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% Check for updates Probabilistic machine learning utilizes controllable sources of randomness to

encode uncertainty and enable statistical modeling. Harnessing the pure ran-
domness of quantum vacuum noise, which stems from fluctuating electro-
magnetic fields, has shown promise for high speed and energy-efficient
stochastic photonic elements. Nevertheless, photonic computing hardware
which can control these stochastic elements to program probabilistic machine
learning algorithms has been limited. Here, we implement a photonic prob-
abilistic computer consisting of a controllable stochastic photonic element - a
photonic probabilistic neuron (PPN). Our PPN is implemented in a bistable
optical parametric oscillator (OPO) with vacuum-level injected bias fields. We
then program a measurement-and-feedback loop for time-multiplexed PPNs
with electronic processors (FPGA or GPU) to solve certain probabilistic
machine learning tasks. We showcase probabilistic inference and image gen-
eration of MNIST-handwritten digits, which are representative examples of
discriminative and generative models. In both implementations, quantum
vacuum noise is used as a random seed to encode classification uncertainty or
probabilistic generation of samples. In addition, we propose a path towards an
all-optical probabilistic computing platform, with an estimated sampling rate
of ~1 Gbps and energy consumption of -5 fJ/MAC. Our work paves the way for
scalable, ultrafast, and energy-efficient probabilistic machine learning
hardware.

Probabilistic machine learning can accelerate image generation'?,
heuristic optimization®**, and probabilistic inference® by leveraging
stochasticity to encode uncertainty and enable statistical modeling”*.
These approaches are well suited for real-life applications which must
account for uncertainty and variability, including autonomous
driving’, medical diagnosis', and drug discovery". However, digital
complementary metal-oxide-semiconductor (CMOS) technology
requires extensive resource overhead to simulate randomness and

control probabilities, which leads to significantly increased power
consumption and decreased operational speed” These challenges
have sparked recent proposals for beyond-CMOS hardware such as
low-barrier magnetic tunnel junctions” and diffusive memristors'—
both of which leverage intrinsic noise as a source of randomness.
Concurrently, optical neural networks (ONNs)*'® have shown
remarkable progress in energy efficiency”®, speed', and bandwidth*
for solving deterministic tasks such as image classification” and
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Fig. 1| Probabilistic machine learning with stochastic photonic elements.
Probabilistic machine learning enabled by physical random sources, solving

a inference and b generation tasks. Neural networks learn a decision line for
inference tasks and overall distribution for generation tasks. a Random sources
encode uncertainty in neural network parameters, allowing statistical interpreta-
tion on inference results. b Stochastic image generation seeded by random sources
samples new images from certain probability distributions stored in neural net-
works. Both computational tasks require controllable stochastic photonic elements
which can learn probability distribution and perform statistically independent
sampling, which we refer to as photonic probabilistic neurons (PPNs). ¢ Schematic

of PPNs. One of the output states (@ or a®) of a multistable optical system is
randomly selected from a certain state probability distribution p(a®|b) controlled
by a bias field level b. Subsequently, a processing unit reads the output state and
updates the bias value b for the next sampling. N independent outcomes can be
sampled from different probabilities by time-multiplexing the bias signal. Optical
elements in (c), originally published by GWoptics; released under a Creative
Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0). MNIST
images in (a and b), originally published by LeCun, et al.”’; released under a Creative
Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0).

speech recognition®. An important feature of ONNs is the inherent
presence of noise in their operation. Therefore, photonic computing
hardware typically implements computational tasks that are robust to
optical noise'®>. ONNs have also been explored in regimes where
deterministic tasks are performed with high accuracy, despite the
presence of high levels of inherent noise'®. Conversely, ONNs in which
optoelectronic noise is intentionally added have also been proposed
for optimization” and generative networks?. Interestingly, quantum
optics offers a natural source of randomness in the ground state of
electromagnetic field, known as quantum vacuum noise” . This
intrinsic noise source is ubiquitous in optics and has been used to
achieve high-data rate random number generation’**. In addition,
optical systems influenced by quantum vacuum noise have shown
natural abilities to generate probability distributions**2, which are of
strong interest for computing applications™"*. However, the experi-
mental demonstration of a photonic probabilistic machine learning
system has remained elusive so far, mostly due to the lack of pro-
grammable stochastic photonic elements.

Here, we experimentally demonstrate a probabilistic computing
platform utilizing photonic probabilistic neurons (PPNs). Our PPN is
implemented as a biased degenerate optical parametric oscillator
(OPO), which leverages quantum vacuum noise to generate a prob-
ability distribution encoded by a bias field. We realized a hybrid
optoelectronic probabilistic machine learning system which combines
time-multiplexed PPNs and electronic processors with algorithm-
specific measurement-and-feedback strategies. We demonstrate
probabilistic inference of MNIST-handwritten digits with a stochastic
binary neural network (SBNN), highlighting how quantum vacuum
noise can encode classification uncertainty in discriminative models.
Additionally, we showcase the generation of MNIST-handwritten digits
with a pixel convolutional neural network (pixelCNN), demonstrating
how statistical sampling in generative models can be facilitated by
quantum vacuum noise. Furthermore, we provide a thorough discus-
sion of the potential of an all-optical probabilistic machine learning

system, offering a possible performance enhancement by a factor of
100 in both speed and energy over traditional CMOS implementations,
thereby opening new avenues in high-speed, energy-efficient com-
puting applications.

Results

Probabilistic computing with time-multiplexed PPNs

We first provide a brief overview of two probabilistic machine learning
models and their optical implementation with PPNs (Fig. 1).

Discriminative models learn decision lines that encode classifica-
tion boundaries between different images (Fig. 1a, left)*. Probabilistic
neural networks (Fig. 1a, middle) then impart statistical properties
onto network parameters (e.g., weight uncertainty® or layer nodes™).
Therefore, the network can provide a statistical ensemble of classifi-
cation results, which are shown as different probabilities of the image
classified to certain labels (Fig. 1a, right). Probabilistic inference can
quantify classification uncertainty, which becomes critical for ambig-
uous images located near the decision boundary®°.

On the other hand, generative models learn the underlying
probability distribution of the training dataset (e.g., images) in order to
create new ones (Fig. 1b, left)*>. When generating new images, gen-
erative models use random sources to seed stochastic image sampling
based on the probability distribution learned by the network (Fig. 1b,
middle). As a result, images with different labels can be generated
(Fig. 1b, right).

In both of these computational tasks, probabilistic machine
learning requires stochastic photonic elements whose probability
distribution can be tuned, and that can perform statistically indepen-
dent sampling. We refer to the optical implementation of this cap-
ability as PPNs (purple circles in Fig. 1a, b).

The proposed PPN is depicted in Fig. 1c. The building block con-
sists of a synchronously pumped degenerate OPO*. An OPO consists
of a nonlinear medium (e.g., second-order nonlinear crystal, down
converting photon frequency) and an optical cavity surrounding it.
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Fig. 2 | Experimental demonstration of a photonic probabilistic computer.

a Experimental setup, consisting of an ultrafast laser pumping a nonlinear cavity,
and homodyne detection to measure the phase of the OPO signal. Electronic pro-
cessing units (FPGA/GPU) generate electrical signals to tune the probability. AM
amplitude modulator, PM phase modulator, FM flat mirror, DM dichroic mirror,
ICM in-coupling mirror, (P)BS (polarization) beam-splitter, SM spherical mirror,
PPLN periodically poled lithium niobate nonlinear crystal. PZT piezoelectric
actuator, A/2 half waveplate, PD photodiode. b Modulator voltage-probability
relationship. Error bar represents the standard deviation. Optical or electronic
elements in (a), originally published by GWoptics; released under a Creative
Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0).

The phase of the initial optical field is random due to electromagnetic
field fluctuations inside the cavity (quantum vacuum noise). When the
power of the pump laser exceeds a certain threshold power, phase-
sensitive gain of the OPO allows the initial state to fall into one of the
bistable output states with either phase (0 rad, or mrad)®. In other
words, quantum vacuum noise acts as a perfect random source that
manifests itself in the output phase. In fact, this random source is an
intrinsic noise source ubiquitous in quantum optics®?. When a
vacuum-level external bias field b is introduced in the OPO cavity, the
probability distribution of the output steady states can be coherently
controlled®. Specifically, our OPO-based PPN encodes a Bernoulli trial
B(p) with binary outcomes having probability p and 1 - p. Independent
random sampling and processing can be realized by time-multiplexing
the bias signal, resulting in N independent outcomes with encoded
probabilities as depicted by different heights in Fig. 1c.

The experimental system realizing the PPN, and its implementa-
tion into a probabilistic computing system, is shown in Fig. 2. The
system consists of three modules: biased OPO (purple area), detection
(green area), and processing unit (blue area). We time-multiplex OPO
signals with an amplitude modulator along the pump path to sample
multiple binary outputs from a single optical cavity at a rate of 10 kHz.
This bit rate is chosen to ensure the statistical independence of each
PPN**3°, We use a homodyne detector to measure the optical phase of
the steady state and map it to the corresponding bit value (i.e., O rad >
0 and mrad - 1).

During each cycle, a bit is measured by the homodyne detector
(value O or 1), conditioned on the bias value b. This bit, or a collection
of bit values (“bitstream”), is then fed into an electronic processing unit
to update the bias field value and sample the PPN in the next cycle. In
our experiment, the processing unit is taken as either a field-
programmable gated array (FPGA) or a graphics processing unit
(GPU). The FPGA is more adapted for real-time bitstream processing

and control of the optical system, while the GPU can accelerate com-
plex machine learning algorithms such as image generation at the cost
of a slower system control.

Individual p; values are encoded in the phase of the bias field b; by
applying a calibrated square-wave voltage to a phase modulator in the
bias line path. The voltage-probability relation provided by the phase
modulator is shown in Fig. 2b. This relation is used in the following
computing experiments to control the bias voltage. A detailed
description of the experimental setup is discussed in Supplemen-
tary Note 1.

Photonic probabilistic computer for image classification

We now perform probabilistic image classification of MNIST-
handwritten digits*’ using a pre-trained SBNN model on our optical
probabilistic computing platform (Fig. 3a). SBNN encodes inference
uncertainty by substituting deterministic layer nodes (as found in
conventional fully connected neural networks) with stochastic binary
nodes®. In a conventional, fully connected neural network, the jth
node value in the (n + Dth layer X; ,.; can be calculated in two steps: (1)
matrix-vector multiplication (MVM) between weight matrix W and the
nth layer X, (z;,=23;W;X;); followed by (2) a nonlinear activation
function () : X .1 =0(2; ).

Within our SBNN model, each layer node is represented by a PPN,
and a single layer (yellow areas in Fig. 3a) is described as a bitstream
of time-multiplexed PPNs. Because of the nonlinear nature of the bias-
probability relationship (Fig. 2b), sampling a binary output X;,, with our
PPN from the given bias b;, (or equivalently bias modulator voltage V;,in
our experiment), naturally corresponds to passing a nonlinear activation
function: X; , = B(p; ,) = B[o(V; ,)]. Modulator voltage V; , is calculated via
MVM between the weight W,,; and the (n — 1)th layer X,,-; (gray areas in
Fig. 3a, which is performed by the FPGA in our experiment). In other
words, each PPN node binarizes the input, which consists of a weighted
sum of previous layer nodes, with probability p;,. Because of the
stochastic nature of the nodes, their probabilities change for every
inference, leading to a probabilistic interpretation of classification results
for an identical input image (Fig. 3a, right).

To perform image classification of MNIST-handwritten digits with
our optical SBNN, we first binarize original MNIST-handwritten digits
(Fig. 3a, left). Original MNIST-handwritten digits (grayscale, pixel values
ranging from O to 255) are normalized between O and 1. The resulting
pixel values represent the probability value for each PPN. The grayscale
images are binarized by sampling the PPNs. The binary images are
propagated through the network (784 > 128 - 64 - 10), with real-time
communication between PPNs and the FPGA. The output layer Og1,__o
is used to interpret the classification result, higher O; corresponding to
the higher probability of image representing digit “/. The network is
pre-trained in silico and the weights are implemented on the FPGA. A
detailed description of the training process and how the FPGA com-
municates with the optical setup is in Supplementary Note 2.

To test the performance of our optical SBNN, a batch of grayscale
MNIST-handwritten digits (100 images) from the test set is selected. By
binarizing each grayscale MNIST-handwritten digit 10 times to encode
statistical uncertainty, we prepared 1000 binarized MNIST-
handwritten digits in total to be classified by our optical SBNN.
While propagating to the output layer, PPNs in the input and hidden
layers encode the uncertainty by stochastically sampling the binary
values from given probabilities. Once the output layer is reached, we
can collect the statistics from 10 different inference results for each
input image. Confusion matrices in Fig. 3b show that the overall
experimental classification accuracy (96.5%) is in close agreement with
the accuracy obtained from the numerical simulations for the single
batch (97.0%) and total test images (98.3%) (see Supplementary
Note 2). The classification accuracy of our photonic probabilistic
computing hardware is also comparable with that of other optical
computing platforms reaching more than 95%*°°,
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Fig. 3 | Probabilistic inference uncertainty encoded by quantum vacuum noise.
a Hybrid photonic-electronic architecture for stochastic binary neural networks
(SBNNs). Original MNIST grayscale handwritten digit is binarized 10 times with
PPNs and each binarized image propagates through SBNN (left panel). Binary nodes
are sampled by PPNs and their corresponding p values are evaluated by FPGA
(middle panel). Because the nodes are stochastic, inference results vary (right
panel). b Confusion matrices of image classification results. A total of 1000 binary

Label

Predicted Label

images (100 grayscale testing images x 10 times of binarization =1000 input
images) are tested. ¢ Diagnosing inference results with the aid of quantum vacuum
noise. Breadth in probability and low classification accuracy reflect the ambiguity of
the input image. MNIST images in (a and c), originally published by LeCun, et al.”;
released under a Creative Commons Attribution-ShareAlike 3.0 Unported

(CC BY-SA 3.0).

Figure 3c shows how our probabilistic neural network can diag-
nose the reliability of inference results by harnessing quantum vacuum
noise. Unlike deterministic neural networks, the variability of layer
nodes in SBNNs results in different probability for each inference. One
of the factors that can potentially degrade the classification perfor-
mance is the ambiguity of the image (i.e., how close the image is to the
decision boundary, as shown in Fig. 1a). By encoding uncertainty
during inference, our photonic probabilistic computing hardware
suggests all possible labels that ambiguous images can be classified.
We choose two ambiguous images and two unambiguous images from
the test dataset and plot the probability of each binarized grayscale
MNIST-handwritten digit being classified under a certain label. Because
we binarized 10 images each, 10 different probability values are shown
for each label.

Three different scenarios are described in Fig. 3c. Unambiguous
images such as “0” and “9” (achieving 100% of classification accuracy)
show relatively consistent classification results with probabilities of
correct classification close to 1. In this scenario, probabilistic neural
networks show similar behavior to deterministic neural networks,
which always give the same classification result with a fixed probability.
When the input image becomes ambiguous (image “5” underlined in
red, achieving 50% of classification accuracy), our SBNN model indi-
cates that the image can be either “3” or “5”. Accordingly, the

distribution of probabilities on each label broadens with its average
value close to 50%. The worst case scenario is depicted by image “2”
(underlined in blue), showing low overall accuracy (20%) and strong
inconsistency in classification results. Such scenario clearly showcases
how probabilistic sampling can provide additional information to the
end-user. Classification results for labels that are not included in Fig. 3¢
can be found in Supplementary Note 2.

Offering both overall accuracy and statistics of classification
results, probabilistic neural networks can diagnose inference results
by providing a confidence level of the decision. The total classifica-
tion result for each input image can be found in Supplemen-
tary Note 2.

Generating images from quantum vacuum noise with photonic
generative models
We now turn to the demonstration of generative models with our
photonic probabilistic computing platform (Fig. 4), demonstrating the
use of quantum optical randomness as a source for generative
machine learning models. We use a type of autoregressive model
(pixelCNN), which models a conditional probability of a current pixel
value from previous pixels*.

Our implementation protocol for pixelCNN with PPNs is
described in Fig. 4a. A binary image with the first N-1 pixels X;y—1
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Fig. 4 | Images sampled from quantum vacuum noise. a PixelCNN generating
binary MNIST-handwritten digits. PPNs sample the pixel value Xy from the given py
value and GPU calculates the py.; value for the next pixel from the previous pixels
Xi<n- b Branching off to different MNIST-handwritten digits, guided by quantum
vacuum noise. Stochastic sampling allows generation of images with different

digits and features. ¢ Hundred generated images from pixelCNN, starting from a
complete empty image. MNIST images in the left side of (b), originally published by
LeCun, et al.”’; released under a Creative Commons Attribution-ShareAlike 3.0
Unported (CC BY-SA 3.0).

specified is given as an input to the network. In principle, N can be
any natural number, N =1 corresponding to the case when pixelCNN
creates an image only using quantum vacuum noise as a random
seed. When the input image is given, a pre-trained pixelCNN model
in the GPU evaluates py to be encoded on the PPN from previous
pixels Xi<y-1, generating a binary number for the Nth pixel (Xy). The
probability py.; is now computed based on previous pixel values
Xi<n. This process is repeated until the full image is generated
(28 x 28 =784 pixels). Our hybrid optoelectronic computing system
can generate new images using quantum vacuum noise as a random
seed. Details of network structure and training method can be found
in Supplementary Note 3.

Different MNIST-handwritten digits, all generated from the same
incomplete input image, highlight how quantum vacuum noise
enables stochastic image sampling (Fig. 4b). Although they all start
from the same “ancestor” image, the multiple stochastic samples of
pixel values from the PPNs branch off into different MNIST-
handwritten digits with different labels (“descendant” images). It is
also possible to generate different images with the same label (which is
likely to be labeled as “2”).

We produced 100 examples of handwritten digit images from
quantum vacuum noise using our photonic probabilistic computing
platform (Fig. 4c). This was done by initiating an empty image as an input
to our optical pixelCNN. We also test the negative-log-likelihood (NLL) of
the generated images NLL = —);{X;In(p;) + 1 — X;) In(1 — p;)}, where
the sum runs over i=1, ..., 784 pixel indices. A lower value of NLL indi-
cates statistical similarity to the distribution of training images, yielding
71.1+18.8 for our experimental results and 64.9 +15.4 for numerical
simulations. This shows that our system has learned an accurate repre-
sentation of the image distribution. Details of the performance of image
generations can be found in Supplementary Note 3.

Discussion

In our demonstration of photonic probabilistic machine learning, the
speed and energy efficiency were limited by the PPN sampling rate and
data transfer bandwidth between electronic processors and PPNs. In
the following, we propose an all-optical probabilistic computing plat-
form which can overcome these challenges, and evaluate the potential
benefit in terms of speed and energy efficiency compared to the
electronic state of the art.

To increase sampling rate and reduce energy consumption, we
propose an all-optical implementation. For instance, PPNs can be
implemented with injection-seeded vertical-cavity surface-emitting
lasers, reaching >1 Gbps*? and providing energy-efficient operation®.
Fast control of the probability and state detection can be achieved with
high-bandwidth modulators and detectors**%, suggesting that PPNs
achieving 1 Gbps sampling rate are within reach (detailed explanations
can be found in Supplementary Note 4).

Furthermore, our programmable stochastic element naturally
implements an all-optical nonlinearity through the bias-probability
relationship, which has been a historical challenge in the imple-
mentation of energy-efficient all-optical ONNs®. Typically, ONNs rely
on optoelectronic measurement-feedback schemes to update the
network layers**°. Conversely, in the proposed scheme, an optical
signal (vacuum-level bias) controls the nonlinearity of the layer.
Because the bias signal can be derived directly from the accumulated
PPN outputs, bypassing active components, the scheme can reduce
energy consumption per multiply-accumulate (MAC) operation to as
low as -5 fJ/MAC. State-of-the-art stochastic electronic devices, such as
low-barrier magnetic tunnel junctions and diffusive memristors inte-
grated with conventional CMOS technologies are expected to achieve
~0.1Gbps®**! and consume -~900 fJ/MAC*. Comparatively, our pro-
posed photonic platform can be ~x10 faster and ~x100 more energy
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efficient. A detailed discussion of this all-optical probabilistic com-
puting platform is found in Supplementary Note 4.

We now compare the speed and energy performance of our
photonic platform to a state-of-the-art FPGA®>%, in an image classifi-
cation task considering a binary neural network. The deterministic
FPGA implementation demonstrated a classification of -1.6 million
images per second with ~23W power consumption. Adopting the
network structure of our SBNN model in Fig. 3, we can calculate the
computation time and the number of MAC operations required for
each inference. Our estimation gives -4 ns and ~10° MAC operations
per classification, which result in ~250 million image classifications
per second with a power consumption of ~0.1W. Therefore, the sug-
gested all-optical probabilistic computing hardware could perform
x100 faster while consuming x100 less power. Detailed discussion can
be found in Supplementary Note 4.

One of the possible extensions of our work is to train the network
physically>***. This becomes critical when an accurate digital modeling
of the physical system becomes challenging due to its complexity.
Without an additional cost of simulating randomness in digital models,
several training methods which resort to stochasticity, including sto-
chastic gradient descent*®, dropout™, and noise injection”’ could
potentially be realized with PPNs. Harnessing quantum vacuum noise
in optical elements for both training and testing, our PPNs will pave the
way of implementing all-optical probabilistic physical neural networks,
which can benefit state-of-the-art machine learning applications
including large language models® and diffusion models®.

Our platform could also be used to implement other important
computational tasks. The first one is alternative interpretable neural
network models with trainable activation functions®®, which could be
implemented with the PPN by taking advantage of its tunable bias-
probability relationship. The second one is Ising model solvers with
external magnetic fields, which can be modeled by the injection of a
bias field in a network of OPOs®".

Data availability

All data supporting this work are available within the manuscript, the
Supplementary Information, the online repository: https://codeocean.
com/capsule/4025993/tree. Raw data generated during the study are
available once requested to the corresponding authors. Correspon-
dence and requests should be addressed to S.C. (seouc130@mit.edu)
and C.R.-C. (chrc@stanford.edu).

Code availability
The code used in this study is available at https://codeocean.com/
capsule/4025993/tree.
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