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1 Introduction

Understanding the mechanism by which quarks confine and deconfine is a longstanding
theoretical problem [1]. Part of the puzzle is understanding the properties of the high-
temperature deconfined phase of nuclear matter known as the Quark Gluon Plasma (QGP). A
fundamental observable signature of QGP formation [2] is the suppression of heavy quarkonia
production at heavy-ion colliders. Quantitatively understanding the observed suppression
requires ab-initio simulations of the heavy quark dynamics and their hadronisation in the
QGP. In the high-temperature limit, the open quantum system framework describes this
evolution as a first-order Lindblad master equation that can be numerically studied [3–8].
As such, the development of numerical methods for the study of open quantum systems is
of particular importance in this context.

A fundamental obstacle impeding progress into simulations of Lindbladian dynamics is
the large dimension of the space of density matrices, which grows exponentially with the
number of particles for a non-relativistic system, and exponentially in the volume for a
relativistic system. Several approaches to this problem are under investigation, including
Master Equation Unraveling [9, 10], and tensor-network parametrisations [11, 12]. Master
Equation Unraveling has been applied to study the in-medium dynamics of a single heavy
quark Q or single heavy quarkonium QQ [13–17] where the dimension of the Hilbert space
for wavefunctions is still manageable and exact representations of the quantum states can
be used. A promising alternative approach is to use the neural network based approach
of Neural Density Operators (NDOs), which variationally parametrise quantum states in
far fewer parameters than the dimension of the space. Recent advances in computation
and algorithms have allowed neural network methods to efficiently extract spectral data
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and Hamiltonian dynamics from a variety of physical systems [18, 19]. Investigations of
neural network methods for the more difficult problem of simulating open quantum systems,
however, are still quite nascent, and early investigations have largely focused on open quantum
spin-systems with local or close to local interactions [20–30].

This work studies the applicability of neural network methods, in particular NDOs,
for investigating the properties and real-time dynamics of quantum field theories as open
quantum systems. As a proof-of-principle demonstration, our study focuses on the 1 + 1d
lattice Schwinger Model [31], which shares many common features with QCD such as
confinement and chiral symmetry breaking, and is often used as a testbed for new methods.
When open boundary conditions are specified for the lattice theory, the gauge links can
be integrated out, yielding a Hamiltonian with long-range spin interactions. The unitary
Hamiltonian dynamics of the Schwinger Model have been studied extensively with digital
quantum circuits, tensor-network methods, and neural network methods [32–52]. In this
work, the NDO parametrisation [24] is used to variationally parametrise density matrices.
This allows numerical simulations of non-unitary dynamics for larger system sizes than
would be possible with exact representations of the density matrices. The non-equilibrium
dynamics of multiple interacting QQ pairs is simulated with the time-dependent Variational
Monte-Carlo algorithm (tVMC) [21]. Algorithms to bootstrap NDOs from smaller lattice
sizes to larger lattice sizes are also developed, which enables the non-equilibrium dynamics of
the system to be probed on large lattice volumes. This paper is organized as follows: the
Schwinger Model as an open quantum system on a lattice is reviewed in section 2. The
NDO construction and tVMC algorithm are reviewed in section 3. Results for Lindbladian
dynamics simulated with NDO+tVMC are presented in section 4.1. Thermal properties of
the Schwinger model are investigated by variationally approximating the steady state of
the Lindblad equation in section 4.2. In principle these methods are extendable to QCD
simulations, as discussed in section 5.

2 Schwinger model as an open quantum system on the lattice

The Schwinger model is a U(1)-gauge theory with a massive relativistic fermion (sometimes
called an electron) in 1 + 1d that shares many of the features of QCD, such as confinement and
chiral symmetry breaking [31]. The Schwinger model as an open quantum system (coupled to
a thermal environment) has been studied as a model of heavy quarkonia in the QGP [53, 54].
A prototypical construction is to consider a Schwinger fermion ψ coupled to a scalar field ϕ:

L = −1
4FµνF

µν + ψ(i /D −m)ψ + gϕψψ + Lϕ. (2.1)

The scalars ϕ are the environment degrees of freedom, and are traced out in the Quantum
Brownian Motion limit leaving a Lindblad equation describing the remaining Schwinger
degrees of freedom. Note that the gauge links are not traced out in this derivation of the
Lindblad equation, although in 1 + 1d the gauge links can be integrated out explicitly with
open boundary conditions.

To numerically simulate the Schwinger Model, the theory is discretised onto a lattice with
L points indexed by 0 ≤ i, j, · · · ≤ (L− 1) and lattice spacing a. In a staggered discretisation
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for the Schwinger fermion, the lattice has L
2 physical sites, with electrons occupying the

even sites and positrons occupying the odd sites. A general Lindbladian evolution for such
a system coupled to a thermal reservoir at temperature T is parametrised (up to O(1/T 2)
effects) by a spatial coupling matrix Dij and operators Oi:

Lρ(t) := dρ(t)
dt = −i

[
H, ρ(t)

]
+ a2∑

i,j

Dij

(
Õiρ(t)Õ†

j −
1
2
{
Õ†

jÕi, ρ(t)
})

, (2.2)

Õi ≡ Oi −
1

4T
[
H,Oi

]
, Õ†

i ≡ Oi + 1
4T
[
H,Oi

]
. (2.3)

All super-operators such as the Lindbladian L that act on the space of operators are labelled in
calligraphic font. The coupling matrix Dij physically encodes the length-scale of correlations
in the environment (the Debye screening length). The thermal state ρT = 1

Z e
−H

T satisfies
LρT = O

(
1/T 2) so that the steady state of the Lindbladian evolution is approximately

thermal. For the specific case of the Schwinger Model in temporal gauge (where the timelike
gauge potential is zero) with open boundary condition and spatial gauge links integrated
out [55],1 the Hamiltonian is the sum H = Hkin. + Hmass + Helec., where:

Hkin. ≡
1
2a

L−2∑
i=0

(
σ+

i σ
−
i+1 + σ+

i+1σ
−
i

)
, Hmass ≡ m

L−1∑
i=0

Oi, Helec. ≡
a

2

L∑
i=0

E2
i , (2.4)

Oi ≡ (−1)iσ
z
i + 1
2a , Ei ≡ e

ℓ0 + 1
2

i−1∑
j=0

(σz
j + (−1)j)

 , (2.5)

where m, e are the bare mass and electric charge respectively, and ℓ0 denotes the boundary
condition, labelling the incoming electric flux at the i = 0 lattice site. The fermionic
degrees of freedom have been converted to spin- 1

2 degrees of freedom with the Jordan-Wigner
mapping [57]. In this study, the boundary condition for the electric fields Ei is chosen
to be ℓ0 = 0.

The Dij matrix appearing in eq. (2.2) encodes the coupling between the Schwinger Model
degrees of freedom and the environment degrees of freedom (in the example Lagrangian
shown in eq. (2.1), this is a Yukawa coupling to an environment scalar). Its specific value
will depend on the strength of the Yukawa coupling as well as the Lagrangian describing the
environment degrees of freedom Lϕ, and can in principle be computed perturbatively. As
discussed in further detail in appendix A, CP -conservation of the total Hamiltonian shown
in eq. (2.1) places constraints on the form of the Dij matrix, in particular the Lindbladian L
must be weakly CP -preserving ([CP ⊗CP,L] = 0). Simulation results presented in section 4
will focus on two special limits:

Delta Coupling : Dij = D0δij , Constant Coupling : Dij = D01ij , (2.6)

where the delta coupling is point-like, and 1ij evaluates to 1 for any choice of {i, j} in
order that the constant coupling has effectively infinite range. The delta coupling is ‘weakly
CP -preserving’ ([CP ⊗CP,L] = 0) whereas the constant coupling is ‘strongly CP -preserving’
(L†(CP ) = 0) which leads to qualitatively different Lindbladian evolution behaviours.

1The Hamiltonian constructed in Weyl gauge shown in eq. (2.4) is also equivalent to the Hamiltonian
constructed in axial gauge with the spatial gauge potential set to zero [56].
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h

σ

a

Wθ

Uθ

p(σ, a, h) = 1
2exp(a

TUσ + hTWσ + dTa+ bTσ + cTh)

⟨σ, a|ψ⟩ = ∑
h p(h, σ, a)

⟨σ|ρ|σ′⟩ = ∑
a⟨σ, a|ψ⟩⟨ψ|σ′, a⟩

Sum over hidden bits

Trace over ancillary bits

Figure 1. Diagrammatic representation of the Neural Density Operator as presented in refs. [21, 24].
In the center are the physical spins σ, which take values σi ∈ {−1,+1} for i = 0, . . . , L − 1. Note
that σ here denotes the basis states, not Pauli matrices. There are also hidden bits hj ∈ {−1, 1} and
ancillary spins ak ∈ {−1, 1} for j = 0, . . . ,MhL− 1, k = 0, . . . ,MaL− 1.

3 Neural Density Operators and variational state algorithms

In this section, the neural network approach to simulating Lindbladian dynamics using NDOs
is reviewed. There are several components of the approach:

- The NDO construction, which is a variational parametrisation of density matrices
ρ : CN → H⊗H∗, is reviewed in section 3.1;

- In order to simulate Lindbladian evolution, the Time-Dependent Variational Principle
is applied to vary the parameters of the NDO in order to best approximate the true
evolution. The practical application of this approach is described in section 3.2;

- An approach to improve the efficiency of the initialization of the parameters of the NDO
to prepare initial states is described in section 3.3. A transfer-learning procedure to
transfer NDO-states prepared on a lattice of size L to a lattice of size 2L is described.

3.1 Neural Density Operators

A large class of lattice discretisations of field theories (including the discretisation of the
Schwinger Model used in this study) have a total Hilbert space that can be written as a
tensor product over local Hilbert spaces H = ⊗iHi, where i ranges over the lattice sites.
The local Hilbert spaces Hi encode the local degrees of freedom (both fermionic and gauge
degrees of freedom) that live at site i. In such a discretisation, the dimension of the total
Hilbert space scales exponentially with the lattice volume dim(H) = ΛV , where Λ = dim(Hi)
is the site dimension. As a result, it is prohibitively expensive to represent quantum states
exactly on classical computers for all but small volumes. The problem is exacerbated when
simulating open quantum systems, as density matrices naturally live in the space H⊗H∗

which has dimension Λ2V . This often limits the types of interactions that are practically
simulatable: for example in the Open Schwinger Model the number and configuration of
strings that can be simulated are limited by the volume of the lattice.
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Neural network parametrisations of quantum states allow states in large-dimensional
spaces to be represented compactly by far fewer parameters. The NDO shown in figure 1 is
one particular neural network parametrisation of density matrices ρ : CN → H⊗H∗ where
CN is the parameter-space [21, 24]. The parametrisation can be explicitly written as:

log(⟨σ|ρ|σ′⟩) =
L−1∑
j=0

(bjσj + b∗jσ
′
j) +

MhL−1∑
k=0

Xk +
MaL−1∑

p=0
Yp, (3.1)

Xk = log cosh

ck +
L−1∑
j=0

Wkjσj

+ log cosh

c∗k +
L−1∑
j=0

W ∗
kjσ

′
j

 , (3.2)

Yp = log cosh

dp + d∗p +
L−1∑
j=0

(Upjσj + U∗
pjσ

′
j)

 . (3.3)

There are two positive hyperparameters Mh,Ma (chosen such that MhL and MaL are integers)
that control the size of the complex parameter space α:

α = {W ∈ CMhL×L, U ∈ CMaL×L, b ∈ CL, c ∈ CMhL, d ∈ CMaL}. (3.4)

For fixed Mh,Ma, the total number of complex parameters in α grows quadratically as L
increases. By construction the density matrix represented by eq. (3.1) is Hermitian and
positive definite, as it is defined as a trace over ancillary qubits of a pure-state wavefunction.

In practice, it is conventional to represent the density matrix numerically as log⟨σ|ρ|σ′⟩,
rather than ⟨σ|ρ|σ′⟩, as it increases numerical stability when parametrising matrices whose
entries range over several orders of magnitude [58]. Another practical concern is that the
definition of α as a set of complex parameters can lead to numerical instabilities as those
parameters are varied (e.g., in optimization/training), due to the branch point singularities
of the log cosh function; a possible regulator is given by replacing the log cosh functions
appearing in the definition of eq. (3.1) with a regulated log cosh function:

RLC(z) :=
log cosh( tanh(|z|)

|z| z)

( tanh(|z|)
|z| )

, (3.5)

which no longer has any branch-cuts, has the same behaviour near z = 0 as log cosh,
but is no longer holomorphic. As a result, this modification causes certain values of the
parameters α to no longer yield positive-definite density matrices, possibly introducing
systematic uncertainties.

3.2 Time-dependent variational Monte Carlo

A method to simulate the real-time dynamics of quantum states parametrised by some set
of variational parameters α is the Time Dependent Variational Principle (TDVP) [59]. In
the case of Lindbladian dynamics with d

dtρ(t) = Lρ, minimizing the L2-norm (denoted ∥ · ∥2)
between the true time derivative Lρ and the difference induced by an infinitesimal variation
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in the neural network parameters α gives:

min
α̇

∥∥∥∥∥∑
i

α̇i
∂ρa

∂αi
−
∑

b

Labρb

∥∥∥∥∥
2

=⇒ α̇ = S−1f, (3.6)

(Oi)ab := δab
∂ ln(ρa)
∂αi

, Sij := ρ†O†
iOjρ+ ρ†O†

jOiρ, fi := ρ†O†
iLρ+ ρ†L†Oiρ, (3.7)

where ρ denotes the vectorised density matrix, so that the Lindbladian super-operator L acts
on it as a regular matrix ρ 7→ Lρ. S is the Quantum Geometric Tensor (QGT) [60], which is
the pullback of the L2 metric ∥ · ∥2 on the vectorized space of density matrices, along the
variational parametrisation map ρ : CN → H⊗H∗. The QGT parametrises the change of the
physical density matrix under an infinitesimal change in the parameters of the neural network.

In any variational parametrisation of a large Hilbert space, the forces fi and the QGT
Sij are expensive to compute exactly. Instead, it is possible to construct Monte-Carlo Markov
Chains (MCMCs) to estimate these quantities. The combination of the TDVP algorithm
with stochastic estimation is known as the time-dependent Variational Monte Carlo (tVMC).
The forces fi and QGT Sij from eq. (3.6) can be rewritten as:

Sij = Z
∑

a

∥ρa∥2

Z
2Re

(
(O†

i )aa(Oj)aa

)
, fi = Z

∑
a

∥ρa∥2

Z
2Re

(
(O†

i )aa

∑
b

Labρb

ρa

)
, (3.8)

where Z =
∑

a ∥ρa∥2 is a normalization constant. When evaluating the time derivative
of the parameters α̇ = S−1f , the factors of Z cancel, and eq. (3.8) can be stochastically
estimated using a MCMC that draws samples from the basis states of the doubled Hilbert
space according to the probability distribution ∥ρ2

a∥/Z. To regulate the possible divergences
that may appear in inverting S, a small diagonal offset is added (Sij 7→ Sij + ϵδij) which
ensures its invertability. Note that this offset should be taken to be as small as possible, as it
introduces a systematic error into the simulated Lindbladian evolution. Physical observables
of interest O (such as the chiral condensate or electric field for the Open Schwinger Model)
can be stochastically estimated via the following identity (which is expressed in terms of
basis elements of the original, un-doubled Hilbert space):

⟨O⟩ = Tr(ρO)
Tr(ρ) =

∑
σ

(⟨σ|ρ|σ⟩
Tr(ρ)

)(⟨σ|ρO|σ⟩
⟨σ|ρ|σ⟩

)
, (3.9)

which requires constructing a separate MCMC to sample from the diagonal of the density
matrix according to the probability distribution |σ⟩ ∼ ⟨σ|ρ|σ⟩.

Regardless of the initial state, in simulating the Lindbladian dynamics as t → ∞ the
system is driven towards its steady-state. This algorithm is also known as the Stochastic
Reconfiguration algorithm, and can be recast as a preconditioned version of regular gradient
descent [61, 62]. Adding larger diagonal shifts to S in the Stochastic Reconfiguration
framework brings the updates closer to regular gradient descent, and does not bias the
machine-learned steady state (in contrast to the systematic uncertainty that it introduces in
the Lindbladian evolution itself). For finite values of Mh,Ma, the NDO parametrisation will
not capture the full space of density matrices, which introduces systematic errors in both the
estimated Lindbladian evolution, as well as the estimated steady states. Furthermore, the
Monte-Carlo estimations of the QGT and forces come with inherent statistical uncertainty,
that only vanishes in the limit that the number of samples used is taken to infinity.
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h

σ

a

W (4)

U (4)

ρ(4) ρ(4) ⊗ ρ(4) +O(ϵ)

h

σ

a

W (4)

U (4)

W (4)

U (4)

Transfer

U (8) =
[
U (4) 0

0 U (4)

]
+O(ϵ), W (8) =

[
W (4) 0

0 W (4)

]
+O(ϵ),

b(8) =
[
b(4) b(4)

]
+O(ϵ), c(8) =

[
c(4) c(4)

]
+O(ϵ), d(8) =

[
d(4) d(4)

]
+O(ϵ)

Figure 2. The procedure for transferring weights from a network optimized to represent a density
matrix defined on L lattice sites to a network representing one on 2L sites (for any fixed values of
Ma,Mh). Shown in the figure is a schematic for transferring weights α(4) = {U (4),W (4), b(4), c(4), d(4)}
from an NDO with Ma = Mh = 1.5 on an L = 4 lattice to weights α(8) for an L = 8 NDO, with the
weight definitions from eq. (3.1). The ϵ≪ 1 are small random numbers.

3.3 Initialization

Studying Lindbladian dynamics first requires preparation of initial states of interest. It is
possible, for example, to explicitly set the weights of the NDO to prepare given product
states. Consider the case of preparing a product state ρa⃗ = |a0a1 · · · aL−1⟩⟨a0a1 · · · aL−1|
(where Tr(σz

i ρa⃗) = ai). By setting:

Wkj = λajδk0 +O(ϵ), ck = λLδk0 +O(ϵ), (3.10)

for some choice of λ, with all other parameters initialized to O(ϵ) for some ϵ≪ 1, the weights
Wkj will pick out the ρa⃗-state, and the bias-term ck will break the symmetry between ρa⃗

and ρ−a⃗, so that the NDO represents the state ρNDO = ρa⃗ + O(e−λ).
When probing the steady-state properties of a system with the Stochastic Reconfiguration

algorithm, initializing the NDO to an arbitrary state will lead to the correct steady state.
However, initializing the model to a state close to the true solution can reduce simulation
times drastically. One strategy is to exploit the approximate translational symmetry of the
system, which is broken by O(e−L∆E) effects due to the open boundary conditions, where ∆E
is the gap between the ground state and the first excited state. The approximate translational
symmetry implies that the steady state on a lattice of size 2L has approximately the same
structure on the left and right halves of the lattice as the steady state on a lattice of size L
with the same bare parameters. This motivates a transfer learning procedure where an NDO
on a size L lattice is first optimized to the steady state, with the resulting weights then used to
initialize an NDO on a size 2L lattice, as shown in figure 2. By stitching together two copies of
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a m e T Dij

Parameter set 1 (delta): 1 0 0.5 10 0.15 δij

Parameter set 2 (delta): 0.6 0.5 2 1.5 0.72 δij

Parameter set 2 (constant): 0.6 0.5 2 1.5 0.216 1ij

Table 1. Bare parameter sets for the Lindblad operator described in section 2, which are simulated
at various lattice sizes with NDO+tVMC in section 4.1.

the smaller NDO together, the structure of the steady state is preserved on both halves, and
the Stochastic Reconfiguration algorithm need only learn the coupling between the halves.

4 Lindbladian dynamics of strings and steady state properties

NDOs as reviewed in section 3 are used in this section to variationally parametrise density
matrices of the Schwinger Model as an open quantum system:

- To investigate the Lindbladian dynamics of strings in section 4.1, product states
containing string configurations are prepared and Lindbladian evolution is performed
using tVMC. Comparisons to exact results are shown on small lattice sizes, and the
scaling of the method as lattice size is increased is studied. Finally, Lindbladian
evolution of string states on an L = 20 lattice are computed with tVMC, for which
exact diagonalization methods are infeasible.

- The thermal behaviour of the system is studied in section 4.2 by extracting the steady
state of the Lindblad equation. The learned state is compared to exact diagonaliza-
tion results on an L = 4 lattice, before being bootstrapped up to an L = 32 volume
lattice (see figure 2). The key observable is the chiral condensate, which measures
the chiral symmetry breaking and is the prototypical order parameter for the confine-
ment/deconfinement phase transition. By performing a scan in the physical parameters,
it is confirmed that the learned NDO state is sensitive to this phase transition.

4.1 Lindbladian dynamics

The Lindbladian dynamics of the Open Schwinger Model as presented in section 2 is numer-
ically studied with the bare parameters shown in table 1. Parameter set 1 is in a regime
where Lindbladian evolution of string states leads to string breaking, and matches the pa-
rameters studied in an earlier work [54]. Parameter set 2 is tuned such that the Lindbladian
dynamics starting with string product states of length 3, and with the two different types of
couplings (see eq. (2.6)), are approximately equal for small times but show deviations when
simulated for long time intervals. The initial states studied are product states describing
n electrons and n positrons:

|e+(x1) · · · e+(xn)e−(y1) · · · e−(yn)⟩ = σ−2x1+1 · · ·σ
−
2xn+1σ

+
2y1 · · ·σ

+
2yn

| ↓↑ · · · ↓↑⟩. (4.1)

Here, xi, yi label physical sites rather than staggered sites, and the state | ↓↑ · · · ↓↑⟩ is the
free vacuum product state expressed in the Z-computational basis. Observables that are
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0 1 2 3 4 5

t

0.0

-0.2

-0.4

-0.6

-0.8

-1.0

0.2

〈ψψ〉
(a) : Vacuum Initial State

(Mh,Ma) = (1, 4)

(Mh,Ma) = (1, 10)

(Mh,Ma) = (10, 10)

Exact

0 1 2 3 4 5

t

0.0

-0.2

-0.4

-0.6

0.1

-0.1

-0.3

-0.5

〈ψψ〉
(b) : String Initial State

(Mh,Ma) = (1, 4)

(Mh,Ma) = (1, 10)

(Mh,Ma) = (10, 10)

Exact

Figure 3. Studies of parameter set 1, on an L = 10 lattice. (a) The Lindbladian dynamics of the
chiral condensate ⟨ψψ⟩ computed with NDO’s of various sizes, compared with the exact result. (b)
The same, but with the string state σ−

3 σ
+
6 | ↓↑ · · · ↓↑⟩ as the initial state.

useful for visualising the real-time dynamics are the dimensionless chiral condensate and
the electric field expressed in units of e:

ψψ := 1
L

L−1∑
i=0

(−1)iσ
z
i + 1

2 , Ei = 1
2

i−1∑
j=0

(σz
j + (−1)j). (4.2)

When initialising to product states containing string configurations, the time-evolved electric
field ⟨Estring

i ⟩(t) contains large vacuum fluctuations, which can be removed by subtracting
the electric field of the time-evolved free vacuum state | ↓↑ · · · ↓↑⟩, giving ⟨Evac.sub.

i ⟩(t) :=
⟨Estring

i ⟩(t)−⟨Evacuum
i ⟩(t). For illustration purposes it is also useful to define a shifted electric

field Ẽi(t), which has been shifted by its value at t = 0, ⟨Ẽi⟩(t) := ⟨Ei⟩(t) − ⟨Ei⟩(0).
Figure 3 shows a comparison of ⟨ψψ⟩(t) between results computed with NDO-tVMC and

results computed using exact representations, for parameter set 1 on an L = 10 lattice. Both
NDO-tVMC and the exact results use the 4-th order Runge-Kutta integrator with dt = 0.05
to integrate the Lindblad equation. The diagonal shift regulator for the Quantum Geometric
Tensor inversion is set to 5 · 10−5. A total of 217 samples were used in both MCMCs when
estimating observables/forces, and the size of the NDO was varied as labelled in the figure. It
was observed that vacuum fluctuations cause systematic errors in the computed Lindbladian
evolutions of the chiral condensate that grow in time, which are relatively suppressed for
string product states compared to vacuum product states. Figure 3(a) demonstrates that the
network size significantly affects the systematic uncertainty in the tVMC-NDO algorithm,
with larger network sizes resulting in smaller errors due to the higher representation power.

Figure 4 compares the vacuum subtracted electric fields ⟨Estring⟩(t)−⟨Evacuum⟩(t) between
the NDO-tVMC determination (using the largest network (Mh,Ma) = (10, 10)) and the exact
result. Qualitative agreement is observed between the solutions; for a more quantitative
comparison, the shifted electric fields ⟨Ẽstring

i ⟩(t) − ⟨Ẽvacuum
i ⟩(t) are compared between the
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Figure 4. The vacuum-subtracted electric fields as a function of time, computed for parameter set 1
with string state σ−

3 σ
+
6 | ↓↑ · · · ↓↑⟩. (a) The result computed with a (Mh,Ma) = (10, 10) NDO which

has been rolling-averaged over three timesteps to reduce statistical noise. (b) The exact result.
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Figure 5. The same data as figure 4, with the shifted vacuum-subtracted electric field at each lattice
site shown as a separate line. The NDO-tVMC electric fields measured on the left/right half of the
lattice are denoted by blue/red bands. The green band corresponds to the electric field link exactly in
the center of the lattice.

NDO-tVMC calculation and exact results in figure 5. Due to the fact that the δ-coupling is
weakly CP -conserving, the electric fields satisfy the symmetry ⟨Ei⟩(t) = ⟨EL−i⟩(t). Figure 5
demonstrates that the NDO-tVMC algorithm has preserved this symmetry well in the
simulated Lindbladian dynamics, as the results of measurements of the electric field on each
half of the lattice are consistent.

The NDO-tVMC method is able to simulate different types of coupling matrices Dij .
Parameter set 2 is specifically tuned such that the vacuum-subtracted chiral condensate
has similar Lindbladian dynamics for small times when comparing the delta coupling to
the constant coupling with the initial string state σ−3 σ

+
6 | ↓↑ · · · ↓↑⟩ — figure 6 shows that

they share the same first oscillation, but diverge in behaviour afterwards. As the constant
coupling is strongly-CP conserving, there are two distinct steady states and the long-time
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6 | ↓↑ · · · ↓↑⟩. Shaded

bands indicate statistical uncertainty estimated by MCMC, added in quadrature with the uncertainty
computed as the spread over three separate runs of the simulation. Exact results (solid lines) are
shown for comparison. Computed on an L = 10 lattice, with (Mh,Ma) = (10, 10).
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Figure 7. (a) Scaling of the number of parameters in the NDO construction at fixed (Mh,Ma) with
the size of the lattice L, compared to the complex dimension of H⊗H∗. The three trajectories shown
are the same choices used in the comparison of figure 3. (b) Scaling of errors at t = 2 for parameter
set 1 and the vacuum initial state as a function of the lattice size L.

dynamics of the constant coupling dynamics does not match the long-time dynamics of the
delta coupling dynamics. Figure 6 demonstrates the ability of the NDO-tVMC to distinguish
between the two types of coupling.
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sizes. The green markers denote the same points as those shown with the same symbol in figure 7(b).

One of the advantages of the NDO approach is that it can be applied to lattice sizes
L where exact calculations are computationally intractable. However, it is important that
the uncertainties arising from the truncated parameterization of the NDO can be controlled
or estimated. In particular, for an NDO parameterisation with fixed (Mh,Ma), the number
of complex parameters in the model grows quadratically with the lattice size, whereas the
dimension of the space of density matrices grows exponentially, as shown in figure 7(a). The
effects of this (increasingly severe) truncation can be quantified in the regime of lattice sizes
L where exact calculations are possible, in order to understand the scaling of systematic
effects. Figure 7(b) shows the scaling of the normalised error in the chiral condensate for
the vacuum initial state evaluated at t = 2:

Err[⟨ψψ⟩(t = 2)] := 1
2(⟨ψψ⟩NDO(t = 2) − ⟨ψψ⟩exact(t = 2)) (4.3)

as a function of the lattice size L holding all other hyperparameters constant (number of
samples used in the MCMCs, regulator choice for the QGT inversion). The factor of 1

2
accounts for the normalisation as ⟨ψψ⟩ ∈ [−1, 1]. The time t = 2 is chosen as the peak of
the first oscillation in the time-evolved chiral condensate, as observed in figure 3(a). As
shown in figure 7(b), at fixed time t = 2 and for fixed (Mh,Ma) the scaling of the error
as a function of lattice size is fairly mild, suggesting that the accuracy of the NDO-tVMC
algorithm can be controlled as the lattice size is increased to larger values where exact results
are not available. Other sources of systematic error in the NDO-tVMC algorithm include
the number of samples used in the MCMC chains [63], choice of regulator for the Quantum
Geometric Tensor inversion [64], and the timestep used in ODE integrator.

The normalised error in the chiral condensate for the vacuum initial state is shown as a
function of simulation time in figure 8, for a variety of lattice sizes with the largest tested
NDOs, (Mh,Ma) = (10, 10). The approximate curve collapse for times t ≤ 2 once again
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Figure 9. The vacuum-subtracted electric field as a function of time for various initial states, for
parameter set 1 on an L = 20 lattice. (a) Initial state is a single short string σ+

8 σ
−
11| ↓↑ · · · ↓↑⟩. (b)

Initial state is three interacting strings σ−
3 σ

+
6 σ

+
8 σ

−
11σ

−
13σ

+
15| ↓↑ · · · ↓↑⟩. (c) Initial state is a single long

string σ−
5 σ

+
14| ↓↑ · · · ↓↑⟩.

suggests mild scaling of errors as the lattice-size is increased at early to intermediate times
during the evolution of the system. At later simulation times, the scaling of errors as a
function of lattice size is less controlled; note, however, that there is no simple relationship
between the size of the error for different lattice sizes. Although the time t = 2 corresponds
to a physically relevant timescale (the first peak of the chiral condensate evolution for the
vacuum initial state), it does not correspond to a maximum/minimum in Err[⟨ψψ⟩].

To demonstrate the utility of the NDO-tVMC approach for larger lattice sizes where exact
results are computationally intractable to achieve, the Lindbladian dynamics of various initial
states are simulated on an L = 20 lattice, as shown in figure 9. The real dimension of the space
of density matrices is approximately 3 · 1010, which was parametrised by 9280 real parameters
corresponding to Mh = 1,Ma = 4 in the NDO construction. In figure 9(a) an initial e+e−

pair joined by a short string splits into two strings due to the pair creation of an e+e− pair
in-between the two fermions, which is the same physical scenario simulated in figure 4, but
on a larger lattice size where finite volume effects are suppressed. Figure 9(b) illustrates that
the dynamics of multi-string states can be investigated, at the same computational cost as
simulating the dynamics of single-string states. Finally, figure 9(c) shows the dynamics of a
long string, which can not be investigated on smaller lattice sizes.

4.2 Steady state properties

Extracting the steady state solution ρstab., which by definition satisfies:

Lρstab. = 0 =⇒ ρstab. = exp(−H/T ) +O(T−2), (4.4)

allows thermal properties of the system to be probed. As discussed in section 3, Stochastic
Reconfiguration with a finite diagonal shift as a regulator for the Quantum Geometric Tensor
inversion is used to drive the NDO towards the steady state. Transfer-learning allows weights
on smaller lattice sizes to be used as initialization for training on larger lattice sizes, which
both reduces training costs and increases the reliability of results, as described in figure 2. For
a small L = 4 lattice size, exact results for the steady state are easily computable; comparisons
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Figure 11. Measurement of the chiral condensate of the learned steady state solution on a L = 32
lattice size. The three different columns show the system at different filling fractions ν = N

L .

of the chiral condensate as determined with Stochastic Reconfiguration to the exact results
are shown in figure 10. Results shown are computed for a compact parameterization with
(Mh,Ma) = (1, 1). A diagonal shift of 0.01 is used, with 16000 samples distributed over 16
parallel chains for both the MCMC chains, and the system is trained for 6000 steps. The
Lindbladian used is the delta-coupling Lindbladian Dij = δij , which is chosen to ensure a
unique steady state solution (as opposed to the constant coupling which has two separate
steady states). The chiral symmetry breaking transition can be seen by the nonzero chiral
condensate as the temperature is decreased, or as the bare mass is increased (explicit chiral
symmetry breaking).

The steady state of the L = 4 system is used to bootstrap to results on larger lattice
sizes where exact results can not be achieved; the state is transferred to an L = 8 lattice size,
and retrained. This process is repeated twice, yielding an approximation of the steady state
on an L = 32 lattice size. In the transfer learning, 8000 samples are distributed over 128
parallel chains, and gradients are clipped to have maximum L2 norm 1 [65]. The Stochastic
Reconfiguration regulator parameter is set to ϵ = 0.1 for all the training sets. Figure 11
shows the behaviour of the measured chiral condensate as a function of T,m, and the filling
fraction ν := N

L where N =
∑L−1

i=0 σ
z
i is the net particle number. The filling fraction ν varies

in the range ν ∈ [−1, 1]. By CP -symmetry, the measured chiral condensate is symmetric
about ν = 1

2 when all other bare parameters are held fixed.
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5 Conclusions and outlook

Neural network quantum state methods offer a promising approach to lowering the cost of
classical simulations of open quantum systems. This work demonstrates the application of
the NDO ansatz to the 1 + 1d Schwinger Model as an open quantum system. Combined with
tVMC, Lindbladian dynamics was simulated on various lattice sizes and with different bare
Lindbladian parameters. By comparing machine-learned results to exact results on small
lattice sizes, the systematic errors introduced by the NDO-tVMC method were found to
scale mildly as the lattice size is increased, for fixed neural network shape. This allows for
systematically improvable simulation of Lindbladian dynamics at larger lattice sizes than
possible with exact representations of the density matrices. As a demonstration, Lindbladian
evolution of various string states was simulated on an L = 20 lattice, which allows for
investigation of physical scenarios that are not possible to simulate on smaller lattice sizes,
such as the interaction between multiple strings and fermion pairs. By simulating the
Lindbladian dynamics d

dtρ(t) = Lρ(t) as t→ ∞, the density matrix approaches the steady
state which is approximately thermal, and properties of the thermal state can be probed. The
chiral condensate was measured for varying temperatures and bare masses of the fermion, and
the chiral symmetry phase transition was observed numerically to match exact diagonalization
results for an L = 4 lattice size. Transfer learning allows the transfer of learned states on a
size L lattice to a size 2L lattice, and by successively transfer learning and retraining, the
chiral condensate and corresponding phase transition were investigated on an L = 32 lattice.

In principle, the methods in this paper are extendable to realistic simulations of heavy
quarkonia propagating through the QGP. Neural network simulations of the Lindblad equa-
tion can interface with hydrodynamic simulations of the QGP, taking into account the
spatiotemporal variations in the temperature at no additional cost to the tVMC algorithm.
There are various algorithmic challenges associated with this program. For example, the
Jordan-Wigner transformation applied in the lattice Schwinger Model to transform fermionic
variables to spin- 1

2 variables requires a choice of path through the 3d-spatial lattice, and
will introduce nonlocalities into the Hamiltonian. Unless an alternative approach is used,
manifest translational symmetry will be lost. If a discretisation is used that respects the
symmetries of the spatial lattice, it would be interesting to develop an NDO ansatz that
respects these symmetries. Moreover, existing studies of the Lindbladian dynamics of heavy
quarkonia often match the theory onto Non-Relativistic QCD (NRQCD), which has separate
particle and antiparticle number conservation. The Schwinger Model, on the other hand,
only has net particle number conservation. This causes the Hilbert space of NRQCD to have
a different structure (it is not the tensor product of local Hilbert spaces), and may require a
different neural network parametrisation than that used here. Overcoming these challenges
will allow for a more controlled understanding of the dynamic behaviour of heavy quarkonia
in the QGP, and by extension a quantitative understanding of the medium itself.
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A Quantum numbers

There are two charge operators that commute with the Schwinger Model Hamiltonian H

presented in eqs. (2.4) and (2.5). The first is the net particle number operator N =
∑L−1

i=0 σ
z
i

that counts the number of particles minus the number of antiparticles in the state. The
second is the CP -operator (shown schematically in figure 12(c)) CP = S · (

∏L−1
i=0 σ

x
i ) where S

is the unitary operator that swaps all sites i with L− i+ 1. By simultaneously diagonalizing,
the total Hilbert space of dimension 2L is partitioned into fixed N and CP sectors, where
both the free and interacting vacuum states live in the N = 0, CP = +1 sector.

For Hamiltonian evolution of pure states, there is only one notion of charge conservation:
([Q,H] = 0) ⇐⇒ ( d

dtQ = 0). As shown in figure 12(a), the corresponding statement
for super-operators in Lindbladian evolution breaks down, and there are now two different
notions of charge conservation. A charge operator Q is ‘strongly-conserved’ if d

dtQ = 0, or
‘weakly-conserved’ if [Q,L] = 0, where Q is the corresponding superoperator of Q (strong-
conservation implies weak-conservation, but not the other way around). Figure 12(b) shows
the different behaviours under Lindbladian evolution produced in each case. The inner-most
box represents CP = +1 pure states which are used in section 4 as initial states in the studies
of Lindbladian evolution, for example the free vacuum state |0⟩⟨0| or the string product
state |e+(x)e−(L

2 − x)⟩⟨e+(x)e−(L
2 − x)|. The center box ⟨CP ⟩ = +1 represents density

matrices ρ where Tr(CP · ρ) = 1, and the outer box CP = +1 denotes density matrices
that satisfy CPρ = CP · ρ · CP = ρ.

The different conservation properties lead to different long-term behaviour under Lind-
bladian dynamics, in particular the steady state of the Lindbladian lives in different sectors,
as shown in figure 12(b). Strong CP conservation causes ⟨CP ⟩ to be conserved during Lind-
bladian evolution. For such a Lindbladian there are two steady states, one with ⟨CP ⟩ = +1
and the other with ⟨CP ⟩ = −1 which can be thought of as restrictions of the thermal state
into the two CP sectors. Weak CP conservation preserves the CP-sector that the initial
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(a) Relationship between discrete conserved
charges Q and dynamical symmetries [73]. Fl

are the diagonalized jump operators corre-
sponding to the Lindbladian L, see eq. (A.4).
Q = Q⊗Q is the charge super-operator, and
L†(Q) notates the Heisenberg evolution of Q.

(b) Different evolutions and steady states depending
on the CP -nature of the coupling matrix. The pic-
tured initial state is the free ground state. Orange
depicts strong CP conservation, maroon depicts
weak CP conservation and blue depicts no CP con-
servation.

(c) Schematic of the CP operator, which is a combination of a bond-reflection S and swapping ↑, ↓
on each staggered site, where ↑, ↓ represent the spin- 1

2 basis of σz. Note that there are no individual
C,P symmetries — in particular [H,S] ̸= 0, and [H,

∏
σx] ̸= 0.

Figure 12. Details of the CP operator for the discretised Schwinger Model.

state lives in. So long as the initial state is in the CP = +1 sector, Lindbladian evolution
is guaranteed to approach the thermal state as the thermal state also lives in the CP = +1
sector. Finally, in the case that there is no CP conservation, the unique steady state will
still be approximately thermal.

For the choice of coupling operators Oi = (ψψ)i, the number operator N is always
strongly-conserved, regardless of the choice of coupling matrix Dij . In particular this means
that the Lindbladian dynamics has no direct access to chemical potential effects, as the
different fixed-N sectors are decoupled. It is still possible to indirectly probe chemical
potential effects by simulating the different fixed-N sectors and appropriately reweighting.
The CP super-operator CP = CP ⊗ CP splits the space of density matrices into CP-even
and CP-odd sectors. Note that regardless of the CP -nature of a pure state, they are all
CP-even. As long as the CP -operator of the subsystem can be extended to a unitary CPtot
symmetry of the entire Hilbert space (assuming the medium is CP -symmetric), then there is
weak CP -conservation up to corrections that vanish in the Quantum Brownian Motion limit:

[CPtot, Htot] = 0 =⇒ CPtote
iHtott|ψ⟩ = eiHtottCPtot|ψ⟩

=⇒ CPeLt Trenv(|ψ⟩⟨ψ|) ≈ eLtCP Trenv(|ψ⟩⟨ψ|) =⇒ [CP ,L] ≈ 0.
(A.1)
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This requirement rules out certain choices of coupling matrix Dij that are not weakly-CP
conserving. For example, a previously considered ansatz for the coupling matrix is an open
boundary condition Gaussian Dij = D0 exp(−1

2
|i−j|2

w2 ) for some width w > 0 [54], however
this D-matrix violates the weak CP-preservation condition. The physical implication is
that the time-evolved electric fields no longer satisfy the symmetry ⟨Ei⟩(t) = ⟨EL−i⟩(t). A
modified ansatz that satisfies weak CP-preservation is the periodic Gaussian coupling:

Dg
ij(w) := D0

∞∑
n=−∞

1
w
√

2π
e−

1
2 ( nL+i−j

w )2
= D0

L
ϑ3

(
(i− j) · π

L
, e−

2π2w2
L2

)
(A.2)

which can be expressed in terms of the Jacobi-theta function ϑ3. The parameter D0 controls
the overall coupling strength, and w is the width of the Gaussian. In the general case with
w a finite number, the D matrix can be diagonalized numerically on the open-boundary
condition lattice to obtain a list of L jump-operators:

D = U † · diag(λ1, · · · , λn) · U, Fi =
√
λiUijÕj , (A.3)

Lρ(t) = −i[H, ρ(t)] + a2∑
i

(
Fiρ(t)F †

i − 1
2{F

†
i Fi, ρ(t)}

)
. (A.4)

The couplings studied in section 4.1 are limits of the periodic Gaussian coupling, with the
delta coupling being the limit as w → 0 and the constant coupling being the limit as w → ∞:

lim
w→0

w
√

2π ·Dg
ij(w) = D0δij , lim

w→∞
L ·Dg

ij(w) = D01ij . (A.5)
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Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
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