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1 Introduction

String theory is the leading candidate for an ultraviolet (UV) complete theory of quantum
gravity. In recent years, however, efforts have been dedicated towards understanding general
principles of quantum gravity, independent of string theory. This collective effort is often
referred to as the swampland program [1] (for some recent reviews, see [2–4])), and aims
to study properties of seemingly consistent theories beyond the current string landscape.
Progress in this direction is thus heavily guided by our knowledge of explicit constructions
of string theory vacua.

F-theory is by far the leading systematic ansatz for the enumeration of theories and for the
description of the massless content at low energies (see [5] for a recent review). There is an ex-
plicit dictionary relating F-theory compactifications and the geometry of an elliptically fibered
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Calabi-Yau manifold, and details of the physics can be often extracted directly from the geom-
etry. As a consequence, there is a rich interplay between new conjectures in the swampland
program and concrete realizations of such proposals in explicit F-theory compactifications.

Nevertheless, there are aspects of F-theory compactifications which are not understood
directly from the compactification geometry. Famously, compactifications to 4 dimensions
requires specifying G4-flux, and additional data such as the location of spacetime-filling
D3-branes often complicates the analysis of the effective physics. On the other hand, there
are subtle non-geometric effects which appear even in higher dimensions; an M-theory
compactification on an ADE singularity C2/Γ comes with the choice of a discrete flux

∫

C2/Γ
C3 =

n

d
(1.1)

for the C3-field. Dualizing to F-theory potentially leads to a new class of supersymmetric
defects, and [6] demonstrated that this must be a strongly coupled version of the familiar
orientifold 7-plane, but with positive Ramond-Ramond (RR) charge.

The positively charged orientifold 7-plane (O7+) is a supersymmetric defect which appears
already in type IIB string theory and carries the same charge as a stack of 8 D7-branes on
top of a negatively charged orientifold (O7−). As a consequence, these two 7-brane stacks
cannot be distinguished by the SL(2,Z)-monodromy in F-theory alone. The only effect of the
O7+-plane then, is that the corresponding singularity in the F-theory geometry cannot be
deformed in the physical theory. This, however, cannot be deduced directly from the geometry
alone. As a consequence of this subtle distinction, there has been little progress in constructing
F-theory compactifications with frozen singularities and in analyzing their effective physics.

In fact, most of the advancements in studying such compactifications have only been
made in 8 dimensions with 16 supercharges. 8D N = 1 supergravity vacua admit three
disconnected moduli components, that have rank 20, 12 and 4 gauge algebra. In fact there
is a recently found fourth component, which admits a gauge group rank four but and a
discrete theta angle [7, 8]. The latter two components were first studied in [9] under the
guise of the Spin(32)/Z2 heterotic string on T 2 without vector structure, which can be
dualized to the CHL string [10, 11], obtained from a Z2 involution of the E8 × E8 gauge
group. Their F-theory realization must admit an O7+ plane to implement the rank 8 gauge
group reduction and were first described in [9]. Taken together, F-theory gives a complete
description of all 8d N = 1 supergravity theories, in beautiful agreement with predictions
from the swampland program [12].

A first step in incorporating O7+-planes in 6d N = 1 F-theory compactifications was
undertaken in [13], and applications towards constructing new 6d N = (1, 0) gauge [14] and
supergravity theories were discussed in [15]. On the other hand, it is important to note
that [13] gives only necessary conditions for possibly consistent constructions of frozen 6d
F-theory vacua, guided by gauge, gravitational, and mixed anomaly cancellations.1 Thus, in
order to make progress in this direction, it is essential to expand the list of known examples,
and to study such vacua through different duality frames whenever possible.

1In recent literature, type IIB compactifications with O7+ planes have been explored in the context of
SCFTs in 6D and 5D in [14] and [16–18] respectively.
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In this paper, we substantially expand the list of known examples by giving a complete
construction of 6dN = (1, 0) string theory vacua in the frozen phase of the duality between the
Spin(32)/Z2 heterotic string and F-theory. More precisely, we study various nonperturbative
limits of the Spin(32)/Z2 heterotic string involving small instantons on ADE-singularities
without vector structure, and we describe such vacua through F-theory with O7+-planes
using the rules derived in [13]. As a consequence, we conjecture new consistency conditions
for constructing frozen F-theory backgrounds, and we give a description for Spin(32)/Z2
heterotic compactifications without vector structure near strongly coupled points in moduli
space. Our main results can be summarized as follows:

Claim 3.1. There exists frozen F-theory compactifications dual to the Spin(32)/Z2 heterotic
string without vector structure in the limit that small Spin(32)/Z2-instantons collide with an
ADE singularity.

Claim 3.2. Let T1 and T2 be two 6D Spin(32)/Z2 heterotic compactifications related by turning
off vector structure. Then they have the same number of unlocalized neutral hypermultiplets.

This paper is structured as follows: In section 2 we construct the orbifold theories of
Spin(32)/Z2 instantons, with and without vector structure. In section 3 we discuss the frozen
F-theory duals of the former theories. In section 4 we use those NS5 brane orbifolds as
building blocks for SUGRA theories. In section 5, we discuss the discrete center 1-form gauge
symmetry sector in the frozen phase. We present our conclusions in section 6. Appendix A
contains details of the geometric construction used in section 4.

2 Heterotic strings without vector structure

In order to motivate and review the following discussion in six dimensions, we will review
the eight-dimensional case first.

Our starting point will be the G = Spin(32)/Z2 string compactified on a torus. Moreover,
we can switch on a non-trivial G-connection which leads to an adjoint Higgsing of the 10D
gauge group. This straight-forward compactification leads to a rank(G) + U(1)4 = 20 gauge
group in eight dimensions. The fact that G is non-simply connected also allows to switch on
a non-trivial holonomy along the T 2 that lifts to G but not to its Spin(32) cover. Indeed,
as the Z2 quotient, projects out the vector (and co-spinor) representation, the holonomy
is said to have no vector structure [9].

The Z2 holonomy factor acts non-trivially on the su2 ∈ so32 leaving an sp8 residual
gauge algebra factor. By this discrete choice, we have effectively reduced the gauge group
rank by eight, such that we are in a rank 12 component of 8D SUGRA vacua, where also
the CHL heterotic string lives [19].

The same vacuum can be also constructed in type IIB string theory. Here we can start
with a torus compactification as well but in order to reduce the amount of supersymmetry we
require an orientifold. The T 2/Z2 has four fixed points, which gives the space the topology
of a P1. At each fixed point resides an O7 plane.

For the O7 planes, we have a choice of a sign of the Ramond-Ramond charges,

QRR(O7±) = ±4 with QRR(D7) = 1 . (2.1)
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Both planes back-react with the type IIB axio-dilaton τ = C0 + i/gIIB. The axion back-
reaction of an O7− plane may be cancelled by adding 4 D7 branes which yields an so8 gauge
algebra. Putting four more D7 branes on top produces an so16 gauge algebra. This brane
stack has the same axio-dilaton backreaction as a single O7+ brane, which does not carry a
gauge symmetry. Hence at this level, when trading the O7− brane stack as

(8D7 + O7−) ↔ O7+ , (2.2)

we have achieved a gauge group rank reduction by 8, which puts us in the IIB dual of the
rank(G)=12 moduli space of the 8D Heterotic Spin(32)/Z2 theory without vector structure
or the CHL vacua.

Indeed, we can move in the moduli space of this 8D theory and place eight more D7
branes on top of the O7− stack. For 16 D7 branes we can then trade

(16D7 + O7−) → (8D7 + O7+) (2.3)

which exactly results in changing the gauge algebra as so32 → sp8.
The 8D gauge theory is a great starting point to discuss the lower six-dimensional

gauge theories that live on heterotic NS5 branes. From the perspective of the 6D theory,
we have decoupled gravity but the heterotic 8D gauge theory stays as a flavor symmetry
of a little string theory.

In the following, we discuss the 6D gauge theory on Spin(32)/Z2 heterotic NS5 brane
both with and without vector structure. In section 3 we geometrize those theories to type
IIB/F-theory.

2.1 Review: SO(32) NS5 branes without vector structure

One significant advancement in our understanding of string theory lies in the application of
dualities to study highly non-perturbative and singular points in the moduli space of string
compactifications. A particular example is the SO(32) heterotic string; there is a limit in
which the curvature of the gauge bundle is localized at a point on the compact background,
corresponding to an instanton shrinking to zero size. The dynamics governing the small
instanton is by now fairly well understood [20]; when the small instanton is localized at a
smooth point, there is an additional SU(2) gauge symmetry localized at the point. The case
of small instantons supported at ADE singularities was further explored in [21, 22], and the
relevant physics was given a geometric interpretation from F-theory in [23], see also [24, 25].
In this section, we will briefly review the results for ADE singularities, and we will defer
the discussion of their F-theoretic interpretation to section 3.1.

The main considerations of [21, 22] can be summarized as follows: we first consider
a configuration of K instantons localized at an ADE singularity on an ALE space X. To
specify the configuration, we will need to specify the holonomies at infinity surrounding the
singularity; we will assume that these are set to zero for now. The moduli space of instantons
on X can then be given a hyperkähler quotient construction as the Higgs branch of a
supersymmetric gauge theory. At a smooth point, this gauge theory can be realized physically
as the worldvolume theory of precisely K type I D5-branes in the background of 32 D9-branes.
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One of the main insights of [21, 22] was that at a singular point, the gauge theory arising
in the hyperkähler quotient construction cannot be realized physically as the worldvolume
theory of type I D5-branes. There is an anomaly, but a minor modification of the physics
results in a consistent type I construction. On the other hand, this modification does
not describe the moduli space of instantons directly; instead, it realizes a different branch
related by exchanging 29 hypermultiplets for 1 tensor multiplet. Summarizing, small SO(32)
instantons at an ADE singularity on a blown down ALE space, X, admit a Higgs branch
described by the moduli space of instantons on a resolution of X, but they also admit what
today is called a tensor branch described by type I D5-branes localized at the singularity.

In the subsequent sections, we will primarily be concerned with the case of non-trivial
holonomy, specified by a map

π : ΓG → Spin(32)/Z2 (2.4)

where ΓG is the fundamental group of a 3-sphere surrounding the ADE singularity. There
is an alternative Z2-quotient of Spin(32) which is isomorphic to the group SO(32); there
is an element which maps to the identity in SO(32), but maps to a non-trivial element w

in the usual Spin(32)/Z2 gauge group of the heterotic string. We will consider the case
that π obeys the group relations of ΓG up to this element w, known as the case without
vector structure, and we will derive the effective gauge groups on the Coulomb branch via a
weakly coupled type I orientifold analysis. This was first done in [26], and we will extend
this analysis to the cases of D and E singularities.

2.2 Examples

In this section, we use the type I dual frame to compute the gauge groups appearing on the
tensor branch of small SO(32) instantons on ADE singularities. Specifically, we examine in
detail the cases of types A and D singularities with and without vector structure. In the
following we will exemplify the algorithm in the case of An and D4 type singularities.

2.2.1 An singularities

In [21, 26], the gauge groups describing the effective physics of small SO(32) instantons
on An-singularities were derived, by appealing to the dual type I description of D5-branes
subject to an orbifold action. In this section, we review the relevant results and compute
the gauge groups in both the cases with and without vector structure.

We begin with type IIB string theory with an orientifold action Ω, and the orbifold
group An with generator r. The orientifold action is localized along the spacetime filling
O9− plane, which projects out the D7-branes. There are 32 D9-branes required by tadpole
cancellation, and we will focus on the action of these group elements on the D5-brane sector.
Our goal is to find the effective gauge symmetries in the D5-brane sector, represented by
matrices U satisfying the conditions:

U = −γ(Ω)UT γ(Ω)−1 ,

U = γ(r)Uγ(r)−1 ,
(2.5)
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where γ(Ω) and γ(r) are the unitary matrices representing the action of the orientifold and
orbifold groups on the Chan-Paton labels of the D5-branes. In addition, we will assume
that γ(r) takes the following form:

γ(r) =




V0
V1

. . .
Vn−2

Vn−1




, Vi =




ξi

. . .
ξi


 , (2.6)

where ξ is a primitive nth root of unity.
These matrices satisfy a number of constraints imposed by the group relations, which

take the following form:

γ(Ω) = −γ(Ω)T ,

γ(r)γ(Ω)γ(r)T = χ(r,Ω)γ(Ω) ,

γ(r)n = χ(r)1 .

(2.7)

Critically, the unitary matrices need to satisfy the group relations only up to a phase factor,
represented by the elements χ(r,Ω) and χ(r) above. The latter one can be removed, by
scaling the γ(r) matrices, up to an overall root of unity ξ. Rescaling γ(r) by ξ in (2.7)
amounts to rescaling χ(r,Ω) to ξ2χ(r,Ω) which then leaves two choices to rescale this phase
factor as (see [27] for more details)

χ(r,Ω) =
{
1 (n odd)
1, ξ (n even) (2.8)

In the case with χ(g,Ω) = 1 after applying the second equation in (2.5), we find that U

must be constrained to take the following form:

U =




U0
U1

. . .
Un−2

Un−1




,

where U1, . . . , Un ∈ SU(v1), . . . , SU(vn). The first equation of (2.5) then imposes

U0 ∈ sp(v0), U1 ∈ su(v1), . . . , Un/2−1 ∈ su(vn/2−1), Un/2 ∈ sp(Vn/2) for n even
U0 ∈ sp(v0), U1 ∈ su(v1), . . . , Un/2−1 ∈ su(v(n−1)/2), for n odd

(2.9)

In both cases, the degrees of freedom of all the other matrices Ui with i > n/2 are fixed by
U0, . . . , Un/2. Finally, taking into account the hypermultiplet sector, we find the following
gauge theory chains

sp(v1) su(v2) . . . su(vn−1) sp(vn/2) ,

sp(v1) su(v2) . . . su(v(n−1)/2) .
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for n even and odd, respectively. In the case without vector structure, which only exists
for n even, we find the following gauge theory chain:

su(v1) su(v2) . . . su(vn−1) su(vn)

2.2.2 D4 singularities

In this section, we carefully examine the cases of small SO(32)-instantons on a D4-singularity
both with and without vector structure, which has not appeared in the literature to the
best of our knowledge.

Our analysis proceeds identically to the previous section; the presentation for the orbifold
group D4 takes the following form:

D4 = ⟨r, s|r4 = 1, s4 = 1, (rs)4 = 1⟩ . (2.10)

Compared to equation (2.5), the matrices U describing the effective gauge symmetries in the
D5-brane sector satisfy one additional condition corresponding to the generator s:

U = −γ(Ω)UT γ(Ω)−1 ,

U = γ(r)Uγ(r)−1 ,

U = γ(s)Uγ(s)−1 .

(2.11)

We will assume that the Chan-Paton matrices corresponding to the generators r and s take
the following forms [22, appendix A]:

γ(r) =




V0
V1

V2
V3

V4




, V2 =




i 0
0 −i

. . .
i 0
0 −i




, (2.12)

V0 = V4 = 1 , V1 = V3 = −1 , (2.13)

γ(s) =




W0
W1

W2
W3

W4




, W2 =




0 1
−1 0

. . .
0 1
−1 0




, (2.14)

W0 = W3 = 1 , W1 = W4 = −1 . (2.15)

In order to the find general form for the matrices U , it suffices to compute the Chan-Paton
matrix, γ(Ω), corresponding to the orientifold action. This must satisfy the following relations:

γ(Ω) = −γ(Ω)T ,

γ(r)γ(Ω)γ(r)T = χ(r,Ω)γ(Ω) ,

γ(s)γ(Ω)γ(s)T = χ(s,Ω)γ(Ω) ,

(2.16)
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where χ(r,Ω) and χ(s,Ω) are phase factors. As in the above section, we refer to [27] for a
detailed discussion, and we simply note that there are two discrete choices corresponding
to the cases with vector structure and without vector structure.

With vector structure. We recover the gauge algebras

sp(v0)× sp(v1)× so(v2)× sp(v3)× sp(v4) ,

by an orientifold analysis of the D4-singularity. We consider the case:

χ(r,Ω) = 1 , χ(s,Ω) = 1 , (2.17)

which corresponds to the case with vector structure.
After applying the second and third conditions in equation (2.11), the matrix U must

take the form

U =




U0
U1

U2
U3

U4




,

where Ui ∈ su(vi) for all i. The first equation of (2.11) then demands that

U0 ∈ sp(v0), U1 ∈ sp(v1), U2 ∈ so(v2), U3 ∈ sp(v3), U4 ∈ sp(v4) .

Finally, an analysis of the orientifold action on the hypermultiplet sector leads to the
quiver diagram

sp(n2)

sp(n1) so(n3) sp(n4)

sp(n5)

,

in agreement with the results of [22]. The full quiver, that includes the flavor and 2-form
tensor charges is given in table 1.

Without vector structure. We claim that the case without vector structure leads to
the gauge algebras

su(v0)× su(v1)× sp(v2) ,

where we take the phase factors to satisfy

χ(r,Ω) = 1 , χ(s,Ω) = −1 . (2.18)
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The only difference from the previous subsection comes from the first equation in (2.11),
which forces γ(Ω) to take a different form due to the choice of phase factors.

Imposing the conditions

γ(r)Uγ(r)−1 = U, γ(s)Uγ(s)−1 = U, −γ(Ω)UT γ(Ω)−1 = U , (2.19)

means that the n × n matrix U has to be of the form

U =




U0
U1

U2
U3

U4




, (2.20)

where U0 ∈ su(n0), U1 ∈ su(n1), U2 ∈ so(n2). The degrees of freedom for U3 and U4 are
completely fixed by U0 and U1, in analogy with the case of An singularities without vector
structure.

Finally, an analysis of the orientifold action on the hypermultiplet sector leads to the
following quiver diagram

su(n1) sp(n1) su(n2) .

2.3 Summary of results

The above procedure can be readily applied to all types of ADE singularities. The residual
exceptional discrete groups ΓEn for n = 6, 7, 8 are given by the binary tetrahedral, binary
octahedral and binary icosahedral groups, respectively. Their respective presentations are
given by the generators

E6 = ⟨r, s | (rs)2 = s3 = r3 = −1⟩ , (2.21)
E7 = ⟨r, s | (rs)2 = s3 = r4 = −1⟩ , (2.22)
E8 = ⟨r, s, t | (st)2 = s3 = t5 = 1⟩ . (2.23)

We see that the presentation of E6 and E7 contains even powers of the generators, while the
presentation of E8 also has odd powers. This is important, since the general considerations
for switching off vector structure (see section 2.2.1) demand that we can pick the phase
χ(x,Ω) = −1, which is only possible if the powers are even. We thus find that one can
freeze E6 and E7, but not E8.

The resulting frozen and unfrozen cases are summarized in table 1. It is noteworthy that
the frozen quivers have the shape of the respective ADE affine extended Dynkin diagram,
but folded by an Z2 automorphism. It is known that the binary tetrahedral, octahedral
and icosahedral groups, also called the binary polyhedral groups, form a subgroup of the
automorphism group of the Dynkin diagrams of En. From that perspective, E8 singularities
cannot be frozen since their respective (extended) Dynkin diagram does not admit any
automorphisms. Interestingly, the little string quivers in table 1 have also been found as
T-duals of E8 × E8 heterotic LSTs in [28, 29], but with a u16 flavor group (or a subgroup
therefore) instead of sp8. This suggests that similar quivers can be constructed in the unfrozen
phase of F-theory. It would be very interesting to elucidate this connection in future works.
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G Quiver w/ Vector Structure KUF
M (G) Quiver w/o Vector Structure KF

M (G)

∅ [so32]
spM

0 [sp8]
spM

0

A1 [so32]
spM+4
1

spM

1 [sp8]
su2M

0

A3 [so32]
spM+8
1

su2M+8
2

spM

1 [sp8]
su2M+8

1
su2M

1

A2n−1 [so32]
spM+4n

1
su2M+8(n−1)

2
su2M+8(n−2)

2 . . .
su2M+8

2
spM

1 [sp8]
su2M+8n

1
su2M+8(n−1)

2
su2M+8(n−2)

2 . . .
su2M+8

2
su2M

1

D4 [so32]
sp8+M

1

spM

1
so16+4M

4
spM

1

spM

1
[sp8]

suM+8
2

spM

1
suM

2

D2n+4 [so32]
sp4n+M+8

1

sp4N+M

1
so16N+4M+16

4
sp8n+2M

1 . . .

spM

1
so4M+16

4
spM

1
[sp8]

suM+8+4n

2
su2M+8n

2
suM+4n

2

su2M+8(n−1)
2

su2M+8(n−2)
2 . . .

su2M+8
2

spM

1

D5 [so32]
sp8+M

1

spM

1
so16+4M

4
sp2M

1
su2M

2
[sp8]

suM+8
2

su2M

1
suM

2

D2n+5 [so32]
sp8+M+4n

1

spM+4n

1
so16+4M+16n

4 . . .
sp2M

1
su2M

2
[sp8]

suM+8+4n

2
su2M+8n

2
suM+4n

2

su2M+8(n−1)
2

su2M+8(n−2)
2 . . .

su2M+8
2

su2m

1

E6 [so32]
spM+8
1

so4M+16
4

sp3M

1
su4M

2
su2M

2 [sp8]
su2M+16

2
su4M+16

2
sp3M+8

1
so4M+16

4
sp2M

1

E7 [so32]
spM+12

1
so4M+32

4
sp3M+12

1

sp2M+4
1

so8M+32
4

sp3M+8
1

so4M+16
4

spM

1 [sp8]
su2M+12

2
su4M+8

2
su6M+4

2
sp4M

1
so4M+8

4

Table 1. The quivers K of G orbifolds of M Spin(32)/Z2 instantons with and without vector structure.

3 F-theory duals

3.1 Unfrozen models

In section 2, we analyzed the tensor branch of small SO(32)-instantons at an ADE singularity
without vector structure, by relying on their description via D5-branes in perturbative type I
string theory. In particular, this description is accurate for large vacuum expectation values
of the tensor multiplet, far out on the tensor branch of the interacting fixed point. On the
other hand, the same physics can be described purely geometrically via F-theory [23], which
has the advantage that it also gives a description for the superconformal fixed point, as well
as the transition to the Higgs branch. In this section, we will review aspects of F-theory
compactifications to six dimensions, focusing on the F-theory duals to the SO(32)-heterotic
string and small instanton transitions appearing in [23].

In contrast to lower-dimensional compactifications, we can specify a 6d F-theory model
via an elliptically fibered Calabi-Yau threefold X over a smooth complex surface B. We
assume that there exists a section, in which case there exists birational transformations
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of X to a Weierstrass equation

y2 = x3 + fx + g, ∆ = 4f3 + 27g2 , (3.1)

with f and g sections of −4KB and −6KB respectively, and we denote by −KB the anti-
canonical divisor on B. Note that B must be compact to yield a SUGRA theory; when
it is not, the resulting theory is a QFT that flows to an LST or SCFT. The general fiber
is an elliptic curve which degenerates along a curve, ∆ ⊂ B, often called the discriminant
locus. In general, ∆ will be irreducible, but in physically interesting situations with multiple
gauge factors and matter content, there is a decomposition ∆ = ∆1 ∪ . . . ∪∆n into smooth
irreducible algebraic curves ∆i. The details of the singularities can be deduced by monodromy
actions on the 1-cycles of the torus fiber induced by loops around the components, ∆i, which
correspond to elements in SL(2,Z).

Compactifications to six dimensions give 6d N = (1, 0) supergravity theories, which have
been studied extensively in recent years [30–39]. Theories in six dimensions are distinguished,
in that they are constrained by gauge, gravitational, and mixed anomalies, which allow for a
systematic study of their massless gauge algebras and matter content. Simultaneously, the 6d
N = (1, 0) F-theory landscape is still rich enough to evade a systematic classification, which
is consistent with the lack of classification results for elliptic Calabi-Yau threefolds.

Finally, we note that there is a rich dictionary relating details of the 6d N = (1, 0)
supergravity theory with singularities of the corresponding elliptic Calabi-Yau threefold.
The irreducible codimension-one components ∆i of the discriminant ∆ ⊂ B determine the
localized 7-brane stacks which support the non-abelian gauge algebras. The intersection
points ∆i ∩∆j host localized matter, corresponding to massless string states with ends on
∆i and ∆j . The SL(2,Z) monodromies of the irreducible discriminant loci ∆i correspond
bijectively to the singular Kodaira fibers, and these together with the intersection data
determine the non-abelian gauge algebras and massless matter content as deduced in [40,
tables 1, 2] and [41].

We will focus on a specific example, known as the Aspinwall-Gross model, which was first
described in [42], and admits a frozen variant described in [13]. We take the base B = F4,
the Hirzebruch surface with a unique curve e of self-intersection (−4), with Weierstrass
polynomials

f = 1
3e2(−p22 + 3e6q24) , g = 1

27e3p2(−2p22 + 9e6q24)

∆ = e18q48(−p2 + 2e3q12)(p2 + 2e3q12) ,

(3.2)

where q denotes the fiber class, and p2 is a generic polynomial of class 3e+12q. We note that a
concrete tuning realizing such polynomials on B can be found in [42]. From an analysis of the
6d effective physics, we observe that e has vanishing orders (2, 3, 12) and hence corresponds
to an I∗12-singularity with an so32-algebra, q has vanishing orders (0, 0, 48) and corresponds
to an Ins

48-singularity with an sp24-algebra (if it was split, this would be an su48 algebra),
and there is a single bi-fundamental localized at the intersection. The precise details of the
duality to the SO(32) heterotic string can be found in [23]; we note here that there is the
required so(32) gauge symmetry, together with an sp(24) gauge symmetry realized by 24
small instantons coalesced at a smooth point.
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One of the main results of [23] was the description of the F-theory dual to the limit
where 24 small instantons move on top of an ADE-singularity. This limit leads to a strongly
interacting fixed point with extra massless tensor multiplets, and the physics far out on
the tensor branch was described through type I string theory in section 2. In the case of a
Z2-singularity, the physics on the tensor branch can be described via a Z2 orbifold of type I
string theory. From table 1, we see that there is a transition

sp24
0

sp24
1

sp20
1

where the sp24 gauge symmetry is enhanced to the product sp24 × sp20 together with a
bi-fundamental hypermultiplet as the 24 small instantons move from a smooth point to
a Z2-singularity.

This phase transition, often called the small instanton transition, is famously described
by an F-theory compactification in the limit where there exists a point p in the base B such
that the orders of vanishing of the Weierstrass polynomials satisfy:

(ordp(f), ordp(g), ordp(∆)) ≥ (4, 6, 12) (3.3)

The details of this transition can be found in [43], and we note that this leads to an F-theory
compactification on a Calabi-Yau Weierstarss model over the blowup of the base B at the
point p, with exceptional curve C. The orders of vanishing along C, which determine the
corresponding Kodaira singular fiber, are given by

ordC(f) = ordp(f)− 4, ordC(g) = ordp(g)− 6, ordC(∆) = ordp(∆)− 12 (3.4)

For the Weierstrass model (3.2), we note that the locus {p2 = 0} intersects with the
line {q = 0} at 3 points. The collision of two of these points leads to a point with orders
of vanishing (4, 6, 52), and a blowup leads to an additional curve with orders of vanishing
(0, 0, 40). Thus, there is an Ins

40-fiber over this exceptional curve C, leading precisely to the
enhancement we derived above via an orientifold analysis.

3.2 Frozen rules

In this section, we will review the necessary rules for specifying a frozen F-theory compacti-
fication, as first derived in [13]. In section 3.1, we defined a 6d F-theory compactification
through the choice of a Weierstrass model over a base surface B. We will define a 6d F-theory
compactification in the frozen phase similarly, but with the additional choice of replacing a
stack of 7-branes with the monodromy of an I∗n+4-fiber with a stack of 7-branes consisting
of an O7+-plane and n D7-branes. This has the same monodromy as an I∗n+4 fiber and to
distinguish the two situations, we will label such a configuration with Î∗n+4.

One of the key features in the frozen phase of F-theory is that in general, neighboring
7-brane stacks must share a common gauge algebra. We note that there exist only necessary
conditions for specifying a consistent frozen F-theory compactification via Green-Schwarz
anomaly cancellation, but that these are not sufficient in general. We assume that the
discriminant locus ∆ contains irreducible components ∆a, and we denote the corresponding
SL(2,Z)-monodromies by Ma.
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We will specify a 6d F-theory compactification in the frozen phase with the following data:

(a) To each irreducible component ∆a such that the monodromy Ma is conjugate to MI∗
n
,

we may assign an unfrozen/frozen 7-brane, denoted by I∗n/Î∗n respectively. We denote
the sum of irreducible divisors Da supporting a frozen 7-brane by F .

(b) A collection of gauge algebras gi, and embeddings ρi,a : gi ↪−→ la such that⊕i ρi,a(gi) ⊂ la.
Here, la denotes the naive gauge algebra associated with the Kodaira fiber of the
irreducible component ∆a.

The associated gauge divisor is then defined by

Σi :=
∑

a

µi,aoi,aDa (3.5)

where µi,a = 0 if ρi,a = 0, and is 1 if ρi,a is non-trivial. The coefficient oi,a is known as the
Dynkin index of the embedding ρi,a, see [44] for a precise definition.

As argued in [13], the anomaly polynomial needs to be modified in the presence of
O7+-planes, such that it takes the form

I8GS = −1
2

(
−(K + F )p1(T )

4 +
∑

i

Σi ν(Fi)
)2

(3.6)

where p1(T ) is the Pontryagin class of the tangent bundle of B and ν(Fi) is the instanton
number density of the field strength Fi valued in gi, i.e. the second Chern class. Indeed,
when F = 0, this agrees with the anomaly polynomial from a conventional 6d F-theory
compactification, and this suggests simply replacing the usual matter assignment with the
substitution

K 7→ K + F

which leads to additional consistency conditions. For the resulting frozen F-theory compacti-
fication to be consistent, we will also demand that the following conditions hold:

1. Σi · Σi ∈ Z, Σi · Σj ∈ Z≥0 for all i, j

2. (K + F ) · Σi +Σi · Σi = −2

3. For each pair (gi,Σi), the total number of localized charged hypermultiplets must sum
up to the total number of hypermultiplets of the corresponding representation, as given
in [13, table 3.1].

4. nH,charged − nV < 273

Briefly, we can summarize the first three conditions as imposing the cancellation of gauge
anomalies, and the last as imposing the usual gravitational anomaly cancellation. For
simplicity, we will only consider cases where all gauge divisors intersect transversally, hosting
matter in the bi-fundamental representation, with the exception of so − sp intersections
which host a half bi-fundamental.
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Finally, we illustrate a simple example corresponding to the frozen variant of the Aspinwall-
Gross model summarized in section 3.1. We make the replacement I∗12 −→ Î∗12 on the
exceptional divisor e and we define the following frozen and gauge divisors

F = e, Σ1 =
1
2e, Σ2 = 2q (3.7)

where Σ1 supports an sp(8) gauge algebra, and Σ2 supports an su(24) gauge algebra. The
canonical embedding su(24) ↪−→ su(48) is an embedding of index 2, which contributes a factor
of 2 in the definition of Σ2. Finally, a straightforward intersection calculation implies

(K + F ) · Σ1 = −1, Σ1 · Σ1 = −1, (K + F ) · Σ2 = −2, Σ2 · Σ2 = 0, Σ1 · Σ2 = 1 ,

(3.8)

which, by anomaly cancellation, gives 1 bifundamental of sp(8)× su(24) and 2 antisymmetrics
of su(24). The gauge group appearing on the fiber class q in this compact case is indeed
different from the expected gauge group of transverse D7-branes intersecting an O7+-plane.

3.3 Summary of results

In section 3.2, we reviewed a simple example from [13] describing the frozen analog of
the Aspinwall-Gross model. The freezing mechanism in this case describes precisely the
mechanism of turning off vector structure in the SO(32) heterotic string. Our main goal
in this section is to summarize our ansatz for realizing the frozen F-theory duals of small
SO(32) instantons at arbitrary ADE singularities, as first described in section 2. We will
comment on the general patterns realized by such constructions for general frozen F-theory
compactifications, and we will defer the precise analysis of such examples to section 3.4.

Our main results can be summarized with the following claims:

Claim 3.1. There exist frozen F-theory compactifications dual to the SO(32) heterotic string
without vector structure in the limit that small SO(32)-instantons collide with an ADE
singularity.

Claim 3.2. Let T1 and T2 be two 6D SO(32) heterotic compactifications related by turning
off vector structure. Then they have the same number of unlocalized neutral hypermultiplets.

We begin by summarizing the constructions leading to Claim 3.1. Consider an F-theory
compactification on a tuned Calabi-Yau elliptic fibration X over F4, with an so32 gauge
symmetry on the unique curve of self-intersection (−4). As described in section 3.1, one of the
main results of [23] was the derivation of the physics describing small instantons on arbitrary
ADE singularities purely in the context of F-theory. In section 2, we derived the effective
physics in the case without vector structure. On the other hand, a fiber-wise application
of heterotic/F-theory duality implies that the F-theory dual to the SO(32) heterotic string
on a K3 orbifold without vector structure should be described by F-theory with a frozen
7-brane localized on the (−4)-curve.

We will substantiate this claim by explicitly constructing the corresponding frozen F-
theory compactifications for almost all of the ADE singularities. We will illustrate the

– 14 –



J
H
E
P
0
7
(
2
0
2
4
)
2
9
5

Singularities A0 A1 A2 A3 A4 A5 A6 A7 D4 D5 D6 D7 E6

w/ vector Tensors 0 1 1 2 2 3 3 4 4 4 5 5 4
structure Hneutral 20 19 18 17 16 15 14 13 16 15 14 13 14

w/o vector Tensors 0 0 ∅ 1 ∅ 2 ∅ 3 2 2 3 3 4
structure Hneutral 20 19 ∅ 17 ∅ 15 ∅ 13 16 15 14 13 14

Table 2. Tensor multiplets and neutral hypermultiplets in the 6d supergravity models with and
without vector structure. For convenience, we have specialized to the Aspinwall-Gross model with all
24 small instantons localized at the same point.

procedure briefly for the case of the A1-singularity, which already appeared in [13]. In this
case, turning off vector structure induces the following map:

sp24
1

sp20
1

su24
0

where we have indicated the relevant gauge algebras together with the self-intersection of their
curves of support. In particular, one begins with two (−1)-curves in the original F-theory
geometry, contracts one of them, and then constructs a frozen embedding in the resulting
Weierstrass model over the resulting base. This procedure can be generalized to arbitrary
ADE singularities, and in general, we will contract as many curves as necessary to achieve
the desired number of tensor multiplets derived in the model without vector structure.

Finally, we will briefly comment on Claim 3.2. We expect that the above procedure does
not change the number of complex structure deformations of the total space of the Weierstrass
model, which leave the relevant singularities invariant. In particular, we expect that the
number of unlocalized neutral hypermultiplets is invariant after turning off vector structure.
We prove that this is true in all the models that we construct, and we summarize this in table 2.

3.4 Frozen models

In section 3.3, we derived the effective physics of small SO(32) instantons on orbifold points
through a weakly coupled type I orientifold analysis. As described in section 3.1, the same
physics can be described through F-theory as in [23] via heterotic F-theory duality. In
this section, we will realize the results of section 3.3 without vector structure in the frozen
phase of F-theory.

3.4.1 An singularities

In this section, we begin with the case of small SO(32) instantons on An singularities. The
main results were summarized in the first column of table 1; for M instantons on an A2n−1
singularity, the effective physics describing the tensor branch of the theory is given by the
following quiver

Unfrozen: [so32]
spM+4n

1
su2M+8(n−1)

2
su2M+8(n−2)

2 . . .
su2M+8

2
spM

1

Our goal in this section is to realize the corresponding frozen quiver

Frozen: [sp8]
su2M+8n

1
su2M+8(n−1)

2
su2M+8(n−2)

2 . . .
su2M+8

2
su2M

1
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geometrically via the rules of section 3.2. In the following we discuss the various frozen
instanton models, to be already part of a compact base for concreteness. In such cases
we choose the number of instantons on the single theory to be already 24. More general
cases are discussed in section 4.

We begin with the simplest examples, which already appeared in [13] and were summarized
in section 3.2. Consider the Aspinwall-Gross model, given by an F-theory compactification
on the Hirzebruch surface F4 with Weierstrass polynomials

f = e2f̃ , g = e3g̃, ∆ = e18q48∆̃ . (3.9)

The relevant physics of this model can be summarized by the diagram

Unfrozen: [so32]
sp24
0 [F ] D1

where the divisor F corresponds to the curve {e = 0} with self-intersection (−4), and
D1 corresponds to a curve in the fiber {q = 0} with self-intersection (0). In particular,
this describes a global 6d model on the tensor branch of 24 small instantons on a smooth
point. As described in [13] and section 3.2, we claim that the model obtained by turning
off vector structure is described by the same geometry, but with the following assignment
of gauge divisors:

Frozen: [sp8]
sp12
0 [12F ] 2D1

Here, we have flipped the I∗12 to its frozen variant Î∗12 supported on the divisor class 1
2F . In

addition, we note that there exists an embedding sp(12) ↪−→ su(48) of index 2, leading to
the divisor class 2D1 supporting the gauge algebra sp(12).

Next, we discuss 24 small instantons on top of an A1-singularity. As described in [23],
this realizes the following gauge theory chain in the unfrozen phase of F-theory:

Unfrozen: [so32]
sp24
1

sp20
1 [F ] D1 D2

where critically, there is an extra divisor D2 corresponding to an additional tensor multiplet.
On the other hand, the case without vector structure can be realized in the frozen phase
of F-theory with the following configuration:

Frozen: [sp8]
su24
0 [12F ] 2D1

We note that the corresponding geometry is obtained by simply contracting the divisor D2.
These two cases lead to a natural generalization for a description of small Spin(32)/Z2-

instantons on arbitrary A2n−1-singularities. Indeed, the case of an A3-singularity with and
without vector structure corresponding to the following F-theory realizations in the unfrozen
and the frozen phases of F-theory respectively:

Unfrozen: [so32]
sp24
1

su40
2

sp16
1 [F ] D1 D2 D3

Frozen: [sp8]
su24
1

su16
1 [F ] (2D1 + D2) D2
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In complete analogy with the A1-case, the frozen geometry is obtained by simply contracting
the last divisor D3.

For the general situation of 24 small SO(32) instantons on an A2n−1-singularity, we claim
that the respective F-theory geometries are realized by the following chains:

Unfrozen: [so32]
sp24
1

su40
2 . . .

su64−8n

2
sp28−4n

1 [F ] D1 D2 . . . Dn−1 Dn ,

Frozen: [sp8]
su24
1 . . .

su40−8n

1 [12F ] (2D1 + D2 + . . . + Dn) D2 . . . Dn ,

where the frozen F-theory geometry is again obtained by contracting the divisor Dn in the base.

3.4.2 Dn and Em singularities

Our constructions for the frozen phase of F-theory describing small SO(32)-instantons on
A2n−1 singularities without vector structure can be readily generalized to the cases of D and
E singularities. In this section, we will briefly describe the results for Dn and E6 singularities.

As in the previous section, we will describe explicitly only the cases with the maximal
number of 24 small instantons probing D- and E-type singularities. We begin with the
case of D4 singularities, where both cases with and without vector structure were derived
in section 2.2.2. The quivers describing the gauge symmetries and matter content were
given, respectively, by the following:

sp16
1 E1

Unfrozen: [so32]
sp24
1

so80
4

sp16
1 [F ] D1 D2 D3

sp16
1 E2

Frozen: [sp8]
su24
2

sp16
1

su16
2

[
1
2F
]

(2D1 + D2) D3 D2

The diagrams show the relevant gauge algebras, their intersection properties, and the inter-
section numbers of their support, which uniquely determines the matter content by anomaly
cancellation.

The first diagram above can be constructed in an ordinary F-theory compactification
on an elliptic fibration X over a blowup, B, of F4, with so(32) supported on the proper
transform of the (−4)-curve. The second diagram can be obtained from a frozen F-theory
compactification on X as follows. First, one blows down the (−1)-curves labeled as Ei in
the first diagram in the base B. Second, one constructs a frozen F-theory embedding with
the gauge divisors specified as in the second diagram above, and one can verify that these
are indeed consistent with the rules described in section 3.2.

Our analysis for the case of D5-singularities proceeds almost identically; the relevant
gauge algebras and intersection patterns in the cases with and without vector are given
by the following:

sp16
1 E1

Unfrozen: [so32]
sp24
1

so80
4

sp32
1

su32
2 [F ] D1 D2 E2 D3
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Frozen: [sp8]
su24
2

su32
1

su16
2 [1

2F ] (2D1 + D2) D3 D2

As in the above, the frozen configuration is realized by shrinking the unlabeled divisors in
the first diagram, and then choosing the displayed assignment of gauge divisors.

Finally, we give the general assignment for arbitrary Dn singularities, dividing into the
cases where n is even or odd. In the even case, we find the following for D2n+4:

Unfrozen:

sp16
1

sp16−4n

1
[so32]

sp24
1

so80
4

sp32
1 . . .

sp40−8n

1
so80−16n

4
sp16−4n

2

E1 E2

[F ] D1 D2 E3 . . . Ek Dn−1 Dn

Frozen:

[sp8]
su24
2

su32
2

su24
1 . . .

su40−8n

2
sp16−4n

1
sp16
2

[
1
2F

]
2D1 + D2

D3 D4 . . . Dn−1 Dn

D2

Similarly, in the odd cases, we have the following diagrams for D2n+5:

sp16
1

Unfrozen: [so32]
sp24
1

so80
4 . . .

so80−16n

4
sp16−4n

1
su16−4n

2

E1

[F ] D1 D2 . . . Dn−1 Ek Dn

Frozen: [sp8]
su24
2

su32
2

su24
1 . . .

su40−8n

2
su16−4n

1
su16
2

[
1
2F

]
2D1 + D2

D3 D4 . . . Dn−1 Dn

D2

We now consider E6-singularities. Similar to the D2n+3 and A2n cases, the quiver in
the unfrozen phase is not that of affine E6, but is folded by its Z2 automorphism to the
quiver of F4 [22] (see table 1). The gauge group chain reads

Unfrozen: [so32]
sp24
1

so80
4

sp48
1

su64
2

su32
2 [F ] D1 D2 D3 D4 D5

In section 2.2.1, table 1 we observed that switching off vector structure in G orbifolds of
Spin(32)/Z2 instantons amounts to a Z2-folding of the affine diagram. Due to the triality of
affine E6, this folding also leads to a quiver with the shape of affine F4, given by the frozen
divisor combination
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Frozen (1)

Frozen (2)

Unfrozen

Figure 1. The e
(1)
6 quiver base shape of so32 instantons probing the same singularity, with affine

node in red. There are three choices of Z2 foldings. Black arrows highlight the Z2 folding in the case
with vector structure, and the two red arrows show the folding when vector structure is switched off.

Frozen (I):

[sp8]
su24
2

su32
2

sp20
1

so32
4

sp4
1

[
1
2F
]

2D1 + D2 + 2D3 + D4 D4 + D5 D3 D2 D3 + D4

Moreover, there exists a third possibility to fold the affine E6 to F4 (see figure 1), and thus
we expect a second frozen F-theory divisor assignment. This does indeed exist,

Frozen (II):
[
1
2F
]

2D1 + D2 + 2D3 + D4 + D5 D4 D3 D2 D3 + D4 + D5

while the gauge group chain is exactly the same as before. From the 6D SUGRA perspective
both quivers look exactly the same, while geometrically they arise from two different frozen
brane assignments. It would be interesting to investigate whether the theories differ by more
than just the inequivalent two frozen brane assignments.

Finally, we consider E7 singularities, for which the divisor assignments read

Unfrozen:

sp28
1

[so32]
sp24
1

so80
4

sp48
1

so128
4

sp44
1

so64
4

sp12
1

E1

[F ] D1 D2 D3 D4 E2 D5 E3

Frozen:

[sp8]
su24
2

su32
2

su40
2

sp24
1

so32
4 [F ] 2D1 + D2 + 2D3 + D4 D5 D4 D3 D2

3.5 Higgsings of SO(32)

In the previous two sections, we carefully analyzed a variety of singular limits and phase
transitions for the SO(32) heterotic string without vector structure dual to frozen F-theory
compactifications on F4 with an sp8 gauge symmetry. Such configurations necessarily contain
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highly non-perturbative dynamics, such as small instantons probing ADE singularities, but
the full details of the physics is inaccessible purely from the perturbative heterotic string. Our
goal in this section is to present some simple examples of Higgsings of the frozen F-theory
compactification described above, while a full exploration of the duality to the perturbative
heterotic string without vector structure will be left for future work.

Motivated by examples of perturbative heterotic compactifications with SO(28)× SU(2)
gauge symmetry, we will consider the Higgsings of the SO(32) gauge symmetry to SO(28),
and the natural freezings of this configuration. We begin by considering the following tuning
of Weierstrass coefficients on F4:

f = 1
3e2(−p22 + 3e5hp4) , g = 1

27e3p2(−2p22 + 9e5hp4) , ∆ = e16h2p24(−p22 + 4e5hp4) ,

(3.10)

where p2 ∈ |3e + 12f |, and p4 ∈ |20f |, where |D| denotes the linear system associated with a
divisor D. Taking −p22 + 4e5hp4 = 0 to be the residual locus ∆̃, we have that ∆̃ ∈ |6e + 24f |
and the intersection relations

∆̃ · e = 0, ∆̃ · f = 6, ∆̃ · h = 24 (3.11)

In the unfrozen setting, we obtain the following gauge algebras and matter assignments

• so28 on e, su2 on h, sp20 on p4

• 1 half-bifundamental of 28⊗ 40

• 1 bifundamental of 40⊗ 2

• 1 anti-symmetric of sp20

• 1 tensor multiplet, 25 neutral hypermultiplets

We now flip to a frozen F-theory configuration, where e supports a frozen divisor Î∗10.
We claim the following matter assignments:

• sp6 on 1
2e, su2 on h, sp10 on 2f

• 1 bifundamental of 12⊗ 20

• 2 bifundamentals of 2⊗ 20

• 1 antisymmetric of sp10

• 1 tensor multiplet, 25 neutral hypermultiplets

We note that the number of neutral hypermultiplets before and after freezing are precisely
the same, as we would expect naively from the geometry, consistent with the discussions
of section 3.3.
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4 Fusing SUGRA theories

The 6D instanton theories constructed in section 2 are non-gravitational theories that flow
to little string theories in the UV. When discussing their frozen F-theory duals in the
previous section, we have considered them as subsectors of full 6D SUGRA theories. In
the following, we generalize this construction of fusion of two 6D Spin(32)/Z2-instanton
theories along their flavor symmetries with and without vector structure to obtain a broader
class of 6d frozen F-theory vacua.

4.1 Fusion of little strings

The process of fusion follows the very same concept from 6D SCFTs [45] and refers to coupling
two different SCFTs T1 and T2, along a common flavor group factor [gF ]

T3 = T1[gF ] −−−−
gF [gF ] T2 , (4.1)

to obtain a new SCFT T3. Depending on the details of the fusion process, the resulting
theory may change substantially its UV behavior. In particular, it may not flow to an SCFT
anymore but to a 6D Little String Theory [28, 46] or a SUGRA theory instead.

In the following, we describe the fusion process of two non-compact Little String Theories
from the class KUF

M (G) with vector structure, or from KF
M (G) without vector structure, as

summarized in table 1. The quivers are fused by gauging a common flavor algebra gF , which
introduces the respective vector multiplets and a tensor multiplet. The resulting new quiver
G(G1, G2, M)UF/F that describes the SUGRA theory is

GUF/F (G1, G2, M) = KUF/F
M (G1)[gF ] −−−−

gF [gF ]KUF/F
N (G2) , (4.2)

where the fusion flavor algebra is highlighted in blue.
The fusion comes with a set of conditions needed to obtain a consistent 6D SUGRA

theory. In particular, all global symmetries need to be either trivialized or gauged. Little
string theories can have the following two types of global symmetries:

• Flavor symmetries of type so32 or sp8 in the case of vector structure or no vector
structure.

• A global u1 1-form symmetry acting on tensor multiplets.2

While fusion gauges the so32/sp8 flavor symmetries, the u1 1-form symmetry is still left. Higher
global symmetries will be absent in 6D strings coupled to tensor multiplets if the intersection
form Ω of the F-Theory base is integral and self-dual [50]. Since each heterotic LST building
block is birational to a 0 curve, we find that the minimal blow-down base must be a Hirzebruch
surface Fn, where n is the negative self-intersection of the fusion curve. In the unfrozen case

2One may also worry about 2-form defect group factors [47] that may be gauged as well [48]. However, it
can be readily checked that none of the heterotic little string theories admit a non-trivial 2-form symmetry
group [49].

– 21 –



J
H
E
P
0
7
(
2
0
2
4
)
2
9
5

(and the full so32 algebra unbroken), this is an so32
n . Anomalies fix n = 4 and demand 24

hypermultiplets in the vector representation. This fixes the quivers to have the shapes

. . .
sp24−M

1
so32
4

spM

1 . . . . (4.3)

Note that the sum of the instanton contributions is 24 as expected for a heterotic string.
The integer M labels the relative number of instantons on either side of the so32 and gives
a bound on the number of inequivalent models.

Fusion works similarly for the frozen models. Instead of the versions with vector structure,
we freeze the quivers KUF

M (G) → KF
M (G) and pursue in the same manner. Note that the

frozen 7-brane F always lies on the class of the fusion node. Hence, when freezing the
class to 1

2F , the so32 is reduced to sp8 and the BPS string charge given by F 2 = 4 reduced
to (12F )2 = 1 as expected. Anomaly freedom requires again 24 instantons, such that the
resulting quiver shapes are

. . .
su24−M

n1
sp8
1 suM

n2 . . . . (4.4)

The respective 6D SUGRA theories can therefore be labeled by two types of orbifold
singularities G1, G2, their relative number of five-branes M and a label that indicates whether
they are frozen,

GUF (G1, G2, M) , or GF (G1, G2, M) . (4.5)

It is important that freezing keeps the structure of the heterotic LSTs, i.e., that they are
birational to 0 curves.3 Hence, fusion is independent of freezing. Since the fusion node is
always in the class F of the O7+, we cannot fuse a frozen and an unfrozen theory. This
is also clear from requiring that the fusion nodes have the same flavor symmetry, which is
not the case for a frozen and an unfrozen model.

The process of fusion and freezing can be summarized in the commuting diagram

KUF (G1)M
Fusion−−−−→ GUF (G1, G2, M) Fusion←−−−− K(G2)UF

24−Myfreeze

y freeze

y

KF (G1)M
Fusion−−−−→ GF (G1, G2, M) Fusion←−−−− K(G2)F

24−M

(4.6)

Fusing two instanton theories into a gravity theory readily implies a couple of interesting
facts. First, we will show that the number of (toric) complex structure moduli is constant, as
can be derived from the field theory properties of so32 instanton theories. The dimension
of the moduli space of M so32 instantons [22] on a G singularity is the same as its Higgs
branch dimension and given by

dimH(KM (G1)) = c(G) + 30M , (4.7)

3On the level of the little string theory, this is equivalent that freezing keeps the 2-group structure constant
κP invariant [51].
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with c(G) some G-dependent constant. This Higgs branch dimension, on the other hand,
is basically the gravitational anomaly coefficient

dimH = H − V + 29T , (4.8)

which when coupled to gravity, must equal

H1 + dimH = 273 , (4.9)

with H1 the number of uncharged hypermultiplets. The latter coincide with the number of
complex structure moduli of the respective geometry up to the universal hypermultiplet. When
fusing two instanton theories KM (G1) and KN (G2) to a SUGRA theory, their respective Higgs
branch dimensions are added, and one introduces 496 vectors of so32 and its tensor multiplet
contribution. The instanton numbers N, M of the fusion constituents are constrained to lead
to the 24 heterotic instantons, which requires fixing N = c2 −M with c2 some constant. The
number M therefore only labels the relative instanton number M between the two fused
theories. Using the gravitation anomaly, we then have

H1 = 273− dimH(KM (G1))− dimH(Kc2−M (G2))− 29 + dim(so32) . (4.10)

When inserting this into (4.7), we find that M cancels and we are left with a constant number
of neutral hypermultiplets. Another way of seeing this is to note that the number of neutral
hypermultiplets is related to the number of (polynomial) complex structure deformations
of the respective threefold geometries. However, since freezing is just a re-interpretation of
the same Weierstrass model, its polynomial deformation should be the same, as discussed
section 3.3, and the number of neutral fields is invariant.

Notably, there is an exception when the singularity of either instanton theory is chosen
to be trivial, g = ∅. In such cases we will find all deformations to be of non-polynomial
origin, i.e., not visible in the hypersurface equation.

4.2 Examples

In the following, we give concrete examples for the fusion algorithm outlined above. We
start by constructing an unfrozen F-theory SUGRA model obtained by fusing two unfrozen
heterotic instanton theories from table 1, which we will then freeze in the second step.

GM (∅, D4) models. We start by picking a D4-type singularity and fuse it with an unorb-
ifolded instanton theory, which yields the quiver

sp16−M

0
so32
4

sp8+M

1

spM
1

so16+4M

4
spM
1

spM

1 , (4.11)

valid for M = 0 . . . 16. The above model can be constructed via a hypersurface in a 4D
reflexive polytope as spelled out in appendix A. From those vertices we can compute the
toric hypersurface as well as the Hodge numbers,

(h1,1, h2,1)(XM,D4) = (55 + 5M, 31−M) , (4.12)
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which matches the rank of the above gauge algebra and SUGRA anomaly cancellation. Note
that for the number of neutral hypermultiplets Hn = h2,1 + 1 in 6D, we also need to take
into account that the anti-symmetric representation of spn of dimension n(2n− 1)− 1 does
not have full charge dimension. The number of charged hypermultiplets in this irrep is

dim(n(2n− 1)− 1)− dim(R0) = 2(n− 1)n . (4.13)

Here dim(R0) = n− 1 denotes the number of weights of the antisymmetric representation
that have trivial charge under all Cartan generators. In the geometry of the respective
threefolds, these are already accounted for in h2,1. The corresponding complex structure
deformations are non-torically realized, meaning they do not appear as monomials in the
hypersurface equation.4 The polynomial complex structure coefficients, on the other hand,
are in fact constant for any value of M and given by5

h2,1
toric(XM,D4) = 16 . (4.14)

Having established the unfrozen model, we can simply freeze it by exchanging the heterotic
instanton theories on both sides by their versions without vector structure. The respective
frozen model is given as

sp16−M

0
so32
4

sp8−M

1

spM
1

so16+4M

4
spM
1

spM

1 freeze−−−→
sp8−M/2

0
sp8
1

su8+M

2
spM

1
suM

2 , (4.15)

which requires the relative number of instantons M to be even. It is easy to verify that the
number of neutral hypermultiplets in the above model remains unchanged.

GM (D4, D4) models. Moving on to more complicated examples, we next fuse two D4-type
theories, which results in the SUGRA quiver

sp8−M

1

sp8−M
1

so48−4M

4
sp8−M

1

sp16−M

1
so32
4

sp8+M

1

spM
1

so16+4M

4
spM
1

spM

1 , (4.16)

for M = 0 . . . 8. The model can be constructed torically, from which we compute the
Hodge numbers

(h1,1, h2,1)(XM ) = (107, 11) , (4.17)

consistent with the 6D SUGRA anomalies. This time all complex structure moduli are
polynomial and constant for any M since this model does not admit any anti-symmetric
representations. Moreover, the number of Kähler moduli is also constant since the ranks of the
gauge algebras on the left and right side of the so32 exactly cancel out. This always happens

4More details of an F/M-theory interpretation of these deformations are given in [52].
5The values differ slightly for M = 15 and M = 16, in which case no antisymmetric irreps are present.
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when there are two identical singularities, i.e., for GM (G, G) theories. Freezing then results in

sp8−M

1

sp8−M
1

so48−4M

4
sp8−M

1

sp16−M

1
so32
4

sp8+M

1

spM
1

so16+4M

4
spM
1

spM

1 freeze−−−→
su8−M

2
sp8−M

1
su16−M

2
sp8
1

su8+M

2
spM

1
suM

2 .

(4.18)

It is straightforward to check that the number of neutral singlets is unchanged upon freezing.

GM (D4, D7) models. Similarly, we can fuse a D4 and a D7-type theory, which results
in the SUGRA quiver

sp3−M

1

sp3−M
1

so28−4M

4
sp3−M

1

sp11−M

1
so32
4

sp13+M

1

sp5+M
1

so36+4M

4
sp12+2M

1
so24+4M

4 . (4.19)

As argued before, the minimal number of instantons required for a D-type singularity increases
with its rank. This in turn constrains the relative instanton numbers to lie in the range
M = 1 . . . 3. The above model has a toric construction of threefolds XD4,D7,M via the family
of polytopes ∆D4,D7,M given in appendix A. Their respective Hodge numbers are

(h1,1, h2,1)(XM ) = (122 + 6M, 8) . (4.20)

Freezing the model again proceeds as before. We fix M to be even and exchange the
respective quiver constituents to obtain

(4.19) freeze−−−−→
su3−M

2
sp3−M

1
su11−M

2
sp8
1

su13+M

2

su2+2M

1
su10+2M

2
su5+M

2 (4.21)

GM (∅, E6) models. As a final example we discuss two theories with E6 type of singularities.
The simplest case is fusing the E6, with a trivial theory, which results in

sp16−M

0
so32
4

spM+8
1

so4M+16
4

sp3M

1
su4M

2
su2M

2 . (4.22)

The underlying threefolds XM has Hodge numbers

(h1,1, h2,1)(XM ) = (47 + 9M, 26 + M) . (4.23)

Note that the M -dependence of complex structure moduli comes from the non-polynomial
deformations, which in turn arise from the anti-symmetric irreps of sp16−M . The frozen
version of the model, GUF (∅, E6)M is

sp16−M

0
so32
4

spM+8
1

so4M+16
4

sp3M

1
su4M

2
su2M

2 freeze−−−→
sp8−M/2

0
sp8
1

suM+16
2

so2M+16
2

sp 3
2 M+8

1
so2M+16

4
sp 1

2 M

1
(4.24)

where the relative instanton number M is again required to be even.
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5 Gauge group topology in the frozen phase

In this section we comment on the global gauge group structure before and after freezing.
Global properties, such as the topology of the gauge group G

π1(G) = Z , (5.1)

have recently gained a lot of attention when reformulated in terms of higher form symme-
tries [53]. Indeed, from the 10D string heterotic perspective, these features were exactly the
reason why we could switch off the vector structure [9].

In terms of the F-theory geometry, the gauge group topology is encoded in the finite part
of Mordell-Weil group MWtor(X3) = Z of the elliptic fibration [54–56]. Note that we focus
on theories without Abelian gauge factors that could mix with the centers of the non-Abelian
ones and contribute non-trivially to π1(G) [57]. We expect our general considerations to hold
also in those cases but leave a thorough exploration for future work. Since swapping to the
frozen phase merely corresponds to a re-interpretation of the singularity structure of an elliptic
threefold X3, it does not change the MW group of X3. Therefore, one expects the global 1-
form gauge symmetry Z to be preserved upon freezing. We will focus on these aspects in more
generality in section 5.4, where we will argue for bounds on Z in 6D frozen F-theory vacua.

Independent of whether or not a theory is coupled to gravity, there are two types
of conditions for center 1-form symmetries Z to be consistent. We will summarize these
conditions [58–63] in the following and apply them to our cases in section 5.1–5.3 following
the exposition in [62], to which we also refer for more details.

In six dimensions, the anomaly eight-form I8 factors into an anomaly four-form Ii
4 that

consists of field strengths of gauge symmetries Gj and flavor symmetries [Gm] couple to
the ith 2-form tensor field,

Ii
(4) ⊃ −

∑

i

ηijc2(Fj)−Aimc2([Fm]) · · · . (5.2)

For the LST case, we can also have flavor symmetries. Their couplings are encoded in the
coupling matrix Aim, whose entries are 1 if the ith 2-form field is coupled to the flavor algebra
[Gm] and 0 otherwise. First consider the group

G̃ = [ĜF ]×
n∏

i

Ĝi , (5.3)

which we take to be fully non-Abelian. These factors have center symmetries

Z(G̃) = Z(ĜF )×
∏

i

Z(Ĝi) , (5.4)

which are finite cyclic and Abelian groups summarized in table 3 for all simple groups. The
center symmetry Z(G̃) is in general broken, but there may be a linear combination Z ⊂ Z(G̃)
that survives and acts diagonally, such that the global structure of the Gauge group is

G = G̃

Z
= [ĜF ]×

∏n
i=1 Ĝi

Z
. (5.5)
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A non-trivial Z ⊃ Z(G̃) allows to switch on a center-twisted bundle, which is captured by the
generalized Stiefel-Whitney (SW) class.6 The center-twisted bundle leads to fractionalizations
of the field strengths,

c2(F ) = −αG ω(F ) ∧ ω(F ) , (5.6)

where ω(F ) is the generalized SW class and αG are some fractional coefficients summarized
in table 3. Each gauge group center Z(Ĝj) and flavor group center Z([GF ]) contributes an
independent SW class ωj and ωF . The group Spin(4N) is special since it has two center factors
and hence, the second Chern class has two possible SW classes w1 and w2 that contribute as

c2(FSpin(4N)) = −
N

4 (w1 + w2)2 −
1
2w1 ∪ w2 . (5.7)

The fractional coefficient αG can lead to an obstruction (see (5.9)) when performing large
gauge transformation of the 2-form tensor fields which yields a non-vanishing phase in the
path integral. However, one may be able to define a consistent quotient Z, generated by
a background ω which is a linear combination of center gauge twists kiωi and flavor twists
kF ωF in Z(G̃). Here, the ki and kF are integers that give the order of the twist element
and are taken such that 2-form gauge transformations are single-valued. We collect all these
twist integers in the twist vector k⃗ := (ki, kF ).

In summary, for a Z = ZN symmetry to be present, we require the following two
conditions be satisfied:

1. Z must act trivially on all matter representations. Each matter representation Ri under
Ĝi admits a discrete center charge qZ ∈ Z(G̃). All matter representation of G must
have trivial qZ charge defined as

n∑

i=1
ki qZ(Ĝi)(Ri) = 0 mod N . (5.8)

2. Integrality of large 2-form gauge field transformations with non-trivial SW classes must
be well defined

∑

m

α[GF,m]k
2
F,mAim +

∑

Ĝi

k2
j αGj ηij = 0 mod 1 . (5.9)

The second condition, can also be viewed as the absence of fractional BPS instantons, obtained
from a D3 brane that wraps/intersects that is intersected by a D7 brane, with non-trivial
center-twist. Note that in the LST case, there is a unique linear combination of the string
charge lattice ηij , which is intersected by the 6D flavor factors only leading to the condition

∑

m

α[GF,m]k
2
F,m ∈ Z . (5.10)

The above condition is in fact nothing but the consistency condition for 1-form center
symmetries of 8D SUGRA theories [58], of the gauge group G = GF /Z.

6Formally, the generalized Stiefel-Whitney class in 6D is defined as ω ∈ H2(M6,Z(G̃)), which is the
characteristic class that measures the obstruction to lift a G̃/Z(G̃) bundle on any six-manifold M6 to its
cover G̃.
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G Z(G) αG

SU(n) Zn
n−1
2n

Sp(n) Z2
n
4

Spin(2n + 1) Z2
1
2

Spin(4n + 2) Z4
2n+1

4

Spin(4n) Z2 ×Z2 (n
4 , 1

2)

E6 Z3
2
3

E7 Z2
3
4

E8 Z1 −

Table 3. Summary of centers Z and fractional α factors for any simply laced lie group G.

5.1 Global structure of unfrozen LSTs

Before turning to compact examples, we discuss the global structure of the unfrozen vacua.
As the Spin(32)/Z2 heterotic string has a non-trivial global structure in 10D, the same is
true for the LST theories in six dimensions where the heterotic gauge group becomes a
flavor symmetry. Indeed, the various Spin(32)/Z2 orbifold theories KM (G) have a global
symmetry group of type

G =
[GF ]×

∏
mi

Sp(k1)×
∏

mj
SO(4kj)

∏
ml

SU(2kl)
Z2

. (5.11)

All flavor and gauge algebra factors admit (at least one) Z2 center factor on which the
diagonal Z = Z2 quotient acts.

Before checking consistency of the Z2 symmetry, we need to clarify the phases of the
relevant matter multiplets under the respective centers. For Spin(4N), the vector, spinor
and cospinor multiplets transform with the phases

R ϕ(Z1
2,Z

1
2)

V (−1,−1)
S (−1, 1)
C (1,−1)

. (5.12)

For Sp(N), the fundamental transforms with a −1 phase, while anti-symmetric irreps are
uncharged. The center charges qZ(R) for SU(N) fundamentals is given by qZ = e

2πi
N , while

the m-times (anti)-symmetric irreps have charges qZ = e
2πmi

N . The total phase Φ for a
twist k is then given by

Φ = qZ(R)k . (5.13)

This is relevant because the Z = ZN symmetry may be non-prime with N = MT . In such
cases, we can twist by a ZM sub-center only when k = T .
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In the following we discuss some theories in more detail. First, there is the KM (∅)
theory with quiver

[so32]
spM

0 (5.14)

Evidently, there is an unobstructed twist assignment given by kso32 = (1, 0) and kspM
= 1.

The Z2 center charge contribution of the bifundamentals is

k⃗ · qZ2(32, 2N) = ki
so321 + kspM

1 = 0 mod 2 . (5.15)

The antisymmetric representation of Sp(M) has trivial Z2 center charge.
Next we discuss the KM (A2K−1) theories. The SU(2K) gauge factors have a Z2K center,

but only a Z2 sub-center twist is activated upon choosing a twist k = K. The quiver
(including the unobstructed twist assignments k⃗ below the quiver nodes) reads

[so32]
spN

1
su2N−8

2
su2N−16

2 . . .
su2N−8(m−1)

2
spN−4m

1
k⃗ (1, 0) (1) (N − 4) (N − 8) . . . (N − 4m− 4) (1)

. (5.16)

The first spN gauge algebra factor leads to the condition

−1 · N

4 + (2N − 8− 1)
2(2N − 8) · (N − 4)2 = 1

2(N − 6)(N − 3) ∈ Z , (5.17)

which is satisfied for any N since either the first or the second factor is even. We can proceed
similarly for the first −2 curve, for which we obtain

N

4 − 22N − 8− 1
2(2N − 8) (N − 4)2 + 2N − 16− 1

2(2N − 16) (N − 8)2 = 16 + 1
2N(N − 1) ∈ Z (5.18)

which is also always satisfied.
Finally, we consider a D4n theory. For simplicity, we just choose n = 1. The respective

quiver and twist are given by

[so32]
sp8+M

1

spM

1
so16+4M

4
spM

1

spM

1 with k⃗ = ((1, 0), (1),
(1)
(1, 0)
(1)

, (1)) (5.19)

where we have given the twist embeddings next to it. All matter representations are Z-
invariant, and with the above twists we can check the second condition (5.9) is satisfied as well.

5.2 Frozen LSTs

Next, we freeze the above LSTs and show, that their global structure is preserved.
We start by considering the frozen model KF

N (∅) given by

[sp8]
spM

0 . (5.20)

In this case, both conditions are satisfied trivially.
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Similarly, we can take for example the KF
N (A3) theory

[sp8]
su2N

1
su2N−8

1
k⃗ (1) (N) (N − 4)

(5.21)

All matter multiplets are neutral under the diagonal Z2 action. For the two tensor multiplets,
the two obstructions read

8
4 −

2N − 1
4N

(N)2 + 2N − 9
2(2N − 8)(N − 4)2 = 11− 4N ∈ Z , (5.22)

2N − 1
4N

(N)2 − 2N − 9
2(2N − 8)(N − 4)2 = 4N − 9 ∈ Z , (5.23)

and are satisfied for all N .
As a final example, we consider the KF

M (D4) theory with quiver

[sp8]
su8+2N

2
sp2N

1
su2N

2
k⃗ (1) (N + 4) (1) (N)

(5.24)

Again, all hypermultiplets are invariant under a diagonal Z2 center action. For example,
the second tensor multiplet gives the condition

−2N

4 + 2N + 8− 1
2(2N + 8) (N + 4)2 + 2N − 1

2(2N) (N)2 = 7 + 3N + N2 ∈ Z , (5.25)

which are again satisfied automatically.

5.3 Fusing LSTs to obtain SUGRA theories

In section 4 we have discussed how LSTs can be fused to obtain SUGRA theories. Each
constituent in the fusion has a non-trivial center symmetry, which we now show to be invariant
under fusion. In order to do so, we simply need to check that the fusion nodes

so32
4 in the

unfrozen case and
sp8
1 in the frozen case leaves the condition (5.9) invariant. First recall that

there must be 24 instantons in total on the so32 node, and hence

. . .
sp24−N

1
so32
4

spN

1 . . . (5.26)

The consistency condition results in

−484 + 24−N

4 + N

4 = 16 ∈ Z . (5.27)

One can proceed similarly for the frozen phase. Here, the sp8 gauge node can connect to
either su or sp gauge algebra factors. Anomaly cancellation fixes such configurations locally
to one of the three cases

1. [sp12−M ]
sp8
1 [spM ] , 2. [sp24−2M ]

sp8
1 [spM ] , 3. [su24−2M ]

sp8
1 [su2M ] , (5.28)

with M = 2N . The twist for the su2K factors is again fixed by the Z2 sub-center to be
k = K. With this choice, all obstructions evaluate to integer classes and hence the Z2 1-form
gauge symmetry is preserved in the SUGRA theory.
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5.4 Bounds on the 1-form symmetry sector

The authors of [64] consider general conditions on the 1-form gauge symmetry sector Z in
6D SUGRAs with only non-Abelian gauge symmetry factors. Note that any theory with
T > 0 tensor multiplets has a heterotic string in its spectrum. In terms of the F-theory
geometry, this heterotic string is obtained from a D3 brane that wraps a C2 = 0 curve in
the base. As the gauge group topology Z is a global property, it must be consistent with
the (perturbative) heterotic gauge symmetry GHet. The latter is fixed by the finite choice
of possible 8D SUGRA theories, consistent with the fact that the geometry is an elliptic
K3 fibration. Thus, the 6D 1-form symmetries are bounded by the possible of 8D SUGRA
vacua. This is consistent with the fact that the 1-form anomaly in 8D coincides with the
one found on the respective 0-curve in 6D [58]. In summary, the 1-form gauge symmetry
in 6D must take on one of the following possible values

ZUF = Zn ×Zm with (n, m) ∈ {(1, {1, 2, 3, 4, 5, 6}), (2, {2, 4}), (3, 3)} , (5.29)

which are all the allowed 8D values with the exception of Z7,Z8 and Z2
4.

We want to extend these considerations to frozen 6D F-theory vacua and show that
these do not contribute any new factors, i.e., the list (5.29) is complete. In fact, we argue
that frozen 6D F-theory vacua are very strongly constrained, such that their 1-form center
gauge symmetries can only be

ZF = {Z2,Z2 ×Z2} . (5.30)

When considering a 6D F-theory SUGRA theory with T > 0 and a single O7+ brane, there
is again a heterotic string in the spectrum, which lives on the 0 curve. However, in the frozen
phase, the local theory of this heterotic string should correspond to the Spin(32)/Z2 vacuum
without vector structure.7 Thus, running a similar argument as above, we simply check
the consistent 8D CHL or Spin(32)/Z2 1-form gauge symmetries, which correspond to the
constraints for the possible 6D 1-form symmetries Z. The latter have been explored recently
in [11, 65] and (in the absence of Abelian gauge factors) where shown to be the ones of (5.30).

From the perspective of the frozen F-theory geometry, the above statement may also be
seen the following way: Recall that freezing in F-theory amounts to an re-interpretation of
the singularity structure in the elliptic fiber: An I∗4 fiber, which is interpreted as an unfrozen
so16 gauge algebra on an 8D7+O7− stack gets swapped to a frozen O7+ plane with no gauge
algebra in the frozen phase. The global gauge group structure, on the other hand, is encoded
geometrically in the Mordell-Weil torsion group, which stays invariant under freezing. But
Mordell-Weil torsion restricts the possible SL(2,Z) axio-dilaton monodromies to lie in an
Γ1(n) or Γ(m) sub-group for Z = Zn or Z = Z2

m MW groups, respectively [66].8 Recall that
the monodromy of an I∗4 fiber coincides with that of an O7+,

M(I∗4 ) = M(O7+) =
(
−1 4
0 −1

)
∋ Γ(2) . (5.31)

7Note that 8D CHL vacua live in the same component of the moduli space as those without vector
structure [19].

8For Z2×Z4, monodromies M are constrained to be in a non-classical congruence subgroup M ∈ Γ1(4)∩Γ(2).
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Therefore, the maximal SL(2,Z) congruence sub-group a single O7+ plane can leave invariant
is Γ(2), which corresponds to a Z2 ×Z2 Mordell-Weil torsion group. This in turn is nothing
but the statement that the group Spin(16) has a Z2×Z2 center that we may be able to gauge.

A related geometric argument has been given in [67], where frozen 8D F-theory vacua
where interpreted as switching on a discrete Z2 background flux for B2 in the P1 base. As
B2 and C2 form an SL(2,Z2) doublet, such a discrete flux background is only well-defined
when the monodromies M are restricted to

M ∈ Γ0(2) . (5.32)

In order to admit a non-trivial global structure, such as Z = Zn or Z2
m, we must then have

monodromies that preserve Γ1(n) or Γ(m) subgroups of Γ0(2). These subgroups are

Γ2 ⊂ Γ1(2) ⊂ Γ0(2) , (5.33)

and thus only the groups (5.30) are consistent. Note, however, that also a Γ1(4) group,
i.e., a Z4 symmetry, can be possible.

Of course, one may wonder whether there exist other exotic types of non-perturbative
O7 orientifold planes that may be of order three or higher that may be compatible with a
higher order global structures. This is not the case, as argued in [6].

6 Conclusions

In this work we have extended and explored the geometric dictionary of frozen F-theory
vacua in six dimensions. We explored the frozen phase by constructing F-theory duals
of Spin(32)/Z2 heterotic NS5 brane theories, and their orbifolds with and without vector
structure for all ADE groups. We show that turning off vector structure corresponds to
a folding of the respective quiver diagram by a Z2 outer automorphism, which freezes a
large amount of tensor multiplets.

We explain how freezing can be implemented by a change of a divisor in the base of the
F-theory threefold and show consistency with rules established in [13]. Since the theories
are heterotic little string theories, we also establish fusion rules that allow to combine
them into consistent supergravity backgrounds, which we construct systematically in toric
geometry. From this construction, we show that freezing does not change the number of
neutral hypermultiplets in the theory.

Finally, we comment on the global gauge symmetry structure in frozen models, i.e.,
the discrete center 1-form gauge symmetry sector. This sector is strongly constrained and
lies within the bounds given in [64].

There are various open questions which we would like to come back to in future works.
In particular, it is natural to ask whether we can study orbifolds of NS5 branes in heterotic
CHL orbifolds in a similar fashion. Unfortunately, there are no perturbative methods to do
so directly, but these theories could be T-dual to our Spin(32)/Z2 instanton models without
vector structure. Furthermore, it would be exciting to relate the construction of frozen
8D F-theory vacua with a discrete 2-form background field [67] and the 6D constructions
explored in this work. We have already seen that 8D frozen F-theory vacua are necessary to
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understand the disconnected components of the moduli space. It would therefore be very
interesting to understand whether 6D (or lower-dimensional) frozen F-theory vacua may
also correspond to disconnected components of the SUGRA moduli space, or whether there
(always) exists some dynamical transition from an unfrozen component. Moreover, it would
be interesting to study this relatively little explored framework in the context of string model
building. Reducing gauge group ranks and freezing moduli by exploiting O7+ planes could
be promising for moduli stabilization and to circumvent the tadpole problem [68].

Finally, our detailed investigation of the duality between the Spin(32)/Z2 heterotic string
without vector structure and the frozen phase of F-theory revealed a number of new constraints
and examples in studying compact models with frozen singularities. In one direction, it would
be interesting to develop a systematic procedure to construct 6d F-theory compactifications
with O7+-planes and to analyze more subtle aspects of their physics, such as the global forms
of the gauge groups, discrete symmetries, and abelian factors. In another direction, it would
also be desirable to make precise the relations between the appearance of O7+-planes, the
absence of vector structure, B-fields and discrete torsion, as described in [69–71].
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A Toric data of elliptic threefolds

In this appendix, we summarize the toric vertices for two families of threefolds used in the
examples in section 4. We give the families of vertices of the 4D polytopes ∆ from which
the respective threefolds can be constructed following Batyrev. The vertices also allow us
to compute the Hodge numbers. The toric rays are

∆(∅,D4,M) =





(0, 1, 0, 0)
(1, 0, 0, 0)
(0,−1, 0, 1)
(0,−1, M, 1)

(−2,−3,−2, 2)
(−2,−3,−8,−1)

(−2,−3, 8−M,−1)
(−2,−3, 2M + 2, 2)





, ∆(D4,D7,M) =





(0, 1, 0, 0)
(1, 0, 0, 0)
(1, 0,−2, 2)
(1, 1, 0, 1)

(−2,−3,−8, 2)
(1, 0, 2M, 2)

(−2,−3, 6 + 2M, 2)
(1, 1, 3−M, 1)
(−2,−3,−4,−2)
(0,−1,−1,−1)

(−2,−3, 6− 2M,−2)
(0,−1,−1,−1)

(0,−1, 2−M,−1)





. (A.1)
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