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Photonic probabilistic machine learning
using quantum vacuum noise

Seou Choi 1 , Yannick Salamin 1,2, Charles Roques-Carmes 1,3 ,
Rumen Dangovski 1,4, Di Luo 4,5,6, Zhuo Chen 2,4, Michael Horodynski 2,
Jamison Sloan1, Shiekh Zia Uddin 1,2 & Marin Soljačić 1,2

Probabilistic machine learning utilizes controllable sources of randomness to
encode uncertainty and enable statistical modeling. Harnessing the pure ran-
domness of quantum vacuum noise, which stems from fluctuating electro-
magnetic fields, has shown promise for high speed and energy-efficient
stochastic photonic elements. Nevertheless, photonic computing hardware
which can control these stochastic elements to programprobabilisticmachine
learning algorithms has been limited. Here, we implement a photonic prob-
abilistic computer consisting of a controllable stochastic photonic element – a
photonic probabilistic neuron (PPN). Our PPN is implemented in a bistable
optical parametric oscillator (OPO) with vacuum-level injected bias fields. We
then program a measurement-and-feedback loop for time-multiplexed PPNs
with electronic processors (FPGA or GPU) to solve certain probabilistic
machine learning tasks. We showcase probabilistic inference and image gen-
eration of MNIST-handwritten digits, which are representative examples of
discriminative and generative models. In both implementations, quantum
vacuum noise is used as a random seed to encode classification uncertainty or
probabilistic generation of samples. In addition, we propose a path towards an
all-optical probabilistic computing platform, with an estimated sampling rate
of ~1 Gbps and energy consumption of ~5 fJ/MAC. Our work paves the way for
scalable, ultrafast, and energy-efficient probabilistic machine learning
hardware.

Probabilistic machine learning can accelerate image generation1,2,
heuristic optimization3,4, and probabilistic inference5,6 by leveraging
stochasticity to encode uncertainty and enable statistical modeling7,8.
These approaches are well suited for real-life applications which must
account for uncertainty and variability, including autonomous
driving9, medical diagnosis10, and drug discovery11. However, digital
complementary metal-oxide-semiconductor (CMOS) technology
requires extensive resource overhead to simulate randomness and

control probabilities, which leads to significantly increased power
consumption and decreased operational speed12. These challenges
have sparked recent proposals for beyond-CMOS hardware such as
low-barrier magnetic tunnel junctions13 and diffusive memristors14—
both of which leverage intrinsic noise as a source of randomness.

Concurrently, optical neural networks (ONNs)15,16 have shown
remarkable progress in energy efficiency17,18, speed19, and bandwidth20

for solving deterministic tasks such as image classification21 and
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speech recognition22. An important feature of ONNs is the inherent
presence of noise in their operation. Therefore, photonic computing
hardware typically implements computational tasks that are robust to
optical noise16. ONNs have also been explored in regimes where
deterministic tasks are performed with high accuracy, despite the
presence of high levels of inherent noise18. Conversely, ONNs in which
optoelectronic noise is intentionally added have also been proposed
for optimization23 and generative networks24. Interestingly, quantum
optics offers a natural source of randomness in the ground state of
electromagnetic field, known as quantum vacuum noise25–27. This
intrinsic noise source is ubiquitous in optics and has been used to
achieve high-data rate random number generation28,29. In addition,
optical systems influenced by quantum vacuum noise have shown
natural abilities to generate probability distributions30–32, which are of
strong interest for computing applications13,14. However, the experi-
mental demonstration of a photonic probabilistic machine learning
system has remained elusive so far, mostly due to the lack of pro-
grammable stochastic photonic elements.

Here, we experimentally demonstrate a probabilistic computing
platform utilizing photonic probabilistic neurons (PPNs). Our PPN is
implemented as a biased degenerate optical parametric oscillator
(OPO), which leverages quantum vacuum noise to generate a prob-
ability distribution encoded by a bias field. We realized a hybrid
optoelectronic probabilisticmachine learning systemwhich combines
time-multiplexed PPNs and electronic processors with algorithm-
specific measurement-and-feedback strategies. We demonstrate
probabilistic inference of MNIST-handwritten digits with a stochastic
binary neural network (SBNN), highlighting how quantum vacuum
noise can encode classification uncertainty in discriminative models.
Additionally, we showcase the generation ofMNIST-handwritten digits
with a pixel convolutional neural network (pixelCNN), demonstrating
how statistical sampling in generative models can be facilitated by
quantum vacuum noise. Furthermore, we provide a thorough discus-
sion of the potential of an all-optical probabilistic machine learning

system, offering a possible performance enhancement by a factor of
100 inboth speed and energy over traditionalCMOS implementations,
thereby opening new avenues in high-speed, energy-efficient com-
puting applications.

Results
Probabilistic computing with time-multiplexed PPNs
We first provide a brief overview of two probabilistic machine learning
models and their optical implementation with PPNs (Fig. 1).

Discriminative models learn decision lines that encode classifica-
tion boundaries between different images (Fig. 1a, left)33. Probabilistic
neural networks (Fig. 1a, middle) then impart statistical properties
onto network parameters (e.g., weight uncertainty5 or layer nodes34).
Therefore, the network can provide a statistical ensemble of classifi-
cation results, which are shown as different probabilities of the image
classified to certain labels (Fig. 1a, right). Probabilistic inference can
quantify classification uncertainty, which becomes critical for ambig-
uous images located near the decision boundary35,36.

On the other hand, generative models learn the underlying
probability distribution of the trainingdataset (e.g., images) inorder to
create new ones (Fig. 1b, left)33. When generating new images, gen-
erativemodels use random sources to seed stochastic image sampling
based on the probability distribution learned by the network (Fig. 1b,
middle). As a result, images with different labels can be generated
(Fig. 1b, right).

In both of these computational tasks, probabilistic machine
learning requires stochastic photonic elements whose probability
distribution can be tuned, and that can perform statistically indepen-
dent sampling. We refer to the optical implementation of this cap-
ability as PPNs (purple circles in Fig. 1a, b).

The proposed PPN is depicted in Fig. 1c. The building block con-
sists of a synchronously pumped degenerate OPO30. An OPO consists
of a nonlinear medium (e.g., second-order nonlinear crystal, down
converting photon frequency) and an optical cavity surrounding it.
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Fig. 1 | Probabilistic machine learning with stochastic photonic elements.
Probabilistic machine learning enabled by physical random sources, solving
a inference and b generation tasks. Neural networks learn a decision line for
inference tasks and overall distribution for generation tasks. a Random sources
encode uncertainty in neural network parameters, allowing statistical interpreta-
tion on inference results.b Stochastic image generation seededby random sources
samples new images from certain probability distributions stored in neural net-
works. Both computational tasks require controllable stochastic photonic elements
which can learn probability distribution and perform statistically independent
sampling, which we refer to as photonic probabilistic neurons (PPNs). c Schematic

of PPNs. One of the output states (α(0) or α(1)) of a multistable optical system is
randomly selected from a certain state probability distribution p(α(1)∣b) controlled
by a bias field level b. Subsequently, a processing unit reads the output state and
updates the bias value b for the next sampling. N independent outcomes can be
sampled from different probabilities by time-multiplexing the bias signal. Optical
elements in (c), originally published by GWoptics; released under a Creative
Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0). MNIST
images in (a andb), originally publishedby LeCun, et al.37; released under aCreative
Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0).
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The phase of the initial optical field is random due to electromagnetic
field fluctuations inside the cavity (quantum vacuum noise). When the
power of the pump laser exceeds a certain threshold power, phase-
sensitive gain of the OPO allows the initial state to fall into one of the
bistable output states with either phase (0 rad, or π rad)28. In other
words, quantum vacuum noise acts as a perfect random source that
manifests itself in the output phase. In fact, this random source is an
intrinsic noise source ubiquitous in quantum optics25–27. When a
vacuum-level external bias field b is introduced in the OPO cavity, the
probability distribution of the output steady states can be coherently
controlled30. Specifically, our OPO-based PPN encodes a Bernoulli trial
B(p) with binary outcomes having probability p and 1 − p. Independent
random sampling and processing can be realized by time-multiplexing
the bias signal, resulting in N independent outcomes with encoded
probabilities as depicted by different heights in Fig. 1c.

The experimental system realizing the PPN, and its implementa-
tion into a probabilistic computing system, is shown in Fig. 2. The
system consists of threemodules: biased OPO (purple area), detection
(green area), and processing unit (blue area). We time-multiplex OPO
signals with an amplitude modulator along the pump path to sample
multiple binary outputs from a single optical cavity at a rate of 10 kHz.
This bit rate is chosen to ensure the statistical independence of each
PPN28,30. We use a homodyne detector to measure the optical phase of
the steady state andmap it to the corresponding bit value (i.e., 0 rad→
0 and π rad → 1).

During each cycle, a bit is measured by the homodyne detector
(value 0 or 1), conditioned on the bias value b. This bit, or a collection
of bit values (“bitstream”), is then fed into anelectronicprocessingunit
to update the bias field value and sample the PPN in the next cycle. In
our experiment, the processing unit is taken as either a field-
programmable gated array (FPGA) or a graphics processing unit
(GPU). The FPGA is more adapted for real-time bitstream processing

and control of the optical system, while the GPU can accelerate com-
plexmachine learning algorithms such as image generation at the cost
of a slower system control.

Individual pi values are encoded in the phase of the bias field bi by
applying a calibrated square-wave voltage to a phasemodulator in the
bias line path. The voltage–probability relation provided by the phase
modulator is shown in Fig. 2b. This relation is used in the following
computing experiments to control the bias voltage. A detailed
description of the experimental setup is discussed in Supplemen-
tary Note 1.

Photonic probabilistic computer for image classification
We now perform probabilistic image classification of MNIST-
handwritten digits37 using a pre-trained SBNN model on our optical
probabilistic computing platform (Fig. 3a). SBNN encodes inference
uncertainty by substituting deterministic layer nodes (as found in
conventional fully connected neural networks) with stochastic binary
nodes38. In a conventional, fully connected neural network, the jth
node value in the (n + 1)th layer Xj,n+1 can be calculated in two steps: (1)
matrix–vectormultiplication (MVM) betweenweightmatrixW and the
nth layer Xn (zj,n ≡ ∑iWj,iXi,n); followed by (2) a nonlinear activation
function σ(⋅) : Xj,n+ 1 = σðzj,nÞ.

Within our SBNN model, each layer node is represented by a PPN,
and a single layer (yellow areas in Fig. 3a) is described as a bitstream
of time-multiplexed PPNs. Because of the nonlinear nature of the bias-
probability relationship (Fig. 2b), sampling a binary output Xj,n with our
PPN fromthegivenbiasbj,n (or equivalentlybiasmodulator voltageVj,n in
our experiment), naturally corresponds to passing a nonlinear activation
function:Xj,n =Bðpj,nÞ=B½σðVj,nÞ�.Modulator voltageVj,n is calculated via
MVM between the weightWn−1 and the n� 1ð Þth layer Xn−1 (gray areas in
Fig. 3a, which is performed by the FPGA in our experiment). In other
words, each PPN node binarizes the input, which consists of a weighted
sum of previous layer nodes, with probability pj,n. Because of the
stochastic nature of the nodes, their probabilities change for every
inference, leading toaprobabilistic interpretationof classification results
for an identical input image (Fig. 3a, right).

To perform image classification of MNIST-handwritten digits with
our optical SBNN, we first binarize original MNIST-handwritten digits
(Fig. 3a, left). OriginalMNIST-handwrittendigits (grayscale, pixel values
ranging from 0 to 255) are normalized between 0 and 1. The resulting
pixel values represent the probability value for each PPN. The grayscale
images are binarized by sampling the PPNs. The binary images are
propagated through the network (784 → 128 → 64 → 10), with real-time
communication between PPNs and the FPGA. The output layer O0,1,...,9

is used to interpret the classification result, higherOj corresponding to
the higher probability of image representing digit “j”. The network is
pre-trained in silico and the weights are implemented on the FPGA. A
detailed description of the training process and how the FPGA com-
municates with the optical setup is in Supplementary Note 2.

To test the performance of our optical SBNN, a batch of grayscale
MNIST-handwritten digits (100 images) from the test set is selected. By
binarizing each grayscale MNIST-handwritten digit 10 times to encode
statistical uncertainty, we prepared 1000 binarized MNIST-
handwritten digits in total to be classified by our optical SBNN.
While propagating to the output layer, PPNs in the input and hidden
layers encode the uncertainty by stochastically sampling the binary
values from given probabilities. Once the output layer is reached, we
can collect the statistics from 10 different inference results for each
input image. Confusion matrices in Fig. 3b show that the overall
experimental classification accuracy (96.5%) is in close agreement with
the accuracy obtained from the numerical simulations for the single
batch (97.0%) and total test images (98.3%) (see Supplementary
Note 2). The classification accuracy of our photonic probabilistic
computing hardware is also comparable with that of other optical
computing platforms reaching more than 95%21,39,40.
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relationship. Error bar represents the standard deviation. Optical or electronic
elements in (a), originally published by GWoptics; released under a Creative
Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0).
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Figure 3c shows how our probabilistic neural network can diag-
nose the reliability of inference results byharnessing quantumvacuum
noise. Unlike deterministic neural networks, the variability of layer
nodes in SBNNs results in different probability for each inference. One
of the factors that can potentially degrade the classification perfor-
mance is the ambiguity of the image (i.e., how close the image is to the
decision boundary, as shown in Fig. 1a). By encoding uncertainty
during inference, our photonic probabilistic computing hardware
suggests all possible labels that ambiguous images can be classified.
We choose two ambiguous images and twounambiguous images from
the test dataset and plot the probability of each binarized grayscale
MNIST-handwrittendigit being classifiedunder a certain label. Because
we binarized 10 images each, 10 different probability values are shown
for each label.

Three different scenarios are described in Fig. 3c. Unambiguous
images such as “0” and “9” (achieving 100% of classification accuracy)
show relatively consistent classification results with probabilities of
correct classification close to 1. In this scenario, probabilistic neural
networks show similar behavior to deterministic neural networks,
whichalways give the sameclassification resultwith afixedprobability.
When the input image becomes ambiguous (image “5” underlined in
red, achieving 50% of classification accuracy), our SBNN model indi-
cates that the image can be either “3” or “5”. Accordingly, the

distribution of probabilities on each label broadens with its average
value close to 50%. The worst case scenario is depicted by image “2”
(underlined in blue), showing low overall accuracy (20%) and strong
inconsistency in classification results. Such scenario clearly showcases
how probabilistic sampling can provide additional information to the
end-user. Classification results for labels that are not included in Fig. 3c
can be found in Supplementary Note 2.

Offering both overall accuracy and statistics of classification
results, probabilistic neural networks can diagnose inference results
by providing a confidence level of the decision. The total classifica-
tion result for each input image can be found in Supplemen-
tary Note 2.

Generating images from quantum vacuum noise with photonic
generative models
We now turn to the demonstration of generative models with our
photonic probabilistic computing platform (Fig. 4), demonstrating the
use of quantum optical randomness as a source for generative
machine learning models. We use a type of autoregressive model
(pixelCNN), which models a conditional probability of a current pixel
value from previous pixels41.

Our implementation protocol for pixelCNN with PPNs is
described in Fig. 4a. A binary image with the first N − 1 pixels Xi≤N−1
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specified is given as an input to the network. In principle, N can be
any natural number, N = 1 corresponding to the case when pixelCNN
creates an image only using quantum vacuum noise as a random
seed. When the input image is given, a pre-trained pixelCNN model
in the GPU evaluates pN to be encoded on the PPN from previous
pixels Xi≤N−1, generating a binary number for the Nth pixel (XN). The
probability pN+1 is now computed based on previous pixel values
Xi≤N. This process is repeated until the full image is generated
(28 × 28 = 784 pixels). Our hybrid optoelectronic computing system
can generate new images using quantum vacuum noise as a random
seed. Details of network structure and trainingmethod can be found
in Supplementary Note 3.

Different MNIST-handwritten digits, all generated from the same
incomplete input image, highlight how quantum vacuum noise
enables stochastic image sampling (Fig. 4b). Although they all start
from the same “ancestor” image, the multiple stochastic samples of
pixel values from the PPNs branch off into different MNIST-
handwritten digits with different labels (“descendant” images). It is
also possible to generate different imageswith the same label (which is
likely to be labeled as “2”).

We produced 100 examples of handwritten digit images from
quantum vacuum noise using our photonic probabilistic computing
platform(Fig. 4c). Thiswasdoneby initiating anempty imageas an input
toouroptical pixelCNN.Wealso test thenegative-log-likelihood (NLL) of
the generated images NLL � �P

ifXi lnðpiÞ+ ð1� XiÞ lnð1� piÞg, where
the sum runs over i= 1, …, 784 pixel indices. A lower value of NLL indi-
cates statistical similarity to the distribution of training images, yielding
71.1 ± 18.8 for our experimental results and 64.9 ± 15.4 for numerical
simulations. This shows that our system has learned an accurate repre-
sentation of the image distribution. Details of the performance of image
generations can be found in Supplementary Note 3.

Discussion
In our demonstration of photonic probabilistic machine learning, the
speed and energy efficiencywere limited by the PPN sampling rate and
data transfer bandwidth between electronic processors and PPNs. In
the following, we propose an all-optical probabilistic computing plat-
formwhich can overcome these challenges, and evaluate the potential
benefit in terms of speed and energy efficiency compared to the
electronic state of the art.

To increase sampling rate and reduce energy consumption, we
propose an all-optical implementation. For instance, PPNs can be
implemented with injection-seeded vertical-cavity surface-emitting
lasers, reaching >1 Gbps42 and providing energy-efficient operation43.
Fast control of the probability and state detection canbe achievedwith
high-bandwidth modulators and detectors44–48, suggesting that PPNs
achieving 1 Gbps sampling rate are within reach (detailed explanations
can be found in Supplementary Note 4).

Furthermore, our programmable stochastic element naturally
implements an all-optical nonlinearity through the bias-probability
relationship, which has been a historical challenge in the imple-
mentation of energy-efficient all-optical ONNs15. Typically, ONNs rely
on optoelectronic measurement-feedback schemes to update the
network layers39,49. Conversely, in the proposed scheme, an optical
signal (vacuum-level bias) controls the nonlinearity of the layer.
Because the bias signal can be derived directly from the accumulated
PPN outputs, bypassing active components, the scheme can reduce
energy consumption per multiply-accumulate (MAC) operation to as
low as ~5 fJ/MAC. State-of-the-art stochastic electronic devices, such as
low-barrier magnetic tunnel junctions and diffusive memristors inte-
grated with conventional CMOS technologies are expected to achieve
~0.1 Gbps50,51 and consume ~900 fJ/MAC38. Comparatively, our pro-
posed photonic platform can be ~ ×10 faster and ~ ×100 more energy
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efficient. A detailed discussion of this all-optical probabilistic com-
puting platform is found in Supplementary Note 4.

We now compare the speed and energy performance of our
photonic platform to a state-of-the-art FPGA52,53, in an image classifi-
cation task considering a binary neural network. The deterministic
FPGA implementation demonstrated a classification of ~1.6 million
images per second with ~23W power consumption. Adopting the
network structure of our SBNN model in Fig. 3, we can calculate the
computation time and the number of MAC operations required for
each inference. Our estimation gives ~4 ns and ~105 MAC operations
per classification, which result in ~250 million image classifications
per second with a power consumption of ~0.1W. Therefore, the sug-
gested all-optical probabilistic computing hardware could perform
×100 faster while consuming ×100 less power. Detailed discussion can
be found in Supplementary Note 4.

One of the possible extensions of our work is to train the network
physically54,55. This becomes critical when an accurate digital modeling
of the physical system becomes challenging due to its complexity.
Without an additional cost of simulating randomness in digitalmodels,
several training methods which resort to stochasticity, including sto-
chastic gradient descent56, dropout34, and noise injection57 could
potentially be realized with PPNs. Harnessing quantum vacuum noise
in optical elements for both training and testing, our PPNswill pave the
wayof implementing all-optical probabilistic physical neural networks,
which can benefit state-of-the-art machine learning applications
including large language models58 and diffusion models59.

Our platform could also be used to implement other important
computational tasks. The first one is alternative interpretable neural
network models with trainable activation functions60, which could be
implemented with the PPN by taking advantage of its tunable bias-
probability relationship. The second one is Ising model solvers with
external magnetic fields, which can be modeled by the injection of a
bias field in a network of OPOs61.

Data availability
All data supporting this work are available within the manuscript, the
Supplementary Information, the online repository: https://codeocean.
com/capsule/4025993/tree. Raw data generated during the study are
available once requested to the corresponding authors. Correspon-
dence and requests should be addressed to S.C. (seouc130@mit.edu)
and C.R.-C. (chrc@stanford.edu).

Code availability
The code used in this study is available at https://codeocean.com/
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