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Many machine learning applications involve learning a latent representation of data, which is often high-
dimensional and difficult to directly interpret. In this work, we propose “moment pooling,” a natural
extension of deep sets networks which drastically decreases the latent space dimensionality of these
networks while maintaining or even improving performance. Moment pooling generalizes the summation
in deep sets to arbitrary multivariate moments, which enables the model to achieve a much higher effective
latent dimensionality for a fixed learned latent space dimension. We demonstrate moment pooling on the
collider physics task of quark/gluon jet classification by extending energy flow networks (EFNs) to
moment EFNs. We find that moment EFNs with latent dimensions as small as 1 perform similarly to
ordinary EFNs with higher latent dimension. This small latent dimension allows for the internal
representation to be directly visualized and interpreted, which in turn enables the learned internal jet
representation to be extracted in closed form.
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I. INTRODUCTION

As modern machine learning (ML) models and their
applications continue to grow in size and scope, their
internal representations of data become increasingly more
complex and difficult to decipher. While there are a variety
of ways to interpret what is “learned” in an ML model
[1–10], it is often difficult to draw concrete, first-principles
conclusions on how these models internally represent
learned data, as the latent space tends to be high-dimen-
sional and complex. This, in turn, makes it more difficult
not only to trust ML models when applied outside their
original training sets, but also to understand what additional
domain insights may be driving the improved performance
of these models.
ML methods have been gaining interest in collider

physics, and have shown to perform remarkably well in
a variety of collider physics and jet substructure tasks
[11–33]. Recently, the energy flow network (EFN) [34] has
emerged as a promising model, performing relatively well

on jet tagging [35] while being more robust than other
models with respect to training set simulation choice [36].
EFNs are a generalization of deep sets [37],1 which use a
set-based representation of the event, P, to construct
observables with the ansatz,

OðPÞ ¼ FðhΦaiPÞ; ð1Þ

where hΦi is the expectation value of Φ over the event P,
defined below. The function Φ∶ Rd → RL, usually para-
metrized as a dense neural network, is a per-particle L-
dimensional latent representation of x, with the latent
dimension indexed by a ¼ 1;…; L. The functionF (another
dense neural network) is then a function of this representa-
tion, which converts the latent representation into the
observable O. The deep sets theorem, as discussed in
Refs. [34,37], guarantees that any [infrared and collinear
(IRC)-safe] observable can be approximated arbitrarily well
for a sufficiently expressive F and Φ, and large enough L.
However, the theorem makes no guarantees on the complex-
ity of Φ or F, and may require a very large L.
In this paper, we introduce moment pooling, a natural

extension of deep sets architectures that significantly
reduces the number of latent dimensions L needed while
maintaining or improving its performance. The moment
pooling operation generalizes the expectation value of Φ in
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1EFNs generalize deep sets in the sense that EFNs reduce to
deep sets when weights are removed, discussed more below.
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Eq. (1) to higher-order multivariate moments,

OkðPÞ≡ FðhΦaiP ; hΦa1Φa2iP;…hΦa1…ΦakiPÞ; ð2Þ

where k is the highest order moment considered. This
procedure is inspired by histogram pooling [38], in which
the Φ are histograms binned in x. We focus primarily on
applying moment pooling to EFNs in the collider physics
context, where Eq. (2) defines an order-k moment EFN,
which reduces to the ordinary EFN when k ¼ 1.
Alternative modifications of EFNs are discussed in
Refs. [39,40].
We show that for k > 1, a moment EFN enables the same

or better performance on quark/gluon jet classification as
an EFN, but with a much smaller latent dimension L,
allowing the same machine-learned observables to be
constructed using fewer base functions. With fewer latent
dimensions, it is much easier to directly visualize the
model’s internal representations and therefore easier to
directly interpret and find closed-form expressions for the
learned observable. As a concrete example, an order k ¼ 4
moment EFN with a single latent dimension achieves
comparable performance on quark/gluon jet classification
to an ordinary EFN with four latent dimensions. We are
able to directly plot this latent dimension and find that it
takes a remarkably simple closed form, the “log angularity”
observable, which bears many similarities to jet angular-
ities [41,42].

The rest of the paper is organized as follows. In Sec. II,
we give an overview of moment pooling and the moment
EFN architecture, show how it naturally arises as a
generalization of deep sets, and introduce the idea of
effective latent dimensions. In Sec. III, we demonstrate
how the moment EFN may be used for quark/gluon
discrimination, and how moment EFNs outperform ordi-
nary EFNs as L and k are varied. In Sec. IV, we analyze the
latent spaces of small-L moment EFNs and attempt to
understand them in terms of simple closed-form fits,
allowing for analytic observables to be extracted from
the model. Finally, in Sec. V, we present our conclusions
and outlook. Implementation details of the architecture may
be found in Appendix A. An additional study involving
regression on jet angularities, rather than classification,
using moment EFNs may be found in Appendix B.
Additional studies complementing Sec. III, involving
top/QCD discrimination and moment particle flow net-
works (PFNs) rather than EFNs, may be found in
Appendix C.

II. MOMENT POOLING

We begin with the construction of the moment pooling
operation. We first define moment pooling as an extension
of deep sets and apply it to EFNs, a form of weighted
deep sets, to produce moment EFNs in Sec. II A. Then, in
Sec. II B, we discuss how moment pooling is capable of

reducing the latent dimension of EFNs through the concept
of effective latent dimensions.

A. The moment energy flow network

The moment pooling operation, as given by Eq. (2),
is a generalization of deep sets-style architectures. The
form of Eq. (2) is motivated by the observation that the
summation step over the latent representation Φa in deep
sets architectures, generalized to weighted sums in EFNs,
can be regarded as taking an expectation value of the
L-dimensional random variable ΦaðxÞ defined over a base
space Rd, taken over P,

hΦaiP ≡X

i∈P

ziΦaðxiÞ; ð3Þ

where zi are weights and xi ∈Rd. In the collider physics
context, zi are (normalized) particle energies and xi ¼
ðyi;ϕiÞ are particle’s rapidity y and azimuthal angle ϕ on
the detector, and P is a probability distribution of energy on
detector space, or an energy flow [43–47], over which we
can take expectation values.2

Applying Eq. (3) to Eq. (1), we find,

OðPÞ ¼ F

�X

i∈P

ziΦaðxiÞ
�
; ð4Þ

which is how an EFN is typically written [34]. Note that an
ordinary deep sets network, as presented in Ref. [37], is
simply a special case of the EFN where zi ¼ 1 for all i.
Given that EFNs are functions F of the expectation value

of Φa, it is natural to extend them to also include higher-
order moments of Φa, arriving at the moment energy flow
network. More precisely, the moment EFN of Eq. (2)
simply extends F from being a function of only the
expectation value of Φa to a function of up to k moments
of Φa, which reduces to the ordinary EFN for k ¼ 1. As an
explicit example, the k ¼ 2 moment EFN takes the form,

O2ðPÞ ¼ FðhΦaiP; hΦa1Φa2iPÞ; ð5Þ

where hΦa1Φa2i is the second moment of Φ, which is

hΦa1Φa2iP ¼
X

i∈P

ziΦa1ðxiÞΦa2ðxiÞ: ð6Þ

This quantity is related to the covariance between the
random variables Φa1 and Φa2 ,

hΦa1Φa2iP ¼ ½CovðΦ;ΦÞ�a1a2P þ hΦa1iPhΦa2iP: ð7Þ

2To align with the notation of Ref. [47], we have hΦaiP ¼
hP;Φai.
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Similarly, the k ¼ 3 and k ¼ 4 moment EFNs contain the
skew and kurtosis ofΦa, respectively. In principle, it is also
possible to instead define a “cumulant EFN” with “cumu-
lant pooling,” where F is a function of the first k cumulants
rather than the first k moments, though we will not pursue
this here. In general, keeping only the first k moments can
be thought of as an unpixelated generalization of max- or
mean-pooling procedure in convolutional neural networks,
wherein one “coarse grains” the distribution Φ, hence the
term “moment pooling.” For example, by keeping only the
first two moments of Φ, we have effectively smoothed out
the higher-moment information of our point cloud and kept
only the Gaussian component.
It is important to emphasize that Φa remains a function

of a single particle, and that the moments are taken over the
set of particles, not pairs or m-tuples of particles. In other
words, ΦaðxiÞ only provides information about the ith
particle, and the moments hQΦai describe only how that
information is distributed across an event, not explicit inter-
particle correlations. This is in contrast to graph-based
approaches, such as ParticleNet [15], IRC-safe graph net-
works [32,33], or energy flow polynomials [48], which
explicitly construct interparticle correlations of the form
hðxi; xj; xk;…Þ. As a final point of contrast, for an event
with N particles, a graph-based approach with m edges has
to considerOðNmÞ terms, while the moment EFN still only
has N terms in its sum for each moment.
The above discussion has focused on extending EFNs to

have multiple moments. However, it is straightforward to
drop IRC-safety and generalize to the particle flow network
(PFN) [34], or indeed any realization of deep sets archi-
tectures.3 This can be accomplished by simply modifying
the definition of the expectation value Eq. (3) to remove the
energy weighting,

hΦiPFNP ¼
X

i∈P

ΦðpiÞ; ð8Þ

where Φ is a function of the per-particle information p,
which can include the particle’s energy, momentum,
charge, flavor, and other information. Here, P can no
longer be regarded as the distribution of energy over the
detector space, but rather just as an abstract unnormalized
distribution of particle information. Example studies
involving moment PFNs rather than moment EFNs may
be found in Appendix C.
Finally, some notes about our conventions and notation

for the rest of the paper. First, we will use the terms
“energy” and transverse momentum “pT” interchangeably,
as nothing we say here depends on this distinction; our
studies here focus on the Large Hadron Collider (LHC),

where it is typical to speak of transverse momenta rather
than energies. Second, although detectors are often cylin-
drical or spherical and these models can be extended to
accommodate this, we will only consider local rectangular
patches ∼R2 in the rapidity-azimuth plane. Third, we will
always implicitly include the k ¼ 0moment, h1iP , which is
the total energy of the event. For normalized events, this
contains no information, but we find it convenient to
include. When we speak of a k ¼ 1 moment EFN, or
equivalently an “ordinary” EFN, we are still including the
k ¼ 0 moment, which differs from the conventions of
Ref. [34] slightly. Practically speaking, this makes no
numeric difference. Finally, we will occasionally find it
convenient to speak of Φa not as a single L-dimensional
function of x, but as L separate one-dimensional functions
Φ, and suppress the a indices.

B. The effective latent dimension

Given that, by the deep sets theorem [37], EFNs are
already capable of approximating any IRC-safe observable
arbitrarily well, why should we bother making them more
complicated by adding moments? A moment EFN is able to
approximate the same observable with a much smaller
learned latent space dimension than an ordinary EFN, by
taking advantage of its large effective latent dimension. The
effective latent dimension of an order-k moment EFN with
L latent dimensions is the total number of distinct inputs to
the function F, and is given by

Leff ¼
�
Lþ k

k

�
; ð9Þ

which asymptotically goes as Leff ∼ Lk

k! for large L.
An order k moment EFN with L different Φ functions

(indexed by a) acts like an ordinary EFN with Leff different
Φ0 functions (indexed by A), in the sense that if we identify,

Φ00ðxÞ¼ 1;

Φ0AðxÞ¼Φa for A¼ 1;…;L;

Φ0AðxÞ¼Φa1Φa2 for A¼Lþ1;…;
L2þ3L

2
;

…

Φ0AðxÞ¼
Yk

i¼1

Φai for A¼
�
Lþk−1

k−1

�
;…;

�
Lþk

k

�
−1;

ð10Þ

and assign bothmodels exactly the sameF network, then the
twomodels are completely identical. The moment EFN only
needsL different learnable functionsΦ to express this, while
the ordinary EFN needsLeff different learnable functionsΦ0,
withL ≪ Leff . We can think of a moment EFN as effectively
“compressing” or “encoding” Leff pieces of information into
just L functions, with Eq. (10) being the “decoder.”

3A note on nomenclature; a PFN is identical to an ordinary
deep sets network. We use the term “PFN” to refer to this
architecture in the particle physics context, and “deep sets” to
refer generically to sets-based architectures.
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Equation (10) highlights another distinguishing feature
of the moment EFN; explicit nonlinear products. Typically,
Φ is parametrized as a dense neural network, which
consists of affine transformations interleaved with non-
linear activation functions. It is difficult for these models to
approximate highly nonlinear functions as it is a lot easier
for a dense neural network to learn ΦðxÞ ¼ x than to learn
ΦðxÞ ¼ xk. Moment EFNs involve an explicit product of Φ
functions, which directly enable functions of the type xk to
be easily represented. See Appendix B for a concrete
example of how this multiplication structure can aid in
learning jet angularities, which are observables involving
nonlinear powers of particle coordinates.
For a fixed L, a moment EFN with greater k is always at

least as expressive as moment EFN with a smaller k, and
therefore should perform at least as well. This is because F
can be chosen to simply ignore the extra effective latent
dimensions. Practically speaking, increasing k with L fixed
makes the models slightly more complex to train, as there
are more parameters to optimize over, so this monotonicity
in performance may be imperfect in practice. To mitigate
this, we employ a “pretraining” procedure on our models so
that extra effective latent dimensions do not damage
performance (see Appendix A for details).

On the other hand, if we fix Leff and the function F, there
is a small loss of expressivity when using moments, and
therefore not all observables can have their representations
efficiently compressed this way. A moment EFN with L
latent dimensions is not quite as expressive as the equiv-
alent ordinary EFN with Leff latent dimensions, so the
identification in Eq. (10) is not always possible. This is
because the latent dimensions of an ordinary EFN are
completely uncorrelated, whereas the moments of a random
variable Φ are correlated; for example, it is always the case
that hΦ2i > hΦi2. As an explicit counterexample, suppose
we were interested in constructing the energy-weighted
average position of a jet in detector space; the observable
OðPÞ≡ ðyavg;ϕavgÞ. This is easy to accomplish with an
L ¼ 2 ordinary EFN, with Φ0ðxiÞ ¼ ðyi;ϕiÞ and trivial F.
However, this is difficult to accomplish with the equivalent
order k ¼ 2 moment EFN with L ¼ 1, even if we allowed
F to vary, because yavg and ϕavg are independent, whereas
any possible ΦðxÞ we construct would have hΦi and hΦ2i
correlated.4

To summarize: While one should always expect a higher-
order moment EFN with L latent dimensions to more
accurately approximate an observable than a lower order
moment EFN with L latent dimensions, it is not guaranteed
that a higher-order moment EFN with Leff effective latent
dimensions will outperform a lower-order EFN with Leff
effective latent dimensions. When this does happen, this is

a statement that the observable being estimated has some
simpler structure, which we will see is the case for IRC-safe
quark/gluon jet discrimination in Sec. III. Interestingly, this
is not the case for top/QCD jet discrimination (see
Appendix C for a concrete example).
As a brief aside, the explicit product structure of moment

EFNs is reminiscent of the self-attention mechanism
[49,50] in transformer models [26,51]. Schematically, in
the k ¼ 2 product Φa1ðxÞΦa2ðxÞ we can think of Φa1ðxÞ as
telling the network how much to “pay attention” to Φa2ðxÞ
(and vice versa). Similarly, the self-attention mechanism in
transformers is of the schematic form,

softmaxðQðxÞKðxÞÞ · VðxÞ; ð11Þ

which, ignoring the softmax (primarily used to interpret
the result as a weight), is a cubic product of the form
Φa1ðxÞΦa2ðxÞΦa3ðxÞ.

III. CASE STUDY: QUARK/GLUON
DISCRIMINATION

We now apply themoment EFN to the task of quark/gluon
jet tagging [52,53], to show how its performance varies with
different choices of L and k compared to the ordinary EFN.
Additional details about the model specifications and train-
ing procedures can be found in Appendix A, and similar
studies using a moment PFN instead of a moment EFN and
for discriminating top-initiated jets from QCD jets can be
found in Appendix C.

A. Dataset

Weuse the samequark and gluon jet dataset as described in
Ref. [34]. This dataset consists of Z plus jet events atffiffiffi
s

p ¼ 14 TeV generated using Pythia 8.226 [54,55] with
multiple parton interactions turned on. The Z is forced to
decay invisibly to neutrinos, and the remaining particles at
then clustered into R ¼ 0.4 anti-kT [56] (AK4) jets using
FastJet 3.3.0 [57]. Only jets with transverse momentum
pT ∈ ½500; 550� GeV and rapidity jyj < 2 are kept. Each
jet is then labeled as a quark or gluon depending on the
underlying hard process that generated it, with quarks
generated using the WeakBosonAndParton:qg2gmZq
process and gluons generated from the WeakBoson
AndParton:qqbar2gmZg process.5 No detector simu-
lation is applied. Each jet is then prepossessed, such that the
sum of the particle pT’s is normalized to 1 and the pT-
weighted average position of the jet is (0, 0) in the rapidity-
azimuth plane. In the following studies, we use 1M total jets
to train, and 50 k jets each for validation and testing.

4This is technically possible if Φ is a space-filling curve, but
not only this discontinuous and therefore not IRC-safe, it would
be incredibly difficult to learn.

5These quark and gluon labels are technically unphysical, and
there exist more physical operational definitions of the quark and
gluon content of a jet [58,59], but this is largely unimportant for
our study here.
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B. Performance

For orders k ¼ 1 through 4, we train moment EFNs for a
wide range of latent dimensionsL from 1 to 128 in powers of
2. Due to memory and training time considerations, we
consider only up to L ¼ 28−k, since otherwise Leff becomes
prohibitively large. For each model, we report its per-
formance using the “area under curve” (AUC)6 metric
across three retrainings. We also report the gluon rejection
factor at quark efficiencies of 0.3 and 0.5 for the largestL and
smallest L models in Table I for ease of comparison with
other quark/gluon discrimination studies [23,26,31,60–72].
Each moment EFN model is trained as an ordinary

classifier to minimize the binary cross entropy between the
quark and gluon classes. Both classes appear in the dataset
with 50% probability. The specific details of the models
and training procedure may be found in Appendix A.
The resulting model performances on the quark/gluon

discrimination task, as a function of L and Leff , are shown
in Figs. 1(a) and 1(b), respectively. From these plots we can
make four key observations:
(1) At fixed L, AUC improves with k: As expected,

increasing the order of the moment EFN improves its
performance for fixed L, since the ansatz is more
expressive. This effect is particularly pronounced
near L ¼ 1, with the AUC improving from 0.75 to
0.84 from k ¼ 1 to k ¼ 4;

(2) Higher k saturates faster: As k increases, the value
of L required to saturate performance drops. The
ordinary EFN saturates around L ¼ 128, whereas
the order k ¼ 4 saturates around L ¼ 16. To achieve
peak performance, you don’t need as high an L with
a moment EFN;

(3) Peak AUC improves with k: The highest AUC
achieved by these models improves slightly with
k, as indicated by the dashed lines in Fig. 1(a). In
Fig. 1(b), we can see that this is primarily driven by
the extremely high effective latent dimensions
reached by higher k moment EFNs.

(4) Leff drives performance: The AUC correlates very
strongly with Leff , regardless of the order k. This
suggests that “encoding” and “decoding,” as per
Eq. (10), is occurring, and that the quark/gluon
discriminant is “compressible” into fewer elemen-
tary functions. In particular, if an ordinary EFN
requires Leff latent dimensions to achieve a desired
performance in quark/gluon discrimination, an or-
der-k moment EFN would only require L ∼ k!L1=k

eff
latent dimensions to achieve the same performance.

All of these observations point to moment EFNs being
able to achieve the same (or better) performance as ordinary
EFNs but with a significantly smaller learned latent space
dimension. The quark/gluon discriminator can be effi-
ciently compressed, with the peak classifier going from
being composed of ∼128 functions to only ∼16 functions
while gaining a slight performance bump in the process. It
is also especially remarkable that an order k ¼ 4 moment
EFN is able to achieve an AUC of 0.84 with just a single
latent dimension, equivalent to an ordinary EFN with four
latent dimensions, and only a few points away from the best
possible EFN score of 0.88. We have checked for all studies
shown here that going to k ¼ 5 and beyond does not offer
any significant improvement over k ¼ 4.
Note that these four observations are not generically

true across different classification tasks. As shown in
Appendix C, the improvement in Observation 1 is not
always perfectly monotonic in k, especially if the models
fail to converge, and Observation 4 especially is not true for
top/QCD jet discrimination. As noted in Sec. II B, a higher-
k moment EFN may be less expressive than a lower-k
moment EFN with the same Leff , causing performance to
potentially worsen with k for fixed Leff .

TABLE I. The AUC and gluon rejection factor at quark efficiencies of 0.3 and 0.5 for the k ¼ 1, 2, 3, and 4
moment EFNs trained in Sec. III. Here, we show results for the L ¼ 1 networks, alongside the k ¼ 1, L ¼ 4
ordinary EFN, which achieves comparable results to the k ¼ 4, L ¼ 1moment EFN.We also show the highest latent
dimension L considered at each order (L ¼ 128, 64, 32, and 16, respectively). For each metric, the model with the
best performance is bolded.

Model AUC 1=ϵg at ϵq ¼ 0.3 1=ϵg at ϵq ¼ 0.5 Trainable parameters

k ¼ 1, L ¼ 1 EFN 0.743� 0.001 54.2� 1.7 12.0� 0.1 31,106
k ¼ 2, L ¼ 1 moment EFN 0.802� 0.002 53.9� 3.5 16.7� 0.2 31,206
k ¼ 3, L ¼ 1 moment EFN 0.831� 0.000 52.2� 2.6 18.5� 0.2 31,306
k ¼ 4, L ¼ 1 moment EFN 0.841� 0.004 61.6� 2.8 21.3� 0.1 31,406
k ¼ 1, L ¼ 4 EFN 0.843� 0.004 64.0� 2.1 24.5� 1.0 31,745
k ¼ 1, L ¼ 128 EFN 0.879� 0.001 69.2� 1.8 31.4� 0.8 89,653
k ¼ 2, L ¼ 64 moment EFN 0.886� 0.001 83.0� 1.3 30.7� 0.6 260,085
k ¼ 3, L ¼ 32 moment EFN 0.886� 0.001 72.6� 2.1 33.6� 1.0 69,0645
k ¼ 4, L ¼ 16 moment EFN 0.887� 0.001 81.6� 3.4 32.7� 0.4 51,7461

6More precisely, if PiðxÞ is the cumulative distribution
function for the model output x assuming the distribution i
(either q or g in this case), then the AUC is defined to be
1 −

R
1
0 dλPgðP−1

q ðλÞ�. An AUC of 0.5 indicates random guessing,
and an AUC of 1.0 is a perfect classifier.
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IV. OPENING THE BLACK BOX

One practical advantage of the smaller latent dimension
afforded by moment EFNs is that lower-dimensional spaces
are easier to visualize and interpret. An L ¼ 4 ordinary
EFN involves the complex interplay of four independent
functions on detector space, whereas the equivalent order
k ¼ 4, L ¼ 1 moment EFN achieving the same perfor-
mance only has a single function to look at (and moreover,
we will see that this single function is radially symmetric).
For small L, we can even obtain closed form expressions
for the latent spaces of moment EFNs, and due to the
effective latent space, we can use this to extend our
understanding of ordinary EFNs for larger values of L
than we could have otherwise.
The rest of this section proceeds as follows. In Sec. IVA,

we take the order k ¼ 4, L ¼ 1 models trained in Sec. III,
visualize their internal representations, and find a closed-
form expression for their latent spaces, resulting in observ-
ables we call “log angularities.” In Sec. IV B, we show to
what extent the F network can also be cast into closed form.
Finally, in Sec. IV C, we briefly discuss L ≥ 2 models.

A. L= 1 and log angularities

When L ¼ 1, it is feasible to study exactly what the
model learned and extract a single closed-form, one-
dimensional observable representing the entire latent space
[34,73]. The order k ¼ 4, L ¼ 1 moment EFN is able to
achieve an AUC of 0.84 using a single learned representa-
tion, and our goal is to understand and extract this
representation. Because of the effective latent space,
interpreting the latent space of the order k ¼ 4, L ¼ 1

moment EFN is equivalent to interpreting all four of the
latent dimensions of an L ¼ 4 ordinary EFN. This study is
modeled after the study performed in Ref. [34], which
constructs two independent observable using an L ¼ 2
ordinary EFN and achieves an AUC ∼ 0.80.
SinceΦðxÞ is a function of the rapidity-azimuth plane, we

can directly plot the latent spaces of the bestL ¼ 1 networks
in 2D following the procedure outlined in Ref. [34], where it
is possible to visualize the entire latent space at once. We
show examples of this in Fig. 2 for k ¼ 1 through 4. We first
note that while the k ¼ 1, 2 and 4 networks learn a radially
symmetric latent space, the k ¼ 3 network does not—it
instead exhibits an approximatemirror symmetry. This is not
a feature unique to k ¼ 3, as this mirror symmetric latent
space occasionally occurs for k ¼ 2 and k ¼ 4 networks as
well in some retrainings, though seemingly without loss in
performance. Since QCD jets are approximately radially
symmetric [74,75], the fact that this “symmetry breaking”
does not affect performance is not surprising, since only
radial information is necessary for classification. The precise
mechanism that causes this to occur likely is sensitive to the
training dynamics of the models.
We now focus our attention to the highest performing

models: the order k ¼ 4 moment EFNs. In Fig. 3, we show
a radial slice of the k ¼ 4, L ¼ 1 latent space [shown fully
in Fig. 2(d)]. The radial slice is taken at an azimuthal angle
of 0 as a function of the rapidity y, though this choice is
arbitrary. Even in cases where “symmetry breaking” occurs
in the latent space, we find that the radial profile is largely
the same up to normalization on any projection not along
the mirror symmetry axis. Motivated by the form of the
radial profile in Fig. 3, we fit the function,

(a) (b)

FIG. 1. The performance (AUC) on quark/gluon discrimination of the k moment EFN as a function of the (a) latent dimension L and
(b) effective latent dimension Leff for different values of k. The thin horizontal dashed lines indicate the best value of the AUC achieved.
For each model, the standard deviation and mean of the AUC across three trainings is shown.
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ΦLðrÞ ¼ c1 þ c2 logðc3 þ rÞ; ð12Þ

where r is the radial distance in the rapdity-azimuth plane
from (0, 0), as defined by the energy-weighted average
position of the jet.
This function provides an excellent fit to the latent

function with c1 ¼ −3.584, c2 ¼ −0.847, and c3 ¼ 0.005.
The values of c1 and c2 are largely unimportant, since they
will be subject to affine transformations within the first

layer of the F network, and these parameters vary signifi-
cantly across retrainings. On the other hand, c3 is con-
sistently a small number in the range of 0.002 to 0.01, and
is embedded in a logarithm which is more nontrivial for F
to unravel.
The function ΦL has a divergence as r → 0 (i.e., as

particles become collinear with the jet center), but this
divergence is regulated by the c3 parameter. Interestingly,
c3 is within an Oð1Þ factor of ΛQCD

pTR
∼ 0.001, suggesting that

(a) (b)

(c) (d)

FIG. 2. Examples of learned moment EFN latent space embeddings ΦðxÞ, for (a) k ¼ 1, (b) k ¼ 2, (c) k ¼ 3, and (d) k ¼ 4. Each
figure represents the best model of the L ¼ 1 trainings from Sec. III. The overall normalization is arbitrary. The k ¼ 3 example features
mirror rather than radial symmetry, which can generically occur for k ¼ 2, 3, and 4.
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the nonzero value of c3 is due to genuine nonperturbative
physics near the jet core learned by the moment EFN.
The moments of the functionΦL can be used to construct

jet shape observables of the form,

LðnÞðPÞ ¼ hΦn
LiP ;

¼
X

i∈P

ziðc1 þ c2 logðc3 þ riÞÞn: ð13Þ

We call the observables LðnÞ log angularities, since they
resemble ordinary jet angularities λβðPÞ ¼ P

i∈P zir
β
i for

c1 ¼ c2 ¼ 0. It is possible to generically set c1 ¼ c2 ¼ 0

by taking linear combinations of LðnÞ for different n, but we
elect to keep these parameters as it reduces the amount of
total linear transformations our three hidden-layer dense
networks have to do. These log angularities are interesting
observables in their own right, especially in the c3 → 0
limit and are closely related to the β → 0 limit of ordinary
angularities [40,76], though we save a more in-depth
theoretical discussion of log angularities for future work
and here focus on their use as quark/gluon taggers.
We can use these analytic observables as inputs to a

simple dense neural network classifier of the form,

FðkÞðLð1Þ;…;LðkÞÞ: ð14Þ

If the k ¼ 4 dense neural net classifier has the same
performance as the full-order k ¼ 4 moment EFN, then
we can claim not only to have found a fully analytic form of
the k ¼ 4 latent space, but equivalently to have found a

fully analytic form of the four different L ¼ 4 ordinary
EFN latent space dimensions.
In Fig. 4, we show ROC curves7 of the classifier defined

by Eq. (14) for k ¼ 1 through 4. The F networks used here
have precisely the same architecture and training procedure
as those used for the moment EFNs in Sec. III, described in
Appendix A. These results are also summarized in Table II.
We also show, in purple, the k ¼ 4DNN classifier taking c3
to 0. From this plot, we can make several observations:
(1) The k ¼ 4 dense model is as good as the k ¼ 4

moment EFN: We can replace the neural network
latent dimension ΦðxÞ with the much simpler ΦLðrÞ
when L ¼ 1. Moreover, since the k ¼ 4, L ¼ 1
moment EFN is just as good as the L ¼ 4 ordinary
EFN, the single function ΦLðrÞ and its powers
captures the same information as 4 dimensions
worth of latent space in an ordinary EFN.

(2) The k ¼ 1, 2, and 3 dense models are not as good as
their corresponding order-k moment EFNs: The
AUCs of the dense models are slightly lower than
the corresponding L ¼ 1 moment EFNs in Table I
for k < 4. This suggests that while the combination
of Lð1Þ;Lð2Þ;Lð3Þ;Lð4Þ are optimal, individually they
are not, and Lð1Þ by itself is not the most optimal

FIG. 3. A radial slice of the latent space for the best performing
k ¼ 4, L ¼ 1 moment EFN, as a function of rapidity (y). The
radial slice is taken at an azimuthal angle of zero. The latent space
is shown as a dark blue line, and the logarithmic fit from Eq. (12)
is shown as a blue dashed line.

FIG. 4. ROC curves showing the performance of the analytic jet
shape observables, as defined in Eq. (13), as a quark/gluon
classifier. The jet shapes are passed into a dense neural net F as in
Eq. (14). The ROC of the original k ¼ 4, L ¼ 1 moment (Mom.)
EFN, from which the fits were derived, is shown in dark blue.
Also shown in purple is a variant of the k ¼ 4DNN, except where
the c3 parameter is taken to zero.

7The receiver operating characteristic (ROC) curve of a classifier
quantifies the background rejection rate as a function of the signal
acceptance rate, and is given by ROCðλÞ ¼ 1 − PgðP−1

q ðλÞÞ.
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TABLE II. The same as Table I, but with dense neural networks on log angularities as defined in Eq. (14). The
“3þ” and “2þ” in the trainable parameters column refer to the parameters in the log angularity fit.

Model AUC 1=ϵg at ϵq ¼ 0.3 1=ϵg at ϵq ¼ 0.5 Trainable parameters

k ¼ 1 log angularity DNN 0.730� 0.001 50.5� 1.2 8.5� 0.9 3þ 20702
k ¼ 2 log angularity DNN 0.784� 0.001 72.0� 1.7 13.5� 0.8 3þ 20802
k ¼ 3 log angularity DNN 0.816� 0.001 59.9� 1.7 19.4� 1.1 3þ 20902
k ¼ 4, log angularity DNN 0.821� 0.002 55.6� 2.0 18.5� 1.2 3þ 21002
k ¼ 4, c3 → 0 DNN 0.799� 0.001 60.7� 1.8 15.5� 1.0 2þ 21002

(a) (b)

(c)

FIG. 5. The distribution of the dense neural network output (a) Fð1Þ, (b) Fð2Þ, and (c) Fð3Þ as a function of the first, first two, and first
three (cumulant) log angularities, respectively. The true quark/gluon label for several random jets are indicated with colored stars.
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single-variable observable for IRC-safe quark/gluon
discrimination.

(3) The c3 parameter matters: Taking the parameter c3
to zero reduces the AUC of the k ¼ 4 models
significantly. Interpreting c3 as a nonperturbative
parameter regulating a collinear divergence in the
logarithm, this loss in performance can be viewed as
the learned effect of nonperturbative physics in
quark/gluon discrimination.

Thus, at least for k ¼ 4, we have successfully cast the
latent space of not only the moment EFN, but the
equivalent L ¼ 4 ordinary EFN, into closed form.

B. L= 1 F networks

Next, we attempt to go further by attempting to also find
closed-form expressions for the dense neural network
classifiers F, building off of the analysis performed in
Sec. IVAwhere we found closed-form expressions for the
latent space network Φ. This would result in a fully
closed-form quark/gluon jet classifier. However, analyz-
ing F is inherently more difficult than the individual Φ
functions, as for the k ¼ 4, L ¼ 1 model of interest, F is a
function of four inputs. Moreover, we know F must be
nontrivial in all four inputs, since otherwise there would
be no difference between the L ¼ 1 networks at different
values of k.
To aid in determining a functional form of F, we begin

by plotting the output of the dense neural networks
[Eq. (14)] considered in Sec. IVA as a function of LðkÞ,

for k ¼ 1, 2, and 3. To be explicit, we plot Fð1ÞðLð1ÞÞ in
Fig. 5(a), plot Fð2ÞðLð1Þ;Lð2ÞÞ in Fig. 5(b), and plot
Fð3ÞðLð1Þ;Lð2Þ;Lð3ÞÞ in Fig. 5(c).8 We will find it conven-
ient to work with “cumulant” log angularities Lc, rather
than ordinary log angularities, as this makes the distribu-
tions in Fig. 5 and the resulting fits simpler. The cumulant
log angularities are defined as

Lð1Þ
c ¼ Lð1Þ; ð15Þ

Lð2Þ
c ¼ Lð2Þ − ½Lð1Þ�2; ð16Þ

Lð3Þ
c ¼ Lð3Þ − 3Lð1ÞLð2Þ þ 2½Lð1Þ�3; ð17Þ

Lð4Þ
c ¼ Lð4Þ − 4Lð1ÞLð3Þ − 3½Lð2Þ�2

þ 12Lð2Þ½Lð1Þ�2 − 6½Lð1Þ�4: ð18Þ

In all three plots, we see that the DNN output is, for the
most part, cleanly divided into distinct regions in LðiÞ

c

space. This motivates using a weighted distance from a

learned reference point in LðiÞ
c space as a classifier, with the

ansatz,

FðkÞðLð1Þ;…;LðkÞÞ ¼ σ

�
w0 þ

Xk

i¼1

wiðLðiÞ
c − biÞ2

�
; ð19Þ

where wi and bi are parameters to be minimized, and σ is
the sigmoid function. This classifier arises naturally as the
(sigmoid of) the log-likelihood if we assume that the Lc are
Gaussian distributed with means bi and variances 1=ð2wiÞ,
motivated by the observation that in Fig. 5 the distributions
form rough contiguous blobs. The number of parameters in
this classifier is naively 4þ 2k, with 3 from the log
angularity fit, 1 from w0, and 2k from wi and bi.
However, because any monotonic function of a classifier
is an equally good classifier, this can be reduced to 2þ 2k
by removing w0 and an overall scale from the wi’s.
In Fig. 6, we show ROC curves corresponding to the

observables defined in Eq. (19). We also summarize these
results in Table III. For k > 1, the performance saturates
around an AUC of 0.78–0.79, which is roughly the perfor-
mance of an L ¼ 2 EFN. Unlike the case where F was a
dense network, however, the performance does not improve
significantly beyond k ¼ 2—moreover, these results are
largely uncharged for various modifications to the functional
form of Eq. (19), including extending to up to degree 4

FIG. 6. ROC curves showing the performance of the closed
form observables, as defined in Eq. (19), as a quark/gluon
classifier. For comparison, we also show the ROC curve of the
observable CðA; BÞ, a closed-form observable based on fits to an
L ¼ 2 EFN as defined in Ref. [34].

8Unfortunately, we are unable to display the full plot of
Fð4ÞðLð1Þ;Lð2Þ;Lð3Þ;Lð4ÞÞ, since the PDF file format is not yet
available in more than two dimensions.
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TABLE III. The same as Table I, but with the closed-form expressions defined in Eq. (19). The “3þ” in the
trainable parameters column refers to the parameters in the log angularity fit.

Model AUC 1=ϵg at ϵq ¼ 0.3 1=ϵg at ϵq ¼ 0.5 Trainable parameters

k ¼ 1 log angularity closed form 0.725� 0.001 36.2� 0.2 7.0� 0.0 3þ 1
k ¼ 2 log angularity closed form 0.780� 0.002 57.4� 0.2 10.6� 0.1 3þ 3
k ¼ 3 log angularity closed form 0.781� 0.002 57.8� 2.8 12.1� 0.1 3þ 5
k ¼ 4 log angularity closed form 0.793� 0.002 54.6� 1.7 12.7� 0.4 3þ 7

(a) (b)

(c) (d)

FIG. 7. The contours of the learned moment EFN latent space embeddings Φ, for (a) k ¼ 1, (b) k ¼ 2, (c) k ¼ 3, and (d) k ¼ 4. Each
figure represents the best model for the highest value of L considered for each k; 128, 64, 32, and 16, respectively. Each curve represents
the 45%–55% contours of each of the L different Φ functions. The overall normalization is arbitrary.
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polynomials in L and Lc and even up to degree 4 rational
polynomials.9 This suggests that the contributions of
higher-ordermoments beyond the first two aremore complex
andunable to be easily parametrized; that is,while it is easy to
encode the latent space information into a smaller L via

Eq. (10), the decoding of the effective latent space in F is
nontrivial.
For comparison, we also show the ROC curve of the

observable CðA; BÞ, an observable with a similar functional
form defined in Ref. [34] based off of fits to an L ¼ 2
ordinary EFN.10 This observable also saturates at roughly

(a) (b)

(c) (d)

FIG. 8. The contours of the learned L ¼ 2moment EFN latent space embeddingsΦ, for (a) k ¼ 1, (b) k ¼ 2, (c) k ¼ 3, and (d) k ¼ 4.
Each curve represents the 45%–55% contours of each of the two different Φ functions. The overall normalization is arbitrary.

9There are a variety of ways one can combine cumulants one
could try instead, for example, the Gram-Charlier A series or the
Edgeworth Series to approximate probability distributions given
cumulants [77].

10The EFNs in Ref. [34] use the ReLU rather than LeakyReLU
[78] activation, which slightly changes the small-L behavior
relative to the studies here.
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the same AUC. Thus, while we have succeeded in devel-
oping a fully closed-form solution suitable for up to k ¼ 2,
equivalent to two latent dimensions of an ordinary EFN,
finding a closed form expression for F beyond two
effective latent dimensions is nontrivial.

C. Beyond L= 1

Finally, we briefly look at moment EFNs with L > 1 to
see if we can attempt to gain some insight into them, just
like the L ¼ 1 moment EFNs. Unlike the case with L ¼ 1
moment EFNs, the analysis of L > 1 models is much more
difficult, both due to the higher dimension and because the
product structure allows radial symmetry to be more easily
broken, even for L ¼ 2.
In order to visualize the latent spaces for L > 1, we

follow the procedure outlined in Ref. [34]. We can overlay
all L learnedΦ functions of each model at once by drawing
the 45%–55% contours of each Φ function. In these plots,
the overall normalization and sign of the Φ functions is
unimportant, as the F network easily learn to rescale its
inputs via simple linear transformations. As an example, in
Fig. 7, we show the L ¼ 128, 64, 32, and 16 (the highest L
considered for each k) dimensional latent spaces of the
highest performing models for the order k ¼ 1, 2, 3, and 4
moment EFNs, respectively. Like the EFN, the moment
EFN is able to pick up on the collinear singularity of QCD, as
filters closer to the center aremore closely resolved.Note that
while on the whole, the entire ensemble of contours appears
to be radially symmetric, the individual contours are not—
this in contrast with the L ¼ 1 moment EFNs, where the Φ
functions were genuinely radially symmetric (or at the very
least, broken to mirror symmetric).
After L ¼ 1 from Fig. 2, the next most natural thing to

study are the L ¼ 2 latent spaces, which we show in Fig. 8.
Not only is L ¼ 2 less radially symmetric than L ¼ 1 in
general, we also notice the k > 1, L ¼ 2 moment EFNs
exhibit less radial symmetry than the L ¼ 2 ordinary EFN.
With product structures, it is easier to form nontrivial
representations of the rotation group that later combine to
form the trivial representation. As an example, the func-
tions Φ1ðxÞ ¼ xð1Þ and Φ2ðxÞ ¼ xð2Þ are themselves not
radially symmetric, but the k ¼ 2 moment combination
FðΦÞ ¼ ðΦ1Þ2 þ ðΦ2Þ2 is. Nevertheless, some models
occasionally still seem to retain some approximate radial
symmetry, as is the case for the order k ¼ 4 model in
Fig. 8(d).
We now move to analyze and fit the radial projections of

the order k ¼ 4, L ¼ 2 moment EFN in hopes of finding
closed-form expressions for the (now two) latent dimen-
sions, exactly as was done in Sec. IVA. This model has
Leff ¼ 15, which is roughly equivalent to an ordinary EFN
with 14 latent dimensions. In principle, fitting these two
functions should therefore enable us to extract the same
information as 14 latent dimensions worth of information in
an ordinary EFN by taking moments. These radial

projections are shown in Fig. 9. One of the two latent
dimensions takes the form of a log angularity, as defined in
Eq. (13), and the c3 parameter is also in the expected range.
We will call the associated jet shape observable L0, with the
prime indicative of the slightly different values of the fit
parameters ci. For the second latent dimension, we fit the
form,

ΦEðrÞ ¼ d1 þ d2 expð−r2=d23Þ; ð20Þ

motivated both by the form of the plot and the use of a similar
form in the analysis of the L ¼ 2 EFN in Ref. [34]. Just as
with log angularities, we can define moment-based jet shape
observables based off this fit, which wewill denote EðnÞ, and
associated cumulants EðnÞ

c . We can also define mixed
moments MðmnÞ of the form MðmnÞ ≡ hΦm

L0Φn
Ei.

We can use the observables L0ðnÞ and EðnÞ as inputs to
dense neural networks F as a measure of how well the latent
spaces are approximated by these fits. Here, the dense
network FðkÞ takes in all LeffðkÞ multivariate moments of
the two observables; for instance, the k ¼ 2 dense network
has the formFð2ÞðL0ð1Þ; Eð1Þ;L0ð2Þ; Eð2Þ;M1;1Þ. We show the
performance of these networks in Fig. 10(a).We see here that
unlike the L ¼ 1 analysis performed in Sec. IVA, the two
observables here are not enough to reproduce the fullL ¼ 2,
k ¼ 4 moment EFN; in fact, they are only about as good as
theL ¼ 1, k ¼ 4 result at best. Thismeans that the fits are not
enough to capture the full latent space, suggesting that non
radially symmetric information is important.
Finally, as was done in Sec. IV B, we may attempt to

build closed-form taggers from these fits. To accommodate
the second observable, we extend the form of our fit to

FIG. 9. The same as Fig. 3, but for the best performing k ¼ 4,
L ¼ 2 moment EFN. The two latent dimensions are shown in
blue and pink.
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FðkÞðLðiÞ; EðiÞÞ ¼ σ

�
w0 þ

Xk

i¼1

wL0
i ðLðiÞ

c − bL
0

i Þ2

þ
Xk

i¼1

wE
i ðEðiÞ

c − bEi Þ2
�
: ð21Þ

For simplicity, we have not considered mixed moments
between the two observables. We show the performance of
these taggers in Fig. 10(b). The observables here are no
better than the L ¼ 1 analytic observables shown in Fig. 6;
in fact, they are slightly worse, due to the extra numerical
cost of optimizing additional parameters.11 That is, unlike
the EFN observableCðA;BÞ, the additional parametrization
power granted by an additional latent dimension in a
moment EFN is more complex than can be captured by
a simple functional dependence.

V. CONCLUSIONS AND OUTLOOK

In this paper, we presented an extension of the deep sets
framework in the form of moment pooling. Moment
pooling arises when the summation operation in deep sets
is generalized to arbitrary multivariate moments. We have
shown an implementation of moment pooling in moment
EFNs, a particular deep sets framework useful in particle
physics. For a fixed number of latent dimensions L, an
order-k moment EFN is able to reach a much higher
effective latent dimension by recycling the same L func-
tions in product structures, and conversely, a moment EFN

is capable of reducing the L required to achieve the same
performance as an ordinary EFN.
We find that moment EFNs are able to achieve the same

(or better) performance as ordinary EFNs for quark/gluon
discrimination, but with significantly fewer latent dimen-
sions. In particular, an order k ¼ 4 moment EFN with only
16 latent dimensions is able to achieve slightly better
performance than an EFN with 128 latent dimensions,
indicative of “data compression” and structure in the quark/
gluon discrimination task. Similarly, an order k ¼ 4
moment EFN with only a single latent dimension is able
to achieve an AUC of 0.84, equivalent to an ordinary EFN
with four latent dimensions. By analyzing the latent space
of this model, we are able to find a simple, closed-form
expression in the form of the log angularity shape observ-
able, whose moments contain the same information as four
latent dimensions of an ordinary EFN. However, we find
that analyzing the F network in closed-form is difficult, and
that simple parametrizations cannot go beyond the perfor-
mance of up to an L ¼ 2 model, which suggests some
complexity in the way the information in log angularities is
decoded.
We conclude by discussing possible avenues of further

study. One can ask if the latent space structure granted by the
moment architecture helps in learning richer jet representa-
tions, i.e., if the latent representation is a genuine represen-
tation of a jet fromwhich multiple attributes and observables
can be estimated, not just a quark/gluon discriminant. The
latent spaces of EFNs are highly degenerate, and as we have
seen, the four latent dimensions of an L ¼ 4 EFN may be
replaced by four moments of log angularities without any
loss of performance on quark/gluon tagging. Second, we

(a) (b)

FIG. 10. (a) The same as Fig. 4, but with the L ¼ 2 fits and dense networks. (b) The same as Fig. 6, but for the closed-form F defined
using L ¼ 2 in Eq. (21).

11This holds for many modifications of Eq. (21), including
rational polynomials.
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have only considered moments, in the sense that we have
restricted our architecture to only have terms of the formP

i∈P ziðΦ1ðxiÞÞw1ðΦ2ðxiÞÞw2…ðΦLðxiÞÞwL , for predeter-
mined positive integers wl such that

P
l wl ≤ k. One could

imagine generalizing this even further, for example by letting
the powers wl be real and negative, or even learned. Third,
our study here primarily focused on IRC-safe observables
and EFNs, but the moment pooling concept is applicable to
any deep sets-style architecture. In particular, non-IRC safe
observables such as multiplicity are known to aid in quark/
gluon tagging, and indeed the studies in Appendix C addi-
tionally show there is potential for gain when applying
moment pooling to non-IRC safe PFNs. It may be possible,
therefore, to use moment pooling or related concepts to help
compress the latent spaces of more sophisticated point-cloud
based approaches, such as ParticleNet [15], Particle
Transformer [26], or PELICAN [31].
The moment pooling operation and moment EFN are a

step towards generalizing existing models while adding to
their interpretability. We look forward to further develop-
ments in the direction of flexible models with interpretable
internal representations.

The general moment EFN, along with several variations
(including cumulant-based models and moment PFNs), is
available at [79]. The code used to perform all the analyses
and make all the figures featured in this paper is available at
[80] in the form of Jupyter notebooks [81].
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APPENDIX A: MODEL AND TRAINING
SPECIFICATIONS

In this appendix, we provide details for the models and
training procedures used in Sec. III and Appendix C. All
models are implemented as modified versions of the EFN/
PFN models in the EnergyFlow Python package [34], built with
Keras [83] using the TensorFlow [84] backend. Each training is
performed using an NVIDIA A100.
The key difference between the moment EFN and the

ordinary EFN is the addition of the MomentPooling layer
between the Φ and F functions. The MomentPooling

layer is a deterministic function RL → RLeff , where Leff
depends on both L and the order k, that maps the
L-component Φ to the list of all multivariate moments up
to order k, taken over the event P:

Φa ↦ ðhΦaiP ; hΦa1Φa2iP;…hΦa1…ΦakiPÞ: ðA1Þ

Implementation-wise, the MomentPooling layer takes
in a TensorFlow tensor of shape ðNbatch; Nparticles; LÞ, where
Nbatch is the number of events to be computed in parallel,
Nparticles is the maximum number of particles per event,12

and L is the latent dimension; this tensor is obtained as the
output of the Φ network. The moments are then computed
recursively; we first define the k ¼ 0 moment tensor, a
tensor of shape ðNbatch; Nparticles; 1Þ with every entry equal
to 1. Given the kth moment tensor, which is of shape
ðNbatch; Nparticles; LeffðkÞÞ, the (kþ 1)th moment tensor is
obtained by performing the outer product of the original
input tensor, to obtain a new tensor of shape ðNbatch;
Nparticles; LeffðkÞ; LÞ. Note that this outer product will
contain redundant moments, since the order of indices
does not matter, thus, we only perform the outer product on
the indices corresponding to the upper triangular part of the
kþ 1-dimensional hypercube with L indices per dimen-
sion. The tensor is then flattened and concatenated to the
kth moment tensor to form the (kþ 1)th moment tensor of
shape ðNbatch; Nparticles; Leffðkþ 1ÞÞ. At the end of the
recursive procedure, we perform the z-weighted sum over
the Nparticles dimension, so that the final output has shape
ðNbatch; LeffðkÞÞ. This recursive procedure allows for some
computations to be reused when computing higher-order
moments, simplifying the TensorFlow computational graphs
and saving time on backpropagation versus recomputing all
moments from scratch.
Following Ref. [34], all of our models consist of a Φ

network with three layers of sizes 100, 100, and L,
respectively (with L being the latent dimension), and an
F network with four layers of size 100,100,100, and 1,
respectively. For both networks, the final layer is the output
layer. In between Φ and F is the MomentPooling layer.
We use LeakyReLU [78] with α ¼ 0.3 for all activation
functions,13 except for the final layer of F, where we use a
sigmoid function for the classifier output.
To aid our models in learning efficient representations,

especially for k > 1, we use a “pretraining” procedure. This
procedure helps to ensure that each additional moment
added is used to learn “new” information that helps the
model and to mitigate the effect of more nontrivial training
for higher-order k moment EFNs. To train an order-k

12While deep sets, in theory, allows for an unbounded number
of particles, it is more practical for speed and memory to have a
fixed cap.

13This is to avoid the Dying ReLU problem [85], especially for
smaller L.
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moment EFN, first, we first train the order k − 1 moment
EFN with the exact same value of L and the same
hyperparameters for the Φ and F networks, using the
training procedure defined below. Then, we initialize an
order-k network whoseΦ and F weights are identical to the
order k − 1 model’s weights, except for the weights
attached to the MomentPooling layer, as the size of
this layer has changed. The weights connecting the first
Leffðk − 1Þ outputs of the MomentPooling layer to the
first F layer are the same as the k − 1 network weights.
Finally, the order k model can be trained. This pretraining
procedure is recursive: to train the order k − 1 model, we
initialize its weights from an order k − 2 model, and so on.
The weights of the k ¼ 1 models, plus all other undeter-
mined weights (namely the rest of the weights connecting
the MomentPooling layer to the first F layer) are
initialized using the default He-uniform [86] distribution.
To ensure that any improvements are not the result of
having more epochs to train, in our comparative studies
lower k models have the training procedure described
below applied to them multiple times so that all models
train for the same total number of epochs. That is, since we
study up to k ¼ 4 moment EFNs, all of our models are
trained effectively for 4× the number of stated epochs.
Each model is trained for 50 epochs (times 4, with the

recursive pretraining) with a batch size of 512; we allow for
early stopping with a patience parameter of 8, though early
stopping never occurred in any of our trainings. We have
checked that allowing for a maximum of 150 epochs, rather
than 50, per training round makes no significant difference
in our results. We use 1M total jets for training, 50 k for
validation, and 50 k for testing. We train to minimize the
binary cross-entropy loss using the Adam optimizer [87]
with a learning rate of 0.001. The training times of each
network per epoch on an NVIDIA A100 are shown in
Table IV. Each model is reinitialized and retrained three
times, the ROC curves and AUC saved for each of the
trainings. Note that we do not train models with both larger
k and larger L, as the training time and memory require-
ments become excessive.

APPENDIX B: REGRESSION WITH JET
ANGULARITIES

In this appendix, we demonstrate the improved perfor-
mance and reduced complexity of moment EFNs in
regression tasks by exploring their relationship to jet
angularities [41,42].
Jet angularities are well-studied QCD observables that

quantify the radial distribution of energy within a jet. The
product structure of the moment EFN is especially suited
for angularities, since a jet angularity can be thought of as
an energy-weighted radial moment. For a jet P, the
β-angularity of the jet, λðβÞ, is defined as

λðβÞðPÞ≡X

i∈P

zijxijβ; ðB1Þ

where xi ¼ ðyi;ϕiÞ are the particle coordinates defined
from an appropriately defined jet center x0, which we will
take to be the energy-weighted average position of the jet.
In the language of moments, jet angularities take a very

natural form,

λðβÞðPÞ ¼ hjxijβi: ðB2Þ

If β is an even integer, then λðβÞ can be expressed using a
completely linear moment EFN with k ¼ β and L ¼ 2,

Φ1ðxiÞ ¼ yi; Φ2ðxiÞ ¼ ϕi; ðB3Þ

FðhΦiPÞ ¼
X2

a1¼1

…
X2

aβ=2¼1

hðΦa1Þ2…ðΦaβ=2Þ2iP ; ðB4Þ

where a ¼ 1, 2 corresponds to the two dimensions of x. In
particular, for β ¼ 2, this becomes

FðhΦiPÞ ¼ hy2i þ hϕ2i: ðB5Þ

The β ¼ 2 angularity is especially nice, as it relates to the
jet mass as

λð2Þ ≈
m2

J

ðPEiÞ2
: ðB6Þ

The fact that angularities can be represented as a linear
function of moments is significant, as dense neural net-
works, especially those using variants of ReLU, are at their
core are piecewise-linear approximators.14 The nonlinear
part of the angularities, namely the jxjβ function, is encoded
in the prespecified moment functions, leaving only a purely
linear function to learn. Thus, one would expect a strictly
linear moment EFN to learn even integer β angularities
exactly (that is, with a mean squared error loss of zero) for

TABLE IV. The time per epoch, in seconds, for the k ¼ 1
through 4 moment EFNs to train on the quark/gluon discrimi-
nation dataset.

Latent dimension L EFN k ¼ 2 k ¼ 3 k ¼ 4

20 2s 3s 3s 4s
21 3s 3s 3s 4s
22 3s 3s 4s 5s
23 3s 4s 6s 11s
24 3s 6s 16s 66s
25 4s 13s 91s
26 4s 38s
27 5s 14This is still qualitatively true for other activation functions.
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k ≥ β, and in general that k > 1 moment EFNs outperform
k ¼ 1 EFNs on generic regression tasks.

To illustrate the improved performance of the moment
EFN on regression tasks, we train L ¼ 2 moment EFNs
from k ¼ 1 through 4 to learn the angularity λðβÞ, for values
of β∈ ½0; 5�. The moment EFNs are strictly linear; the
functions Φ and F are strictly linear functions from R2 →
RL and RLeff → R, respectively, with no hidden layers,
activation functions, or even layer biases. We use the exact

same quark/gluon dataset described above in Sec. III A for
this study, though we ignore the quark/gluon label. On each
jet, we compute the β-angularity as defined in Eq. (B1), for
β from 0 to 5 in increments of Δβ ¼ 1

6
. The models are

trained to minimize the mean-squared error (MSE) over the
training set.
In Fig. 11, we plot the averageMSE of each model, taken

over the three retrainings, on the test set as a function of β.
First, we note that the k > 1 models are consistently better
than the k ¼ 1 model for β > 0. Second, there are large
downward spikes in the loss: at β ¼ 0 for all models; at
β ¼ 2 for k ¼ 2, 3, and 4; and at β ¼ 4 for k ¼ 4. The first
two spikes are especially close to zero, with an MSE loss of
∼10−12 approaching floating point precision. This is
precisely the behavior expected by Eq. (B4), as the linear
model is able to achieve an exact (up to machine precision)
fit for even integer β with k ≥ β.

APPENDIX C: ADDITIONAL COLLIDER
CLASSIFICATION STUDIES

In this appendix, we present additional studies to
supplement Sec. III, both by replacing the EFN in the
moment architecture with a PFN, and by replacing the
quark/gluon discrimination task with a top/QCD jet dis-
crimination task.
The moment PFNmodels are identical to those described

in Appendix A, except Φ is now a function of the particle
ðzi; xiÞ rather than just xi, andΦ is no longer weighted by z.
Importantly, this changes the definition of the moment
pooling operation, since, as shown in Eq. (8) moments are
not energy-weighted.
For our top/QCD dataset, we use the same top-tagging

set as in Refs. [13,35], commonly used as a benchmark in

FIG. 11. The (average) MSE loss of the k moment EFN trained
to regress the jet angularity λðβÞ as a function of β. Each line is the
average of the MSE across three retrainings (in log space), and
the bands are the standard deviation (in log space).

(a) (b)

FIG. 12. (a) The same as Figs. 1(a) and (b) the same as 1(b), but with a moment PFN rather than a moment EFN.
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tagger studies. This set consists of a top quark jet signal and a
mixed light quark and gluon jet background, generated in
Pythia 8.2.15 [54,55] at 14 TeV, and passed through the Delphes

3.3.2 [88] ATLAS detector simulation. The jets are clustered
using the anti-kT algorithm [56] with R ¼ 0.8, and satisfy
pT ∈ ½550; 650� GeV and jyj ≤ 2. We do not perform any
additional preprocessing here; in particular, we do not rotate
the jets in the rapidity-azimuth plane for these studies.

In Figs. 12–14, we show the AUC as a function of latent
dimension and effective latent dimension for quark/gluon
taggingwithmoment PFNs, top taggingwithmoment EFNs,
and top tagging with moment PFNs, respectively. These
figures are meant to complement Figs. 1(a) and 1(b) for
quark/gluon taggingwithmomentEFNs.Wealso summarize
the results of these classifiers in Tables V–VII for ease of
comparison with other studies using the same datasets.

(a) (b)

FIG. 13. (a) The same as Figs. 1(a) and (b) the same as 1(b), but with the top/QCD dataset rather than the quark/gluon dataset. Note the
k ¼ 4, L ¼ 2 outlier, potentially due to a failed convergence.

(a) (b)

FIG. 14. (a) The same as Figs. 1(a) and (b) the same as 1(b), but with a moment PFN rather than a moment EFN and the top/QCD
dataset rather than the quark/gluon dataset.
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We first observe that k ≥ 2 architectures perform the
same or better as their k ¼ 1 counterparts for a given value
of L, though this improvement is not always monotonic. In
particular, in Fig. 13, we can see that the k ¼ 4, L ¼ 2
moment EFNS are indeed slightly worse than the k ¼ 3,
L ¼ 2 moment EFNs, with a high variance. This is likely
driven by a failed network convergence, reflective of the
fact that k ¼ 4 models are difficult to train. Second, unlike
the quark/gluon moment EFNs, performance per effective

latent dimension is not independent of k. For the quark/
gluon moment PFNs, the performance per effective latent
dimension tends to increase with k, but for the top/QCD
moment EFNs and moment PFNs, the performance per
effective latent dimension tends to decrease with k. This
would seem to imply that the top/QCD discriminant is not
“compressible,” in that its latent space cannot be easily
factorized into products of just a few functions, and that
many independent functions are genuinely required.

TABLE V. The same as Table I, but with a moment PFN rather than a moment EFN.

Model AUC 1=ϵg at ϵq ¼ 0.3 1=ϵg at ϵq ¼ 0.5 Trainable parameters

k ¼ 1, L ¼ 1 PFN 0.862� 0.000 50.8� 1.0 19.4� 0.2 31206
k ¼ 2, L ¼ 1 moment PFN 0.864� 0.001 55.7� 0.9 20.3� 0.1 31306
k ¼ 3, L ¼ 1 moment PFN 0.866� 0.001 60.9� 2.3 21.3� 0.5 31406
k ¼ 4, L ¼ 1 moment PFN 0.867� 0.002 62.8� 1.2 22.0� 0.2 31506
k ¼ 1, L ¼ 128 PFN 0.889� 0.002 76.9� 0.6 31.6� 0.5 89753
k ¼ 2, L ¼ 64 moment PFN 0.890� 0.001 83.0� 1.3 32.2� 1.4 260185
k ¼ 3, L ¼ 32 moment PFN 0.890� 0.000 76.4� 2.7 33.2� 0.4 690745
k ¼ 4, L ¼ 16 moment PFN 0.893� 0.001 78.4� 4.0 34.1� 0.8 517561

TABLE VI. The same as Table I, but with the top/QCD dataset rather than the quark/gluon dataset.

Model AUC 1=ϵQCD at ϵtop ¼ 0.3 1=ϵQCD at ϵtop ¼ 0.5 Trainable parameters

k ¼ 1, L ¼ 1 EFN 0.922� 0.002 29.5� 0.7 16.8� 0.3 31106
k ¼ 2, L ¼ 1 moment EFN 0.930� 0.002 37.6� 0.6 20.2� 0.4 31206
k ¼ 3, L ¼ 1 moment EFN 0.933� 0.001 41.2� 2.3 20.6� 0.6 31306
k ¼ 4, L ¼ 1 moment EFN 0.946� 0.001 70.3� 5.8 29.1� 1.1 31406
k ¼ 1, L ¼ 128 EFN 0.970� 0.000 465.0� 40.0 108.8� 2.4 89653
k ¼ 2, L ¼ 64 moment EFN 0.972� 0.001 407.9� 16.7 131.0� 3.5 260085
k ¼ 3, L ¼ 32 moment EFN 0.974� 0.000 416.1� 40.0 138.4� 11.7 690645
k ¼ 4, L ¼ 16 moment EFN 0.972� 0.001 579.3� 118.4 132.2� 8.2 517461

TABLE VII. The same as Table I, but with a moment PFN rather than a moment EFN and the top/QCD dataset
rather than the quark/gluon dataset.

Model AUC 1=ϵQCD at ϵtop ¼ 0.3 1=ϵQCD at ϵtop ¼ 0.5 Trainable parameters

k ¼ 1, L ¼ 1 PFN 0.937� 0.001 43.3� 0.5 25.1� 0.1 31206
k ¼ 2, L ¼ 1 moment PFN 0.944� 0.000 59.8� 0.7 29.0� 0.2 31306
k ¼ 3, L ¼ 1 moment PFN 0.944� 0.001 62.8� 1.3 29.1� 0.9 31406
k ¼ 4, L ¼ 1 moment PFN 0.944� 0.000 62.2� 0.4 30.4� 0.9 31506
k ¼ 1, L ¼ 128 PFN 0.975� 0.001 351.8� 12.5 138.8� 7.0 89753
k ¼ 2, L ¼ 64 moment PFN 0.976� 0.001 303.2� 26.9 156.4� 11.1 260185
k ¼ 3, L ¼ 32 moment PFN 0.975� 0.000 321.2� 0.0 136.1� 6.2 690745
k ¼ 4, L ¼ 16 moment PFN 0.976� 0.001 351.8� 12.5 146.0� 17.0 517561
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