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To maximize the discovery potential of high-energy colliders, experimental searches should be sensitive
to unforeseen new physics scenarios. This goal has motivated the use of machine learning for unsupervised
anomaly detection. In this paper, we introduce a new anomaly detection strategy called FORCE: factorized
observables for regressing conditional expectations. Our approach is based on the inductive bias of
factorization, which is the idea that the physics governing different energy scales can be treated as
approximately independent. Assuming factorization holds separately for signal and background processes,
the appearance of nontrivial correlations between low- and high-energy observables is a robust indicator of
new physics. Under the most restrictive form of factorization, a machine-learned model trained to identify
such correlations will in fact converge to the optimal new physics classifier. We test FORCE on a benchmark
anomaly detection task for the Large Hadron Collider involving collimated sprays of particles called jets.
By teasing out correlations between the kinematics and substructure of jets, our method can reliably extract
percent-level signal fractions. This strategy for uncovering new physics adds to the growing toolbox of
anomaly detection methods for collider physics with a complementary set of assumptions.
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Despite the excellent targeted search efforts of multiple
experiments, no conclusive evidence for new physics has
been seen at the Large Hadron Collider (LHC) since the
Higgs boson discovery in 2012 [1,2]. It is difficult, however,
to exclude the possibility that new physics might exist in a
form that has yet to be theoretically predicted. Although
targeted searches for a specific scenario (or class of
scenarios) might yield a serendipitous discovery, they could
lack sensitivity to even sizeable amounts of unforeseen new
physics in LHC data. To enable the broadest coverage for
collider searches, robust techniques are needed to probe
generic deviations from the Standard Model. This goal has
inspired the development of several anomaly detection
approaches for collider physics [3–103], which have
recently found experimental applications [24,95].

Any anomaly detection technique must make assump-
tions about what constitutes an anomaly, which then implies
limitations on its sensitivity. One class of techniques uses
comparisons between data and simulation to detect anoma-
lous events [3,5,6]; this approach is susceptible to detector or
generator mismodeling and may confuse poorly modeled
regions of phase space for new physics. A more data-driven
approach assumes that newphysicswill appear as a localized
cluster in phase space [4,12,32]; this is an excellent inductive
bias to detectmass resonances, but limits the types ofmodels
that can be probed. The most unstructured techniques, such
as autoencoder reconstruction losses, operationally define
the notion of anomalous events via the choice of machine
learning architecture [8,9,13]; since they lack controlled
assumptions, it is challenging to determine the applicability
of such methods to particular new physics scenarios.
In this paper, we introduce an anomaly detection strategy

called FORCE—factorized observables for regressing condi-
tional expectations—based on the inductive bias of fac-
torization. Factorization occurs when the physics governing
high-energy scales is approximately independent from
those governing low-energy scales. Jet production offers
a canonical example of factorization at colliders, where the
processes that determine the kinematics and flavors of
high-energy partons are approximately independent of the
dynamics that yield collimated sprays of low-energy
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hadrons. As illustrated in Fig. 1, a machine learning
model can be trained to predict the kinematics of a jet
from its boost-invariant substructure. Kinematics and
substructure are approximately independent in the
absence of new physics, so if the model learns nontrivial
correlations, then this indicates a possible anomaly. Our
approach does not require simulated data, works even if
the new physics is nonresonant, and provably converges
to the optimal classifier assuming strict factorization.
FORCE builds upon previous uses of factorized structures
to estimate backgrounds [104,105], train data-driven
collider classifiers [21,106–110], and disentangle particle
flavors using topic modeling [111–114].
To demonstrate the FORCE approach, we perform a case

study involving jets [115–118]. Jets are proxies for the
partons or resonances produced in high-energy collisions,
with the kinematics of a jet reflecting the kinematics of its
initiating particle. Jets then acquire substructure through
lower-energy processes, such as decays of intermediate-
scale resonances or showering/hadronization in quantum
chromodynamics (QCD). Many new physics scenarios
involve jet production, making jets a key target for anomaly
detection.
In the soft-collinear limit of QCD, the substructure

of a jet factorizes from its kinematics [119–123] (see
also [124–127]). Factorization also holds for the decay of
an intermediate-scale resonance in the narrow width
approximation [128,129], such as for a Lorentz-boosted
W=Z boson, Higgs boson, or top quark. Therefore, at
leading order in the high-pT limit, the kinematics of a jet
is determined by its transverse momentum pT and
rapidity y. Let O be a list of jet substructure observables,
possibly high dimensional. Then, assuming factorization

holds, the distribution of jet kinematics and substructure
obey

PðpT; y;OÞ ≈
X

i

fiPiðpT; yÞPiðOjpTÞ; ð1Þ

where Pi refers to the probability density function,
i∈ fq; g;W; t; � � �g labels the types of initiating particle,
and fi is the fraction of jets initiated by that particle
type. Factorization imposes a nontrivial constraint that
PiðOjpTÞ is independent of y for each i and that a finite
sum over i is sufficient to model the distribution.
If we make an even more restrictive assumption that O

consists of scale- and boost-invariant observables, with no
conditional pT dependence, then we can write

PiðOjpTÞ ≈ PiðOÞ: ð2Þ

Examples of such quasi-invariant observables are
N-subjettiness ratios [130,131], D2 [132], D3 [133], and
Ni [134]. Here, we take the jet substructure to be dominated
by the initiating particle’s flavor and independent of the
remainder of the event, up to subleading corrections. The
factorized structure of Eqs. (1) and (2) is what we will
exploit for anomaly detection using FORCE.
Consider the case of only two jet types: background (B)

QCD jets from high-energy quarks and gluons, and signal
(S) jets from the hadronic decay of a new particle. To
simplify the algebra, we marginalize over y. Via Eqs. (1)
and (2), i.e. assuming pT andO are independent in both the
signal and background processes, the joint distribution of
jet kinematics and substructure is

PðpT;OÞ ¼ fSPSðpTÞPSðOÞ þ fBPBðpTÞPBðOÞ; ð3Þ

where fS is the fraction of new physics events and fB is the
fraction of QCD events, with fS þ fB ¼ 1. Our goal is to
discover and characterize the new physics signal in a data-
driven manner.
The key insight behind FORCE is that a machine-learned

model trained to predict a jet’s pT from its substructure
observable O yields the optimal S versus B classifier
(assuming factorization and with sufficient training and
statistics). By “predict,” we mean learning the conditional
expectation value

p̂TðOÞ≡ E½pT jO�; ð4Þ

which is a function of O that can be learned from mini-
mizing the mean-squared error; see the Supplemental
Material [135]. With a single factorized process, p̂TðOÞ
would be independent of O, but the sum of two factorized
processes yields nontrivialO dependence. To see this, recall
from the Neyman-Pearson lemma [136] that the signal-to-
background likelihood ratio is the optimal new physics
classifier derivable from O:

FIG. 1. Illustration of the FORCE anomaly detection approach,
applied to a dijet search. A machine-learning model is trained to
predict the kinematics of a jet from its substructure. The model
output converges to the optimal new physics jet classifier
assuming factorization holds for both the signal and background
processes.
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LS=BðOÞ ¼ PSðOÞ
PBðOÞ : ð5Þ

(A stronger classifier might exist if one includes pT
information, but that requires a priori knowledge of
PSðpTÞ=PBðpTÞ.) From Eq. (3), the conditional distribu-
tion can be written as

PðpT jOÞ ¼ ð1 − fSÞPBðpTÞ þ fSLS=BðOÞPSðpTÞ
1 − fS þ fSLS=BðOÞ : ð6Þ

Taking the expectation value with respect to pT yields

p̂TðOÞ¼ hpTiBþfS
ðhpTiS− hpTiBÞLS=BðOÞ
1−fSþfSLS=BðOÞ : ð7Þ

Remarkably, p̂TðOÞ is monotonically related to LS=BðOÞ,
so it also defines optimal decision boundaries. A similar
observation underpins anomaly detection methods based
on classification without labels [4,12,108]. To our knowl-
edge, the first proof that optimal classifiers can be defined
through regression (as opposed to classification) appears in
Ref. [114]. Note that the factorization assumption is crucial
for learning a monotone of LS=BðOÞ without explicit
knowledge of PSðOÞ or PBðOÞ individually.
Thus, assuming factorized observables, regressing the

conditional expectation (FORCE) furnishes a powerful probe
of new physics, justifying the FORCE acronym. Interestingly,
the same logic holdswithmore than one type of newparticle,
such as pp → XY, as long as hpTiX ¼ hpTiY as expected
from momentum conservation. If hpTiS > hpTiB, then
Eq. (7) defines an optimal tagger; otherwise, it defines an
optimal anti-tagger. In the absence of new physics (fS ¼ 0)
or if the signal and background have the same average
kinematics (hpTiS ¼ hpTiB), then Eq. (7) simply returns the
expectation value hpTi with no observable dependence.
Deviations of the model output from hpTi are therefore a
harbinger for a new type of factorized object in the data (or a
violation of the factorization assumption).
In summary, FORCE proceeds as follows:
(1) Define approximately factorized objects (e.g. jets)

with kinematics pT and scale-/boost-invariant sub-
structure O.

(2) Train a machine-learning model p̂TðOÞ to predict
pT from O with the mean-squared error loss.

(3) Classify anomalous objects via the model output.
Of course, real collider data is richer than the simple two-
category case in Eq. (3). QCD jets themselves are admix-
tures of quark and gluon jets, each with slightly different
kinematics and substructure. Multiple effects can violate
the strict version of factorization in Eq. (2), such as partial
containment of particle decay products in the jet cone or the
logarithmic scale-dependence of QCD due to the running
of the strong coupling constant. Further, certain known
Standard Model processes, such as jets from hadronically

decaying W=Z=Higgs bosons or top quarks, may be
considered anomalous beyond the QCD dijet background
by our formulation. This behavior may in fact be desirable,
and “rediscovering” these particles may be an interesting
way to benchmark this technique in data. More broadly,
though, the general structure of factorization motivates
FORCE as a new physics search strategy.
We now showcase FORCE for a new physics search

involving dijets. Our case study is based on the develop-
ment dataset [137] from the LHC Olympics 2020 Anomaly
Detection Challenge [39]. This simulated dataset consists
of 1 million QCD dijet events and up to 100 thousand
W0 → XY events, with the X and Y particles decaying to
two quarks. The masses of the three new particles are
mW0 ¼ 3.5 TeV, mX ¼ 500 GeV, and mY ¼ 100 GeV.
The X and Y particles are boosted, giving rise to a dijet
resonance with two-pronged jet substructure. While the
signal has a W0 mass peak, this feature is not used for
FORCE training.
The LHC Olympics dataset is generated with PYTHIA

8.219 [138,139] and simulated with DELPHES 3.4.1 [140],
excluding pileup or multiple parton interactions. Events are
selected to have at least one R ¼ 1.0 anti-kT [141] jet with
transverse momentum pT > 1.2 TeV and pseudorapidity
jηj < 2.5. Jets are clustered via the anti-kT algorithm with a
radius of R ¼ 1.0 using FastJet 3.3.3 [141,142]. The leading
two jets, i.e. those with highest transverse momenta, are
recorded in each event as a proxy for the products of the
high-energy scattering process. Both jets are used in the
analysis, so the anomalies are defined over jets (instead of
over events).
For our substructure observables O, we use energy flow

polynomials (EFPs) [143,144]. As reviewed in the
Supplemental Material [135], EFPs arise from a systematic
expansion in energies and angles, and they are sensitive to a
broad range of jet features, including the two-prong
substructure of the boosted X and Y particles. We compute
all 13 EFPs up to and including degree 3 using EnergyFlow

1.0.3 [145], using zi ¼ pT;i as the energy variable and θij ¼
ðpμ

i pjμ=pT;ipT;jÞ1=2 as the angular variable. To satisfy
Eq. (2), the EFPs need to be made scale- and boost-
invariant. Quasi-scale-invariance can be achieved by nor-
malizing the energies to sum to unity. As boosts transverse
to the beamline approximately scale energies by γ and
angles by 1=γ, the EFPs can be made quasi-boost-invariant
by rescaling them via:

EFP →
EFP

ðPM
i¼1 pT;iÞN−2dðPM

i¼1

P
M
j¼1 pT;ipT;jθijÞd

; ð8Þ

where N and d are the energy and angular degrees of the
polynomial. This rescaling reduces our basis to seven
independent elements. We note that observables desired
to be independent of pT have been employed in prior work
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on anomaly detection [12] and jet-tagging [3]. In the
Supplemental Material [135], we show how FORCE per-
formance degradeswithout this normalization. Interestingly,
existing observables for multiprong new physics searches,
such asD2 [132], emerge naturally as elements of this quasi-
invariant basis.
The FORCE method works with any machine-learning

algorithmwhose output p̂TðOÞ converges to the conditional
expectation E½pT jO�. We use a fully-connected neural
network consisting of three dense layers with 50 nodes
per layer, as well as L2 kernel and bias regularization of 10−5

in each layer. Between each dense layer is a dropout [146]
layer with p ¼ 0.1. Neural networks are implemented and
trained with Keras [147] using TensorFlow [148], optimized
with Adam [149] with a patience parameter of 10. Since our
method is fully unsupervised, seeing no signal/background
labels, we utilize the full dataset in training. (In a full
analysis, it might be preferable to use statistically indepen-
dent samples for training and testing.) Our code implement-
ing FORCE is publicly available on GitHub [150].

The dijet and jet mass distributions are shown in Fig. 2
after applying FORCE for a signal fraction of fS ¼ 0.005.
Here, we impose a cut on both jets that enforces their model
output p̂TðOÞ to be above the same threshold. With a
strict enough cut, the signal clearly manifests as a peak at
mW0 ¼ 3.5 TeV in the dijet mass distribution, and peaks at
mX ¼ 500 GeV and mY ¼ 100 GeV in the individual jet
mass distribution. To estimate the local significance, a
background fit is performed using Legendre polynomials
outside of the shaded signal region, using fifth order as the

central value and between second and seventh orders for the
uncertainty band. For the dijet mass background fit, we use
data above 3TeV, and for the jetmass background fits, below
300GeV formY and above 300GeV formX.We find a boost
in significance,where a pre-cut excess of 2σ for theW0 andX
are increased to> 5σ, while a precut excess of 1σ for theY is
increased to> 5σ. Note that although the new physics in this
case study appears as a resonance in the jet and dijet mass
distributions, a resonance is not a requirement of the FORCE

method. (Without a bumplike feature, though, one would
have to leverage some other method for background
estimation.) Further, by imposing quasi-boost/scale invari-
ance, the model output is largely decorrelated from jet mass
(see Fig. 4 in the Supplemental Material [135] and related
discussion in Refs. [151–153]).
To test the robustness of FORCE, we apply our method on

a range of signal fractions fS. For stability in this analysis,
we train with an equally mixed dataset of 100,000 signal
and 100,000 background events, using sample weights in
Keras to mimic a signal fraction fS. We then test the model
on the full dataset. To account for variability and obtain
error bars, we train an ensemble of 10 different models. The
average per-jet classification performance is shown in
Fig. 3, where we plot the background rejection factor as
a function of signal efficiency. Here, the per-jet perfor-
mance is evaluated only on the learned p̂TðOÞ, not
including any additional features such as jet mass or
assumptions about theW0 → XY event topology. (For these
reasons, one cannot directly compare our results to those of
previous LHC Olympians.) In the large signal limit, FORCE

FIG. 2. The FORCE method applied to a dijet search with a 0.5% new physics signal fraction (fS ¼ 0.005), where the same cut on
p̂TðOÞ is imposed on both jets. Shown are (a) dijet and (b) jet mass distributions in the top panels and local significance values in the
lower panels. The shaded regions “QCD” and “W0 → XY” refer to the truth distributions after baseline kinematic selections. The solid
lines indicate the data, whereas the dashed lines and shaded areas indicate the background predictions and uncertainties derived from the
Legendre fits. The black curve indicates no cuts on the trained model output p̂TðOÞ, while the sweep from red to purple corresponds to
cuts that increase the lower bound on p̂TðOÞ, with specific cut values chosen manually to highlight the qualitative behavior. Tighter cuts,
where the model predictions are further from plain QCD jets, clearly identify the new physics signal with a dijet mass peak at
mW0 ¼ 3.5 TeV and individual jet mass peaks atmX ¼ 500 GeV andmY ¼ 100 GeV. See the Supplemental Material [135] for different
values of fS.
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approaches the optimal supervised classifier, as predicted
by Eq. (7). As the signal fraction decreases, the perfor-
mance degrades and the variability increases, but there are
still substantial gains in sensitivity. Note that the fS ¼ 0
limit still yields reasonable classification performance; this
is possibly due to deviations from strict factorization, as
discussed further in the Supplemental Material [135].
(Alternatively, since we are applying a no-signal model
to a dataset with signal, proper convergence might not be
achievable off the data manifold.)
Having established the desired behavior of FORCE on a

benchmark collider search, it is worth remarking on several
important points. First, our method is based on the inductive
bias of factorization, so the performance we saw in the dijet
analysis may not translate to other scenarios. This reflects a
universal challenge for all approaches to anomaly detection,
where the performance of the method depends on the
applicability of the assumptions. Nevertheless, limits can
be set on the parameters of specific new physics scenarios
(even post hoc) by performing pseudoexperiments, injecting
various amounts of signal, and repeating the procedure to
establish confidence intervals. Second, as the signal fraction
decreases, the performance of the learned model becomes
highly sensitive to parameter initialization and statistical
fluctuations. To ensure robust behavior in this regime, we
recommend FORCE be paired with a regularization method
like ensemble learning [154]. Third, detector effects can
introduce factorization-violating effects, so it may be bene-
ficial to apply FORCE after multidimensional unfolding
is applied to the data [155–158]. Jet grooming techni-
ques [159–161] might also improve the factorized behavior

of jets at the theoretical level. Finally, we emphasize that no
strategy can outperform a targeted search (i.e., hypothesis
test) for a specific model, and that the power of data-driven
approaches such as FORCE is in broadening the space of new
physics scenarios that can be probed.
In summary, we introduced FORCE: an anomaly detection

strategy for factorized new physics. By training a machine-
learning model to predict the kinematics of factorized
objects from their scale- and boost-invariant substructure,
we obtain a powerful classifier directly from observed data.
We showcased FORCE on a benchmark search for new
physics in the dijet final state, where it successfully
identified a new physics signal. This work contributes to
a growing body of work where powerful computational
tools from machine learning are combined with deep
theoretical principles to unlock novel collider data analysis
strategies. Furthermore, the FORCE method can be easily
integrated into these prior methods when viewing the
model output as an observable with high discrimina-
tion power.
The FORCE framework shifts the discussion of new

physics searches from specific models to their general
factorized structure, with machine-learning techniques
performing detailed observable-level analyses. It would
be interesting to generalize FORCE to handle more than one
kinematic feature and more than two event categories,
which would be important to handle multiple background
components. It would also be interesting to combine our
reasoning with the factorization of the full event energy
flow [125], which may help reframe anomaly detection in
the language of “theory space” [162,163]. Though we
focused on jets and jet substructure here, this method
applies more broadly to any factorized probability distri-
butions, in collider physics and beyond. Data-driven
searches hold the potential to fundamentally surprise us,
not only by discovering new physics, but by uncovering it
in forms that we have failed to imagine.

The authors are grateful to the organizers of the LHC
Olympics 2020 Anomaly Detection Challenge for stimu-
lating this research direction and producing excellent public
datasets. We are grateful to Samuel Alipour-fard, Rikab
Gambhir, Patrick Komiske, Benjamin Nachman, and Nilai
Sarda for helpful comments and discussions. J. T. is
supported by the National Science Foundation under
Cooperative Agreement PHY-2019786 (The NSF AI
Institute for Artificial Intelligence and Fundamental
Interactions) and by the Simons Foundation through
Investigator Grant 929241. This work was supported by
the Office of Nuclear Physics of the U.S. Department of
Energy (DOE) under Grant No. DE-SC0011090 and by the
DOE Office of High Energy Physics under Grants No. DE-
SC0012567 and No. DE-SC0019128.

FIG. 3. Per-jet classification performance of FORCE in a dijet
search with different signal fractions fS. The background
rejection factor is shown as a function of (left panel) the signal
efficiency and (right panel) the standard deviation of the signal
efficiency over 10 trainings. See the Supplemental Material [135]
for a discussion of the fS ¼ 0 limit, where nontrivial performance
can arise from a breakdown of factorization.
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