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Abstract

Galaxies are biased tracers of the underlying cosmic web, which is dominated by dark matter (DM) components
that cannot be directly observed. Galaxy formation simulations can be used to study the relationship between DM
density fields and galaxy distributions. However, this relationship can be sensitive to assumptions in cosmology
and astrophysical processes embedded in galaxy formation models, which remain uncertain in many aspects. In
this work, we develop a diffusion generative model to reconstruct DM fields from galaxies. The diffusion model is
trained on the CAMELS simulation suite that contains thousands of state-of-the-art galaxy formation simulations
with varying cosmological parameters and subgrid astrophysics. We demonstrate that the diffusion model can
predict the unbiased posterior distribution of the underlying DM fields from the given stellar density fields while
being able to marginalize over uncertainties in cosmological and astrophysical models. Interestingly, the model
generalizes to simulation volumes ~500 times larger than those it was trained on and across different galaxy
formation models. The code for reproducing these results can be found at https://github.com/victoriaono/

, and
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1. Introduction

Within the standard ACDM paradigm, hierarchical structure
formation arises from the gravitational growth and collapse of
the initial density inhomogeneities and forms the large-scale
cosmic web of today’s universe. In all, 85% of the matter
content is composed of dark matter (DM), whose nature
remains one of the most enigmatic questions in astrophysics
due to the absence of direct observations. Large observational
surveys such as the Dark Energy Spectroscopic Instrument
(DESTI; DESI Collaboration et al. 2016), Euclid (Laureijs et al.
2011), Roman (Spergel et al. 2015), and Rubin (LSST Science
Collaboration et al. 2009) are devoted to mapping the cosmos
by observing millions of galaxies at different wavelengths,
which will serve as biased tracers of the underlying DM density
fields with the goal of improving our understanding of the
nature and constituents of the Universe.

The cosmic web is sensitive to the laws and constituents of
the Universe. However, the dominant component of the cosmic
web, DM, is not directly observable. Therefore, one needs to
infer the distribution of the cosmic web solely based on biased
observable tracers. In this paper, we present a probabilistic
approach to reconstruct DM density fields from such observa-
tions. The reconstructed cosmic web can be used for two
purposes: (1) to study field-level cosmology (Cuesta-Lazaro &
Mishra-Sharma 2023; Nguyen et al. 2024) and extract
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information from voids and filaments that may not be
detectable from the galaxy distribution alone; (2) to identify
regions with low ratios of stellar-to-DM mass, as those are the
regions where we expect DM signatures to be larger and can
aid in constraining the nature of DM.

On large scales, the clustering of galaxies can be described by
a perturbative bias expansion of the DM density (Desjacques
et al. 2018), where the complexity of galaxy formation physics is
contained in a small set of expansion coefficients referred to as
biased parameters. Alternatively, one can describe galaxy biasing
in the context of the Effective Field Theory of Large Scale
Structures (Senatore 2015), which provides a systematic frame-
work for modeling galaxy clustering based only on symmetries
and scale separation. Currently, these models can only accurately
reproduce the galaxy power spectrum on scales larger than
10 2~ Mpc (Ivanov 2021).

On smaller scales, perturbation theory breaks down, and the
clustering of galaxies is affected by nonlinear structure
formation and astrophysical processes such as supernova or
active galactic nucleus (AGN) feedback, requiring hydrodyna-
mical simulations for theoretical predictions in this regime.
Over the past decade, galaxy formation simulations have made
significant progress (see Vogelsberger et al. 2020 for a recent
review) to more accurately study the relationship between the
observed galaxy distributions and the underlying DM fields.

However, due to limited resolution, cosmological simula-
tions usually adopt coarse-grained subgrid models to effec-
tively describe small-scale astrophysical processes such as star
formation, supernova feedback, black hole evolution, and AGN
feedback, and there are still large theoretical uncertainties lying
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in those subgrid models that lead to different predictions made
by different galaxy formation simulations.

To encapsulate those uncertainties, the Cosmology and
Astrophysics with Machine Learning Simulations (CAMELS)
project (Villaescusa-Navarro et al. 2021; Ni et al. 2023)
generated more than 8000 state-of-the-art galaxy formation
simulations that widely explore the variations in cosmological
and astrophysical parameters within different galaxy formation
models to provide a broad training set and testing ground for
machine-learning (ML) algorithms designed for cosmological
studies.

ML is a powerful tool to learn complex high-dimensional
distributions, such as the mapping between observable fields
(e.g., galaxies, neutral hydrogen gas) and the underlying
cosmic web from simulations. For example, previous work has
tried to use convolutional neural network (NN) models to infer
the DM field from the galaxy density field (Hong et al. 2021)
and from 21 cm maps (Villanueva-Domingo & Villaescusa-
Navarro 2021). However, these models are deterministic and
cannot generate the posterior distribution of different samples
of the cosmic web given the observable fields. It is important to
develop probabilistic generative models, such as those of
Mudur & Finkbeiner (2022) and Park et al. (2023), which can
encapsulate our uncertainties of how galaxies connect to the
underlying DM distribution. These models enable us to address
questions such as the likelihood of a certain DM halo mass
being associated with a given galaxy distribution.

In this work, we develop a diffusion generative model
trained on the CAMELS simulation suites to reconstruct the
underlying DM fields from stellar density fields. The primary
goal of the diffusion model is to capture the relationship
between the stellar fields and DM fields and predict the
unbiased posterior distribution of the DM fields conditioned on
the given stellar field, p(xpm|Xsurs). By training on the
CAMELS suite, the diffusion model can account for the
uncertainties inherent in the astrophysical processes assumed
by galaxy formation models, as well as the specific
cosmological parameters utilized in the simulations. We also
train the diffusion model using various training sets from
CAMELS and evaluate its robustness across different galaxy
formation models. Additionally, we apply the trained diffusion
model to large simulations of IlustrisTNG-300 to showcase its
extrapolation performance on out-of-distribution data.

The paper is structured as follows. Section 2 presents the
diffusion model along with the data set from CAMELS used
for training and testing purposes. Section 3 conducts a series of
validations to assess the performance and robustness of the
diffusion model. Finally, Section 4 provides a summary of the

paper.

2. Methodology

In this section, we describe the data set used, the model
architecture, and training methods.

2.1. Data Set

In this work, we use 2D maps from the CAMELS Multifield
Data Set (Villaescusa-Navarro et al. 2022) to model the
connection between stellar mass and DM densities produced by
three different suites of hydrodynamical simulations: ASTRID,
MlustrisTNG, and SIMBA. Table 1 provides a summary of the
simulations in each suite.

Ono et al.

CAMELS simulations have a box volume of (254~ 'Mpc)>.
Each simulation evolves the universe from z= 127 to today,
following the evolution of 256 DM particles of mass
6.49 x 10(2,, — €,)/0251 i ' M, and 256’ gas resolution
elements with an initial mass of 1.27 x 10’ A~ M. From each
simulation at z =0, the CAMELS Multifield Data Set produces
15 paired maps representing the stellar and DM surface density
in a region with dimensions 25 x 25 x 5 (h~'Mpc)? that is
projected along the third axis. We keep the image size to the
original 256 x 256 pixels, corresponding to 25 4~ Mpc on both
sides. The resolution of our maps is therefore of ~0.1 7~ Mpc.

We use the Latin hypercube (LH) set of each of the three
simulation suites to train our models. Each LH sets contains
1000 independent simulations spanning a wide range of
cosmological and astrophysical parameters, reflecting the
uncertainties of cosmology and the complex astrophysical
processes taking place in our current understanding of galaxy
formation. We augment the training set with random flips and
permutations of the input and output images.

The parameters varied in the LH set for each simulation suite
are Qm, og (COSIIlOlOgiC&l) and ASN17 AAGN17 ASNZs and AAGN2
(astrophysical), and their ranges are as follows: 0.1 <€,
<0.5, 0.6 <og< 1.0, 0.25 < (Asni, Aagny) <4.00, and 0.5 <
(ASNZ, AAGNZ) < 2.0. ASN and AAGN control the strength of
supernova wind and AGN feedback, respectively, with their exact
physical meaning differing across different galaxy formation
models. In particular, Agn; stands for the energy (in ASTRID and
MlustrisTNG) or mass loading factor (in SIMBA) of galactic
winds per unit star formation rate; Agny controls the speed of the
galactic wind; Aagny Vvariates the energy (in ASTRID and
lustrisTNG) or momentum (in SIMBA) of the AGN jet mode
feedback; Aagne controls the energy of the AGN thermal mode
feedback in ASTRID, the jet speed and burstiness in IllustrisTNG,
and the jet speed in SIMBA. We refer to Ni et al. (2023) for more
detailed descriptions.

We use the different simulation suites to assess the
generalization capabilities of the trained diffusion models. In
particular, the 1P set varies one parameter (from the fiducial
value in the CV set) at a time for each simulation. Testing on
this data set would clearly indicate how capable the model is at
marginalizing over each astrophysical parameter. On the other
hand, the CV set contains 27 simulations with the same fiducial
values of cosmological and astrophysical parameters but also
varied random seeds of the initial conditions that are designed
to quantify the level of cosmic variance on different
cosmological and astrophysical probes. The fiducial values
are 0, = 0.3, 03 = 0.8, Asni = AagN1 = Asnz = AagNe = L.

2.2. Diffusion Model

Figure 1 provides a schematic overview of the diffusion
model used in this study. We use the variational diffusion
model developed by Kingma et al. (2021) with a denoising
architecture similar to the U-Net (Ronneberger et al. 2015) to
model the posterior distribution of DM density fields from the
given stellar fields. The conditional diffusion model predicts
the conditional probability of the DM field xpy; from the stellar
field xgars:

p(xDM)p (xsta.rslxDM)
P (Xstars)

P (XpM|Xstars) =

Our diffusion model generates a target DM density field in
T =250 refinement steps. In the forward diffusion process, we



THE ASTROPHYSICAL JOURNAL, 970:174 (12pp), 2024 August 1

Variational Diffusion Model (VDM)

Forward diffusion

q(x; | xg) q(x,., | x) qler X
7N
&
DM Density
Pylxn| %1, €) | Pox | %41, | Polxr_y | %7, €)

Reverse sampling

|Denoising Model: ResUnet

Stellar Density

Ono et al.

Denoising Model: ResUnet

48

96

— Conditioning _ ; d 48

- 192 192
ResNet

3% 3Conv

;s | 384
p@ i 192

- 768
Attention 384

3 = 3 ComTranspose

Concatenation

Figure 1. Schematic overview of the conditional diffusion model used to model the posterior distribution of DM density fields from the given the stellar density fields.
The left panel illustrates the diffusion process, and the right panel shows the details of the convolutional NN-based denoising model.

Table 1
Summary of the Simulation Sets, Which Share the Same Design between the ASTRID, IllustrisTNG, and SIMBA Suites
Simulation Suites Set Number of Simulations Q. g Asni Asne AAGNL AAGN2
ASTRID / IlustrisTNG / SIMBA LH 1000 0.1-0.5 0.6-1. 0.25-4. 0.5-2. 0.25-4. 0.5-2.
1P 61 0.1-0.5 0.6-1. 0.25-4. 0.5-2. 0.25-4. 0.5-2.
Cv 27 0.3 0.8 1 1 1 1

Note. Asni, Asnas Aagni, and Aagno represent the value of subgrid physics parameters controlling stellar and AGN feedback. The LH set varies parameters in a Latin
hypercube, whereas the 1P set has variations of each parameter at a time, with all others fixed to their fiducial values. The CV set has all parameters fixed to the fiducial

values but varies the random seed of the initial conditions.

progressively add noise to an image by sampling from
q (o) = Nayxdy, 1), where o, and o2 are functions of
v the variance schedule, which we assume to be a linear
function of time and whose free parameters are learned during
training. Noise is added to the sample according to this schedule
and in a variance-preserving way, i.e., o = sigmoid(—~(z)).

In the reverse diffusion process, we wish to sample from
q(xbailxby) to denoise the image until we reproduce the
original image, but this is intractable as it requires knowing the
entire distribution of all possible images. Thus we use an NN to
estimate the conditional probability p, (X v, Xstars)> Where
Xsars 1S the corresponding star image to xpy called a
conditioning. It begins with a random Gaussian noise field
xpm ~ MO, 1) and iteratively denoises it according to this
learned probability to ultimately generate a sample
xDOM ~ p(XpmXstars). During training, the denoising NN takes
as input {xpy, Xsars> ¢} and estimates the noise that was added
to the image at that time step.

The loss function we optimize is the variational lower bound
of the marginal likelihood,

Lypp = Pre@Cebvbxiwlipy (e

Prior loss

70
+ By Qs By [ 10879 (¥DM I ¥DM- ¥ stars)]

Reconstruction loss

%E,Nu(o,l)[SNR’(t)nng — &gl?]

Diffusion loss

where SNR'(¢) is the derivative of exp(—-y(¢)), the signal-to-
noise ratio as a function of time that we assume to be
decreasing in time, and £, is the predicted output from the
denoising model at time step t. The objective thus is to
minimize a bound to the posterior pg(Xpm|Xstars)-

A detailed ablation study of this model is presented in
Appendix B.

2.3. Training

For our denoising model, we use a hierarchical U-Net
(Ronneberger et al. 2015)-like architecture with four blocks of
double convolution followed by strided downsampling layers.
We employ group normalization (Wu & He 2018) and residual
connections (He et al. 2015) in each block and use the AdamW
optimizer (Loshchilov & Hutter 2017) with a learning rate of
1 x 10~* and the CosineAnnealingWarmRestarts learning rate
scheduler (Loshchilov & Hutter 2016). We also initialize the
learned linear noise schedule with ~(f) =26.6 7 — 13.3. We
train the model using the PyTorch Lightning framework
(Falcon et al. 2020) with a batch size of 12 for 60000 gradient
steps, using the LH set as our training data.

We select the model with the lowest mean-squared error
(MSE) in the validation set, calculated as

Sample

— True 2
MSE = E s popuixg) YoM — ¥DM )"

3. Results

In this section, we conduct an exhaustive set of tests to
demonstrate the trained model’s performance and robustness:

1. In Section 3.1, we showcase the model’s performance
when the cosmological and astrophysical parameters are
set to their fiducial values, using the CV set for testing the
model.

2. In Section 3.2, we demonstrate that the model generalizes
to different cosmological and astrophysical parameters by
varying one of them at a time, using the 1P set.
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Figure 2. Top row: input stellar field, corresponding true DM density field, and a sample DM density field from the ASTRID-trained model, with circles drawn for
selected regions ranging from a void to a massive star cluster. Bottom row: probability distribution of the DM mass (defined to be the sum of the pixels in the region)
from 1000 samples corresponding to each selected region, with the solid line representing the true mass. The model is able to predict closer to the true mean as the total
mass in the region increases, and its decrease in variance demonstrates the model’s increase in confidence.

3. In Section 3.3, we show that the model generalizes across
galaxy formation simulations after training the diffusion
model on a single simulation suite and testing on the
others.

4. In Section 3.4, we test the model’s ability to recover the
large-scale DM distribution by deploying a model trained
on small volumes to a simulation with an ~500 times
larger volume.

3.1. Predictions for the CV Set

In this section, we test the diffusion model trained on maps
of the LH set of the ASTRID simulation suite on maps from
ASTRID’s CV set, whose cosmological and astrophysical
parameter values are fixed to the fiducial ones.

The top panel of Figure 2 illustrates one posterior sample of
the DM density field in comparison to the true DM density
field. The model can qualitatively reproduce the expected
features of the DM cosmic web of nodes, filaments, and voids.

The bottom panel in Figure 2 demonstrates how the posterior
samples can be used to estimate posteriors of quantities of
interests, in particular the mass of selected regions in the
density field. Here, the mass is calculated as the sum of pixel
values in the selected circular region. The regions for which
posteriors are shown are highlighted in the maps above,

ranging from a void to a massive star cluster. The radius of
each region is determined such that it encompasses sufficient
mass to illustrate the probability distribution as applying a halo
finder would require 3D density fields, while we use projected
2D fields. As expected, the posteriors are broader in regions
with low density of stars.

We also train the same diffusion model on the CV set instead
of the LH set to test how much uncertainty is introduced in the
posterior samples by implicitly marginalizing over the varying
astrophysical and cosmological parameters in the LH set. We
do not see a significant reduction in variance in the model
trained on the CV set given the large range of variations in the
cosmological and astrophysical priors used to generate the LH
set simulations. We hypothesize this small difference is due to
the ability of the LH-trained model to infer the correct
cosmological parameters from the stellar mass maps to debias
the fields, as shown in Section 3.2. This reduction in variance
would also come at the cost of poorer generalization
capabilities. We therefore train all our models on the LH set.

Figure 3 shows a quantitative comparison between the
summary statistics of the true DM fields and those of the
generated ones from the corresponding stellar fields. The
results are shown for one sample of the CV set. From left to
right, we show the statistics of density histograms, the 2D
power spectra, and the 2D cross power spectra, with shaded
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Figure 3. Summary statistics of the single stellar field and its corresponding DM density field from the CV set. Left panel: density histogram of star (only nonzero
stellar densities in the 2D maps are shown in the copper line), true DM (solid blue line), and DM inferred by the diffusion model (light blue). The shaded region shows
the 10th—90th percentiles of 100 samples from the posterior distribution of the DM field, and the dashed line shows its mean. Middle panel: power spectra for star, true
DM, and sampled DM fields. Right panel: cross-correlations between true and sampled DM fields. All panels show good agreement between the summary statistics of
the true and sampled DM fields, demonstrating the model’s ability to well reproduce the statistical properties of the cosmic web.

regions obtained from the posterior distribution of 100 samples
of the generated DM map, quantifying the 10th to 90th
percentile uncertainties of the model predictions.

The left panel of Figure 3 shows good agreement between
the 1D histogram of the true DM field and the sampled DM
fields.

The middle panel of Figure 3 compares the power spectra of
the true DM map and generated samples. We see that the
diffusion model can reproduce the expected dependence of the
power spectrum with scale and that the true power falls within
the uncertainty of the samples. The relatively scale-independent
variance of the posterior samples arises from degeneracies in
the DM density field that can lead to similar stellar distributions
after marginalizing over cosmological and astrophysical
parameters.

Finally, the right panel of Figure 3 compares the cross-
correlation coefficient between the true and sampled DM fields.
Cross-correlation coefficients are calculated by taking the
cross-power spectra between the sampled DM and true DM
field and dividing by their autopower spectra:

_ P(True Sample) (k)
\/PTrue (k) \/PSample (k) ’

R(True Sample) (k)

where R(k) measures the correlation between the phases of the
modes of the two fields. In an ideal scenario where the true DM
and sampled DM fields are perfectly correlated, the cross-
correlation between true DM and sample DM would be 1
across all the scales. However, perfect reconstruction of the
DM field is not possible due to limitations in the information
contained within the stellar mass maps, such as the discrete
nature of the tracer (shot noise). We find that the cross-
correlations between the sampled and true DM fields are
always higher than 0.9, demonstrating that the model is able to
well reproduce the statistical properties of the cosmic web. This
value serves as a lower bound on the information content of the
stellar mass fields about the DM density field. Different
architectures, data sets, or optimization methods may be able to
reconstruct the DM cosmic web more precisely, potentially
improving upon the cross-correlation values we have obtained.

In Appendix C, we show how the posterior variance is
lowest (highest) at pixels with high (low) nonzero stellar mass.

3.2. Varying Cosmological and Astrophysical Parameters

Figure 4 shows a quantitative comparison between the
generated DM density fields and the true ones based on the
simulations in the 1P set that separately vary the parameters
Q,.» Asni, and Axgni. For each selected parameter, we
randomly choose a single stellar map from that simulation as
the input to generate 100 DM samples.

As shown in the first column of the upper panel, the DM
distribution is more sensitive to the cosmological parameter
Q,,. We show that in both low- and high-{2,, scenarios, the
diffusion model can effectively capture the dependence on 2,
and reproduce the trends in the DM density distribution
accordingly.

In the lower panel of Figure 4, we show the ratio of the
predicted power spectra to the true one. We find that the model
tends to overpredict the power across all scales for large
variations in €2, for this particular sample, although this is not a
general trend, as can be seen in Figure 3.

For varying Agn; and Aagng scenarios, the stellar density
maps will look very different on small scales due to the varying
strength in supernova and AGN feedback, while the underlying
true DM density field will be largely unaffected. We see that
the model is able to reproduce this behavior and generalizes
well for both low and high parameter values, exhibiting its
potential to marginalize over baryonic effects. We do, however,
see more uncertainty at smaller scales, consistent with our
findings from other summary statistics.

The consistency of the density probability distribution
functions (PDFs) and power spectra with varied cosmological
and astrophysical parameters demonstrates that the trained
diffusion model can well capture the clustering properties of
the underlying DM fields based on the stellar fields while
marginalizing over the cosmological and astrophysical
parameters.

Finally, we assess the cosmological information contained in
the reconstructed DM density fields. In particular, we use the
parameter inference networks presented in Villaescusa-Navarro
et al. (2021) to predict the cosmological parameters €2, and og
for the reconstructed DM density fields. The network is trained
to return a mean prediction as well as a standard deviation that
indicates the network’s uncertainty on its prediction.

For this test, we select two input stellar fields for each
parameter in the 1P set with €2,,, and og varying and generate 10
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variation, we use one single stellar map as the input and generate 100 DM samples from that map. Top row: comparison of the density field PDFs. Bottom row: power
spectrum ratio between the sampled fields and the true DM field. The solid lines in the top panel give the true DM distributions from simulations, while the shaded
regions correspond to 10th—90th percentiles based on 100 generated DM samples from the single input stellar field. Note that the DM projected density distribution
does not vary noticeably with the astrophysical parameters Asn; and Aagni, and the two solid lines overlap. The model is able to capture the overall trends well for all

three parameters, though its uncertainty increases at smaller scales.
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samples of the input field corresponding to the true parameter value on the x-axis. The values of €2, inferred by the NN have a strong correlation with the true
parameters, despite the fact that the diffusion model is not conditioned on cosmology.

samples for each field from py(xpum|Xswrs)- We then pass the
generated DM density fields through the parameter inference
network and examine the consistency between the parameters
inferred by the NN and the true cosmological parameters in
Figure 5.

The network-inferred values of €2,, are close to the truth and
have an average error of 14.6% while struggling with the og
prediction. Since the parameter inference networks have been

trained on a subset of [llustrisTNG DM LH fields while we were
testing our model on the ASTRID 1P set, we have found a slight
offset in the inferred value of og when testing the networks on
the true ASTRID 1P fields (see Figure 12 in the Appendix D).

In Figure 2 of Villaescusa-Navarro et al. (2021), the
parameter inference network trained on input stellar fields
was able to predict €, with an average error of 19.8%, in line
with our findings.
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Figure 6. Cross-correlations between true and 100 sampled DM fields given the same conditioning across three models trained and tested on each data set together
with the average MSE. The shaded region in each panel represents the 10-90th percentiles of the cross-correlation coefficients for all samples, and the solid line
represents their mean coefficient. We observe that the ASTRID-trained model is able to reproduce this quantity the best among all suites, while the IllustrisTNG-
trained model produces the lowest coefficients and largest variances. Overall, all different combinations produce cross-correlation coefficients higher than 0.8,

demonstrating that each model can generalize well across galaxy formation models.

3.3. Generalizing beyond the Training Set

To test the model’s ability to generalize over different galaxy
formation simulations, we train three independent models using
maps from the MlustrisTNG, SIMBA, and ASTRID LH sets
and test each model using maps of the CV set from each of the
simulation suites. In Appendix A (Figure 9), we show the
generated samples from the same index of each CV set, which
corresponds to having the same initial seed and parameter
values.’

We also quantitatively compare the cross-correlation coeffi-
cients between the true DM fields and those of the generated
ones for each of these models in Figure 6. As a further
comparison metric, we use 100 DM samples generated from
the diffusion model and calculate the averaged MSE of the true
DM field and the generated samples.

7 Note that the definitions of the astrophysical parameters are different for

each simulation suite.

As shown in Figure 6, all three diffusion models perform
well when tested on simulations conducted by the same galaxy
formation model (the blue boxes marked as in distribution), and
they also demonstrate robust generalization when tested on
simulations carried out by other galaxy formation models (the
red boxes marked as out of distribution). The generated DM
fields consistently reproduce the pattern of the true cosmic web
across all the scales, maintaining cross-correlation coefficients
consistently higher than 0.8 for any pair.

The effective reproduction of DM density fields beyond each
model’s training set is facilitated by the large overlap of data
distribution between the simulation suites, as illustrated in
Figure 8 in Appendix A. which shows the ratio of stellar mass
to DM density power spectra for each LH set. Despite the
distinct galaxy formation models employed by the three
simulation suites, resulting in different mappings between
the star and DM fields, the overall similarities suggest why
each model can effectively generalize to every other galaxy
formation model.
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Comparing the models trained on the three different
simulation suites, the model trained on the ASTRID suite
performs the best with the minimum MSE, while the model
trained on IlustrisTNG yields the largest averaged MSE. We
speculate that the good performance of the ASTRID-trained
model is due to the higher mass resolution of the ASTRID
simulation for star particles. In the galaxy formation model
employed by ASTRID, each star-forming gas particle can be
split and spawn four star particles, as compared to a single star
particle in IlustrisTNG and SIMBA. Consequently, the stellar
density maps within the ASTRID suite exhibit a less sparse
distribution compared to the other two simulation suites, as
depicted in the first column of Figure 9 in Appendix A. The
effective increased spatial resolution in ASTRID results in
stellar density fields that have tighter correlations with the
underlying DM fields, explaining the better performance of the
ASTRID-trained model.

On the other hand, the relatively poorer performance of the
NlustrisTNG-trained model is likely attributed to the fact that
MlustrisTNG has suppressed the low-mass galaxy population
compared to SIMBA and ASTRID (see, for example, de Santi
et al. 2023; Ni et al. 2023), resulting in the most sparse stellar
maps and making the training more challenging.

3.4. Recovering the Large-scale Structure in IllustrisTNG300

A downside to training our models on the CAMELS
simulations is their limited volume, which in particular will
be largely affected by supersample covariance (Li et al. 2014).
In this section, we assess the model’s capability to generalize to
larger volumes than those in the training set by estimating the
DM density in the IustrisTNG300 simulation (Pillepich et al.
2017; Springel et al. 2018; Nelson et al. 2021) that has a
volume over 500 times larger than that of the CAMELS
simulations used to train the model.

The diffusion model is trained based on the CAMELS data
set with an image size of 2562, However, due to the
convolutional nature of the diffusion model applied in this
work, the trained model can be applied to fields of different
sizes as long as the input fields have the same spatial resolution
as that of the training sets. We preprocess the stellar and DM
density fields of IustrisTNG300 by maintaining the same
spatial resolution as the CAMELS Multifield Data Set,
resulting in projected surface density fields of stars and DM
with a size of 2100%. We then directly apply the trained
diffusion model from the CAMELS data set (keeping the same
parameters for the convolutional kernels and biases) to the 2D
slabs of the IlustrisTNG300 stellar fields. This generates the
corresponding DM density fields.

In the upper panel of Figure 7, we show the stellar field of a
2D slab of IustrisTNG300 together with a sample of the DM
density field of the diffusion model trained on the small volume
CAMELS-ASTRID suite and the true underlying DM density
field from the simulation. The model can surprisingly produce
the correct large-scale filaments and voids. Note that we are
both extrapolating the trained model to larger volumes and over
simulation suites (the model is trained on ASTRID and tested
on IllustrisTNG).

In the intermediate panel, we show two highlighted
CAMELS-sized regions: a cluster-like region (A) and a void-
like region (B). Interestingly, although the void-like region is as
large as a CAMELS box, the model still produces a realistic
DM density field.

Ono et al.

Finally, the bottom panel shows the predicted and true DM
density in each pixel, the density PDF, and the power spectra of
the samples and the truth, from left to right.

On the left, we show that although the amount of scatter in
the predicted versus true relation is considerable, we do not see
any bias appearing at high values. This is surprising given that
the small volume of the CAMELS simulation limits the
appearance of such high-density peaks in the training set.

Moreover, on the bottom-right corner, the power spectra of
the DM samples agree very well with those of the true
MlustrisTNG300 DM density field across all scales, even
recovering large scales that extend beyond the fundamental k-
modes corresponding to the small volume training set. For
comparison, we also show the star and DM power spectra from
the MlustrisTNG CV set, which exhibit a lower amplitude due
to the limited large-scale modes in the small-box simulations.

The good agreement of the large volume power spectra
demonstrates that the diffusion model (trained on the ASTRID
suite) can generalize to (1) different galaxy formation models
and (2) scales larger than those contained in the training set.

4. Summary and Discussion

In this paper, we have presented a diffusion generative
model that can sample the posterior distribution of DM density
fields conditioned on the stellar density field. We demonstrate
through a diverse set of validation metrics that the generated
DM fields are in good statistical agreement with the true DM
fields from the simulations.

Moreover, when trained on the LH set of the CAMELS
simulation suites, the diffusion model is able to marginalize
over the cosmological and astrophysical uncertainties within a
given galaxy formation simulation. Interestingly, the diffusion
model exhibits generalization capabilities and can accurately
recover DM density fields from simulations with alternative
galaxy formation models.

Compared to the previous work of Hong et al. (2021), which
applies a deterministic convolutional NN model to learn the
mapping between galaxies and DM fields based on the
NlustrisTNG simulation, our approach is probabilistic in nature
and therefore can capture the inherent uncertainty of the
galaxy—DM mapping due to sparsity in the stellar maps, which
leads to degeneracies in consistent DM distributions and
theoretical uncertainties. This in particular allows us to recover
posterior samples with consistent small-scale clustering,
whereas deterministic models recover a blurry image smoothed
on small scales by training the model to reproduce only the
posterior mean.

Notably, the mapping between galaxies and DM fields can
also arise from uncertainties in the cosmological parameters
and more importantly in subgrid physical models used in
galaxy formation simulations. Therefore, we train the diffusion
model based on the LH set of CAMELS simulations; this data
set features a wide variation in cosmological and astrophysical
parameters, allowing the diffusion model to learn how to
effectively marginalize over these uncertainties.

We used the 2D projected stellar density field and DM
density field from the CAMELS Multifield Data Set as proxies
for the galaxy fields and the underlying cosmic web. This
approximation is, however, rather simplistic and only serves as
a proof-of-concept training set to assess the performance of the
diffusion model. To apply the diffusion model to observations
of galaxy surveys, future efforts need to focus on making
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Figure 7. We train the diffusion model on the LH set of the ASTRID suite and apply it to a much larger volume stellar field from the lustrisTNG300 simulation. Top
row: full 205 Mpc h™! stellar density field, the generated DM sample (from our model trained in 25 Mpc h™' CAMELS maps), and the corresponding true DM density
field from IllustrisTNG300. The red and orange boxes highlight 25 Mpc h™' subregions of a cluster-like region (A) and a void-like region (B). Bottom row: statistical
validations for the 205 Mpc h™" fields illustrating the pixel-level Ly, for both the true and generated DM samples on the left, the 1D histogram of the DM sample and
true Ypy in the middle, and the 2D power spectra of the DM and stellar density fields on the right. For comparison, in the rightmost panel we also show the star and
DM power spectra from the CAMELS IllustrisTNG CV set, which has a lower amplitude due to missing large-scale modes.

ensembles of simulations with realistic mock synthetic
observations of galaxies from simulations, as done in Hahn
et al. (2023).

In the future, we plan to develop a training set targeted at
reconstructing the DM cosmic web from 3D galaxy point cloud
observations of the DESI survey. In particular, 3D galaxy point
clouds are sparser than the stellar mass maps used in this work,
and processing them could potentially require a prohibitive
amount of GPU memory. We plan to assess the feasibility of
either doing diffusion in a compressed latent space (Rombach
et al. 2021) or developing a diffusion model that can be
conditioned on the sparse galaxy 3D point cloud by using
either graph NNs or transformers as conditioning models
(Cuesta-Lazaro & Mishra-Sharma 2023).

Finally, we will include observational effects, such as
selection biases, redshift-space distortions, and fiber collisions,
in order to train a generative model that can be effectively
applied to real galaxy surveys and unravel the cosmic web of
our Universe.
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Appendix A
Impact of the Different Galaxy Formation Models in the
Stellar Density Fields

In this section, we highlight the differences in the bias
between stellar density fields and DM fields found in the
different galaxy models.
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Figure 9. First column: input stellar fields for each of the simulations suites where each row shows the same-index images from the CAMELS CV sets (IllustrisTNG,
SIMBA, ASTRID), whose parameter values are the same. Second column: corresponding DM field. Third to fifth columns: DM fields sampled from each model
trained on IlustrisTNG, SIMBA, and ASTRID suites, respectively. The generated DM fields all correspond well to the true images visually.

In Figure 8, we show the ratio of star to DM power spectra of
the different simulation suites. The solid lines show the CV set
ratios of each simulation, while the shaded regions represent the
10th-90th percentiles of the LH samples. In general, the different
models show a consistent behavior as a function of scale.

Moreover, Figure 9 depicts the different stellar fields for the
same initial conditions and parameter values in the different
simulation suites. It shows that although the DM density fields
are practically the same in the different simulation suites, the

10

stellar mass maps can look qualitatively different. We also
show one sample from the diffusion model trained and tested in
all possible combinations.

Appendix B
Ablation Study

Deep learning models consist of blocks and parameters that
can be adjusted, and often these tweaks present a wide range of
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Figure 10. Average cross-correlations between true DM and 100 sampled DM
fields at every 3000th checkpoint given the same conditioning sample and
different diffusion model settings.

predictions. We therefore perform an ablation test to study the
behavior of the diffusion model and examine how the removal
or addition of components affects model performance. Our
initial model consists of 4 convolution (ResNet) blocks, 48
dimensions of time embedding, and a learned linear schedule.
From this model, we implement four other changes varied one
at a time: adding an attention block to the bottom of the U-Net
architecture, fixing the linear schedule, reducing the number of
convolution blocks by half, and reducing the dimensions of
time embedding by half.

Attention is a mechanism introduced by Vaswani et al.
(2017) and is commonly used in deep learning models, namely,
in natural language processing. In the context of images,
attention lets the model highlight only the relevant features of
the image. We conduct an ablation study with the addition of
an attention block to the bottom of the U-Net architecture.

The convolution block is the fundamental block of the
denoising model architecture, and four is the typical number
used in U-Net as it is large enough to increase the number of
feature channels sufficiently but small enough to keep the
computational resources low. In this ablation test, we halve the
number of blocks to observe how the reduced depth of feature
channels may affect the NN’s ability to learn the features.

In the forward diffusion process, the model adds noise to the
input image in 7 = 250 steps according to a variance schedule.
In our original model, we employ a schedule that changes its ~y
parameters in its function as it learns to predict better outputs.
In this ablation study, we test its performance when we fix the
schedule instead.

Time embeddings are how the NN shares its parameters
across time as each denoising process occurs at each time step.
In other words, ¢ is encoded via time embeddings for the
network to know what the current level of the noisy image is
when processing at a given time. In our original model, we
choose 48 as our time embedding dimensionality, and in this
ablation study we perform one with 24.

We train each model using the IllustrisTNG simulation suite.
We train across 300,000 steps, or equivalently 300 epochs with
1000 training steps at each epoch, and store checkpoints at
every 3000 steps. We choose the metric for this test to be the
average cross-correlations as these are the most fine-grained
summary statistics, as discussed in Section 3.1.
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Figure 10 shows the performance of each model across
training steps. The model with an attention block added
consistently yields the highest coefficients, while the one
without follows very closely below. Halving the number of
convolution blocks shows more fluctuations in their perfor-
mance, which indicates that the original depth of the
architecture is more optimal for it to be stable as the model
learns. When using a fixed linear schedule, the model performs
well at first, but since it does not learn the best ~ values, its
performance does not improve across training. The model with
a half dimension of time embeddings significantly underper-
forms relative to the rest, though it catches up by the end of
training.

We conclude from this study that the diffusion model with
attention is very efficient in generating accurate DM fields.
Since the addition of this block did not need additional
computational resources from what we had allocated for all
other models, we choose this model as our best and implement
this architecture for further analysis with all simulation suites.

Appendix C
Detailed Analysis of Posterior Uncertainties

In Figure 11, we compare the ratio of posterior standard
deviation to posterior mean as a function of the posterior mean
for one input stellar mass sample from the ASTRID CV set.

In particular, Figure 11 shows the difference in behavior for
pixels where the stellar mass is nonzero versus pixels with a
zero stellar mass. When the stellar mass is low but nonzero, the
posterior samples show a higher ratio of variance to the mean.
This would correspond to small DM halos and filaments. On
the other hand, when the stellar mass is high, the ratio of
posterior variance to the mean is the lowest.
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Figure 11. Joint probability density histogram of the posterior ratio of standard
deviation to the mean and the posterior mean of the sampled CDM field. All
pixels corresponding to locations with nonzero conditioning stellar mass are
circled in pink.

Appendix D
Out-of-distribution Performance of the Parameter
Inference Network

In Figure 12, we show the predictions of the parameter
inference network trained on a subset of the Illustris-TNG LH
set to infer €2, and og given a DM density field when tested on
the DM density fields from the ASTRID LH set. In particular,
Figure 12 demonstrates that the inference network produces
biased values of og.



THE ASTROPHYSICAL JOURNAL, 970:174 (12pp), 2024 August 1

Q,, Consistency

Ono et al.

og Consistency

0.5’ ¢
1.0t 1
< e
£ 04l = .
. 2 0.9 .
4 2
£0.3} B
Fg & 0.8f |
£ 5
= =
—0.2f =
e % 0.77 1
c )
0.1+ 0.6 1
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Qn: True og: True

Figure 12. Performance of the parameter inference networks from Villaescusa-Navarro et al. (2021) on the true 1P DM fields for ASTRID. On the x-axis, we show the
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