function F,(€3) can be easily computed:

53Ty
0w (p7t) oM (p17t1)5M (p27t2)

=N (QUkH [5137?1 507;02 + 51971)25071)1 + 51317]325071)]

+460,500,5, 00,0, X N U;"") (3.22)
X/ NXO(t—11)0(t—12).
It is convenient to introduce the potential U} such that:
def
Uy [X] == Uy, [M* = Ny]. (3.23)

Hence, working in Fourier space, and because of the integral'®:

oo du 1 1 1
aw S : 3.24
/oo 27 (iw + f (2))* (—iw+ f () 4(f(2))? (324

the flow equation for U] [x] reads explicitly reads:

d, . 31/1”[ ]""2 L{f”[ ] 2 g 2
gulg[X]:—Q k g{2+;)2k X (/0 dppp (p )), (3.25)

13Tt comes directly from residue theorem, assuming the function f(z) does not vanish.
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where we used the explicit expression for the derivative of the Litim regulator:
d 2 20 (1.2 .2
—rk(p):2k H(k —p), (3.26)
ds
and the effective mass p? is:

def

p? == Uy [X] + 2x Uy [x]. (3.27)
Furthermore, we replace the discrete sum over p by an integral, taking the continuous
limit for the density spectrum:

%zp:e(k?—p?) —>4</Okdppp(p2)>- (3.28)

3.3. Scaling and dimensions

For a power-law distribution p(p?) ~ (p?)?, as is the case for the standard field theory',

the loop integral in equation (3.25) behaves as k2+2. The explicit dependency on & can
be cancelled on both sides of the flow equation, working with dimensionless quantities.
Specifically, this allows one to take into account the rescaling of the fundamental scale
after each partial integration, to keep the large-scale physics unchanged. In our case,
however, the distribution is not a power law, and the integral in equation (3.25) does
not behave as such. In that case, we cannot discard the explicit dependency on k. As
pointed out in [28], the best compromise is to move this dependency to the level of the
linear term, that we usually call the canonical dimension in the RG literature. Hence,
according to [28], we introduce a new parameter 7, defined such that:

k
de:efdlln (/0 dppp(p2)>]. (3.29)

For a power-law distribution obviously, d7 oc dln k. Since the eigenvalues p? have to scale
as u?, it is convenient to introduce the dimensionless effective mass:

2 2L 22, (3.30)
We introduce the notation:
def dX
X R 3.31
dr ( )

for the 7 derivative, and we denote as dim, (X ) the canonical dimension (i.e. the opposite
of the linear term in the flow equation for X). Since the flow equation for x? has to be
multiplied by 5 to express the flow in the 7 variable, the canonical dimension for p? is:

dim, (42) 2L dim, U]) = 25. (3.32)

d—2

14 For a field theory over R?, we have p(p?) ~ (p?) = .
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Henceforth, we define as X the dimensionless version of the quantity X. Using the 7
parameter, the flow equation for U (3.25) becomes:

1" " 2
U] = —2K 3Uy, [ﬂi f_j;)z;{k (x| (sz ) S-2> , (3.33)

To derive the flow equations for dimensionless couplings, it is convenient to work with
a flow equation with fixed y. The flow equation (3.25) is, however, written at a fixed .
To convert one into the other, let us observe that:

U Ix) = K U [x) -+ dimn, () G [x] = dim, () XU [X]] (3.34)

The dimension of dim,(U/) has been computed in equation (3.32). From the flow
equation (3.33), we define:

1/ def //10 k2 .
U <Ly, 5{:2)(3)2. (3.35)

Obviously, xU,"" and U, must have the same dimension, and the dimension of the field
X can be computed from equations (3.35) and (3.32):

X 2L (p (k) &) x, (3.36)

leading to:
dim, (y) = é%ln (p(K*)$%). (3.37)

Finally, the flow equation for the dimensionless potential explicitly reads:

83Uy’ [X] + 2x" [X]

Uy [ = — dimy ()T ] + dim, () XUy ) — 25— (3.:38)

This equation provides, in the LPA approximation, the full behaviour of the RG. As
the formalism has been introduced, in the next sections we will study the RG flow for
slightly deformed spectra around MP law.

Remark 1. According to the discussion in section 2.1, in equation (2.11), the distribu-
tion p(p?) is assumed to be equal to the distribution py(p?) for the Gaussian theory.

4. Numerical flow analysis and the signal track

This section aims to explore the behaviour of the RG for the theory described in the
previous section (equation (3.38)). We start by studying the case of a totally noisy
spectrum, that is, the analytical MP distribution. We then investigate the qualitative
changes in the behaviour of the RG as a signal disturbs the noise matrix.
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4.1. Numerical methodology

To simulate the flow equation (3.38), we use the Python package py-pde [61]. It enables
the efficient simulation of partial differential equations of the general form

U (x,t) = Du(x,t)] +n(u,x,t), (4.1)

where D is a (generically non-linear) differential operator, @ is the usual ‘time’ derivative
and 7 is a noise term (in our case n = 0).

As we are interested in the universality class of the MP distribution, we first focus
on its analytic form, equation (2.4). We inverse it to obtain the functional form of the
momenta p(p?) of the field theory (see figure 5):

p(p°) = pnp (%) 2% (4.2)

We successively translate it such that p(0) =0. We then consider several empirical
realizations to follow the deformation from the theoretical distribution. We consider a
noisy signal given by the definition, equation (2.2), where the entries of the matrix X are
independent and identically distributed (i.i.d.), with zero mean and unit variance. In the

large N, P — oo limit, but such that P/N 4o < 00, the spectrum of C' approximates
the MP distribution defined by equation (2.4)—see also figure 2. To deform the spectrum
of the universal class, we build a fixed-rank matrix S, added on top of the purely random
matrix X. Specifically, we build an empirical matrix Y € R¥*" such that!?:

Y=2+885, (4.3)

where Y = (yij)iep,n,jen,p) for yij ~ N(0,1), and 8 € [0, 0.5] in these simulations. The
signal matrix S represents the added signal. In the investigations carried out in [28, 30],
the authors considered the spectrum of a correctly normalized image to materialize this
signal. Here, we adopt a different strategy, which allows us to maintain even greater
control over the experimental parameters. We build two rectangular matrices

U= (ui7‘)ie[l,N],re[l,R] and V= (v )TE[LR]J €[1.P] (4.4)

for a fixed choice of R < N, P, such that u;, ~N(0,1) and v,; ~ N (0,1). We then con-
sider the product

(4.5)

15 Notice the slight change of notation w.r.t. section 2.1, in order to conform to the standard literature in data analysis. All
definitions can be recovered by either transposing the matrix X in the previous sections, or by inversing P «— N.
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as the definition of the signal matrix. The covariance matrix has the usual definition
(row-wise variables):

e YTy
o .
N

(4.6)

We rely on the interpolation of the (inverse) spectrum of the eigenvalues of C' for
the subsequent steps. Specifically, we fit a smoothed second-degree polynomial to the
density histogram of the eigenvalues/momenta, using a B-spline representation of the
curve. Integrations were carried out using the quadrature technique, while differentiation
uses central differences to minimize the error.

For our numerical investigations, we set N =10, P=8x 10> and R =2500.
Moreover, we set the general initial condition

- I 1_ 1_
Upo[X] = X + 5 X" + 5 isX” + 7 flaX’ (4.7)
on the effective potential.
The simulation of the dynamic equation (3.38) has been carried out in a frequency
domain centred on the low momentum scale of the underlying MP distribution. That
is, we chose k € [k_, ky] in 7 = 7(k) (see equation (3.29)) such that:

1
B )\+:|:a/’

ki (4.8)

where A, is defined in equation (2.4), and a¢ =0.35 in the simulations presented in this
article. We set the simulation on a grid of 10® points in the interval y € [0, 1].

At least as far as the 2-point function is concerned, the considered field theory is
defined in the IR by construction (we have the exact function, including all quantum
corrections—see equation (2.9)). This contrasts with the usual situation in field theory,
where we define a microscopic theory whose large-scale effects are studied by the RG;
here, our definition of microscopic theory is based solely on the approximation (LPA)
used to describe the RG flow. For this reason, the microscopic theory should not be
considered as realistic, in the sense that it does not reflect the reality of the microscopic
degrees of freedom associated with the spectrum under consideration. It is only a pro-
jection of the actual theory, describing at a large distance the collective behaviour of
these degrees of freedom. Our experimental approach reflects this reality, and unlike
standard approaches, we choose (which makes sense for the approximation considered)
to initiate the flow in the IR region by inducing the theory in the UV region. Although
this approach is paradoxical from the point of view of the very meaning of the RG (a
semigroup), it is not totally exotic either. It is, for example, the point of view adopted
in the literature devoted to the problem of ‘asymptotic safety’ in quantum gravity [62],
aiming to prove that quantum gravity is well-defined in the UV region, even if it is not
(perturbatively) just renormalizable.
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e

k2

Figure 5. The typical shape of p(p?) for MP law. Note that we labelled the abscissa
variables with k2, the renormalization group scale.
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(c) Back-evolution of ¢ [0]. (d) Back-evolution of ¢ [1].

Figure 6. Typical variations of the potential (see (a) and (b)) and its back-evolution
for the analytical MP law (see (c¢) and (d)). The initial conditions are the following:
1 = fis = fig = 0.0, fiy = 1.0. Arbitrary large and rapid oscillations are observed for
the back-evolved potential, after some RG steps.

4.2. Results and comments

First, we consider the case of the MP spectrum. The corresponding p’s shape is pictured
in figures 5 and 6 and shows the typical behaviour of the back-evolution of the effective
potential, with general initial conditions, equation (4.7).
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X101 Simulated Distribution [ = 0.00]

v[1]

(a) Noisy (8 = 0) empirical distribution. (b) RG flow for 8 =0.

Figure 7. The behaviour of the RG flow (b) in the case of the empirical distribution
for B =0 (a) is extremely similar to that obtained from the analytical MP law. The
absence of values for k£ 2 0.07 signals the divergence of the values in the Python
simulation.

Recall that, asymptotically in the IR, the power counting for the MP law reduces
to that of a three-dimensional field theory, and that all interactions higher than sextic
are irrelevant (see figure 3). The behaviour we observe is reminiscent of that found
in classical models of disordered systems, such as p-spin models, whose functional RG
has recently been considered [47, 48] in a temporal approach that is equivalent to that
considered in this article. The authors observed the same type of divergence at finite £,
which can be physically interpreted as the failure of the assumption that the system is in
equilibrium dynamics. Indeed, this assumption is implicitly made in the construction of
the MSR path integral, equation (2.21), because we took the origin of time for ¢t = —oc;
due to the expected time translation invariance and because of the time reversal sym-
metry, the system is then assumed to be arbitrary close to equilibrium for any finite
time. In the two previous references, the authors specifically confronted these assump-
tions, and showed that finite time singularities are truly related to a breakdown of the
time reversal symmetry and time translation invariance (focusing on the breakdown of
the underlying supersymmetry in [48] and through a 2PI formulation in [47]). Hence, in
this model, we recover what we could expect from previous investigations: the system
fails to reach equilibrium for general initial conditions in the deep IR'C.

It is also worth noting, for the following discussion, that these conclusions are not
specific to the P, N — oo limit. They remain true even when these parameters are finite,
provided they are sufficiently large. Figure 7 illustrates this point, and the parameter
B set to zero means the no-signal limit (see the convention given in the introduction,
though this point will be clarified shortly). Once again, we recover the same phenomena:
a finite scale divergence reminiscent of a weak ergodicity breaking.

Figure 8 shows some results for different values of the parameter 5. On the left,
we can see the empirical distribution for a given draw of Z, and on the right we show

16 We could say for almost all initial conditions. It is indeed possible that the situation is different for some of them, as we saw
in [47] (and references therein). However, we have not yet been able to identify any such conditions.
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Figure 8. The empirical spectrum with an increased signal level (a), and the cor-
responding back-evolution of the derivative of the potential at the (arbitrary) value

x=1 (b).

the corresponding RG flow (with the same initialization as in figure 6). As long as
remains small, the results remain (qualitatively) those obtained previously for a purely
noisy signal; there is, however, a slight delay in the explosion of the RG flow. When j
is large enough, the behaviour of the RG flow is very different. Although the potential
takes large absolute values, it does not seem to diverge, and its derivative also remains
regular. Thus, our initial hypothesis seems to be confirmed: a sufficiently large signal
favours a return to equilibrium, or at least does not reject this hypothesis, which is
central to the construction of the MSR partition function. This qualitative change in
the behaviour of the flow can be used to define a signal detectability threshold.

4.3. Exploring the phase space

Next, we choose a more convenient representation of the initial conditions in the IR,
based on a single parameter that we will identify (after redefining the fields) as the
(renormalized) temperature 7"

T — T
= T 0, fins1 =T 71 (4.9)
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Figure 9. The behaviour of the (suitably normalized) absolute value for the max-
imum of the derivative of the potential at the point 1 with respect to 8 (a), and
for different temperatures (b)—(d).

In this parametrization, the temperature T is arbitrary, and we set Ty = 0.5 as a ‘test’
value in the experiments (in this scenario, averaged over ten different realizations each).
In figure 9, we plot the logarithm of the absolute value of the maximum of the derivative
of the potential as a function of the value of 3, for different temperatures. We can clearly
identify a transition between two regimes, around the value 3.~ 0.2. Notice that this
value does not seem to depend significantly on the Ty value as well as on the value of y
selected for the simulation: we were able to verify the statement numerically. It is worth
noting that, although we had identified the existence of a critical 8. value for signal
detection in our previous work [30], we had not yet been able to estimate it: indeed,
we were able to show the occurrence of a symmetry-breaking mechanism as a result of
the addition of signal to a normal background, though the value of the critical 8. could
not be determined. This translated to a shrinkage of the domain of initial conditions
leading to the symmetric phase, which provided a good, though insufficient, qualitative
representation of the signal-to-noise ratio.

Finally, let us point out that while the figures appear similar for different temperat-
ures, the T'— 0 limit is singular, and the transition to the critical value 3. seems more
abrupt. This limit would physically correspond to the case of a totally uncorrelated
noise; this phenomenon deserves to be completed by a finer physical analysis of the
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Figure 10. The maximum values of the derivative of the potential at the value
X =1 in the parameter space (a)—(c).

corresponding model, and we mention its results as an opening towards further invest-
igations. In the same way, the above analysis does not yet provide a precise answer to
the other question in the introduction, and to which we have already provided some
elements of an answer in our previous articles: namely, the physically motivated position
of a boundary between signal and noise. We expect the delocalization of eigenvectors
to induce a mixture between the ‘information’ and ‘noise’ parts of the signal; therefore,
we could, as we explained in the introduction, hope to determine a boundary in the
spectrum at which we expect to find more information than noise. Here, the search for
this boundary using the formalism developed in this article is a work in progress and
will be the subject of future works.

We conclude this section by mentioning other results that seem to confirm the pre-
vious results. Starting with some initial conditions, we show, in figure 10, the maximal
values of the derivative of the potential for two values of =0 and §=0.43. According
to the previous results, the values taken by the potential with vanishing (3 are very large,
and then diverge at almost every point of the phase space. The situation is different
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Figure 11. The behaviour of T as a function of the signal strength 3.

for 3 =0.43, where the potential takes large, though finite, values!”. This is indeed true
for almost every point in the set represented in the figure, except for a point where
the potential seems to take a large value. The same phenomenon occurs for different
values of [3, as the last plot in figure 10 shows, using parametrization, equation (4.9),
for the initial conditions. We observe that, for each value of 3, a value exists for which
the potential forms a ‘cusp’, for a given T'. value of the temperature. The value of this
‘critical’ temperature depends on 3, and figure 11 explicitly shows its dependency. The
value of the critical temperature shows the same kind of qualitative change as we had
previously observed, in the vicinity of the critical value . ~ 0.2. Here, again, we see that
the net effect of the signal is to delay the transition point, by increasing the effective
value of the critical temperature, for a given parameterization fixed in the IR.

5. Conclusion

This article continues recent work by the same authors, summarized in [30], aiming to
exploit the functional RG for signal detection when the latter is hidden within highly
noisy degrees of freedom (low signal-to-noise ratio). Although the authors were able to
show the different behaviour of the RG as a function of the signal strength, a critical
threshold for signal detection has not yet been established. However, a qualitative effect
on the final phase was observed: the domain of initial conditions leading to a symmet-
ric potential in the IR is reduced by the introduction of a deterministic signal. The
symmetry-breaking process could thus be used to detect the presence of a signal. The
determination of the critical threshold of the signal-to-noise ratio has yet to be solved,
or solved efficiently, by current methods. Our aim is to identify not only a detection
threshold, but also a characteristic spectrum scale for distinguishing a ‘noisy’ sector. In
this article, we have considered stochastic field theory and investigated the relationship
between the presence of a signal and the return to equilibrium. The net result is the
existence of a transition between two clearly identified regimes: a first regime where the
system never reaches equilibrium (noisy regime), and a regime where the equilibrium

17 According to our machine limit, which does not distinguish numbers larger than 10%® with infinity.
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conditions can be maintained, when the signal strength is large enough. We were thus
able to give an estimate of the critical . value at the detection threshold, which we
were unable to do in previous investigations. However, we still have a long way to go in
understanding the physics of these flows. For example, we have not studied the charac-
teristics of the potential, only its divergences; nor have we finely analysed the relevance
of our approximations (LPA) when we deviate from the IR. Finally, we have not gone
any further in estimating the boundary with noisy degrees of freedom; however, this
question is the subject of ongoing work, and will be dealt with in the direct aftermath
of this work, which should be considered as preliminary.
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