
J
H
E
P
0
8
(
2
0
2
4
)
0
6
1

Published for SISSA by Springer

Received: January 9, 2024
Revised: June 13, 2024
Accepted: July 6, 2024

Published: August 7, 2024

T-duality and flavor symmetries in Little String Theories

Hamza Ahmed,a Paul-Konstantin Oehlmanna and Fabian Ruehlea,b,c

aDepartment of Physics, Northeastern University,
Boston, MA 02115, U.S.A.

bDepartment of Mathematics, Northeastern University,
Boston, MA 02115, U.S.A.

cNSF Institute for Artificial Intelligence and Fundamental Interactions,
Boston, MA, U.S.A.

E-mail: ahmed.ha@northeastern.edu, p.oehlmann@northeastern.edu,
f.ruehle@northeastern.edu

Abstract: We explore the T-duality web of 6D Heterotic Little String Theories, focusing on
flavor algebra reducing deformations. A careful analysis of the full flavor algebra, including
Abelian factors, shows that the flavor rank is preserved under T-duality. This suggests a new
T-duality invariant in addition to the Coulomb branch dimension and the two-group structure
constants. We also engineer Little String Theories with non-simply laced flavor algebras,
whose appearance we attribute to certain discrete 3-form fluxes in M-theory. Geometrically,
these theories are engineered in F-theory with non-Kähler favorable K3 fibers. This geometric
origin leads us to propose that freezing fluxes are preserved across T-duality. Along the way,
we discuss various exotic models, including two inequivalent Spin(32)/Z2 models that are
dual to the same E8 × E8 theory, and a family of self-T-dual models.

Keywords: F-Theory, Global Symmetries, M-Theory, String Duality

ArXiv ePrint: 2311.02168

Open Access, © The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP08(2024)061

mailto:ahmed.ha@northeastern.edu
mailto:p.oehlmann@northeastern.edu
mailto:f.ruehle@northeastern.edu
https://doi.org/10.48550/arXiv.2311.02168
https://doi.org/10.1007/JHEP08(2024)061


J
H
E
P
0
8
(
2
0
2
4
)
0
6
1

Contents

1 Introduction 1

2 Review of Little String Theories and F-theory 3
2.1 General properties of LSTs and their 2-group symmetries 3
2.2 Heterotic LSTs 5
2.3 F-theory construction and T-duality 7
2.4 Toric construction 9

3 Flavor rank matching 12
3.1 Origins of u1 symmetries in 6D theories 12
3.2 ABJ anomalies 13
3.3 Flavor rank matching in Dn models 16
3.4 Flavor and K3 polarizations in Heterotic LSTs 20
3.5 Maximal common flavor symmetries 20

4 Engineering non-simply laced flavor groups 23
4.1 Non-simply laced flavor from freezing fluxes in 6D SCFTs 24
4.2 Non-simply laced LSTs from fusion 25
4.3 Non-simply laced LSTs from non-favorable K3s 26
4.4 Non-simply laced LSTs from decoupling gravity 28
4.5 Non-simply laced flavor algebras and T-duality 29
4.6 Examples of non-simply laced flavor constructions 30

5 Exotic models 31
5.1 Different duals with same base topology 31
5.2 Duals with exceptional gauge algebras 32
5.3 A self-dual model 33

6 Conclusions and outlook 34

1 Introduction

Recent advances in understanding generalized symmetries have substantially improved our
understanding of supersymmetric six-dimensional theories and their ultraviolet (UV) com-
pletions. These theories are special since they can have non-critical BPS strings in their
spectrum that become tensionless at certain loci of moduli space [1, 2]. Moreover, their gauge
sectors are strongly constrained by anomalies [3, 4].

The advent of F-theory and the geometrization of strongly coupled IIB backgrounds
lead to thorough explorations of 6D supergravities (SUGRAs) [5] (see [6] for a review) and
supersymmetric quantum field theories that flow to superconformal field theories (SCFTs) in
the UV (see [7] and references therein). In six dimensions however, there is a third class of UV
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consistent theories, so called little string theories (LSTs) that stayed rather unexplored until
recently [8–15]. LSTs are an interesting intermediate case, since they combine characteristic
features of both SUGRAs and SCFTs. For example, they exhibit T-duality, but can also have
global symmetries. Furthermore, recent explorations of generalized symmetries [16] showed
that LSTs have a unique continuous 2-group symmetry [17–20] that is absent in SUGRAs and
SCFTs. Based on the seminal work by Aspinwall and Morrison [21], generalized symmetries
have renewed interest in geometric realizations of LSTs [13, 22–24], explorations of their
Higgs branches [25, 26], and an effort to map out their T-duality structures [23, 27].

Heterotic LSTs capture the degrees of freedom of the world-volume theories of stacks
of NS5-branes with flavor groups originating from the 10D E8 × E8 or Spin(32)/Z2 gauge
sector probing a transverse C2/Γg singularity, with Γg ∈ SU(2). This landscape of theories
is enriched by the possibility to include flat connection(s) at infinity that break the 10D
gauge groups to residual flavor groups GF . One expects 6D LSTs to inherit a duality map
TD from their 10D origin, which reduces the two 6D theories on a circle and moves to a
common locus in the 5D moduli space.

To map out the space of 6D LSTs and their web of dualities, we should study TD and
its action on the theories. For cases with trivial holonomies, TD is well understood [12]. In
this paper, we explore the properties of TD in the presence of non-trivial flavor holonomies.
To do so, we identify invariants of the 6D theories under TD. Two types of invariants that
have been discussed previously are the 5D Coulomb branch dimension, and the recently
proposed universal 2-group structure constants [19]

dim(CB) and (κR, κP ) . (1.1)

Compactifications to 5D come with an additional modulus that specifies the flavor holonomy
along the circle and can break the flavor algebra. Since this is part of the common 5D moduli
space of T-dual circle-reduced LSTs, the flavor algebras can differ but their rank

rk(GF ) (1.2)

is expected to be invariant under TD. However, matching flavor ranks across T-duals
is complicated by the presence of Abelian symmetries, which can be originate as linear
combinations of flavor, baryonic and E-string symmetries. Moreover, they can be broken
by ABJ anomalies [28, 29].

The geometric engineering approach using F-theory and its duality to M-theory provides
a powerful tool to study such theories. Beyond delivering a consistent construction of strongly
coupled and non-Lagrangian theories, T-duality simply corresponds to the existence of
inequivalent elliptic fibration structures within a single Calabi-Yau three-fold X3. While there
exist general theorems to determine inequivalent elliptic fibrations for compact threefolds [30–
33], they do not say much about properties of TD. However, once inequivalent fibrations have
been identified, one can use birational geometry arguments to show that the invariants (1.1)
are indeed preserved under TD. The flavor group GF , on the other hand, need not be fully
encoded in the geometry [34]. Furthermore, flavor symmetries may also include non-simply
laced algebra factors, as in the case of so-called frozen conformal matter [35], which further
obscures their geometric interpretation.
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The paper is organized as follows: in section 2, we review basic properties of 6D LSTs
and their geometric engineering via F/M-theory. In section 3, we discuss the flavor algebra
of Heterotic little strings with emphasis on the Abelian parts required to show flavor rank
matching across T-duality. In section 4, we discuss models with non-simply laced flavor
groups, including their construction via toric geometry, their dualities, and their gravity
decoupling limits. We highlight some particular exotic models in section 5, before we conclude
in section 6. Table 4 summarizes novel T-dual families of Heterotic LSTs.

2 Review of Little String Theories and F-theory

This section provides a short review of 6D theories with eight supercharges and serves to
introduce the basic concepts and notations. Experts may skip this part, while readers who
are interested in more details can consult recent reviews [7, 23, 24, 36].

2.1 General properties of LSTs and their 2-group symmetries

Six-dimensional (minimally) supersymmetric Quantum Field Theories (6D SQFTs) admit
tensor multiplets in their spectrum. Parts of the bosonic field content of such multiplets are
self-dual 2-form fields b(2) that couples to 6D non-critical BPS strings. At high energies, these
strings can become tensionless and support new degrees freedom required for a UV completion
of the theory, i.e., in 6D one does not need gravity for a consistent UV completion [2, 37]. Two
kinds of such UV completions are known: 6D SCFTs and 6D LSTs [38, 39]. The difference
between the two is that SCFTs have no intrinsic scale, while LSTs have a scale proportional
to the tension of a string that does not trivialize under RG flow. This means that LSTs are
not like usual QFTs, since they cannot have RG flows to a point where the scale dependence
drops out. This intrinsic scale is known as the little string scale, MLS, and plays a similar
role to the Planck scale MP in gravity theories. It is believed that every 6D supersymmetric
theory has a tensor branch, where some or all of the scalars in the tensor multiplets have
been given a non-zero vacuum expectation value (vev), rendering all BPS strings tensionful.

The data required to specify a minimal supersymmetric field theory with rank nT

(number of tensor multiplets) is given by:

• The gauge algebra ∏I gI .

• The flavor algebra ∏nf

k=1 fk.

• A symmetric matrix ηIJ of rank nT which encodes the Dirac self-pairings of the nT BPS
strings of the theory. The entries of this matrix are integers due to Dirac quantization.
The BPS strings source the corresponding 2-form gauge fields b

(2)
I .

• A matrix ηIk which encodes information about the flavor algebra fk associated to the
matter charged under a gauge algebra gI . Matter representations have to be assigned
such that the pure and mixed quartic gauge anomalies cancel.

This data can be summarized neatly in a so-called quiver,
g1
n1

g2
n2 · · ·

gk
nk

[fA](ηkA)

· · ·
gnT
nnT , (2.1)
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where we defined nI = ηII , and associate a flavor factor fA (in square brackets) to the node
where ηkA ̸= 0. This is the notation we will follow throughout the paper. The shape of the
quiver is such that two nodes nI and nJ are adjacent if ηIJ = −1 and non-adjacent otherwise.
Other values of ηIJ are also possible [15, 40], but not relevant to our study here. The matter
content of the theory described by the quiver is not written explicitly but can be inferred
from demanding absence anomaly freedom, see [6, 36, 41] for reviews. Typically, one simply
has bifundamental matter between adjacent gauge algebras,but sometimes additional matter
is required to cancel the 6D anomalies, which leads to the flavor factors fA. Throughout this
paper, we will also suppress ηkA on the flavor nodes. The geometric interpretation of these
quivers will become apparent when we consider the F-theory construction.

The difference between SCFTs and LSTs is encoded in properties of the matrix ηIJ ; it is
positive definite for the former and positive semi-definite with exactly one zero eigenvalue for
the latter. Hence, when the matrix ηIJ does not have full rank and a null space of dimension
one, we get an LST. This means that when we write down the kinetic terms for the 2-form
fields, one linear combination vanishes and we have a non-dynamical background field left [42].
We will call this field B

(2)
LST field and its associated string the little string. Hence

B
(2)
LST =

nT∑
I=1

lLST,I b
(2)
I , (2.2)

where nT is the number of tensor multiplets, and lLST,I are the components of the unique null
vector of ηIJ , also called the LST charge vector. This background field (and the associated
little string) generates an Abelian 1-form symmetry U(1)(1)LST with lLST,I being the respective
charges of the strings that couple to the fields b

(2)
I . The presence of such a symmetry

is an important point of differentiation between LSTs and SCFTs. In more detail, the
two theories are distinguished by the structure of their 2-form defect group D(2) [17, 43],
which is determined by the intersection matrix ηIJ : for LSTs, D(2) has an extra U(1) factor
contributing to the higher form symmetry [18, 44]. This leads to the presence of continuous
2-group symmetries in LSTs.

The characteristic feature of 2-group symmetries is a mixing of a 0-form and a 1-form
global symmetry. Physically, this mixing is characterized by the mixed anomaly coefficients
between the gauge fields corresponding to the gauge algebra gI and 0-form global symmetries in
our theory. In our case, we have the Poincare symmetry, R-symmetry, and the flavor symmetry
as global 0-form symmetries of the theory, so we have three anomaly coefficients which we
will call κP , κR, κfk . In 6D, the anomalies are encoded in the eight-form anomaly polynomial
I(8), which involves products of topological quantities associated to the curvature forms
for gauge and background fields associated to the local and global symmetries, respectively.
We will denote these curvature forms by fgI and fn, where n ∈ {P, R, fk}. A contribution
to the mixed anomaly of the gauge algebra gI with flavor symmetry fk, I(8)gI fk,mixed, is (up
to numerical factors) given by [18]

I(8)gI fk,mixed = c2(fgI )
(

ηIkc2(ffk) + ȟgI c2(fR) + (ηII − 2)p1(T )
)

, (2.3)

where c2(f) is the second Chern class of the associated vector bundle, p1(T ) is the first
Pontryagin class of the tangent bundle, and ȟgI is dual Coxeter number of the gauge algebra
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gI . This mixed anomaly indicates that the 6D effective action on the tensor branch is
no longer invariant under background gauge transformations corresponding to the global
symmetries, and that this non-invariance depends on the gauge algebra [18]. However, since
each gauge algebra factor has an associated BPS instanton string which couples to b

(2)
I ,

the Bianchi identity of the three-form field strength H
(3)
I can be modified to cancel this

non-invariance of the action,

1
2π

dH
(3)
I = −1

4ηIkc2(ffk) + ȟgI c2(fR)−
1
4(η

II − 2)p1(T ) . (2.4)

On the other hand, the background field B
(2)
LST modifies the Bianchi identity to

1
2π

dH
(3)
LST = −1

4

nf∑
k=1

κfkc2(ffk) + κRc2(fR)−
1
4κP p1(T ) . (2.5)

This modification mixes the 1-form and 0-form symmetries of the theory, which is why the
anomaly coefficients are also called the 2-group structure constants. Using relation (2.2),
we can compute these constants:

κfk =−
nT∑
I=1

lLST,IηIk , κR =−
nT∑
I=1

lLST,I ȟgI , κP =−
nT∑
I=1

lLST,I(ηII−2) . (2.6)

In the following sections, we will review how to compute them geometrically from Calabi-Yau
data using F-theory, focusing on the universal 2-group symmetry constants κR and κP [19].
Before that, we would like to remark that such continuous 2-group structure constants do
not exist for 6D SCFTs, since the superconformal algebra in 6D prohibits the existence of
a conserved 2-form current (coming from the 1-form symmetry) [18], and so terms arising
in (2.3) would have to be cancelled by a dynamical Green-Schwarz mechanism in place of
the non-dynamical version in equation (2.5).

2.2 Heterotic LSTs

We focus our discussion on Heterotic LSTs, of which there are two kinds, associated to
the e8 × e8 and the so32 Heterotic strings. We only review the essential ingredients of
these theories; a detailed description can be found in [27]. NS5 branes in the so32 LST are
perturbative and have been described in [45]. A rank N LST with minimal SUSY arises as
the worldvolume theory of N NS5 branes probing an ALE singularity C2/Γg in the Heterotic
string context, where Γg ⊂ SU(2) and g labels the resulting Lie algebra according to the
McKay correspondence [10, 11, 46]. From the point of view of the worldvolume theory, the
so32 algebra corresponds to the flavor symmetry of the LST. Since π1(S3/Γg) ∼= Γg (where
the lens space S3/Γg is the boundary of the ALE space), one also has to specify a choice of
flat connection at infinity, which is encoded in the embedding morphism λ:

λ : π1(S3/Γg) ∼= Γg ↪→ Spin(32)/Z2 , (2.7)

where Spin(32)/Z2 is the actual gauge group of the Heterotic string. We will denote the
corresponding LST by K̃N (λ; g). Furthermore, a non-trivial λ means that the actual flavor
symmetry of this LST will be the commutant of λ(Γg) in Spin(32)/Z2 [10, 11, 46–48].
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The e8 × e8 LST on the other hand can be described in M-theory via the Horava-Witten
setup [49]. In this picture, we have the two M9 branes as end-of-the-world branes of the 11D
M-theory interval, each of which carries an e8 gauge algebra. The LST (of rank N) arises as
the worldvolume theory of N parallel M5 branes probing a C2/Γ singularity transverse to the
M9 branes [50]. Again, the e8 × e8 corresponds to the flavor symmetry of the LST. Due to
the presence of the singularity, the M5 branes fractionate. Each fraction is characterized by
(discrete) three-form flux, which breaks the gauge algebra g to a subalgebra. These fractions
were determined via F-theory in [51]. For this class of LSTs, we have two morphisms µa,
a = 1, 2, that describe the flat connections at infinity for to the two e8 factors as

µa : π1(S3/Γg) ∼= Γg ↪→ E8 . (2.8)

We denote this LST by KN (µ1, µ2, g).
LSTs in 6D have N = (1, 0) tensor multiplets whose scalar vevs parameterize the tensor

branch and whose two-form fields couple to BPS strings. In the Horava-Witten setup for
e8×e8 LSTs, these BPS strings are stretched between M9-M5 (Dirac self-pairing 1) and M5-M5
(Dirac self-pairing 2) branes. For a minimal 6D theory with N M5 branes, we get the quiver

[e8]
g
1

g
2

g
2 . . .

g
2

g
2︸ ︷︷ ︸

N−2

g
1 [e8] . (2.9)

In the quiver, each node corresponds to an M5 brane and the number on the node is the
Dirac self-pairing of the BPS string associated to it. The gauge algebra g is associated to
the singularity Γg. This is a special case of the quiver we introduced in (2.1), known as
the partial tensor branch. One obtains the full tensor branch by taking into account the
fractionalization of the respective branes, which can be determined via F-theory.

An e8 × e8 LST can also be obtained from fusing two orbi-instanton theories T (µa, g),
which are 6D SCFTs corresponding to an M9-M5 brane system in the presence of an ALE
singularity C2/Γg [35, 51–53] and flat e8 connections µa. For N > 2, one has in addition
superconformal matter theories TN−2(g, g) associated to the (N − 2) M5 branes probing the
singularity. The fusion of these theories can be thought of as a gauging of the diagonal global
symmetry algebras g of the two SCFTs (which we represent by −−−−g ), and then coupling
this (now local) algebra g to a tensor multiplet. This can be succinctly written as

KN (µ1, µ2, g) = T (µ1, g) −−−−
g TN−2(g, g) −−−−g T (µ2, g) . (2.10)

This picture is particularly useful since orbi-instanton quivers T (µa, g)) have been classified
in [53] for any g.

A notion of T-duality for Heterotic LSTs was introduced in [11]. A theory KN (µ1, µ2, g)
may have a corresponding T-dual theory K̃N ′(λ; g) inherited from the usual T-duality between
the e8 × e8 and so32 10D Heterotic string compactified on a circle. Wilson lines along the
circle can break each of the algebras to the common so16× so16 subalgebra, and hence reach a
common theory at that point in moduli space. This duality extends to Heterotic LSTs, where
one compactifies the corresponding LSTs on a circle, and moves in the Coulomb branch of
the resulting 5D theories until the same theory is reached. This means that for a given choice

– 6 –



J
H
E
P
0
8
(
2
0
2
4
)
0
6
1

Ce8×e8 Cso32

5D SQFT

HET E8 ×E8
LST KN (µ1, µ2, g)

HET Spin(32)/Z2
LST K̃N ′(λ; g)

Figure 1. T-duality of an E8 ×E8 and an Spin(32)/Z2 Heterotic LST: the maps C denote respective
circle reductions, followed by a flow in the Coulomb branch to a point where the become the identical
5D SQFT.

of flat connection on the e8 × e8 side (2.8), one expects a corresponding morphism (2.7) on
the so32 side. It is one of the main aims of this work to map out these dual theories. More
precisely, we can define the maps Ce8×e8 and Cso32 such that

Ce8×e8(KN (µ1, µ2, g)) = Cso32(K̃N ′(λ; g)) (2.11)

i.e., these maps describe the respective circle reductions and flows of the corresponding LSTs
in the Coulomb branch to the point where they match, see figure 1. From this, one could
be tempted to define the T-duality map

TD : KN (µ1, µ2, g)→ K̃N ′(λ; g) , TD = C−1
so32 ◦ Ce8×e8 . (2.12)

There are, however subtleties in defining this map. First, it was oberved in [23] that TD

is one-to-many. Secondly, in this paper, we find examples presented in section 5 for which
Cso32 cannot be uniquely inverted. Nevertheless, there are sets of necessary conditions that
can be checked to ensure that two given LSTs are T-dual.

First, the dimension of the 5D Coulomb branch, dim(CB), along with the rank of the
flavor algebra of the LST, should match on field-theoretic grounds. These are given by

dim(CB) = nT + rk(g), dim(WL) = rk(gF ) , (2.13)

where g and gF are the 6D gauge and flavor algebras respectively, and dim(WL) denotes the
number of Wilson line parameters of the flavor algebra gF that one can turn on along the
circle. The expression for dim(CB) arises because the rank of the gauge algebra in 5D is
at least as large as the rank in 6D, since one gets extra Abelian gauge fields from reducing
the 2-form fields b

(2)
I on a circle. Finally, it was conjectured in [19] that T-dual LSTs have

the same universal 2-group structure constants defined in (2.6).

2.3 F-theory construction and T-duality

The F-theory construction of 6D LSTs proceeds by compactifying F-Theory on a CY threefold
X, which is an elliptic fibration over a non-compact Kähler surface,

T 2 → X

↓ π

B2 .

– 7 –
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Elliptic fibrations for which the fiber has complex dimension one are called flat; otherwise,
they are called non-flat (see e.g. [23] for a discussion in the context of LSTs). We will assume
the existence of a section, which implies that X is birational to a Weierstrass model of the form

p = Y 2 + X3 + fXZ4 + gZ6 = 0 . (2.14)

Here, X, Y, Z are projective coordinates of P2
2,3,1, the holomorphic section is

s0 : [X : Y : Z] = [1 : −1 : 0] , (2.15)

and f, g are sections of line bundles of the anticanonical class of the base of degrees 4 and
6, respectively. If the discriminant ∆ = 4f3 + 27g2 vanishes over some locus in the base,
the model becomes singular. The vanishing order of {f, g,∆} over a base divisor encodes
the gauge algebra of the 6D theory according to Kodaira’s classification (the gauge theory
arises from D7 branes wrapping these divisors in the type IIB picture). In the base, one has
both compact and non-compact divisors, which gives rise to gauge and flavor symmetries,
respectively. Matter arises at codimension two in the base where two singular divisors
intersect. At these intersection points, one typically obtains bifundamental matter. If matter
appears to be charged under a single gauge algebra only, this signals field-theoretically that
there is additional matter that is charged under a flavor algebra, which may not realized
explicitly in the geometry.

For Heterotic LSTs, the base B2 is birational [15] to BLST = P1 × C. Moreover,
Heterotic/F-theory duality imposes that the CY threefold also has a K3 fibration

K3→X

↓
C .

(2.16)

Equipped with this, we can discuss how the LST data is encoded in the threefold geometry.
The BPS strings arise from D3 branes wrapping compact curves in the base, and the Dirac
pairing ηIJ is the (negative) intersection matrix of these curves,

ηIJ = −(ΣI ,ΣJ) , (2.17)

where ΣI is a basis of H2(B2,Z). For an LST we have the LST curve, which is the unique
curve class in the base with self-intersection 0. This corresponds to the 0 eigenvalue of the
matrix ηIJ . After circle compactification of the 6D LST as described in section 2.2, the
dimension of the 5D Coulomb branch is given in terms of the 6D geometric data by

dim(CB) = h1,1(X) . (2.18)

The 2-group structure constants can be computed from the quiver data via (2.6). Finally,
the (geometrically realized) rank of the flavor algebra is just the number of non-compact
divisors in the geometry.

If two different 6D LSTs are related by T-duality, they correspond to the same gauge
theory upon circle compactification to 5D. From a field theory point of view, the 5D theory

– 8 –
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UV-completes to two different 6D LSTs. We construct such T-dual theories by identifying
different elliptic fibrations within the same CY threefold, which will give rise to different 6D
LSTs. This fits in nicely with M/F-theory duality: F-theory on a CY threefold X (times
an additional S1) is dual to M-theory on X. Hence, if we compactify the two different
6D LSTs on a circle, integrate out the massive KK modes, and move on the Coulomb
branch, we should obtain the same 5D theory, corresponding to the 5D theory obtained
from compactifying M-theory on X.

To check whether two theories are T-dual, their data (2.6) and (2.13) has to match.
Since the Coulomb branch dimension is related to h1,1, it cannot change under T-duality,
which simply corresponds to choosing different elliptic fibrations within the same CY. The
matching of the two-group structure constants is less obvious from the geometry, but we will
see that they indeed match. Since these invariants already match in 6D, one can view them
as necessary conditions for two LSTs to be T-dual. For Heterotic LSTs, κP is always 2, so the
non-trivial match will come from κR. Finally, since the number of non-compact curves also
does not change upon choosing different elliptic fibrations, the rank of the geometric realized
flavor algebra should be preserved as well. However, it is known that the full field-theoretic
flavor symmetry gF is not always realized in F-theory [34]. To establish a match of the
flavor ranks across T-duals, we carry out a careful field theory analysis that takes non-toric
flavor symmetries and ABJ anomalies into account.

2.4 Toric construction

In this section, we discuss the toric construction of CY threefolds underlying the engineering
of Heterotic LSTs in F-theory. We start by describing how to construct a compact threefold
with an elliptic fibration structure first, before moving on to the non-compact threefold X

that describes the LST. We then elaborate on the K3 fibration (2.16), as this is where the
flavor data of the LST is encoded in.

2.4.1 General construction

We construct a compact Calabi-Yau 3-fold X as the anti-canonical hypersurface in an ambient
toric variety A that is defined via a reflexive 4-dimensional lattice polytope ∆4 ⊂ Z4 [54].
Reflexive polytopes can only have one internal point, which is conventionally taken to be
the origin in Z4. Every point vp ∈ ∆4, p = 1, . . . , NP , is associated to a complex coordinate
xp. The toric variety given by the points vp is in general singular, and one needs to pick a
(fine, regular, star) triangulation to fully resolve the singularities while keeping the manifold
Kähler. The existence of such a triangulation is guaranteed in our case, see for example [33].

We also require that X has an elliptic fibration structure. A sufficient (but very strong and
far from necessary [32, 55]) condition for this is that the ambient variety A admits a fibration
structure, from which the elliptic fibration of the Calabi-Yau hypersurface is inherited,

F → A
↓
B2 .

(2.19)

– 9 –



J
H
E
P
0
8
(
2
0
2
4
)
0
6
1

Here, B2 is the base and F is a compact complex two-dimensional weak Fano variety whose
anti-canonical hypersurface is a CY 1-fold, i.e., a torus. If we arrange the lattice polytope
points vp in a 4 × NP matrix, the fibration will descend from the ambient space to the
CY if this matrix is of the form

∆4 ∼
(

F 0
T B2

)
. (2.20)

Since there are 16 reflexive 2D polytopes F , there are 16 different toric ambient spaces or
fiber types. Since T-dual LSTs arise from different elliptic fibrations of the same CY threefold,
T-duality correspond to a choice of which two coordinates we take as the fiber and which two
we take as the base. If this can be done in multiple ways such that the fiber coordinates over
the generic point form a 2D reflexive polytope, there are multiple elliptic fibration structures.

To obtain the hypersurface equation for X in A, we follow Batyrev’s construction [54],
which also requires the dual polytope ∆∗

4

∆∗
4 = {m ∈MMR

| ⟨v, m⟩ ≥ −1 for all v ∈ ∆4} . (2.21)

If ∆4 is reflexive, so is ∆∗
4. The hypersurface describing a compact CY is then

p =
∑

m∈∆∗
4

∏
vp∈∆4

am x⟨vp,m⟩+1
p . (2.22)

Note that for non-compact LST bases, the polytope is only semi-convex, i.e., the origin
(0, 0, 0, 0) ∈ Z4 is the unique point interior in a codimension-one face of ∆4. Due to the non-
compactness, some of the coordinates are invariant under the toric C∗ scalings. Hence, they
can appear with arbitrary powers in (2.22), which means that ∆∗

4 is an infinite prism [23, 56].
In practice, one truncates the polynomials at some order.

We consider Heterotic LSTs for which the base is birational to P1 × C. We denote the
affine P1 coordinates by vw0 and vw1 , and the C coordinate by vy0 . The toric representation
of the base is, up to a SL(2,Z) transformation,

vw1vw0

vy0

.

(2.23)

Since the vectors in the toric diagram for the base (2.23) do not span Z2, it is no longer
compact, leading to non-compact Calabi-Yau manifolds. In practice, we may always construct
the compact CY threefold first, and then take a decompactification limit which would
operationally correspond to removing a base ray in the toric variety; we will call the resulting
semi-convex polytope ∆̂4. The singularity structure of the fibers over the base would still be
encoded in the CY hypersurface equation (2.22), with the singularities over the curves vw0

and vw1 encoding flavor algebras instead of gauge algebras. If the hypersurface equation is
in Tate form, one can directly read off the singularities. Otherwise, one can map it to the
birational Weiersstrass form and then use Kodaira’s classification to read off the singularity
type. Equivalently, one can identify the toric tops [56] over the base rays of the lattice
polytope ∆̂4 and read off the singularities from them. This makes it also easy to geometrically
engineer LSTs with a given gauge and flavor algebra.
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2.4.2 K3 fibration

The (geometric) flavor algebra of the Heterotic LST is encoded in a K3 fibration S of the
elliptically fibered CY threefold X. All non-compact fibral divisors of the threefold X pull
back to divisors of the K3 fiber S and therefore embed into the Picard lattice Pic(S). Since
the K3 fiber S of X is elliptically fibered, the Picard lattice of S is

Pic(S) = U ⊕W , (2.24)

where U is the 2D hyperbolic lattice corresponding to the divisor class of the elliptic curve
and the base, and W is the so-called frame lattice. The latter is given in terms of divisors that
do not intersect the zero-section of the elliptic fibration and are hence shrinkable. According
to the Shioda-Tate formula, the frame lattice W splits into free Mordell-Weil generators
of the elliptic fiber and ADE divisors,

W = MW(S)⊕
∑

i

gADE,i . (2.25)

These translate to Abelian and non-Abelian flavor algebra factors, respectively. We therefore
have rk(W ) = rk(gF ). Similar to the Kähler moduli of compact surfaces, volumes of the
curves in W correspond to Wilson lines w in the flavor algebra gf .

Switching on a non-trivial flavor Wilson line configuration w on the circle compactification
resolves a set of singularities in S and breaks the 6D flavor algebra gf to its comutant sub-group

C(gf , w) = {f ∈ gf : [f, w] = 0} . (2.26)

The most generic configuration, therefore breaks the 6d flavor group to its Cartan subal-
gebra urkW

1 .
K3 fibrations of X can be obtained in a similar way to elliptic fibrations, this time

ensuring that the reflexive polytope ∆4 contains a 3D reflexive sub-polytope ∆3. This means
that the K3s we construct will be toric hypersurfaces in one of the 4319 reflexive 3D polytopes
∆3, which is completed to a semi-convex 4D polytope ∆̂4. We can determine the Picard
lattice Pic(S) of the K3 fiber from ∆3 and its dual ∆∗

3. A subtlety is that there are in general
non-toric contributions to the Picard lattice, which come from ambient space divisors that
intersect the K3 hypersurface more than once, and hence contribute a correction term to the
Picard rank. We split the total Picard lattice into a toric and a non-toric part,

Pic(S) = Pic(S)tor + Pic(S)cor . (2.27)

The toric contribution comes from the one-dimensional rays and has rank

rk(Pic(S)tor) = l(∆3)− 3 , (2.28)

where l are points of the polytope ∆3. The contribution of the non-toric part to the
Picard rank is

rk(Pic(S)cor) =
∑

θ1,θ◦1

l(θ1)l(θ◦1) , (2.29)
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where θ1 and θ◦1 are codimension 1 faces of ∆3 and their duals in ∆∗
3, respectively. The

presence of non-toric divisors means that a single ambient divisor class, whose volumes is
given by an ambient Kähler space modulus ti, descends to multiple independent divisor
classes on the K3 fiber S, whose volumes are all forced to be equal. In section 4 we will
exploit this construction to our advantage and use it to construct non-simply laced flavor
algebras, even though K3s only have an ADE classification.

3 Flavor rank matching

For any choice of ADE singularity Γg together with a trivial choice for the flat connection at
infinity, one finds the following form for the T-dual pair of LSTs [21]

[e8]
g
1

g
2

g
2 . . .

g
2

g
1 [e8]

T-duality←−−−−→ [so32]
spn

1
som

4 . . .

spl

1
sok

4 . . . (3.1)

where the quiver on the so32 side is made up of so, sp and su gauge algebras, arranged such
that the base satisfies fiber-base duality, i.e., the topology is that of the Dynkin diagram of g,
or foldings thereof [11] for choices of g = {sun, so4n+2, e6}. In such cases, the duality map TD

appears to be an isomorphism between the two theories and all data, such as the flavor rank,
matches straight-forwardly.1 Once we turn on non-trivial holonomies for the flavor group, the
situation however will become much less trivial and we will start finding more than one dual.

While the non-Abelian flavor algebras correspond to the degeneration of the fiber over
non-compact divisors in the base, u1 flavor factors arise from the free part of the Mordell-Weil
group of the torus fiber [28]. This flavor data is encoded in the Picard lattice of the K3
fibration and hence invariant under T-duality. However, since the K3 does not necessarily
capture the full field-theoretic (FT) flavor algebra, the question remains whether the rank
of the full flavor algebra actually matches across the T-duality. Field-theoretically, one
would expect this to be the case. A subtlety in determining the rank of gF is that u1 flavor
symmetries can have mixed anomalies with a gauge symmetry. Such a mixed anomaly does
not render the theory inconsistent, but breaks the u1 flavor symmetry. In the presence of
multiple u1 factors, all of which have mixed anomalies, some linear combinations might
actually be non-anomalous and survive. Once this is properly taken into account, we find that
the flavor ranks match for T-dual models. In fact, one may regard the match of flavor ranks
across duals as a consistency check of the methods developed in [29], which we review next.

3.1 Origins of u1 symmetries in 6D theories

There are many sources for u1 flavor symmetries, arising from the various kinds of matter
representations in the 6D quiver theory [28, 29]. In particular, if one has matter in a complex
representation, the flavor symmetry is un ∼ sun × u1. For example, an sun on a (−2)-curve
contributes 2n hypermultiplets [41] in the fundamental representation n of sun, and hence
leads to a u2n flavor symmetry.

1In fact, for g = sun, we obtain an additional flavor contribution, which makes the match less trivial
than expected.
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g Matter Generic Flavor Symmetry
sun m× n (n ≥ 3) um

k × n(n−1)
2 (n ≥ 5) uk

spn/2 1× n so2

so10 m× 16 um

so11 1× 32 so2
so12 1× 32 so2
e6 m× 27 um

e7 1× 56 so2

sun≥3 × suk≥3 m× (n, k) um

sun≥3 × spk/2≥1 m× (n, k) um

Table 1. Flavor symmetries with U(1) contributions for matter charged under one and two gauge
algebra factors. All hypermultiplets are full hypers.

Most of the u1 symmetries in our theories will arise in this way, or in a similar way in the
case of bifundamental hypermultiplets or other complex representations of sun. Another source
for u1 flavor factors are single hypermultiplets in pseudo-real representations, since these can
be split into two half-hypermultiplets that transform under an so2 ∼ u1 flavor symmetry. We
summarize the possible representations that can contribute Abelian flavor factors in table 1.

Lastly, one can also obtain u1 flavor factors from E-string theories, i.e., from a (−1)-
curve with no gauge algebra. This theory has a generic e8 flavor symmetry that can be
partially gauged,

· · · gL
m

[gF ]
1 gR

n · · · (3.2)

where gL × gR ⊂ e8. The ungauged part, given by the commutant, contributes a global
symmetry gF = [gL × gR, e8]. This commutant can contain u1 factors, for example when
gL = e6 and gR = su2, we get gF = u1.

3.2 ABJ anomalies

The naive Abelian flavor contributions discussed above are can be anomalous and hence
may not survive in the EFT. A hypermuliplet which transforms in a representation ρ of a
non-Abelian gauge algebra g and with charge q under a global u1 corresponds to a mixed
anomaly in the 6D anomaly polynomial I(8) of the form

I(8)ABJ ∼
1
6qfu1Trρf3

g . (3.3)

This can be non-vanishing if the gauge algebra g has a non-trivial cubic Casimir, which only
occurs for g = sun with n > 2. Each such sun algebra imposes a non-trivial constraint for
the global u1 flavor factors, such that typically only a few linear combinations of u1 factors
remain non-anomalous and hence unbroken. Generically, the number of non-anomalous
u1 factors is given by

#(u1 factors) = #(naive u1 factors)−#(sun flavor algebras with n > 2) , (3.4)

where the naive number of u1 factors can be read off from table 1.
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Let us illustrate this in an example, where the LST is given by M M5 branes probing
a C2/ZN singularity with N > 2 in the E8 × E8 Heterotic string. This theory is described
by the quiver

(3.5)

where we also indicate the various matter representations and for later convenience already
their charge under the (single non-anomalous) u1 flavor symmetry. We use a convention
where su0 = su1 = ∅. Let us explain how to compute these charges. The number of u1 flavor
symmetry factors can be counted as follows:

• There are (N − 3) flavor u1 factors on the left ramp, which we label by ℓ = 4, . . . , N ,
associated with the (N − 3) bifundamentals (ℓ− 1, ℓ). Note that the bifundamentals
(1, 2) and (2, 3) are uncharged under flavor u1 factors. Furthermore, we label the (N −1)
gauge factors by ℓ = 1, . . . , N − 1.

• On the middle plateau, there are M suN factors which we label by p = N, . . . , N + M .
The ones on the left and right “edge” comes with a single fundamental in addition to
the bifundamentals, signaling the presence of an additional u1 flavor factor. We thus get
(M − 1) flavor u1 factors from the plateau, with two extra contributions from the edges.

• The right ramp is identical to the left ramp and hence also contributes (N − 3) flavor
u1 factors, which we label by r = N + M + 1, . . . , 2N + M − 3; we label the (N − 1)
gauge factors by r = 1, . . . , 2N + M − 1.

The total number of naive u1 factors from the quiver is then

(N − 3) + 1 + (M − 1) + 1 + (N − 3) = 2N + M − 5 . (3.6)

Using the prescription in (3.4), the number of non-anomalous u1 factors is

(2N + M − 5)− (M + 2(N − 3)) = 1 . (3.7)

Thus, a single u1 flavor factor is expected to be non-anomalous and survive.
The u1 charges q in such a linear quiver of sun factors is fixed by the adjacent sun

groups. Choosing a normalization such that the smallest u1 charge is 1, we can write the
ABJ anomaly (3.3) as

6I(8)ABJ =
∑
left
ramp

qℓfu1ℓ
Tr(f3

ℓ ) +
∑

plateau

qpfu1p
Tr(f3

p ) +
∑
right
ramp

qrfu1r
Tr(f3

r )

=
N−1∑
ℓ=3

Tr(f3
suℓ

)
[
−ℓfu1ℓ

+ (ℓ + 1)fu1ℓ+1

]
− Tr(f3

suN
)fu1N

+
N+M∑
p=N

Tr(f3
suNp

)
[
−Nfu1p

+ Nfu1p+1)
]

+
2N+M−3∑

r=N+M+1
Tr(f3

sur
)
[
rfu1r

− (r + 1)fur+1

]
− Tr(f3

suN+M
)fu1N+M

.

(3.8)
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This anomaly is non-vanishing. However, using a different u1 basis, one can find exactly one
linear combination for which the anomaly vanishes, since the matrix of u1 flavor charges
is a (M + 2N − 6) × (M + 2N − 5) matrix, where the rows refer to the number of suN

algebras with N > 2 and the columns are the number naive u1 factors in (3.8). This matrix
has a one-dimensional kernel

U(1)non-anomalous = {0, 0, · · · , 0︸ ︷︷ ︸
left ramp

, N,−1,−1, · · · ,−1,−1, N︸ ︷︷ ︸
plateau

, 0, · · · , 0, 0︸ ︷︷ ︸
right ramp

} (3.9)

As expected [29], all u1 charges in the ramp regions are zero and only the plateau region
has matter charged under the flavor u1; we give the u1 charges of this surviving flavor
symmetry in (3.5).

Let us now consider the Spin(32)/Z2 T-dual of the above LST. It turns out that the
dual quivers depend on whether wee have an su2N or su2N+1 singularity. For su2N with M

M5 branes probing the singularity, the T-dual LST quiver is

[so32]
sp4N+M−1

1
su8N+2M−10

2
su8N+2M−18

2 · · ·
su2M+6

2︸ ︷︷ ︸
(N−1) nodes

spM−1
1 . (3.10)

As expected from the Heterotic picture, we get an so32 flavor symmetry. Using table 1
and equation (3.4), we find that such a quiver has a single non-anomalous u1, and all
bifundamentals are charged under it. This shows that the total flavor rank is 17, matching the
flavor rank from the e8 × e8 dual. Following the procedure outlined above, we can compute
the non-anomalous u1 flavor charges from the kernel of the associated charge matrix,

q1 = (−4)N−2 (M − 1)
(

M + 3
4

)
N−2

,

qα = (4N + M − 1)(4N + M − 5)
(4N − 4α + M − 1)(4N − 4α + M + 3) q1, 2 ≤ α ≤ N − 1

qN = (M + 7)(4N + M − 1)(4N + M − 5)
(M + 3)(M − 1)2 q1 ,

(3.11)

for the N bifundamentals appearing in (3.10). In these expressions, (a)n is the Pochham-
mer symbol

(a)n =
n∏

k=1
(a + k − 1) . (3.12)

Similarly, for su2N+1 with M M5 branes probing the singularity, the T-dual LST quiver is

[so32]
sp4N+M+1

1
su8N+2M−6

2
su8N+2M−14

2 · · ·
su2M+10

2︸ ︷︷ ︸
(N−1) nodes

su2M+2
1

[NA=1]
. (3.13)

The last curve has matter transforming in the two-fold antisymmetric irrep, which contributes
to the naive u1 counting according to table 1. So we have a total of (N + 1) u1 factors,
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out of which a single non-anomalous u1 combination survives. The charges can again be
written in terms of Pochhammer symbols,

q1 = (−1)N+14N−2(M + 1)
(

M + 5
4

)
N−2

,

qα = (4N + M − 3)(4N + M + 1)
(4N + M − 4α + 1)(4N + M − 4α + 5) q1, 2 ≤ α < N ,

qA = (2M + 10)(4N + M − 3)(4N + M + 1)
(M + 1)(M + 5) q1 ,

(3.14)

where qA is the charge of the anti-symmetric matter irrep. Hence, M M5 branes probing
a ZN singularity in either E8 × E8 or Spin(32)/Z2 Heterotic theory give rise to additional
u1 flavor symmetry contributions. The flavor rank matches when ABJ flavor anomalies
are taken into account.

3.3 Flavor rank matching in Dn models

In this section, we illustrate the construction of models with Dn singularities and non-trivial
choices of flat connection at infinity (i.e., different Higgs branches of the e8 × e8 theory).
To construct these theories, we can start with a theory with some gauge algebra on an
isolated curve. The generic FT flavor algebra of such theories has been computed in [34, 41].
Upon gauging a part of the flavor algebra, it becomes a gauge algebra on adjacent curves
in the quiver, and we can read off the remaining FT algebra from the commutant. If this
commutant contains u1 factors, we compute the ABJ anomaly and find the non-anomalous
linear combinations of u1 generators. The examples we describe here have more than one
dual theory whose flavor ranks match in a non-trivial way. A more exhaustive list of models
together with their field-theoretic flavor symmetries can be found in table 4.

Examples for a D4 singularity. Consider the M NS5 branes in the E8 × E8 Heterotic
theory with a D4 singularity and holonomies (µ1, µ2) that break the flavor algebra to e6.
This theory may be represented as a fusion of two orbi-instanton theories T (e6, so8), with
an TM−2(so8, so8) conformal matter theory,

[e6]
[u1]
1

su2
2

so7
3

[su2]
1 [so8] −−−−

so8 [so8] 1
so8
4 1

so8
4 1

so8
4 . . . 1︸ ︷︷ ︸

M−2

[so8] −−−−
so8 [so8] . . . [e6] , (3.15)

where the blue flavor factors are not realized in the toric geometry construction. This fusion
results in an LST with quiver

[e6]
[u1]
1

su2
2

so7
3

[su2]
1

so8
4 1

so8
4︸ ︷︷ ︸

×(M−3)

1
so7
3

[su2]

su2
2

[u1]
1 [e6] , (3.16)

The little string charge vector l⃗LST, defined in (2.2), is

l⃗LST = (1, 1, 1, 2, 1, 2, 1︸︷︷︸
×(M−3)

, 2, 1, 1, 1) . (3.17)
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. . .

. . .

. . .
T-dual−−−→

Figure 2. Folding of the base quiver in (3.18). The affine node is in red, and the black node is the
central node that is invariant under the folding.

The torically realized flavor is e26 × u1. The u1 appears since we have realized the quiver with
an elliptic fibration given by the fiber polytope F11, which has a non-trivial MW group [57].
The FT flavor is e26 × u21 × su22, as indicated in the quiver, which means that the rank of all
FT flavor algebras is 16. This theory has two T-duals.

First dual. The first dual is given by the quiver

[u1]×
(
su2M−2

2
sp2M−2

1
su2M+6

2 [su16]
)

, l⃗LST = (1, 2, 1) , (3.18)

where the u1 factor on the right indicates a (non-toric) Abelian flavor factor under which all
bifundamental matter of the theory is charged. The elliptic fibration descends from an F13
fiber polytope, which comes with Z2 MW torsion. The topology of the base is that of an so8
Dynkin diagram folded along the central node as depicted in figure 2. We will frequently
encounter folded Dynkin diagrams under fiber-base-duality in models with MW torsion (see
table 4), in accordance with the discussion in [27].

The torically realized part of flavor algebra is su12 × su22, and all intersect the rightmost
su2M+6 node. The rank of the torically realized flavor algebras matches the torically realized
flavor rank of the T-dual (3.16). However, in both cases we also have flavor algebra factors
that are not torically realized. These include u1 factors coming from the bifundamentals
in the quiver, cf. table 1.

To find the FT flavor, we first reconstruct the matter required on each curve by anomaly
freedom [41]. From these matter irreps, we can determine their flavor algebras. The gauge
algebras on the neighboring curves can be thought of as arising from gauging a part of this
flavor algebra, such that the remnant flavor algebra is given by the commutant of the full
flavor algebra and the adjacent gauge subalgebras. For the quiver (3.18), this procedure
plays out as follows:

• The curvess
su2M+6

2 require (4M +12) hypermultiplets in the fundamental representation,
which transform in a u4M+12 ∼ su4M+12×u1,A flavor algebra. Upon gauging the sp2M−2
subalgebra of the adjacent curve,2 we obtain su4M+12×u1,A ⊃ su16×sp∗2M−2×u1,A×u1,B .

• The curves
sp2M−2

1 require (4M + 4) hypermultiplets in the fundamental representation,
which have an so8M+8 flavor algebra. Gauging the su2M+6 and the su2M−2 subalgebras
on the adjacent curves gives so8M+8 ⊃ su∗2M+6 × su∗2M−2 × u1,B × u1,C .

2We indicate which subalgebra we gauged by an asterisk.
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Hence, the total naive flavor symmetry algebra is su16 × u1,A × u1,B × u1,C . Carrying out the
ABJ anomaly analysis described in section 3.2, we find that only a single linear combination
of u1 factors is anomaly-free. Hence, the actual FT flavor symmetry is su16 × u1 with rank
16, matching that of the original model.

Second dual. The quiver of the other T-dual model is

[so24]
spM+3
1

spM−3
1

so4M+4
4

spM−3
1

spM−1
1 [so8] , l⃗LST = (1, 1, 1, 1, 1) . (3.19)

The elliptic fibration in this T-dual comes from an F9 fiber polytope, which has MW rank
2, as well as an su2 and so20 fiber. The rank of the torically realized flavor algebra is thus
13, just as the toric flavor ranks of the other two T-duals. To get the full flavor algebra,
we proceed as before:

• The curve
spM−1
1 requires (2M + 6) hypers, which have an so4M+12 flavor algebra.

Gauging the so4M+4 subalgebra of the adjacent node gives so4M+12 ⊃ so∗4M+4 × so8.

• The curve
spM+3
1 requires (2M + 14) hypers, which have an so4M+28 flavor algebra.

Gauging the so4M+4 subalgebra of the adjacent nodes gives so4M+28 ⊃ so24 × so∗4M+4.

Hence, the total flavor symmetry is so8 × so24, which has again rank 16. This shows that
the FT flavor rank matches across all T-dual models. Besides the flavor rank, we can also
compute the Coulomb branch dimension and 2-group structure constants for M > 2, which
also match for all three duals,

Dim(CB) = 6M + 2 , κR = 8M + 2 . (3.20)

Examples for a D8 singularity. The other example that we will discuss in detail has
M M5 branes probing a D8 singularity. We choose flavor holonomies (µ1, µ2) that leave
an so12 × su2 flavor symmetries on both e8 sides. Similar to (3.15), we can obtain this
model by fusing SCFTs,

[so12]
sp3
1 [so16] −−−−

so16 [so16]
sp4
1

so16
4

sp4
1

so16
4

sp4
1

so16
4 . . .

sp4
1︸ ︷︷ ︸

M−2

[so16] −−−−
so16 [so16]

sp3
1 [so12] . (3.21)

This results in an LST with quiver

[so12]
sp3
1

1
so16
4

[sp1]

sp4
1

so16
4

sp4
1︸ ︷︷ ︸

×(M−2)

1
so16
4

[sp1]

sp3
1 [so12] , l⃗LST =(1,1,1,2, 1,2︸︷︷︸

×(M−2)

,1,1,1) . (3.22)

In the toric description, we find that the elliptic fibration descends from the 2D toric F13.
The torically realized flavor algebra is so212 × sp1. The non-compact divisor over which we
have an sp1 flavor algebra intersects two compact curves in the base, yielding the two sp1
flavor factors required by field theory on these quiver nodes. Hence, the full FT flavor algebra
is so212 × sp21 of rank 14. This model has again two T-duals.
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First dual. We find the first dual with an F9 fiber type, whose free part of the MW group
has rank 2 and an su12 fiber. The quiver is given by

[u1,D1 × u1,D2 ]×
(
su2M+2

2

sp2M−6
1⋆

su4M−4
2⋆

su4M+4
2

[su2]

su2M+8
2 [su12]

)
, l⃗LST = (1, 2⋆, 2⋆, 2, 1) , (⋆ : for M > 2)

(3.23)

which has the topology of a folded so16 Dynkin diagram, cf. figure 2. The torically realized
flavor algebra has rank 13. To find the full FT flavor, we take into account that the presence
of bifundamentals of suk algebras leads to u1 factors and reconstruct the other algebra factors
as above from the matter content:

• The curve
su2M+8

2 requires (4M + 16) hypers in the fundamental representation, leading
to a u4M+16 ∼ su4M+16 × u1,A flavor algebra. Gauging the subalgebra of the adjacent
node induces a breaking u4M+16 ⊃ su12 × su∗4M+4 × u1,A × u1,B1 .

• The curve
su4M+4

2 requires (8M+8) hypers in the fundamental representation, leading to a
u8M+8 ∼ su8M+8 × u1,C flavor algebra. Gauging the subalgebras of the adjacent nodes
induces a breaking u8M+8 ⊃ su∗2M+2× su∗4M−4× su∗2M+8× su2× u1,B1 × u1,B2 × u1,B3 ×
×u1,C .

• The curve
su4M−4

2 requires (8M − 8) hypermultiplets in the fundamental representation,
leading to a
u8M−8 ∼ su8M−8 × u1,D flavor algebra. Gauging the subalgebra of the adjacent node
induces a breaking u8M−8 ⊃ su∗4M+4 × sp∗2M−6 × u1,B2 × u1,E .

Out of these 6 naive u1 factors, 2 linear combinations are non-anomalous. Hence, the FT
flavor is su2 × su12 × u1,D1 × u1,D2 , which has rank 14, as expected from T-duality.

Second dual. The second dual is given by the quiver

[so8]
spM−1
1

spM−3
1⋆

so4M+4
4⋆

[sp2]

sp2M−2
1

so4M+4
4

sp2M−2
1

spM−3
1⋆

so4M+4
4⋆

spM+1
1 [so16] , l⃗LST =(1,1⋆,1,2,1,2,1⋆,1,1) .

(⋆ : for M > 2)
(3.24)

Since we only have so and sp gauge factors, there are no u1 flavor factors. This is also true
from the geometric engineering perspective, since we have an F13 fiber polytope, which has
trivial free MW rank. The toric flavor rank 13 matches the toric flavor ranks of the other
duals. The FT flavor is so8 × sp2 × so16, which has rank 14, and hence the full FT flavor
rank of all duals matches as well. The Coulomb branch dimension and 2-group structure
constants also match, and are given for M > 2 by

Dim(CB) = 14M + 4 , κR = 24M . (3.25)

– 19 –



J
H
E
P
0
8
(
2
0
2
4
)
0
6
1

3.4 Flavor and K3 polarizations in Heterotic LSTs

A feature of Heterotic LSTs is that their flavor group is described by the polarization of
an elliptic K3 fiber, which allows for a simple description of flavor enhancements. Consider
for example the affinization of the E-string theory, which results in a Heterotic LST given
by the quiver

1 1 . (3.26)

The minimally polarized K3 over this base has at least one elliptic fibration, leading to
Pic(S0) = U , but misses other flavor factors completely. At the same time, the transcendental
lattice is maximal, T (S0) = U ⊕ E8 ⊕ E8. This allows to describe more of the field-theoretic
flavor group in terms of the K3 geometry, as long as we do not change the LST quiver. In
terms of geometric realization of the flavor groups, we can rotate components from T (S0)
into the Picard lattice. This is possible if:

1. All non-compact divisors/singularities pull back to the flavor K3 and intersect the
compact curves, i.e., no flavor group decouples.

2. The enhancement does not introduce new singularities that would require additional
compact divisors to fully resolve the threefold and hence modify the quiver.

This way, one can define a filtration of polarized K3 surfaces Si with filtration parameter
the Picard rank. Along this filtration, the rank of the transcendental lattice decreases until
a maximal endpoint Smax is reached. For the example in (3.26), the endpoints are two e8
components that yield the familiar quiver

[e8] 1 1 [e8] . (3.27)

This choice of polarization describes the full field-theoretic flavor group geometrically, which is
reached by rotating the K3 lattice to obtain a polarization with Pic(Smax) = U ⊕E8⊕E8. As
the rank of Pic(S) enhances, it becomes more and more likely to find extra elliptic fibration
structures3 and consequently more T-dual models. In particular, for the familiar case where
Pic(SUV ) = U ⊕ E8 ⊕ E8, there exists a second fibration with Pic(S) = U ⊕ Spin(32) and
LST quiver

[so32]
su2
0 , (3.28)

which realizes the E8 × E8 ↔ Spin(32)/Z2 Heterotic duality.

3.5 Maximal common flavor symmetries

Generic volumes of the curves in the Picard lattice of the flavor K3 correspond to a generic
flavor Wilson line configurations w, which fully break the 5D flavor group to its Cartan
subalgebra. This locus represents the most generic point in the rk(GF )-dimensional flavor
moduli space where T-dual 6D flavor symmetries match. However, often there are common

3For elliptic threefolds in toric ambient spaces, the number of elliptic fibrations increases with the number
of Kähler moduli [31, 33].
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flavor subalgebras of T-dual theories that do not require a full breaking to the Cartan
subalgebras.

In the following we define the minimal Wilson line configuration wmin that breaks the
flavor symmetry gF1 , gF2 , gFj , . . . , gFN

of a set of N T-dual theories to their maximal
common flavor symmetry (MCFS) gFmax , defined by the commutant of all gFj ,

C(wmin, gF1) = C(wmin, gF2) = C(wmin, gFj ) = . . . = C(wmin, gFM
) = gFmax . (3.29)

In the case of a T-dual pair of e8 × e8 and so32 flavor symmetries, the situation reduces
to the well-known Z2-valued Wilson line configuration which allows to match the two 10D
heterotic gauge groups in 9D, with

gFmax = so16 × so16 . (3.30)

In the following, we discuss how the K3 geometry can be used to conveniently read off
the MCFS.

Recall first that an LST and its flavor symmetry comes with the choice of an elliptic
fibration which fixes its section s0 and base. The former gives the class of the KK-U(1), while
the latter dualizes to the 5D little string U(1). The flavor symmetry of the 5D KK-theory is
determined by all residual curves in Pic(S) that can be shrunk while keeping section and
base finite. To accommodate a second LST, we need to pick a second fibration and its section
s1 that must be kept at finite size. The MCFS gFmax is then given by the set of curves that
can be shrunk while keeping both s0 and s1 finite. Similarly for N T-duals, one identifies
N sections that must be kept at finite size while shrinking all other curves. This structure
can be read off from the toric K3 geometry: recall that in the 3D reflexive polytope of the
polarized K3, an elliptic fibration can be given by a 2D reflexive sub-polytope spanned by
three4 vertices. The MCFS gFmax is therefore given by the set of all toric rays that do not
lie on two (or more) choices of 2D sub-polytopes.

For the e8 × e8 and so32 K3 polytope, it can be easily checked that so16 × so16 is exactly
this maximal sub-set (see [58] figure 1, p.4). To illustrate the algorithm, we employ a
more intricate example in the following. Consider M E8 heterotic NS5 branes, probing a
g = e7 singularity and two non-trivial flavor holonomies that break the e8 flavor symmetry,
resulting in the quiver

LST1 : [so16]
sp3
1

so12
4

sp1
1

so7
3

su2
2 1

e7
8 1

su2
2

so7
3

su2
2 1︸ ︷︷ ︸

×(M−1)

[su2]
1
e7
8 1

su2
2

so7
3

sp1
1 [so12] .

The theory has an so32 T-dual given by the quiver

LST2 : [so12]
spM+1
1

so4M+8
4

sp3M−1
1

sp2M−3
1

so8M+4
4

sp3M

1
so4M+12

4
[sp1]

spM+3
1 [so16] ,

4More than three vertices in a 2D sub-polytope generically result in enhanced Mordell-Weil generators of
the fibration [57].
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0
0

0

Figure 3. Toric diagram of the rays of the K3 polytope ∆3 and the 2D sub-polytopes encoding the
elliuptic fibrations (highlighted in blue, red, gray). Points connected by lines intersect and the black
dot represents the unique interior point at the origin.

as well as a third dual, given by

LST3 : [u1,D1 × u1,D2 ]×
(
so4M+6

4
sp4M−2

1
su6M+1

2
su4M+6

2
su2M+10

2 [su14]
)

.

Note that the latter has two u1 flavor symmetries, such that the flavor rank of all duals match.
For the matching of all other data see table 4. The three fibrations and their flavor symmetries
can be read off from the K3 polytope ∆3, which is given by the convex hull of the vertices

vi : {(−1,−2,−2), (1, 0, 0), (−1, 2, 2), (−1, 2, 0), (−1,−2, 2), (−1, 0,−2)} . (3.31)

We give ∆3 in figure 3 and included all toric divisors as lattice points. Moreover, we have
shaded the three 2D sub-polytopes that correspond to the three inequivalent elliptic fibration
structures. THis allows us to determine the respective flavor groups: for example, the
vertices of the gray 2D sub-polytope define a toric top with an so

(1)
16 algebra (from the 4

vertices at height 1 and the 5 vertices at height 2), a toric bottom with an so
(1)
12 (from the

4 vertices at height 1 and the 3 vertices at height 2), as well as a single su2 divisor (from
the divisor at height 0).

The diagram further allows to easily obtain gFmax by disregarding (shrinking) the rays
of two 2D sub-polytopes and reading off the flavor symmetries from the Dynkin diagrams
formed by the remaining points:

1. LST1 ∪ LST2: although LST1 and LST2 have the same 6D flavor algebras, they
correspond to different toric divisors, such that

gFmax(1∪2) = su2,a × so8,a × so8,b × so8,c × su2,b × su2,c , (3.32)

inherited from the flavor symmetry breaking

LST1 : su2,a ×
{
so16 → so8,a × so8,b

so12 → so8,c × su2,b × su2,c
(3.33)
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and

LST2 : su2,c ×
{
so16 → so8,a × so8,c

so12 → so8,b × su2,a × su2,b
(3.34)

2. LST1 ∪ LST3: similarly, the maximal common flavor symmetry is

gFmax,1:3 = u1,a × u1,b × u1,c × su8 × su6 (3.35)

which is obtained from the breaking pattern

LST1 :


su2 → u1,b

so16 → su8 × u1,a

so12 → su6 × u1,c

(3.36)

and

LST3 : u1,a × u1,b × {su14 → su8 × u1,c × su6 . (3.37)

3. LST2 ∪ LST3: the maximal common flavor algebra is again

gFmax2:3 = u1,a × u1,b × u1,c × su8 × su6 , (3.38)

but arises from a slightly different breaking and identification of u1 factors,

LST2 :


su2 → u1,c

so16 → su8 × u1,a

so12 → su6 × u1,b

(3.39)

4. LST1 ∪ LST2 ∪ LST3: finally we can look at the rays left over when considering the
vertices of all three sub-polytopes, from which we can read off the maximal common
flavor algebra of all three LSTs:

gFmax1:2:3 = u51 × su34 × su2 . (3.40)

This procedure also works for non-simply laced flavor symmetries, as we will discuss next.

4 Engineering non-simply laced flavor groups

6D SCFTs and LSTs can have non-simply laced flavor groups. Typical examples are the
“frozen” conformal matter theories discussed in [35]. A simple example is the SCFT quiver

[f4] 1
g2
3

su2
2 , (4.1)

which is an E-string attached to the “3 2” non-Higgsable cluster theory. The vanilla E-string
comes with an e8 flavor symmetry, but the adjacent

g2
3 gauges a g2 subgroup, which leaves

a maximal f4 = [g2, e8] flavor subalgebra.
This raises the question of how these flavor symmetries are realized in IIB or F-theory

geometry. In the classical D7 brane picture, non-simply laced symmetries arise from a
monodromy action which acts as an outer automorphism on the world-volume gauge algebra

– 23 –



J
H
E
P
0
8
(
2
0
2
4
)
0
6
1

g, reducing it to a non-simply laced version. However, flavor groups can be thought of as D7
branes that wrap non-compact divisors and thus naively do not experience such monodromy
effects. Hence this could be another case where D7 branes or the F-theory geometry might
not be able to give the full field theory flavor algebra [34]. However, in the 6D SCFTs limit,
non-simply laced flavor algebras can be obtained from 3-form flux as part of a triple [59]
that freezes the flavor group to a non-simply laced one, and in the case of orbi-instanton
theories, as part of the holonomies acting at infinity [53]. As LSTs can be fused from such
SCFTs, such an effect should carry over, and one might ask whether such fluxes are mapped
across dualities, and how they are encoded in the K3 geometry. Geometrically, non-simply
laced subgroups can occur at special loci in moduli space where the volume of curves that
resolve an ADE resolution are related such that they can be folded on top of each other.
Such loci in moduli space can be enforced by choosing a description where some divisors
are non-toric and hence descend from the same ambient space divisor.

4.1 Non-simply laced flavor from freezing fluxes in 6D SCFTs

In the construction of 6D SCFTs, M M5 branes can fractionalize in the presence of a g-type
transverse singularity [51] given by the quiver

[g]
g
2

g
2 . . .

g
2 [g] . (4.2)

The g-singularity leads to a fractionalization of the M5 brane into p(g) fractions which can
be computed from F-theory [51] in terms of conformal matter insertions. Each M5 fraction
carries a unit of 1/p(g) M-theory three-form flux in the transverse M-theory direction C2/Γg,∫

S3/Γg

C3 =
n

d
mod 1 . (4.3)

The fluxes freeze the original g-type singularity to a subgroup h [59]. This way, non-simply
laced groups naturally appear in superconformal matter chains probed by an ADE singularity.
For example, if g = e8, the M5 breaks into p(e8) = 12 fractions, described by the quiver

[e8] 1 2
su2
2

g2
3 1

f4
5 1

g2
3

su2
2 2 1 [e8] ,

1
12

1
6

1
4

1
3

5
12

1
2

7
12

2
3

3
4

5
6

11
12

(4.4)

where the bottom line gives the number of fractional flux quanta. In table 2 we list the
flux fractions d

n that can lead to non-simply laced gauge algebras. In the above quiver, we
can take one of the tensor vevs to infinity, which effectively decompactifies the respective
curve and turns its gauge group into a flavor group. This process cuts the quiver at the
corresponding curve and leaves a discrete flux as given in (4.4). From this perspective, one
can interpret the residual flavor symmetry as a version of the original E8 symmetry that
got “frozen” due to the residual discrete flux. A second interpretation of the configuration
is that the discrete flux traps a fractional five-brane at the E8 wall, which partially breaks
the flavor symmetry as in a small instanton transition [60].

For example, upon decoupling (4.4) at the (−5)-curve, one is left with half a unit of
flux, which leads to

[f4] 1
g2
3

su2
2 2 1 [e8] , (4.5)
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g so2k+8 e6 e7 e8
d/n 2 2 2 3 2 3 4
h spk su3 so7 su2 f4 g2 su2

Table 2. The unbroken subalgebra h of g upon turning on d/n fractional freezing flux units [61].

realizing a non-simply laced flavor algebra. Similarly, when decoupling (4.4) at the (−3)-
curve, one obtains the quiver

[g2] 1
f4
5 1

g2
3

su2
2 2 1 [e8] , (4.6)

which leaves a residual flux of 1/3 that freezes the g2 flavor group.
As can be seen from table 2, this freezing mechanism does not work for constructing

so2k+1 flavor symmetries with k > 3. Instead, these can be obtained by starting with a
T (ek, so2k+8) matter theory [51],

T (e6, so20) : [e6] 1
su3
3 1

so9
4

sp1
1

so11
4

sp2
1

so13
4 . . .

so19
4

sp6
1 [so20] ,

T (e7, so22) : [e7] 1
su2
2

so7
3

sp1
1

so11
4

sp2
1

so13
4 . . .

so21
4

sp7
1 [so22] ,

T (e8, so22) : [e8] 1 2
su2
2

g2
3 1

so9
4

sp1
1

so11
4

sp2
1

so13
4 . . .

so23
4

sp8
1 [so24] ,

(4.7)

and decoupling the chain at an appropriate so or sp flavor point.

4.2 Non-simply laced LSTs from fusion

Using the SCFT building blocks discussed above, we can start with an KN (E8, E8, e8) the-
ory [23, 24, 27] obtained by fusing two T (e8, e8) theories. The associated quiver is

[e8] 1 2
su2
2

g2
3 1

f4
5 1

g2
3

su2
2 2 1 [e8]−−−−

e8 [e8] . . .
e8
12 . . .︸ ︷︷ ︸

N−2

[e8]−−−−
e8 [e8] 1 2

su2
2

g2
3 1

f4
5 1

g2
3

su2
2 2 1 [e8] ,

(4.8)
where N is the number of e8 gauge algebra factors. Subsequently, we decompactify the
(−5)-curve in the left SCFT block (highlighted in red), resulting in a frozen conformal matter
theory.5 Upon adding E-string matter at the gluing e8 algebras, one obtains the LST quiver

[f4] 1
g2
3

su2
2 2 1

1
e8
12
1

1 2
su2
2

g2
3 1

f4
5 1

g2
3

su2
2 2 1

e8
12 . . .︸ ︷︷ ︸

(N−2)

1
e8
12 1 2

su2
2

g2
3 1

f4
5 1

g2
3

su2
2 2 1 [e8] . (4.9)

Note that the rank of the flavor groups is rk(GF ) = 12. The T-dual quiver is

q[so25]
spN+6
1

so4N+15
4

sp3N+1
1

so8N+5
4

sp5N−1
1

[NF = 1
2 ]

sp3N−5
1

so12N−5
4

sp4N−4
1

[NF = 1
2 ]

so4N+4
4 . (4.10)

The quiver has the expected shape of an affine e8 algebra, as well as a flavor algebra that is
broken from the primordial so32 algebra to the non-simply laced rank 12 subalgebra so25.

5Note that frozen conformal matter theories can also be obtained from orbi-instanton theories with
non-trivial holonomy [53].
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A

B1

Dα1
Dα3

Dα2
Dα4

Figure 4. A K3 hypersurface (blue) with an e6 fiber in a 3D ambient space A. The two ambient
divisors Dα1 an Dα2 (red and pink) intersect the K3 twice, each providing two resolution curves of
the e6 singularity.

4.3 Non-simply laced LSTs from non-favorable K3s

To obtain non-simply laced flavor algebras from folding ADE algebras, we need a symmetry
group σn corresponding to the corresponding outer automorphism of the Dynkin diagram.
Curves that correspond to nodes that are folded onto one another need to have the same
volume, which requires restricting the K3 moduli space to loci that are compatible with σn.
We can enforce this relation among divisor volumes by taking a toric ambient space divisor
that intersects the K3 hypersurface n times.6 This is illustrated for a K3 inside a toric ambient
space A, which is a T 2 fibration over B1 with a Kodaira singularity of type IV∗ in figure 4.

We demonstrate this construction for the flavor K3 of the LST given in (4.9). The toric
rays of the K3 surface S with f4× e8 flavor group are given in table 3. Using (2.28) and (2.29),
the dimension of the toric and non-toric Picard lattices of S are

rk(Pic(S)) = rk(Pic(S)tor) + rk(Pic(S)cor) = 14 + 2 . (4.11)

The K3 has two reducible fibers at the two poles of the base P1
x0,x1 . Upon resolution, the

base divisors are replaced by

(αi)→ x0 =
∏

i

α
−v(αi)3
i , (βj , β̂k)→ x1 =

∏
j

βv(βj)3
∏
k

β̂v(β̂k)3 , (4.12)

where v(αi)3 is the third component of the vector that defines to toric ambient space divisor
αi, and similarly for v(β)3 and v(β̂i)3. Over the divisor Dx1 = {x1 = 0}, we find a Kodaira
type II∗ fiber corresponding to an e8 algebra. Over Dx0 = {x0 = 0}, we expect a type IV ∗

fiber, i.e., an e6 algebra. However, since there are only 14− 2 = 12 toric resolution divisors
(we need to subtract one for the fiber and one for the base), eight of which correspond to

6For compact CY threefolds, such contributions are called non-Kähler favorable [31].
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Generic fiber
X (1, 0, 0)
Y (0, 1, 0)
Z (−2,−3, 0)

⊕

"f4" fiber
α0 (−2,−3,−1)
α1 (0− 1,−1)
α2 (−1,−2,−2)
α3 (−2,−3,−3)
α4 (−2,−3,−2)

⊕

e8 Fiber
β1 (−2,−3, 1)
β2 (−2,−3, 2)
β3 (−2,−3, 3)
β4 (−2,−3, 4)
β5 (−2,−3, 5)
β6 (−2,−3, 6)
β̂1 (0,−1, 2)
β̂2 (−1,−1, 3)
β̂3 (−1,−2, 4) 0

0

0

Table 3. Toric rays of the K3 fiber for the quiver (4.9). The “f4” rays α1 and α2 intersect the
K3 hypersurface twice, splitting the f4 into an e6 fiber. The 3D reflexive polytope and the two 2D
sub-polytopes are given on the right.

resolution divisors for e8, only 4 are left for the type IV ∗ singularity. The missing two are
the non-toric divisors. They descend from Dα1 = {α1 = 0} and Dα0 = {α2 = 0}, which split
into two on the K3. We can see this from the hypersurface equation

p = β̂2Y
2 + α2

1α2β̂
2
1 β̂3X

3 +
∏

i

αi

∏
j

βj

∏
k

β̂k XY Z + β̂1β̂3
∏

i

α2
i

∏
j

β2
j

∏
k

β̂k X2Z2

+ ĉ1(x0, x1)α2
0α4β̂2β̂3

∏
j

β3
j

∏
k

β̂k Y Z3 + c1(x0, x1)α2
0α4β̂3

∏
i

αi

∏
j

β4
j

∏
k

β̂2
k XZ4

+ c3(x0, x1)α4
0α

2
4β

5
0β4

2β3
3β2

4β5 Z6 ,

(4.13)
where the ci are homogeneous polynomials of degree i in [x0 : x1]. We can use this to show
that the divisors Dα1 and Dα2 both descend from the ambient space divisor Dx0 , along
which the hypersurface becomes reducible,

Dα1 ∩ p = Dα2 ∩ p = Y 2 + c1Y + c3 =
[
Y − 1

2
(
c3 +

√
D2,X

)] [
Y − 1

2
(
c3 −

√
D2,X

)]
,

(4.14)
where we have used the toric scalings to set coordinates to one, and we introduced D2,X :=
c23(x0, x1) + 4c1(x0, x1), which is some complex number. Hence, the toric realization of the e6
fiber forces the two outer e6 fibral curves to have exactly the same volume, as expected for f4.

Following the algorithm outlined in section 3.5. we can again read off the maximal
common 5D flavor algebra of the two T-dual LSTs given in (4.9) and (4.10) from the 3D toric
polytope and its 2D sub-polytopes, cf. table 3. Disregarding the vertices of each of the shaded
2D sub-polytopes separately, we readily read off the respective flavor symmetry factors. The
rays that are indicated by green dots correspond to two curves that are identified as discussed
above. In order to find the maximal common flavor symmetry of both polytopes, we can only
shrink the vertices that are not part of either polytope, from which we find

gFmax = so16 × so9 , (4.15)
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which is inherited from the breaking

LST1 : e8 → so16 , f4 → so9 , LST2 : so25 → so16 × so9 . (4.16)

4.4 Non-simply laced LSTs from decoupling gravity

In this section we discuss the appearance of non-simply laced flavor group from a gravity
decoupling perspective. We take the flavor K3 and fiber it over a compact P1 base to obtain a
compact threefold X. To keep the discussion as simple as possible, we will have no additional
curves that stay compact in the LST limit. As an example, we take an elliptic fibration over
a Hirzebruch F12 base. This means that we add the rays

v1 = (−2,−3, 12, 1) , v2 = (−2,−3, 0,−1) (4.17)

to the K3 polytope ∆3 in table 3 which is schematically completed to the 4D rays (∆3, 0),
resulting in a CY threefold with Hodge numbers

h1,1(X) = 15 , h2,1(X) = 135 . (4.18)

The corresponding quiver is

0
f4
−12

e8
12

0
(4.19)

The 0 curve is in the class of the P1 fiber [F ] and the f4 and e8 sit over the classes [H] and
[E] = [H − 12F ], respectively. The intersection ring is

H · F = E · F = 1 , H2 = −E2 = 12 , F 2 = E ·H = 0 . (4.20)

The Kähler form of the base F12 is

J = v1F + v2H , (4.21)

where vi are Kähler moduli. With this, the overall volume of the F12 base is

Vol(B) =
∫
F12

J ∧ J = 2v1v2 + 12v22 , (4.22)

and the volumes of the respective curves are

Vol(F ) =
∫

F
J = v2 , Vol(H) =

∫
H

J = v1 + 12v2 , Vol(E) =
∫

E
J = v1 . (4.23)

From this, we see that there are two gravity decoupling limits: we can take v2 → ∞,
which sends the fiber F to infinite volume and only leaves the shrinkable (−12)-curve that
flows to an SCFT, or we can take v1 →∞ while keeping the P1 with volume v2 finite, which
is the little string limit [62]. In the latter case, we find that both H and E decompactify
and become flavor divisors that intersect the finite curve F . From this perspective, we may
also discuss the role of the monodromy divisor D2,X ,

[D2,X ] = 6(2F + H + E) , (4.24)
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which is the branching locus in the base B2 of the two-section {X = 0} in the Tate model.
This divisor interchanges the two fibral P1’s of the local e6 resolutions, which results in an f4
resolution. This means that the two divisors Dα1 and Dα2 are reducible on the K3 but not in
the compact threefold. From its homology class (4.24), we see that the divisor D2,X intersects
Dx0 in 84 points. In the gravity decoupling limit where the divisor Dx0 becomes non-compact,
these intersections are send to infinity. While the monodromy is technically gone, the K3
itself is still forced to be at a special locus in moduli space where only the toric Picard group
is realized as flavor holonomies, giving rise to the f4 subgroup of the e6 singularity.

4.5 Non-simply laced flavor algebras and T-duality

In the previous sections we have argued that the Picard group, if non-Kähler favorable, can
enforce the appearance of non-simply laced subgroups ĝ ⊂ g of the geometric K3 singularity.
This is not changed by choosing different (toric) fibrations and should hence be preserved in M-
Theory, where we identify the toric Picard group of the K3 with the flavor holonomies/Wilson
lines under circle compactification.

Let us exemplify this using the T-dual of the quiver (4.5) given by (4.10). The flavor
group is given by the K3 in table 3. The base of the second fibration is specified by projecting
the toric ambient rays v = (x, y, z) onto the x coordinate. The generic fiber ambient space is
given by the rays vi = (0, yi, zi), corresponding to the coordinates Y, α1, β̂2 in table 3. It is
easy to see that this toric ambient space is P2

1,2,3. We can identify the tops that restrict to
Dx0 and Dx1 of the P1

x0,x1 base. While Dx1 has a trivial top, we find for Dx0

x0 = α2β̂4β̂3

Zα0α3α4
∏
j

βj

2

. (4.25)

Mapping this to the singular Weierstrass model reveals an I∗9 fiber corresponding to an so26
algebra. However, in the toric description we only have 13 independent fibral divisors in Dx0 ,
and in particular only three multiplicity one nodes (α2, β̂3, β̂4). The divisor Dα2 intersects
the K3 hypersurface twice and resolved both the spinor and co-spinor root of so26, which
allows to identify the two and results in an so25 ⊂ so26 subalgebra. The second non-toric
divisor is Dα1 , which maps to the two sections X = 0 in the typical Tate-model nomenclature.
Since Dα1 intersects the K3 twice, the two-section splits into two rational sections, which
enhances the Mordell-Weil group of the toric fiber of the K3. However, this enhanced u1
flavor algebra is absent in the 6D LST (both in this model and its T-dual). As for the
divisor Dα2 , the volume of the additional section that would give rise to the flavor u1 is
linked to that of the generic elliptic fiber, which in field theory terms is the inverse radius
of the 6D circle that is decompactified.

Finally we remark that all T-duality considerations respect the 6D SUGRA compactifi-
cation discussed in section 4.4. When embedding the K3 in an elliptic threefold by adding
the rays (4.17), the T-dual configuration has an F4 base with quiver

0
−4

so25
4

0
. (4.26)
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In this compact model, the gauge group is indeed just so25. The enhancement to so26 is
absent due to the monodromy around the additional compact P1 direction.

4.6 Examples of non-simply laced flavor constructions

Consider an LST that is obtained by fusing two orbi-instanton theories T (so13, e7) with an
TM−2(e7, e7) conformal matter theory [53],

[so13]
sp2
1

so11
4

sp1
1

[Nf=1/2]
so7
3

su2
2 1[e7]−−−−

e7 [e7] . . .
e7
8 1

su2
2

so7
3

su2
2 1

e7
8 . . .︸ ︷︷ ︸

M−2

[e7]−−−−
e7 [e7] . . . [so13] (4.27)

which results in the LST quiver

[so13]
sp2
1

so11
4

sp1
1

[Nf=1/2]
so7
3

su2
2 1

e7
8 1

su2
2

so7
3

su2
2 1

e7
8︸ ︷︷ ︸

×(M−1)

1
su2
2

so7
3

sp1
1

[Nf=1/2]
so11
4

sp2
1 [so13] . (4.28)

The flavor K3 is given by the vertices

∆3 =


(−2, −3, −2)
(1, 0, 2)
(1, 0, −2)
(0, 1, 0)

(−2, −3, 2)

 , rk(Pic(S)tor) = 14 , rk(Pic(S)cor) = 3 . (4.29)

The toric part of the Picard group is 14, which matches the rank 12 flavor group. There is
again a correction term which is attributed to the toric rays xi : (1, 0,−1), (1, 0, 0), (1, 0, 1)
for i = 1, 2, 3. Each of these ambient divisors intersects the K3 hypersurface S twice.

The LST with quiver (4.28) is realized for a choice of elliptic fibration where the K3 base
is given by projection onto the last coordinate. The elliptic fiber is a Tate model with I∗3
fibers at north and south pole of the P1 base. Within those fibers, x1 and x3 resolve both
the spinor and co-spinor node, fixing their volumes to the same values, such that only an
so13 ⊂ so14 subalgebra is realized. The other toric divisor x2 is identified with the two-section
X = 0 of the Tate model. On the K3, this two-section intersects the hypersurface twice,
resulting in another section with a non-toric Mordell-Weil contribution. As the class of this
u1 is the same as of the generic fiber, it does not give rise to an additional flavor holonomy
or a u1 flavor factor in the quiver.

The polytope ∆3 has a second toric fibration structure given by projecting onto the first
coordinate. The elliptic fiber descends from an F13 fiber polytope with Z2 MW torsion. In
addition, one finds an I∗4 and I8 fiber over the base rays. Three of the eight divisors in the
I8 fiber are given by the double intersection of the xi, meaning that the fiber only realizes
an sp4 ⊂ su8 flavor subalgebra. The full T-dual LST is then

[sp4]

spM−1
1

so4M+12
4

sp3M+1
1

sp2M−2
1

so8M+8
4

sp3M+1
1

so4M+12
4

spM+3
1 [so16] . (4.30)

Both models have the same Coulomb branch dimension and two-group structure constants,
which for M > 2 read

Dim(CB) = 18M + 25 , κR = 48M + 46 . (4.31)
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Note that by choosing the singularity type to be g = so8 we can construct another LST
with the same flavor group. This amounts to fusing two T (so13, so8) [53] with TM−3(so8, so8)
in (4.27), which gives

[so13]
sp1
1

g2
3 1

so8
4 1

so8
4︸ ︷︷ ︸

×(M−3)

1
g2
3

sp1
1 [so13] . (4.32)

Since we only changed the gauged part of the quiver (4.27) but not the so13 × so13 flavor
algebras, the K3 remains the same. In particular, we already know that this K3 has a second
fibration with flavor group so16 × sp4 as in (4.30). The corresponding quiver is

spM−3
1

spM−3
1

so4M+4
4

[sp4]
spM−3
1

spM+1
1

[so16]

(4.33)

This means that we have engineered two morphisms

µ1 × µ2 : Γg ↪→ E8 × E8 with gF = so13 × so13 , (4.34)

for g = e7 and so8 that lead to the same flavor group breaking. These must then have
two identical dual morphisms

λ : Γg ↪→ Spin(32)/Z2 with gF = so16 × sp4 . (4.35)

Geometrically, this arises since the Picard group of the flavor K3 is identical in both models.

5 Exotic models

In this section we will discuss certain curiosities arising for LSTs and their duals. The first one
includes a model that has two distinct Spin(32)/Z2 duals with the same base quiver shape,
which occurs for g = e6 singularities. This model is a counterexample to a conjecture made
in [27] that the base quiver shape, the 2-group structure constants, and the Coulomb branch
data uniquely determines a pair of E8 × E8 ↔ Spin(32)/Z2 duals. As a second curiosity, we
discuss an example where exceptional gauge algebras appear in both Heterotic models, which
obscures a type I dual picture. As a third curiosity, we construct a family of self-dual models.

5.1 Different duals with same base topology

In all our examples, the e8 × e8 LST with an e6 singularity always has an so32 dual where
the topology of the base is that of an affine f4 Dynkin diagram, i.e., a e6 folded by its Z2
outer automorphism. This was already predicted in [11] and explicit models were constructed
in [27] due to properties of the representation theory of Γe6 . However, in all cases where we
find a third dual, this is due to the affine extension having an additional Z2 automorphism
that acts non-trivial on the affine node. Indeed, affine e6 also admits such an enhanced
automorphism, but due to its triality symmetry, the action of this Z2 is equivalent to the Z2
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T-dual−−−→

Figure 5. Two Z2 automorphisms of affine e6 highlighted with black and red arrows respectively.
The former one is only present in the affine extension. Both lead to an affine f4-shaped quiver with
inequivalent so32 models.

symmetry that does not involve the affine node, cf. figure 5. Hence, although both Z2 actions
on affine e6 lead to an equivalent affine f4 shape, they give rise to inequivalent models.

Let us illustrate this explicitly in the model KM (µ1, µ2, e6) with M > 2 and holonomies
(µ1, µ2) that lead to a flavor algebra of so212 × u21,

[so12]
sp1
1

so7
3

su2
2

[u1]
1

e6
6 1

su3
3 1

e6
6︸ ︷︷ ︸

×(M−1)

[u1]
1

su2
2

so7
3

sp1
1 [so12] , l⃗LST =(1,1,2,3,13,2,3,1︸ ︷︷ ︸

×(M−1)

,3,2,1,1) .

We find the following two duals:

[u1,D1×u1,D2 ]×
(spM−3

1
so4M+4

4
sp3M−1

1
su4M+4

2
[su2]

su2M+8
2 [su12]

)
, l⃗LST =(1,1,3,2,1) . (5.1)

[u1,D]×
(
[so16]

spM+3
1

so4M+12
4

[so4]

sp3M−1
1

su4M

2
su2M+2

2 [su4]
)

, l⃗LST =(1,1,3,2,1) (5.2)

Indeed, in both cases, the base topology is that of affine f4, but the number of 5-branes and
the flavor algebra are different. Thus, the base topology, 2-group structures and Coulomb
branch dimension are not enough to determine an LST. Indeed, this data is for all three
models (for M > 2)

rk(GF ) = 14 , Dim(CB) = 12M + 12 , κR = 24M + 16 . (5.3)

Thus, from the perspective of the so32 Heterotic string on an e6 singularity, there are
two models

K̃N (λ, e6) and K̃N ′(λ′, e6) , (5.4)

with different λ and number of NS5 branes, both of which are dual to the same Heterotic
e8 × e8 theory.

5.2 Duals with exceptional gauge algebras

Instantons or NS5 branes in the so32 Heterotic theory are typically perturbative and can
be dualized to type I theories with orientifolds (see e.g. [27]). Thus the appearing gauge
algebra factors on such theories are of ortho-symplectic type such spn, son, and in special
cases sun gauge algebras while exceptional algebras are absent. However, we find a class of
isolated models (with M = 1) that seem to have an e7 gauge algebra in the dual. Consider for

– 32 –



J
H
E
P
0
8
(
2
0
2
4
)
0
6
1

example the theory K1(µ1, µ2, e8) with flavor holonomies (µ1, µ2) that lead to flavor algebras
e8 × so15. The quiver of this theory is

[e8] 1 2
su2
2

g2
3 1

f4
5 1

g2
3

su2
2 2 1

e8
12 1 2

su2
2

g2
3 1

so9
4

sp1
1

so11
4

sp2
1

so13
4

sp3
1 [so15] ,

l⃗LST = (1, 1, 1, 1, 2, 1, 3, 2, 3, 4, 5, 1, 7, 6, 5, 4, 7, 3, 5, 2, 3, 1, 1)] .
(5.5)

The dual theory is given by K̃1(λ; g) with flavor holonomy λ that leads to an so7 × so24
flavor algebra with the quiver

[so7]
su2
2 1

e7
8 1

su2
2

so7
3

sp1
1

so12
4

sp3
1

so16
4

sp5
1

so20
4

sp7
1 [so24] , l⃗LST = (1, 2, 1, 6, 5, 4, 7, 3, 5, 2, 3, 1, 1) .

The 6D anomalies cancel in both models, so these are consistent 6D gauge theories. Further-
more, the dimension of the Coulomb branch, the flavor rank, and κR match,

rk(GF ) = 15 , Dim(CB) = 64 , κR = 194 , (5.6)

indicating that both theories are indeed dual LSTs. As mentioned earlier, the appearance
of an e7 singularity seems puzzling from the perspective of the perturbative so32 Heterotic
string. It would be interesting to understand the origin of such a singularity.

5.3 A self-dual model

In this section we construct a self-dual model, i,.e., an LST such that

TD(KN (µ1, µ2, g)) = K̃N ′(λ, g) = KN (µ1, µ2, g) , (5.7)

i.e. the E8 × E8 model is exactly the same as its Spin(32)/Z2 counterpart, even though the
duality map TD is non-trivial (the theories sit at different loci in the 5D moduli space).

In order to do so, we choose the flavor holonomies such that we break e8 × e8 and so32
to the maximal so16 × so16 subalgebra.7 Next, we have to choose some singularity g that
has the chance to lead to the same quiver and gauge algebras in both Heterotic models. As
there are typically no exceptional gauge algebras on the so32 side, we restrict our search to
A and D type singularities. Since Ar and D2m+1 singularities usually lead to a folding on
the Spin(32)/Z2 side, we are left with D2N . Indeed, for a g = so4N singularity (with N > 2)
and M NS5 branes on the E8 × E8 side we obtain

[so16]
spN

1

spN−4
1

so4N

4
sp2N−4

1
so4N

4
sp2N−4

1︸ ︷︷ ︸
×(M−2)

spN−4
1

so4N

4
spN

1 [so16] (5.8)

which dualizes to the Spin(32)/Z2 quiver

[so16]
spM+1
1

spM−3
1

so4M+4
4

sp2M−2
1

so4M+4
4

sp2M−2
1︸ ︷︷ ︸

×N−3

spM−3
1

so4M+4
4

spM+1
1 [so16] (5.9)

7The full flavor group is in fact (Spin(16) × Spin(16))/Z2.
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There also exists a third Spin(32)/Z2 dual, which is not of relevance here but can be found
in table 4. Evidently, upon choosing M = N − 1, the two quivers (5.9) and (5.8) become
identical theories and their invariants are

rk(GF ) = 16 , Dim(CB) = 4N2 − 4 , κR = 8N2 − 16N + 10 . (5.10)

While the two models are identical as six-dimensional theories, it is important remark that
their 10D origin as well as the T-duality, and hence the duality map TD, between the two
is non-trivial. The two theories are not just trivially the same upon circle reductions, but
sit at different points of their 5D Coulomb branch moduli space. Phrased differently, when
starting from either quiver and compactifying on a circle, one can move in the 5D moduli
space to a different locus and find the exact same theory there.8 This can also be seen from
the underlying fiber/base duality: upon compactifying LST (5.8), all gauge algebra factors —
including the so4N factors on the −4 curves — are shrunk to a singular point. However, these
curves are precisely those that assemble the dual base quiver on the Spin(32)/Z2 side. Thus,
from the perspective of the E8×E8 LST reduced on a circle, the Spin(32)/Z2 appears to have a
shrunken so4N base and vice versa. The most generic point at which both theories are identical
as 5D theories is on their maximal Coulomb branch, where all singularities are resolved.

6 Conclusions and outlook

In this work, we construct Heterotic LSTs with more general flavor breaking on the E8 × E8
side, and construct their T-duals on the Spin(32)/Z2 side. We determine the 5D Coulomb
branch dimensions, universal 2-group structure constants and full flavor algebra. In addition
to the former two, we show that the rank of the flavor algebra also always matches, providing
another non-trivial invariant of LSTs that related by T-duality. This requires to carefully
take into account u1 ABJ flavor anomalies and finding non-anomalous linear combinations.

We discuss in detail the construction of Heterotic LSTs with so and non-simply laced
flavor symmetries. For the latter, we observe that T-duality preserves non-simply laced flavor
algebras, suggesting a type of conserved freezing flux contribution in the M-theory description.
Geometrically, T-dual heterotic LSTs can be constructed from non-compact K3-fibered CY
threefolds with multiple elliptic fibrations. Different choices of elliptic fibrations correspond
to different 6D LSTs, which become the same model in the 5D M-theory picture. The K3
fibers encode the flavor algebras. By exploiting non-Kähler favorable divisors, we engineer
models that are forced to sit at special loci in the K3 moduli space, at which the volumes of
several curves that resolve the ADE fiber singularity have the same volume, which allows
modding out an outer automorphism to obtain non-simply laced subgroups. This procedure
is inherent to a choice of polarization for the flavor K3 Picard lattice and preserved upon
choosing different elliptic fibration structures, which means it is invariant under T-duality.
This explains why the flavor algebra is also always reduced in T-dual theories of such models.

We use the geometric engineering procedure to construct LSTs with three T-dual theories.
For these to appear, the flavor group on the E8 × E8 side must be broken. Moreover, a
singularity g whose affine extension has an additional Z2 automorphism that involves the

8We expect that this symmetry is reflected in the 5D moduli space of these theories.
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affine node is needed, which happens for g = {so2N , e6, e7}. When these conditions are met,
one obtains two Heterotic Spin(32)/Z2 duals where the base quivers of one theory is in the
shape of the affine g algebra and the other is of the same shape with the outer automorphism
modded out. We highlight this for the special case of an e6 singularity, whose affinization
has two inequivalent Z2 symmetries, both of which fold the Dynkin diagram to an affine
f4-shaped quiver, but with different flavor and gauge algebra factors. The T-duality map
TD thus provides multiple Spin(32)/Z2 group homomorphisms for a single E8 × E8 theory
and can therefore not be an isomorphism.

Finally, we construct a family of E8 × E8 ↔ Spin(32)/Z2 self-T-dual models. These
two LSTs have exactly the same D2N type of singularity and Spin(16)2/Z2 flavor group.
However, these theories are at different loci in the 5D Coulomb branch moduli space upon
circle compactification to 5D. This suggests that the 5D moduli space has a Z2 symmetry.

While this work continues to carve out the large landscape of Heterotic little string
theories, there are still several open problems. First, it would be interesting to understand
how the duality map TD acts on the homomorphisms (µ1, µ2) and λ from first principles. For
this, one should study the map of the nilpotent deformations in the E8 × E8 theory to the
Spin(32)/Z2 theory, akin to the analysis of [53] for the orbi-instanton theories.

There are also two more LST type of structures that have not yet been discussed: the first
ones are LSTs with twisted T-duals that are related by discrete holonomy reductions [19, 63, 64].
Geometrically, these can be engineered from genus-one fibered Calabi-Yau threefolds [65–67].
Second, it would be interesting to extend our explorations to IIB compactifications with O7+
planes, which correspond to frozen phases of F-theory [40, 59, 61, 68].

Lastly, the perturbative Heterotic string is a part of the string spectrum of any 6D
SUGRA theory with nT > 0 tensor multiplets, which are precisely the LST sectors we
studied here. A general perspective of T-duality for Heterotic LSTs could therefore potentially
elucidate properties of BPS strings across dualities when gravity is included. In particular,
one may ask whether T-dualities of such SUGRA theories are captured completely by the
T-dualities of their respective LST subsectors.
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