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The evolution of anti-bat sensory illusions in moths
Juliette J. Rubin1*†, Chris A. Hamilton2*†, Chris J. W. McClure1,3, Brad A. Chadwell4,
Akito Y. Kawahara2*‡, Jesse R. Barber1*‡

Prey transmit sensory illusions to redirect predatory strikes, creating a discrepancy between what a predator
perceives and reality. We use the acoustic arms race between bats and moths to investigate the evolution and
function of a sensory illusion. The spinning hindwing tails of silk moths (Saturniidae) divert bat attack by reflecting
sonar to create a misleading echoic target. We characterized geometric morphometrics of moth hindwings across
silk moths, mapped these traits onto a new, robust phylogeny, and found that elaborated hindwing structures have
converged on four adaptive shape peaks. To test the mechanism underlying these anti-bat traits, we pit bats against
three species of silk moths with experimentally altered hindwings that created a representative gradient of ancestral
and extant hindwing shapes. High-speed videography of battles reveals that moths with longer hindwings and tails
more successfully divert bat attack. We postulate that sensory illusions are widespread and are underappreciated
drivers of diversity across systems.

INTRODUCTION
One driver of life’s diversity is the imperative for prey under attack to
overpower, outrun, or redirect their assailants (1, 2). To divert pred-
atory strikes, prey can manipulate predator perception (3). Sensory
illusions selected tomisdirect attack target the primary sensory systems
of predators to distort prey-related information (4, 5). Traits that create
sensory illusions are common throughout life: Large,mimetic eyespots
on butterfly wings and fish fins deflect and deter visual predators (6–8);
sea hares eject ink that their chemosensory-oriented predators often
pursue as alternative prey (9). Traits that create similar sensory illu-
sions repeatedly originate across unrelated groups, likely driven by
the intense selective pressure of predation and the constraints of effec-
tively transmitting an illusion to the chief sensory channel of a pred-
ator: Eyespots occur across insects [for example, butterflies, beetles,
grasshoppers, and katydids (10, 11)] and vertebrates [for example, fish,
birds, and frogs (12)]; cuttlefish, squid, and octopus produce ink secre-
tions with equivalent chemical profiles to those of sea hares (13).
Sensory illusions can thus elucidate intimate evolutionary relation-
ships between prey and predators (14), as well as potentially com-
mon flaws in the processing of each sensory system (15). Here, we
investigate how silk moth (Saturniidae) diversification might be ex-
plained by evolutionary exploration of vulnerabilities in the auditory
system of bats.

The bat-moth arms race has escalated along an acoustic channel
and is an ideal system to use the power of the Tinbergian model (16)
to understand sensory illusions by simultaneously investigating both
evolutionary history and the underlying mechanism. For millions of
years,moths havenavigated the nightly threat of their echolocating pred-
ators (17). Recent work with wild silk moths (Saturniidae) indicates that
spinning hindwing tails divert bat attack toward these expendable
structures, away from the vital body core (18). These dynamic trailing
appendages create an echoic sensory illusion, reflecting bat sonar in
a manner that distracts from the body target or displaces the echoic
target center (19, 20).

An initial investigation using a five-gene–based phylogeny demon-
strated that twisted and cupped tails evolvedmultiple times on different
continents across the family [Copiopteryx (Arsenurinae), South America;
Eudaemonia (Saturniinae),Africa; andActiasandCoscinocera (Saturniinae),
Asia (fig. S1) (18)]. Furthermore, this early work indicated that tail
lengthmight increase after origination. Here, we pursue the proximate
and ultimate causes of hindwing traits in moths (16). We predict that
specific wing shapes evolved in silk moths tomisconstrue information
encoded in returning echoes to bats. To probe the adaptive shape space
of silk moth hindwings, we used more advanced phylogenetic techni-
ques combined withmorphometric analyses and found emergent, dis-
tinct shape regimes. We experimentally recreated these by altering the
hindwings of live moths and then pit the resulting morphs against bat
predators to test their relative survival success in bat-moth battles. By
these means, we track how ancient predatory pressure has molded
prey into extant forms, equipped to foil the very sensory systems that
hound them.

RESULTS AND DISCUSSION
To more strenuously examine the evolution of hindwing traits and
diversification within Saturniidae, we used a phylogenomic data set
of 797 loci (21). Rather than a gradual, transitional history of
increasing hindwing length and complexity, we see abrupt shifts in
shape across phylogeny (Fig. 1). Moreover, trait-dependent diversi-
fication analysis (22) indicates that having a hindwing projection of
any length is associated with increased diversification rates in the lin-
eage (seeMaterials andMethods).Geometricmorphometrics and tests
of convergence reveal that hindwings occupy at least four adaptive
shape space regimes (Fig. 2A), independent of phylogenetic relation-
ships. These adaptive peaks are broadly defined as extra long–tailed
(statistically split into distinct adaptive peaks, occupying similar mor-
phospace; Fig. 1, regimes 1 and 2), short-tailed (regime 3), and long-
lobed (regime 4) (movies S1 to S4). Hindwing shape is likely more
available to evolutionary modification from pressures other than flight,
compared to forewing shape (23), due to decreased flight constraints.
A study testing the relative roles of Lepidoptera wings found that
complete removal of the hindwings primarily limits maneuverability,
while forewing removal renders the animal flightless (24). Thus, al-
though strikes to a moth hindwing can be costly, structural damage
to the forewing could be deadly.
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To test the anti-bat efficacy of these convergent hindwing shapes, we
pit 16 big brownbats (Eptesicus fuscus) againstmothswith experimentally
altered hindwings (fig. S2) from the Saturniidae subfamily Saturniinae,
a diverse clade comprising more than 1300 extant tailed and tailless
species. Geometric morphometric analysis of our experimentally
altered moths indicates that these treatments fall realistically within

the morphospace tracked by extant subfamilies and were therefore ef-
fective recapitulations of silk moth morphology (Fig. 2B). We recorded
bat-moth battles in a dark, foam-lined flight room using multiple syn-
chronized, spatially calibrated, high-speed cameras and ultrasonicmicro-
phones trained on an interaction space defined by the flight range of a
moth tethered to a 1-mmonofilament line. From these behavioral results,

Fig. 1. Maximum likelihood tree of Saturniidae shows that elongated hindwing lobes and hindwing tails convergently evolved multiple times. Colored
branches indicate the four identified convergent regimes and adaptive peaks, denoted by a white numerical circle. Regimes 1 and 2 (red and green, respectively),
extra long tail; regime 3 (yellow), short tail; regime 4 (blue), elongated lobes. Gray branches labeled NC indicate nonconvergent adaptive peaks. Phylogeny based on
797 anchored hybrid enrichment (AHE) loci; all nodes are supported by 100% bootstrap values unless otherwise noted.
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we infer the role of enlarged hindwing lobes (that is, uniform elongated
hindwing area) and twisted and cuppedhindwing tails across Saturniidae.

To quantify the antipredator role of the elongated lobe adaptive
peak (Fig. 1, regime 4), we simulated shortened and enlarged hindwing
lobe conditions in the naturally tailless polyphemus moth (Antheraea
polyphemus) by cutting and/or gluing hindwing material (fig. S2). We
assessed the anti-bat efficacy of hindwing morphology using Bayesian
models, including moth size as a covariate, individual bat identity as
random intercepts, and bat experience (that is, number of nights hunting

moths) as random slopes to focus our analysis on the outcome of bat-
moth battles. Polyphemus moths with experimentally enlarged hind-
wing lobes, akin towing shapes found in theAttacini tribe (Fig. 1), escape
bat attack more often than moths without enhancement [hindwing
length elongated = 5.8 ± 0.40 cm (means ± SD), escape success = 56 ±
0.11%; hindwing length intact = 5.4 ± 0.29 cm, escape success = 27 ±
0.09%] (Fig. 3, n for each treatment listed in the figure legend).
While we found no difference in escape success between polyphemus
with experimentally shortened hindwing area (hindwing length

Fig. 2. Geometric morphometric analysis of hindwing shape reveals changes in morphospace across four saturniid subfamilies. Principal components analyses
(PCA) visualize hindwing morphospace by (A) subfamily, showing that Saturniinae and Arsenurinae have independently evolved into the same morphospace. PC,
principal component. (B) Experimental treatment, showing that moths with hindwing alterations exist in similar morphospace to extant species that have not been
subjected to wing alteration. Dots represent individual specimens in the analysis. Color refers to (A) subfamily or (B) experimental manipulations. Confidence ellipses
facilitate understanding of shape space and the amount of variation residing within subfamilies. Hypothetical shape approximations are plotted in the background to
aid in visualizing shape change. In addition, the four identified convergent regimes and adaptive peaks, seen in Fig. 1, are denoted by a white numerical circle. Regimes
1 and 2, extra long tails; regime 3, short tails; and regime 4, elongated hindwing lobes.
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shortened = 3.34 ± 0.32 cm, escape success = 45 ± 0.10%) and intact
polyphemus moths (27 ± 0.09%), a review of multiple high-speed
camera angles of each interaction reveals that bats direct more strikes
toward the hindwings of longer lobed moths (proportion of strikes
toward posterior region of elongated polyphemus = 50 ± 0.11%) than
the other two treatments (intact = 17 ± 0.08%, shortened = 12 ± 0.05%)
(Fig. 4A andmovie S5).We thus find evidence that elongated hindwing
lobes increase the effectiveness of this defensive strategy and support for
the convergent, adaptive peak of elongated hindwing lobes found in the
Attacini and Arsenurinae (Fig. 1).

To examine the repeated convergence of long tails in Saturniidae, we
tested the anti-bat advantage of different grades of tail length. We ex-
perimentally varied tail length in two species, the luna moth (Actias
luna, tail length = 7.26 ± 0.59 cm) and the Africanmoonmoth (Argema
mimosae, tail length = 12.32 ± 0.77 cm) (fig. S2) and pit these treatments
against the same big brown bats.With complete removal of tails, escape
success was low (ablated luna escape success = 26 ± 0.09%, hindwing
length = 4.0 ± 0.32 cm; ablatedmoonmoth escape success = 34 ± 0.13%,
hindwing length = 5.04 ± 0.23 cm) (Fig. 3), and bats infrequently aimed
their attacks at moth hindwings (proportion of posterior attacks on ab-
lated luna = 17 ± 0.07%, ablated moon moth = 18 ± 0.10%) (Fig. 4A).
We created short-tailed luna (tail length = 5.09 ± 0.47 cm) and moon
moths (tail length = 8.55 ± 0.34 cm) by removing the tail shafts and

regluing the twisted cupped ends to the hindwing. Intact moon moths
escape bat attack farmore than short-tailed or ablatedmorphs (intact
escape success = 73±0.09%, short-tailed=45±0.13%, and ablated=34±
0.13%) (Fig. 3). Luna moths had more incremental variations in escape
success between treatments yet track the samepositive trend as the overall
models, where escape success (total escape model slope = 0.18 ± 0.05)
(Fig. 3) and diversion of bat attack (total posterior aim model slope
= 0.31 ± 0.05) (Fig. 4A) increase with hindwing length. Despite the
impressive effect of intact moon moth tails, the overall escape trend
remains the samewhenmoonmoths are removed from themodel (escape
model slope with luna and polyphemus only = 0.17 ± 0.06). Thus,
long hindwing tails provide a powerful anti-bat advantage.

Cutting and gluing hindwing material did not in itself change pro-
ficiency at evading attacking bats. Control sham treatments, with
hindwing area or tails cut and reglued, yielded the same escape success
(sham polyphemus = 43 ± 0.11%, sham luna = 57 ± 0.11%, and sham
moonmoth = 78 ± 0.12%) and drew the same proportion of bat attacks
to the hindwing region (sham polyphemus = 18 ± 0.08%, sham luna =
41 ± 0.11%, and sham moon moth = 61 ± 0.14%) as intact animals of
each genus. The experimental procedure also did not alter flight behav-
ior. Three-dimensional (3D) kinematic analyses derived from synchro-
nized, spatially calibrated, high-speed videography of intact and sham
moths in flight revealed no difference in mean speed, tangential accel-
eration, angular velocity, or their correlated counterparts (mean curva-
ture, radial acceleration, and tortuosity; n = 8 to 12 per treatment).
Reducing and elongating the hindwingmaterial also did not affect flight
kinematics (n=10 to 13), except in short-tailedmoonmoths, whichhad
a greater mean angular velocity [turning rate sensu (25)] than intact
moon moths (table S1). Previous studies report that increased angular
velocity is positively correlated with prey escape success (25, 26). How-
ever, our Bayesianmodel revealed no correlation betweenmean angular
velocity and escape success and no change in overall model slope. We
therefore excluded angular velocity from our models and do not attri-
bute evasion differences between treatments to the hindwing modifica-
tionmethods or to flight parameters in the resultingmorphs.We donot
dismiss the importance of hindwing morphology for flight, however,
and we note that the interaction between flight and wing shape requires
future exploration, particularly in wild bat-moth interactions.

During pursuit, tails could alter bat perception of the echoic target of
a moth (18), either via an illusion of larger size (19), due to an integra-
tion of echoes reflected across the moth’s length with an echoic target
center shifted from the moth’s true center (20), or via the creation of
two or more alternative targets induced by primary reflections from
the forewings and the twisted and cupped tail ends (Fig. 4B). If tails
create an illusion of larger size, then wemight expect bats to attack the
center of the enlarged echoic target, just behind the abdomen (movie S6)
(20). We reviewed video footage of each interaction from three to
four high-speed cameras encircling the interaction space and found
that bats hunting tailed moths targeted either the body or the twisted
and cupped ends of tails 75% of the time (attacks directed at moth
body = 47%, attacks directed at tail ends = 28%; Fig. 4B and movie S7),
while the region just behind the abdomen drew only 25% of bat strikes,
far less than would be expected if hindwing tails were shifting the
apparent center of the moth to this post-abdominal region. To-
gether, these data support an illusion of multiple targets. A similar
alternative target illusion also exists in the visual system, when bird
attacks are drawn from the head and anterior wingmargins of butterflies
(27) to deceptive “false heads” twitching at the tips of the butterflies’
hindwings (28, 29).

Fig. 3. Moths with longer hindwings escape an increasing proportion of bat
attacks. The inner white line represents the predicted mean posterior probability
distribution from a Bayesian mixed logistic regression model. The gray area is the
SD of posterior probability distributions of the prediction. Points represent
proportions for each treatment calculated using a Bayesian mixed logistic model
controlling for bat identity and hunting night (time). Vertical bars represent the
SD of posterior probability distributions, whereas horizontal error bars represent
observed SD of hindwing length for each treatment. Images of moth treatments
are positioned on their respective vertical error bars. Only one picture is shown
for an intact or sham treatment, as they have the same morphology. Sample sizes
for bat-moth interactions are as follows: Argema mimosae (intact = 30, ablated =
17, sham = 13, and short = 22), Actias luna (intact = 64, ablated = 38, sham = 37,
elongated = 83, short = 93, and blunt = 48), Antheraea polyphemus (intact = 40,
sham = 35, elongated = 29, and shortened = 44).
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To begin to understand the morphology underlying tails’ diversion-
ary effect, we removed the twisted and cupped ends of luna tails, creat-
ing a blunt-tailed morph. These blunt ends exist naturally in butterflies
and day-flyingmoths with short, unstructured tails (30). Blunt luna and
shortened luna provide a good comparison because the length of the
hindwing is similar, but shortened luna maintains the end structure
(blunt-tailed length = 5.67 ± 0.42 cm, short-tailed length = 5.09 ±
0.47 cm). Both morphs escaped bat attack (blunt-tailed = 50 ± 0.10%,
short-tailed = 60 ± 0.09%) (Fig. 3) and diverted bat aim to the posterior
region (blunt-tailed = 23 ± 0.08%, short-tailed = 37 ± 0.09%) at roughly
the same rate (Fig. 4A), whereas intact luna moths possessing longer
tails with twisted and cupped ends were more successful at diverting
bat attack to the hindwing region than blunt luna (intact = 45 ±
0.08%, blunt-tailed = 23 ± 0.08%). This difference is not solely reliant
on tail length, however, since there is no measurable difference in the
proportion of posterior attacks between intact luna and shortened luna
(intact = 45 ± 0.08%, shortened= 37 ± 0.09%), despite intact luna having
longer tails. Thus, the efficacy of the illusion relies to a certain degree on
the twisted and cupped end of the tail.

How elaborated hindwings create an acoustic illusion likely depends
on the sonar strategy and physiological limitations of the attacking bat.
Moths face a diversity of bat species and echolocation types on a given
night (31). Definitively determining the illusion created by rotating
hindwing tails awaits phylogenetically widespread, multiangle ensonifi-
cation experiments using a variety of sonar regimes to generate a 3D
reconstruction of the perceived moth shape from all possible attack
angles. Tailed moths clearly challenged the processing abilities of the
frequency-modulated (FM) E. fuscus bats we pit them against. Over
months of hunting nights, bat strike accuracy and capture success did
not improve (table S2). In addition, we found no difference in bat sonar

behavior across moth treatments (figs. S3 and S4 and table S3). FM bats
are known to elongate the duration of their terminal sonar phases
(buzz I and buzz II) when confronted with a more difficult predatory
task (32); however, we did not observe any changes in buzz duration
over time, indicating that the bats in our study did not perceive a task
difficulty gradient among the moth morphs we presented (table S3).

Bats experienced the same difficulty capturing moths with ex-
perimentally elongated lobing as moths with similar length tails
(Fig. 3). Tails might provide a comparable deflective effect to elongated
lobing but offer less material for an attacking bat to grab during aero-
batic capture maneuvers. In contrast to lobing, tails might also reduce
energetic requirements for themoth during pupal development (33) or,
perhaps more likely, provide a flight benefit, shedding air vortices dur-
ing flight to improve maneuverability (34, 35), although the added
weight and possible drag of a tail could also have energetic costs (36).
Our kinematic assessments did not reveal differences in flight ability
between tailed (luna ormoonmoth) and nontailed (polyphemusmoth)
genera (table S1) and, therefore, do not support a flight performance
cost or benefit to tails, but this question deserves more study. Tails
might have alternatively evolved as ornamentation for sexual selection,
although wild silk moths are short-lived and females tend to mate with
the firstmale that approaches (37).Wewould therefore predict that any
sexual selection pressures are secondary to the intense natural selection
imposed by bats that we quantify here.

Using phylogenetic, morphometric, and behavioral methods, we
examined the evolutionary andmechanistic significance of an acoustic
sensory illusion and found that bat predation drives the convergence
of hindwing shape in silk moths. Physical constraints on moth wing
architecture (38) and physiological and cognitive restrictions of
echolocation processing in bats (39) together seem to propel silk moth

Fig. 4. Hindwing tails redirect bat attack against moths. Behavioral analyses reveal that (A) bats aim an increasing proportion of their attacks at the posterior half of
the moth (indicated by yellow cylinder with asterisk) and that (B) bats attacked the first and third sections of tailed moths 75% of the time [A. luna: intact, sham,
elongated; A. mimosae: intact, sham, shortened (sections highlighted in purple)], providing support for the multiple-target illusion. An enlarged echo illusion would
likely lead bats to target the hindwing just behind the abdomen of the moth, at the perceived echo center (second section, highlighted in green); however, bats
targeted this region only 25% of the time. Bat success in capturing moths varied as they targeted different sections of the moth: first = 76%, second = 15%, and third =
6%. The model in (A) was built the same as in Fig. 3.
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hindwing shape to distinct, convergent morphological regimes, with
hindwing extensions accelerating diversification rates within lineages.
Our data indicate that the evolutionary path of possible shape space
in moth hindwings is hedged by the ability of these forms to transmit
credible sensory illusions through the acoustic channel. Given their
efficacy, echoic illusions generated by elaborated wing structures
may be a common anti-bat strategy that spans insect families and life
histories. Twisted and cupped hindwing tails have evolved in at least
three other families of Lepidoptera (Himantopteridae, Sematuriidae,
and Uraniidae) and in Nemopteridae (spoonwings) (40). Further stu-
dies are needed to determine whether each of these iterations produces
the same illusion based on sonar strategy and angle of bat attack. We
propose that illusions targeting specific predator sensory systems are
powerful drivers of convergent evolution across life, and the outcomes
of these predator-prey interactions likely significantly influence specia-
tion and extinction (41).

MATERIALS AND METHODS
Experimental animals
We used 16 adult female E. fuscus bats mistnetted in Idaho between
2015 and 2016 andmaintained in a clock-shifted animal housing room
(dark, 9 a.m. to 5 p.m.), kept at 24° to 27°C and >40% humidity. Ver-
tebrate work was done following Boise State University’s Animal Care
andUseCommittee protocol (number 006-AC14-018).We kept bats in
captivity for a total of 3 to 13 months and did not use them for ex-
perimental trials during the winter months (November to April).
Before beginning trials, we gave all bats an acclimation period of
2 to 4 weeks in the laboratory. After completion of experiments, we
released bats at the site of capture. Tomaintain physical conditions, we
flew each bat individually daily, regardless of whether she was par-
ticipating in trials that day. We fed bats one to twomealworms coated
in Missing Link or Vionate Powder nutritional supplements to aug-
ment their daily diet and provided water ad libidum. Bats that did not
catch and successfully eat the one to two silk moths and two small
pyralid “control”moths (Galleria mellonella) presented during exper-
imental trials were fed five to nine extra mealworms to supplement
their caloric needs.

We reared silk moth pupae at the McGuire Center for Lepidoptera
and Biodiversity at the University of Florida and allowed them to eclose
at Boise State University. To encourage efficient eclosion, we kept them
under constant light conditions,with an ambient 24° to27°Cenvironment
and humidity >75%.We pit moths against bats within 3 days of eclosion
and did not handle them until that point.

Geometric morphometrics, phylogenomics, ancestral state
reconstruction, and convergence analysis
We conducted geometricmorphometric analysis of 804 natural history
collection specimens, mapped across a phylogenomic data set of
797 loci.We firstmeasured shape variation among silkmoth hindwings
using elliptical Fourier descriptor (EFD) analysis in the R program
Momocs (42) to place pseudo-landmarks around a closed outline
(that is, hindwing shape) and eliminate size as a variable. The first har-
monic was used to normalize the harmonic coefficients andmake them
invariant to size and rotation. This approach allows quantifiable analysis
of shape when there are few or no identifiable homologous landmarks
(42–46). EFD uses the first ellipse to normalize for rotation, translation,
size, and orientation and then uses harmonic coefficients for subsequent
statistical analysis, PCA, and visualization.

To investigate how morphological space is occupied across
Saturniidae, we digitized male specimens from four closely related
saturniid subfamilies: Arsenurinae, Agliinae, Saturniinae, and Salassinae.
Previous phylogenetic work reveals that, although closely related,
these subfamilies are not sister lineages (47). Arsenurinae and Saturniinae
contain species with hindwing lobes and tails, while Agliinae and Sal-
assinae do not. Thus, the elaborated hindwing traits that we find in
Arsenurinae and Saturniinae most likely emerged from separate origi-
nation events. We used Photoshop or Affinity Photo to highlight, cut,
and smooth hindwing shapes. We chose male specimens because
females of many species are not represented in museum collections.
We also digitized 23 images of experimentally altered specimens from
the bat-moth trials to determine whether the experimental shapes fell
within biologically similar and realistic morphospace. WithinMomocs,
we defined outlines as the closed polygon formed by the (x, y) co-
ordinates of bounding pixels. We used the “calibrate_harmonics”
function to evaluate the number of harmonics needed to effectively
describe the shapes in this analysis, without overparameterization,
and found that 99% of the power was captured when the number
of harmonics was set at nb.h = 12. We included both the elliptical
Fourier coefficients and computed PC outputs in subsequent com-
parative analyses.

To establish our new phylogenomic data set, we followed the
pipeline of Breinholt et al. (21) to clean, assemble, and determine the
orthology of AHE loci (48). We used MAFFT v7.245 to execute
multiple sequence alignments (49). After excluding loci with more
than 50% missing data, we kept 797 loci (193,048 base pairs in total)
for 73 silk moth species for inclusion in the study. We assembled a
concatenated supermatrix using FASconCAT-G v1.02 (50) and in-
cluded species from the subfamilies Agliinae, Arsenurinae, and
Salassinae to confirm the relationships of these closely related subfami-
lies and to highlight that the Saturniinae and Arsenurinae are not direct
sister lineages. We carried out phylogenetic inference using IQ-TREE
MPImulticore v1.5.3 (51), and individual site models of evolution were
determined in IQ-TREE using Bayesian information criterion [see data
files in the Dryad Digital Repository (____)].

For comparative analyses, we created a relative rate–scaled ultra-
metric tree using the “chronopl” function in the R package ape (52, 53).
We evaluated phylogenetic signal in our trait data using the R package
Rphylopars (54). A likelihood ratio test revealed significant phylogenetic
signal in the phylogenetic residuals (P < 0.0001) [see Revell (55)]. We
tested for trait-dependent diversification (or state-dependent diversifi-
cation) by using the nonparametric test within the R package FiSSE
[fast, intuitive, state-dependent, speciation-extinction (22)] on binary
characters, defined as whether a lineage had a hindwing projection.
Those lineages with any hindwing projection displayed increased diver-
sification rates (P = 0.014). To visualize the morphospace and investi-
gate putative convergence events, we explored 3D phylomorphological
space. Using the elliptical Fourier data and phylogeny, we corrected for
evolutionary relationships using a phylogenetic PCA (pPCA) in phy-
tools. We plotted the pPCA values [phylogenetic PCs (pPCs) 1 to 3]
in phylomorphospace (movies S1 to S4) using modified code [orig-
inally from the phytools blog (blog.phytools.org) and Eberle et al.
(56)] from the “phylomorphospace3d” function in phytools [see
“ColoredPhylomorphospace3d_function.R” in the Supplementary
Materials on the Dryad Digital Repository (___)]. To quantifiably test
for convergence of hindwing morphological shape space, we used the
R package SURFACE (57) on the first three phylogenetically corrected
PCs; these three pPCs described most of the hindwing shape variation.
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We identified four convergent, adaptive peaks (numbers 1 to 4 in
Fig. 1 and movies S3 and S4), as well as four additional adaptive peaks
thatwere not convergentwith any other lineages in this analysis (seeNC
in Fig. 1). These adaptive peak designations include both tailed andnon-
tailed lineages. To investigate the number of times that hindwing tails,
elongated hindwing lobes, and the various adaptive peaks evolved, we
performed ancestral state reconstruction (ASR) on the maximum like-
lihood tree using the R package phytools (58). We simulated stochastic
charactermapping 10,000 times on a data set with all tips coded for type
of hindwing shape morphology or SURFACE regime. Stochastic
character mapping in “make.simmap” is a powerful Bayesian approach
that samples a large number of possible discrete character histories,
allows for changes to occur along branches, and assesses the uncertainty
in character history due to topology and branch lengths (59). To define
hindwing shape morphology character states, we applied our knowl-
edge of Saturniidae taxonomy and hindwing morphology while using
the results from the geometric morphometric analyses as a guide.
Hindwing character states were broadly defined as having one of
the following: an extra long tail, a long tail, a short tail, graded
extensions of the hindwing (lobes), or no tail. We identified adaptive
peaks (convergent or nonconvergent) in the SURFACE analysis
(figs. S5 and S6 and movies S1 to S4).

Bat-moth battles
To test the anti-bat efficacy of these convergent hindwing shapes, we pit
16 big brown bats (E. fuscus) against moths with experimentally altered
hindwings (fig. S2) that followed the shape regimes we identified on
phylogeny. We altered hindwing shape by removing hindwing lobes
or tails with small scissors at designated spots on the hindwing or by
adding hindwing material using skin glue (see fig. S2 for complete de-
scription of each treatment). We assigned each silk moth one of several
possible hindwing alteration treatments and photographed it against
graph paper for size analysis before the trial began. We later measured
the surface area and hindwing length of each moth from our photos
using ImageJ (60) and included these measurements in our models as
covariates to control for body size.

We recorded bat-moth battles in a dark flight room (7.6m× 6.7m×
3 m) lined with anechoic foam at Boise State University. Illumination
was provided to researchers by two red ceiling lights and a red headlamp
and to the camera array by eight infrared Wildlife Engineering LED
(light-emitting diode) arrays. We filmed all interactions with three syn-
chronized, high-speed, infrared-sensitive cameras [120 frames per sec-
ond (fps), 3.5-mm lens; Basler Scout] and an additional high-speed
camera (Basler Scout) fitted with a 6-mm lens to aid in behavioral as-
sessments. We ran all cameras at 100 fps and focused the array on an
area of the room defined by a 1-m monofilament line secured to the
ceiling. We trained bats to approach this tether by stringing small
pyralid moths (G. mellonella) from it during each flight session. Af-
ter a 2-week post-capture acclimation period, and once a bat was
consistently catching pyralidmoths off the tether with 90 to 100% suc-
cess, we began the experimental trials. To affix silkmoths to the tether,
we slid themonofilament line through the pronotum.We did not con-
sider bats to be ready to begin experiments until they repeatedly
attacked tethered silk moths.

Once a bat was ready for trials, we presented one to three silk moths
per night in randomized order, commonly resulting in each bat hunting
different moth species of varying treatments each night. We presented
two G. mellonella in pseudo-randomized order, one at the beginning
of the experimental night and one partway through, to ensure that bat

motivation levels were high. Before allowing the bat to attack, we veri-
fied that moths were adequately flying. So long as a moth was flying
normally, we would allow the bat to make multiple capture attempts
on the same moth. We suspended the trial if a moth ceased flying or
if it incurredwing damage.Upon reviewof the high-speed video record-
ings, we removed interactions from the data set where moths exhibited
unnatural flight.

We reviewed all interactions using a custom-built LabVIEWprogram
to visualize the three synchronized camera views andMaxTRAQ for the
fourth, closeup shot. From these multiple angles, we noted the behavior
type as a binary variable [capture or no capture by bat (escape), aim
location, no contact (miss), and location of damage on the moth’s
wings, if applicable] and time stamp within the video for each interac-
tion so that audio and video data could be analyzed together. We
defined “capture” (no escape) behaviors as the bat being able to grab
and carry the moth out of the interaction space. We classified “aim”
as the bat’s directional heading at either the forewing and body (ante-
rior) or hindwing (posterior) of the moth three frames before the in-
teraction. For moths with twisted and cupped tail ends [A. luna (intact,
sham, and elongated) and A. mimosae (short, intact, and sham)], we
included an additional aim category: cupped end. “Miss” was defined
as a bat making no contact with the moth, despite exhibiting complete
capture behaviors, including sonar attack behavior and aerobatic catch-
ing maneuvers (for example, closing the wing membranes as if to en-
velope prey). We determined the location of bat-related damage on
moths by visually inspecting the video footage and post-interaction
photos.

To analyze our behavioral results, we used generalized linear mixed
models fit under a Bayesian framework to examine differences between
treatment groups and relationships between dependent variables and
tail length (61, 62).We usedmodels including treatment as a fixed factor
and subtracted samples from posterior distributions of treatments to
obtain posterior distributions of differences between treatments. We
determined whether comparisons were different when 95% credible in-
tervals from the resulting distribution did not intersect zero (61–63). To
determine relationships with tail length, we used models that included
tail length as a covariate and considered there to be a difference between
comparisons if the 95% credible intervals for the posterior distribution
of the slope did not intersect zero (61–63). We implemented the model
in JAGS version 4.2.0 (64) using the jagsUI package version 1.4.4 (65)
and R version 3.2.3 (66). We ran three chains for 50,000 generations,
following a 10,000 generation burn-in. We used standard weakly in-
formative priors (62) and visually assessed traceplots and used the
Gelman-Rubin statistic (67) to check for convergence. We built escape
and aim models with binomial distributions and logit links. In all
models, we includedmoth surface area as a covariate to control for body
size and individual bat identity and hunting night as random intercepts
and slopes, respectively, to control for individual variation.

Kinematics of moth flight
We randomly selected 10 videos from each treatment for digitization,
beginning 100 frames (1 s) out from the frame of bat-moth interaction.
Video frame of interaction was determined either by frame of first con-
tact or, in the case of misses, by frame when the bat completed its full
capture behavior. When possible, we did not digitize an individual
moth’s flight path more than once, even if it contributed multiple trials
to our data set. We were only able to digitize eight sham A. mimosae
flights because of camera view obstruction (for example, moth flew
behind one of the mounted microphones or the researcher’s hand
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obscured the flight path). Using DLTdv5 and easyWand5 packages
in MATLAB (68, 69), we digitized moth flight from our recorded bat-
moth interactions on the tether, with the center of moth body as our
focal point. We ran our outputs through a custom-built MATLAB
package (written by B.A.C.) and extracted flight parameters of interest
for evading predatory capture, as defined by Combes et al. (25). After
running a correlation matrix [R package Hmisc (70)], we found that
mean speed, mean tangential acceleration, and mean angular velocity
were uncorrelated with each other but highly correlated (>0.7) with
one or more of the other variables. We therefore limited our compar-
isons to include only these three parameters, which we included in
Bayesian models as described above using normal distributions and
identity links.

Echolocation
We recorded all attack sequences using four ultrasonic Avisoft micro-
phones [CM16, ±3 dB (Z), 20 to 140 kHz] connected to a four-channel
Avisoft UltraSoundGate 416H (sampling at 250 kHz) via XLR cables
and recording to a desktop computer running Avisoft Recorder software.
We synchronized audio and visual feeds by triggering both with a
National Instruments 9402 digital I/O module. Three of the micro-
phones surrounded the interaction space in triangular formation, each
equidistant from the monofilament line, while the fourth perched di-
rectly above the center of the interaction space.We analyzed 10 to 15 call
sequences permoth treatment, using one to two sound files fromat least
three different bat individuals, withAvisoft SASLab Pro software (Hann
Window, 1024 fast Fourier transform). When possible, we selected one
file from a bat’s initial trial and one file from a trial near the end of the
experiments to account for duration of experience hunting silk moths.
We inspected all four audio channels, beginning 900 ms back from the
selected interaction, and chose the channel with the highest signal-to-
noise ratio to analyze [following Barber et al. (18)]. This selection always
included sonar pulses from the approach [interpulse interval (IPI) >15ms],
buzz I (IPI≤15ms), and buzz II (IPI≤6.5ms) phases (71, 72). Buzzes I
and II are together considered the terminal phase of an echolocation
attack sequence and provide the bat the final details of a prey animal’s
flight path through an increase in pulse emission rate (72–74). We ana-
lyzed these sonar data using the same statistical analyses as above.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/4/7/eaar7428/DC1
Fig. S1. Twisted and cupped hindwing tail ends in Saturniidae.
Fig. S2. Hindwing morphology of the three silk moth species was altered by cutting and gluing
hindwing material.
Fig. S3. IPI does not change on the basis of moth treatment.
Fig. S4. IPI does not change on the basis of moth genus or hindwing length.
Fig. S5. ASR demonstrates multiple origins of the hindwing tail trait within the Saturniinae
subfamily.
Fig. S6. ASR demonstrates multiple origins of adaptive peaks within the Saturniinae subfamily.
Table S1. Kinematic output results from 100 ms of tethered moth flight leading up to bat-moth
interaction.
Table S2. Bat identity and experience (that is, learning) do not affect the outcome of the trial.
Table S3. Bats do not change call parameters during attack on silk moths of differing
morphologies.
Movie S1. Phylomorphospace by tail regime.
Movie S2. Phylomorphospace by tail regime (no labels).
Movie S3. Phylomorphospace by adaptive peak.
Movie S4. Phylomorphospace by adaptive peak (no labels).
Movie S5. Bat attack on elongated hindwing lobes.
Movie S6. Bat attack on intact hindwing tails.
Movie S7. Bat attack on intact tail ends.
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