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1 Introduction

Lattice Quantum Chromodynamics (LQCD) calculations are crucial to nonperturbative
determinations of Standard-Model parameters and searches for beyond-the-Standard-Model
physics in the flavor sector [1]. These calculations (see FLAG [2] for a review) typically require
renormalization of composite operators, as the hadronic matrix-elements are renormalization
scale-dependent, and must be combined with Wilson coefficients to determine renormalization-
scale-independent physical quantities. The most commonly used renormalization scheme in
phenomenological applications of QCD is the modified minimal-subtraction (MS) scheme
because of its perturbative simplicity. However, LQCD has no direct access to the MS scheme
which is only defined in dimensionally-regulated perturbation theory. Lattice perturbation
theory [3] can be used to convert bare matrix-elements computed in LQCD to MS-renormalized
matrix-elements, but tends to suffer from poor convergence properties [4]. Nonperturbative
renormalization schemes bypass these problems by renormalizing composite lattice operators in
an intermediate, regulator-independent scheme, before perturbatively matching between this
intermediate scheme and the MS scheme using dimensional regularization. A common choice
of an intermediate scheme is to impose a momentum-space renormalization condition, as is
done in the Regularization-Independent Momentum Subtraction (RI-(S)MOM) methods [5, 6].
A drawback of RI-(S)MOM schemes is that gauge-fixing is required due to the use of
gauge-noninvariant quark and/or gluon states, giving rise to additional mixing with gauge-
noninvariant operators [7, 8]. Furthermore, Gribov copies (the discrete set of intersections
between a gauge orbit and a gauge-fixing condition) introduce a systematic error to numerically
computed renormalization constants, although numerical studies often suggest that this is
practically negligible compared to statistical noise [9, 10].
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To circumvent these problems, one can instead impose renormalization conditions based on
position-space correlation functions of gauge-invariant operators. In the literature this has been
called the X-space scheme [11], or the gauge-invariant-renormalization-scheme (GIRS) [12].
For multiplicatively renormalizable operators, the X-space renormalized operator O(X) can
be related to the bare operator O(0) by O(X) = Z

(X)
O O(0), where Z

(X)
O is an (often divergent)

renormalization constant. One possible X-space renormalization scheme can be defined by the
requirement that the renormalized two-point correlation function built from O(X) is equal to
its non-interacting (NI) value when the operators are separated by a fixed spacetime distance x:〈

O†(X) (0)O(X) (x)
〉
=
〈
O†(0) (0)O(0) (x)

〉∣∣
NI , (1.1)

where
√

x2 is the scale at which the operator is renormalized, and the non-interacting
correlation function is defined as the αS → 0 value of the correlation function.1 When
implementing X-space schemes in lattice-discretized theories, the non-interacting correlator
is usually taken to be the correlator computed with propagators computed on a unit gauge
field [11], in order to supress lattice discretization artifacts. Although the scheme is gauge
invariant by definition, it requires more-complicated perturbative calculations in order to
match to other schemes in the continuum. Matching calculations from X-space schemes
to MS have been performed for light-quark bilinears [13], heavy-light quark bilinears [14],
dimension-5 operators appearing in the energy-momentum tensor [12], and supercurrent
operators in supersymmetric theories [15].

When implementing RI-(S)MOM renormalization conditions at momentum p with a
lattice discretization, there is a ‘window problem’ where ΛQCD ≪ p ≪ a−1 is required to keep
all systematic uncertainties under control. Indeed, the RI-SMOM scheme [6] was introduced
to remove infrared convergence issues in applications of the original RI-MOM scheme where
some momenta were not in the desired range. Here, a is the lattice discretization-scale
that regulates the ultraviolet (UV) behaviour of the theory and ΛQCD is the typical QCD
scale that emerges through dimensional transmutation. The same window problem affects
any position-space scheme, where

√
x2 ≪ Λ−1

QCD is required to control perturbation-theory
errors appearing in the perturbative matching to MS, and a ≪

√
x2 is required to control

discretization artifacts. In practice, this window problem must be investigated on a case-
by-case basis, and various investigations have been performed in X-space schemes for the
local light-quark bilinear operators using Wilson fermions [11, 16], twisted-mass fermions [17],
as well as domain-wall fermions [18]. Furthermore, numerical studies of the feasibility of
X-space renormalization conditions for renormalizing the QCD energy-momentum tensor [19],
heavy-light quark bilinear operators [20], and operators in supersymmetric field theories [21]
have been undertaken. There have also been numerical investigations of the possibility of
using position-space schemes to match between three and four-flavor QCD [22, 23].

The X-space scheme is particularly suited to renormalizing Heavy Quark Effective
Theory (HQET) operators. Choosing a reference frame in which the heavy-quark velocity

1The non-interacting correlation function in X-space schemes is sometimes referred to as ‘tree-level’, though
this is a misnomer due to the fact that the noninteracting calculation of position-space correlation functions
of composite operators involves loops. Note that the superscript labels ‘(0)’ on the operators in the r.h.s. of
eq. (1.1) are redundant as the non-interacting value for the bare and renormalised operators is the same.

– 2 –



J
H
E
P
0
7
(
2
0
2
4
)
1
8
8

has spatial components that vanish, v = (1, 0, 0, 0)T , the bare Euclidean propagator for a
heavy quark Q in the static limit is naturally written in position space [24] as

⟨Q(0)(0)Q(0)(xE)⟩F = δx⃗E ,⃗0 θ(−tE)W (0)(0, xE)
1 + γ0

2 , (1.2)

where ⟨·⟩F indicates the path integral is performed over all the fermionic degrees of freedom
but not the gauge degrees of freedom, and W (0)(a, b) is the bare straight Wilson line from a

to b. A complication in lattice regularizations of the static theory is that the static-quark
self-energy has a power divergence [25], which is caused by mixing between the kinetic term
QD0Q and a mass-like term mstatQQ, where mstat ∼ O(αS)/a is radiatively generated. The
X-space scheme proposed in this work (sections 3.1 and 3.2) utilizes ratios of three-point
to two-point position-space correlation functions to nonperturbatively cancel this power
divergence. Nonperturbatively-renormalized matrix-elements of HQET operators can thus be
extracted without needing to determine mstat explicitly, which would otherwise constitute
another source of uncertainty.

In this work, a set of X-space schemes for renormalizing four-quark HQET operators
is proposed, and the O(αS) matching to MS is calculated in the static limit, extending
the X-space approach used in refs. [11, 12, 15]. The first set of operators that are con-
sidered are isospin-nonsinglet, four-quark operators τff ′(QΓqf )(qf ′Γ′Q) where Γ,Γ′ are
spin-colour tensors, qf ∈ {qu, qd} are light-quark fields, and τff ′ is a Pauli matrix in the
light-quark flavor space. In the Heavy Quark Expansion (HQE) formalism, matrix elements
of these ∆Q = 0 (heavy-quark flavor preserving) operators are known as ‘spectator con-
tributions’, and are the dominant O(1/m3

Q)-corrections to the inclusive lifetimes of heavy
(charm or bottom) hadrons [26, 27]. Hadronic matrix elements of these four-quark operators
currently form the dominant uncertainty in certain ratios of inclusive lifetimes (such as
τ(B+)/τ(Bd), τ(Λb)/τ(Bd) [28]). Though working in the static limit of HQET will introduce
systematic uncertainties on these four-quark matrix elements, it is a useful framework to
use as it suppresses all power-divergent mixings with lower-dimensional operators.2 The
integrals necessary to compute the X-space to MS matching factors for the ∆Q = 0 operators
are also immediately applicable to other sets of four-quark operators, and the matching
factors for the ∆B = 2 four-quark operators in HQET, relevant for determinations of B − B-
mixing [32], are presented as well. Existing LQCD studies of these four-quark operators in
HQET have utilized lattice perturbation-theory to perform matching to MS [33–36], and
the nonperturbative renormalization-conditions proposed in this work will allow for more
precise LQCD determinations of the renormalized matrix-elements [37].

The four-quark operators studied in this work do not renormalize multiplicatively but
rather mix within multiplets of operators with the same quantum numbers, and therefore
eq. (1.1) must be generalized to define a scheme that determines the entire mixing-matrix.
In order to provide a sufficient number of renormalization conditions to determine the full
mixing-matrix, the X-space scheme proposed here utilize three-point correlation functions
involving the four-quark operator with multiple choices of source and sink operators. In

2Alternatively, gradient-flow schemes are currently being investigated as another approach to the problem
of power-divergent mixing, by replacing power-divergent coefficients scaling with a−1 with coefficients that
scale with t−1/2, where t is the gradient-flow time [29–31].
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particular, the source and sink operators used are heavy-light mesonic operators QΓq and
heavy-light-light baryonic operators ϵabc[qaTΓ1q

b]Γ2Q
c for various choices of the Dirac matrices

Γ,Γ1,Γ2. Perturbative calculations of two-point correlation functions constructed from these
operators have been performed in the literature, and these can be used to determine matching
coefficients between X-space schemes and the MS scheme, which are presented to O(αS) in
section 2.1. The four-quark operators also mix into evanescent operators (operators that
explicitly vanish in d = 4) in dimensional regularization. To be able to utilize the X-space
scheme as a regulator-independent scheme for conversion of lattice matrix-elements, the
scheme is defined in terms of evanescent-subtracted operators. The X-space schemes, and
O(αS)-matching to the MS scheme for the isospin non-singlet ∆B = 0 operators and the
∆B = 2 operators are presented in sections 3.1 and 3.2, respectively. An outlook is presented
in section 4. An overview of the conventions and integration techniques used in this paper
is given in appendix A.

2 Multiplicatively renormalizable operators

2.1 X-space schemes for heavy-light bilinear and heavy-light-light trilinear
operators

In this section, the O(αS) matching-factors between X-space-renormalized operators and
MS-renormalized operators for heavy-light mesonic, and heavy-light-light baryonic operators
in HQET are presented. Choosing the frame in which the static heavy quark propagates
purely in the Euclidean time direction, the Euclidean HQET Lagrangian used in the following
calculations is given by

L = 1
4FµνFµν +

∑
f={u,d}

qf γµDµqf + QD0Q, (2.1)

with two massless light-quarks qu and qd, and one static heavy-quark Q that satisfies
1+γ0
2 Q = Q. To regulate the continuum theory, dimensional regularization (DR) is used,

where the dimension of spacetime is analytically continued to d = 4− ϵ, and γ5 = γ0γ1γ2γ3
is treated in the ’t Hooft-Veltman (HV) scheme [38] (see appendix A.1 for a review of the
conventions used). Due to the heavy-quark term in the action not containing any Dirac
matrices, in d = 4 there is an SU(2)h heavy-quark spin symmetry

Q 7→ e−iθjγ5γj Q, Q 7→ Qeiθjγ5γj (2.2)

that leaves the action invariant, where γj ∈ {γ1, γ2, γ3}. The resulting effect of this symmetry
is that local heavy-light mesonic operators are related by heavy-quark symmetry in the
following SU(2)h doublets:

SU(2)h

 H+
f (0+) : qf Q

H∗+
f,i (1+) : qf γ5γiQ

, SU(2)h

 H−
f (0−) : qf γ5Q

H∗−
f,i (1−) : qf γiQ

, (2.3)

where the JP quantum numbers of the state are listed along with the corresponding local
heavy-light operator. Note that the ± superscripts refer to the parity of the operator, rather
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than the electromagnetic charge of the state. In eq. (2.3) and what follows, γi indexes the
(d − 1)-dimensional spatial Dirac matrices, such that γiγi = (d − 1)1.3 Since the antiparticle
is integrated out in HQET, the operators shown in eq. (2.3) form a basis for the heavy-light
bilinear operators with no derivatives in d = 4.

The heavy-light-light baryonic operators of the form ϵabc[qaT τΓ1q
b]Γ2Q

c for varying
Dirac matrices Γ1,Γ2 and isospin matrices τ are also multiplicatively renormalizable. In the
following, C is the charge-conjugation matrix satisfying CγµC−1 = −γT

µ , with an explicit
construction in dimensional regularization given in appendix A.1. The isospin matrices are
written in terms of the antisymmetric τA or symmetric τS

α matrices

τA :=
(

0 1
−1 0

)
, τS

1 :=
(
1 0
0 0

)
, τS

0 := 1√
2

(
0 1
1 0

)
, τS

−1 :=
(
0 0
0 1

)
. (2.4)

Operators coupling to ΛQ baryons (isospin singlets) are given by

Λ1
(
1
2
+) : ϵabc[qaT τACγ5q

b]Qc,

Λ2
(
1
2
+) : ϵabc[qaT τACγ5γ0q

b]Qc,

Λ−
1

(
1
2
−) : ϵabc[qaT τACqb]Qc,

SU(2)h

 Λ−
2

(
1
2
−) : ϵabc[qaT τACγ5γiq

b]γiγ5Q
c,

Λ∗−
i

(
3
2
−) : ϵabc[qaT τACγ5γiq

b]Qc − 1
3ϵabc[qaT τACγ5γjqb]γiγjQc.

(2.5)

The operators are labelled by their angular momentum representation and parity, JP . The
SU(2)h-doublet {Λ−

2 ,Λ∗−
i } arises from decomposing the tensor product of a spin-1 light-quark

doublet with the spin- 12 heavy quark into irreducible spin representations. In particular,
spin-32 operators such as Λ∗−

i satisfy the condition γiΛ∗−
i = 0 in d = 4. Operators coupling to

ΣQ-baryons which transforms in the isospin-triplet representation, are given by

SU(2)h

 Σ1,α

(
1
2
+) : ϵabc[qaT τS

α Cγiq
b]γiγ5Q

c,

Σ∗
1,α,i

(
3
2
+) : ϵabc[qaT τS

α Cγiq
b]Qc − 1

3ϵabc[qaT τACγjqb]γiγjQc,

SU(2)h

 Σ2,α

(
1
2
+) : ϵabc[qaT τS

α Cγ0γiq
b]γiγ5Q

c,

Σ∗
2,α,i

(
3
2
+) : ϵabc[qaT τS

α Cγ0γiq
b]Qc − 1

3ϵabc[qaT τS
α Cγ0γjqb]γiγjQc,

SU(2)h

 Σ−
1,α

(
1
2
−) : ϵabc[qaT τS

α Cγ5γ0γiq
b]γiγ5Q

c,

Σ∗−
1,α,i

(
3
2
−) : ϵabc[qaT τS

α Cγ5γ0γiq
b]Qc − 1

3ϵabc[qaT τS
α Cγ5γ0γjqb]γiγjQc,

Σ−
2,α

(
1
2
−) : ϵabc[qaT τS

α Cγ0q
b]Qc, (2.6)

where α is the isospin index and i is the vector index of the spin- 32 field. The operators
in eqs. (2.5) and (2.6) form a complete basis in d = 4 for local HQET heavy-light-light

3In d = 4, where spatial Dirac matrices γi take values in γi ∈ {γ1, γ2, γ3}, the heavy-quark spin symmetry
is indeed SU(2)h. In dimensional regularization the spatial index i now varies over the (d − 1)-dimensions that
are not timelike, and formally the symmetry group is no longer SU(2)h. This distinction, however, does not
have any implications for the calculations presented in this section.
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• •
(−t,~0) (t,~0)

• •
(−t,~0) (t,~0)

• •
(−t,~0) (t,~0)

Figure 1. Diagrams for the O(αS) contributions to the two-point position space correlator shown in
eq. (2.7), when O is one of the heavy-light currents listed in eq. (2.3). The operator insertions are
represented by the filled in dots in the diagrams above. Feynman rules are derived from eq. (2.1),
double lines refer to the static-quark propagator, single lines are light-quark propagators, and curly
lines are gluons. The unlabelled positions of the interaction vertices are integrated over.

currents with no derivatives, of which the positive-parity local operators were previously
classified in refs. [39, 40].

The X-space scheme for multiplicatively-renormalizable currents is specified at a renor-
malization scale t−1 by the following condition:〈

O†(R,X)
(
−t, 0⃗

)
O(R,X)

(
t, 0⃗
)〉

=
〈
O†(0)

(
−t, 0⃗

)
O(0)

(
t, 0⃗
)〉 ∣∣∣∣

NI
, (2.7)

where R is a regulator (either DR or the lattice regulator), and X specifies the operators are
renormalized in the X-space scheme. The subscript NI on the right-hand side of eq. (2.7)
refers to the non-interacting value of the correlator. If the operator has additional indices
(such as isospin triplet indices α in the case of the Σ-interpolating operators in eq. (2.6), or
spatial gamma-matrix indices i) these additional indices are summed over on both sides of
the renormalization condition. For example, in the 1− mesonic channel (the B∗ mesons if
Q is a bottom quark), the renormalization condition is∑

i

〈
(qγiQ)†(R,X)

(
−t, 0⃗

)
(qγiQ)(R,X)

(
t, 0⃗
)〉

=
∑

i

〈
(qγiQ)(0)†

(
−t, 0⃗

)
(qγiQ)(0)

(
t, 0⃗
)〉 ∣∣∣∣

NI
.

(2.8)
Furthermore, the open Dirac indices of the static heavy-quark and heavy anti-quark in the
baryonic operators are traced over.

The position-space diagrams that contribute to the O(αS) determination of the two-
point correlation function for the heavy-light currents are shown in figure 1. Although
chiral symmetry is broken by the HV-prescription for γ5, the massless nature of the light
quark still has consequences for the symmetries present in the renormalization factors. In
particular, the specific Γ-matrix appearing in the interpolating operator O = qΓQ only
affects the two-point correlation function by a constant factor, as the correlation function
(to any order in αS) has the form〈(

Q
(DR,0)Γq(DR,0)

)
(−t, 0⃗)

(
q(DR,0)ΓQ(DR,0)

)
(t, 0⃗)

〉
= A Tr

(1 + γ0
2 Γγ0Γ

)
= AP Tr

(1 + γ0
2 ΓΓ

)
, (2.9)

where A is a constant that does not depend on Γ, P ∈ {−1,+1} is the parity of the state
(γ0Γ = PΓγ0), and Γ = γ0Γ†γ0. This is because of the fact that regardless of the number of
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gluons attached to the light-quark line in the two-point correlation function, there are always
an odd number of γ-matrices inserted (one for each massless propagator and one for each
vertex). For example, shown below is the case with three gluons attached to the light quark:

(−t0,~0) (t0,~0).γµ1
γµ2

γµ3

γν1
γν2

γν3
γν4

The only four-vector available for contraction is the purely timelike heavy-quark velocity v;
thus, after performing integration over loop momenta and Fourier transforming to position
space, the light-quark line is proportional to /v = γ0. The result of eq. (2.9) is that all
heavy-light operators qΓQ renormalize multiplicatively with the same factor to all orders
of αS in the X-space scheme, regardless of the choice of Γ.

The diagrams in figure 1 can be computed by first calculating the corresponding
two-loop momentum-space diagrams (also known as p-type integrals [41]) and taking a
Fourier transform; further details of this computation are given in appendix A.2. Writ-
ing (qΓQ)(DR,S) = Z

(DR,S)
(qΓQ) (q(0)ΓQ(0)) for the heavy-light currents (where S is a choice of

renormalization scheme), the X-space renormalization factors are given by4

Z
(DR,X)
(qΓQ) (t, µ) = 1− αS(µ)

πϵ
− αS(µ)

π

(
4
3 + 2π2

9 + 1
2 log

(
4πeγE µ2t2

))
(2.10)

in d = 4 − ϵ dimensions. Here, µ is the scale obtained after writing the renormalized
coupling-constant as a dimensionless object g(DR,MS) = 1

Zg
µ− ϵ

2 g(0), where αS := (g(DR,MS))2

4π ,
and γE is the Euler-Mascheroni constant. It is possible to define an X-space scheme strong
coupling α

(DR,X)
S (for example by fixing the two-point correlation function for the gluon

correlator), but this work focuses on the matching of composite operators between X-space
schemes and MS, and hence the αS that is used is always renormalized in MS at scale µ.
The MS renormalization factor

Z
(DR,MS)
(qΓQ) (µ) = 1− αS(µ)

πϵ
− αS(µ)

2π
log(4πe−γE ), (2.11)

can be read off from eq. (2.10) as the 1
ϵ piece and the corresponding MS logarithms. Comparing

this to eq. (2.10), note that the MS-counterterm contains factors of +αSγE
π , whereas the

X-space counterterm contains corresponding factors of −αSγE
π . The difference in sign arises

from the d-dimensional Fourier transform of the logarithmic structure [13]. This causes
the conversion factor O(DR,MS) = C(DR,MS;DR,X)(t, µ)O(DR,X)(t) between X-space and MS
to contain γE factors:

C
(DR,MS;DR,X)
(qΓQ) (t, µ) =

Z
(DR,MS)
(qΓQ) (µ)

Z
(DR,X)
(qΓQ) (t, µ)

= 1 + αS(µ)
π

(
4
3 + 2π2

9 + 1
2 log

(
e2γE µ2t2

))
. (2.12)

4O(α2
S) calculations of the two-point position-space correlation function of heavy-light currents can be

found in ref. [14].
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O C1,O C2,O

Λ1
17
6 2

Λ2
9
4 1

Σ1,α,Σ∗
1,α,i

19
12 1

Σ2,α,Σ∗
2,α,i

11
6

2
3

O C1,O C2,O

Λ−
1

3
2 2

Λ−
2 ,Λ∗−

1
9
4 1

Σ−
2,α

19
12 1

Σ−
1,α,Σ∗−

1,α,i
11
6

2
3

Table 1. O(αS) conversion factors from X-space renormalized operators to MS-renormalized operators,
for the different heavy-light-light baryonic operators. Refer to eq. (2.13) for definitions of C1,O, C2,O.
The two-point functions of the positive-parity heavy-light-light currents have previously been computed
in the context of QCD sum rules [40], but did not appear in position space explicitly.

In numerical studies utilizing X-space schemes, µ should be varied to provide an indication
of the size of the error caused by truncating the perturbative series. A natural candidate
for a central value of µ is given by the condition µ2 = e−2γE t−2 which would cancel the
logarithm that appears in the matching factor.

For the heavy-light-light baryons, the O(αS) conversion factors can be parametrized
similarly as

C
(DR,MS;DR,X)
O (t, µ) = Z

(DR,MS)
O (µ)

Z
(DR,X)
O (t, µ)

= 1 + αS

π

(
C1,O + 2π2

9 + C2,O
2 log(e2γE µ2t2)

)
, (2.13)

where the coefficients C1,O, C2,O are given in table 1 for O taken from eqs. (2.5) and (2.6).5

The calculations of the conversion factors proceed similarly to those for the heavy-light mesonic
operators, by evaluating the baryonic analogues to the diagrams appearing in figure 1.

2.2 Ratios of decay constants

Before presenting the X-space conditions for the four-quark operators, it is instructive to
see how X-space conditions can be used to renormalize ratios of decay constants (where
the static quark self energy cancels) in lattice-HQET. Though computations of the decay
constants in the static limit no longer offer comparable precision to modern lattice-QCD
calculations of the decay constants utilizing relativistic heavy quarks [2], these conditions can
still be utilized to check the window problem of X-space schemes for HQET operators.

The renormalization conditions presented in section 2.1 are not directly applicable to
two-point correlation functions computed with the static heavy-quark action in Lattice-
HQET as O(DR,X)(t) ̸= O(lat,X)(t). The reason for this disagreement is that the lattice
regulator introduces a power-divergent mixing between the static kinetic operator QD0Q

and a radiatively generated mass-term mstatQQ where mstat ∼ O(αS)/a. The relationship
between matrix elements of the operators renormalized in the two different regulators is

⟨· · · |O(lat,X)(t)| · · · ⟩ = emstatt⟨· · · |O(DR,X)(t)| · · · ⟩, (2.14)

5Note that Z
(DR,MS)
O (which contains only the 1

ϵ
piece) can be read off as Z

(DR,MS)
O = −αS

πϵ
C2,O as the γE

factors are directly proportional to the 1
ϵ

pole.

– 8 –



J
H
E
P
0
7
(
2
0
2
4
)
1
8
8

where | · · · ⟩ represents an arbitrary state. Without an additional renormalization condition
that can be used to extract mstat, it is not possible to match matrix elements of O(lat,X)

to matrix elements in continuum renormalization schemes. There are various possibile
renormalization conditions that can extract mstat; for instance the RI-xMOM scheme [42]
extracts mstat as the exponential decay of the static-quark propagator in a fixed gauge at a
fixed separation. Alternatively, the Schrödinger-Functional approach to renormalizing HQET
operators constructs additional correlators using Dirichlet boundary conditions [25, 43]. In the
context of calculations of the Polyakov loop at finite temperature, various schemes have been
proposed including fixing the value of the static-quark-potential at a given separation [44].

Since the self-energy power divergence affects all the two-point correlation functions
discussed in this section in the same fashion, it is also possible to take ratios to cancel this
self-energy divergence. This allows for the extraction of static decay constants without the
need of an additional renromalization condition to compute mstat. As an example application,
consider the following QCD matrix elements:

⟨0|(qf γµγ5b)(DR,MS)|Bf (p)⟩ = ipµfMS
Bf

, (2.15)

⟨0|
(
ϵabc[qaT τACγ5q

b]1+γ0
2 bc

α

)(DR,MS)
|Λb(p, s)⟩ = imΛb

Nα(p, s)fMS
Λb,1

, (2.16)

where b is a (relativistic) bottom quark field, pµ is a Euclidean four-momentum, s is the spin
of the Λb-baryon, and Nα is the baryon Dirac spinor satisfying N(p, s)N(p, s′) = 2mΛb

δss′ .
Here, fBf

is the mesonic decay-constant, and fΛb,1 is the normalization constant for one
of the distribution amplitudes of the Λb baryon [45]. The states in eqs. (2.15) and (2.16)
have standard relativistic normalization

⟨Bf (p′)|Bf (p)⟩ = 2EBf (p)(2π)3δ3(p⃗ − p⃗′), (2.17)

⟨Λb(p′, s′)|Λb(p, s)⟩ = 2δss′EΛb(p,s)(2π)3δ3(p⃗ − p⃗′). (2.18)

Note that, given the conventions of eqs. (2.15) and (2.16), the mass dimension of fBf
is 1,

while the mass dimension of fΛb,1 is 2 (using the normalization for distribution amplitudes
from ref. [46]). The decay constants fBf

, fΛb,1 as defined above do not have well-defined
limits as mb → ∞, as the relativistic normalization of states does not behave well in this
limit. The mb → ∞ limit can be studied by switching to a non-relativistic normalization
for the HQET states:

NR⟨Bf (v, k′)|Bf (v, k)⟩NR = (2π)3δ3(k⃗ − k⃗′), (2.19)

NR⟨Λb(v, k′, s′)|Λb(v, k, s)⟩NR = δss′(2π)3δ3(k⃗ − k⃗′), (2.20)

where pµ = mHvµ + kµ, for H ∈ {Bf ,Λb}. The relativistically normalised and non-
relativistically normalised states additionally differ by O( 1

mb
) corrections, which are irrelevant

in a static limit analysis. Furthermore, matching the QCD operators to HQET operators
whilst dropping all the O( 1

mb
) contributions gives [47]

H
(DR,MS)
f = (qf γ5Q)(DR,MS) = DHf

(µ)(qf γ0γ5b)(DR,MS), (2.21)

Λ(DR,MS)
1,α =

(
[qaT τACγ5q

b]Qc
αϵabc

)(DR,MS)
= DΛ1(µ)

(
[qaT τACγ5q

b]1+γ0
2 bc

αϵabc

)(DR,MS)
,

(2.22)
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where DH(µ) are perturbatively computable matching coefficients. Combining the matching of
the operators and states from QCD to HQET with eqs. (2.15) and (2.16) gives the relationships

imBf
f stat,MS

Bf
= DHf

(µ)−1
√
2mBf

⟨0|H(DR,MS)
f |Hf (v, k)⟩NR, (2.23)

imΛb
Nα(p, s)f stat,MS

Λb,1
= DΛ1(µ)

−1
√
2mΛb,1⟨0|Λ

(DR,MS)
1,α |Λb(v, k, s)⟩NR, (2.24)

where the superscript ‘stat’ has been prepended to the label of the decay constants to
emphasize that O( 1

mb
) corrections have been dropped in the derivation. The matrix elements

on the right-hand sides of eqs. (2.23) and (2.24) are defined completely in the static HQET
limit, and hence have no heavy-quark mass dependence. Therefore, up to logarithmic
corrections due to the matching factors, the combinations f stat,MS

Bf

√
mBf

and f stat,MS
Λb,1

mΛb

are constant in the mb → ∞ limit.
To extract the ratio of the static decay constants using the X-space scheme as an

intermediate nonperturbative renormalization scheme, the bare two-point correlation functions
are first calculated in Lattice HQET:

THf
(t) := ⟨H(lat,0)

f (t, 0⃗)H(lat,0)†
f (0, 0⃗)⟩ = |ZHf

|2e−EHf
t + excited states, (2.25)

TΛ1(t) :=
∑

α

〈
Λ(lat,0)
1,α (t, 0⃗)Λ(lat,0)†

1,α (0, 0⃗)
〉
= |ZΛ1 |

2e
−EΛQ,1 t + excited states, (2.26)

and fitted at large Euclidean time-separations, t, to extract ZHf
and ZΛ1 . Note that the

energies EHf
, EΛ1 are the binding energies of the respective hadrons shifted by the static

quark mass mstat. By renormalizing the operators in the X-space scheme at reference scale
t−1
0 and then matching to the MS scheme, an expression for the ratio of the decay constants

in the MS scheme can be derived as

f stat,MS
Bf

f stat,MS
Λb,1

(µ) =
(

THf
(t0)

TNI
Hf

(t0)
TNI
Λ1

(t0)
TΛ1(t0)

) 1
2

×

CDR,MS;DR,X

QΓq
(t0, µ)

CDR,MS;DR,X
Λ1

(t0, µ)

×
(

DΛ1(t0)
DHf

(t0)

)
×

ZHf

√
2mΛb

ZΛ1
√

mBf

(2.27)

where the first factor renormalizes the bare operators in the X-space scheme, the second factor
converts to the MS scheme in the dimensionally-regulated continuum, and the third factor
matches the renormalized HQET operators to QCD operators in the MS scheme. All the
renormalization and matching in this expression is performed at the scale t−1

0 for simplicity,
but hybrid schemes where the renormalized operators are run before performing matching
are also possible. For instance, running the operators in MS from the scale t−1

0 to the scale
mb before matching the HQET operators to QCD is usually desirable, as this cancels the
large logarithms appearing if the t−1

0 scale is very different from mb.

3 Four-quark operators

3.1 Flavor non-singlet ∆Q = 0 four-quark operators

By performing an Operator Product Expansion (OPE) for the product of two weak cur-
rents and matching to HQET (a procedure known in the literature as the Heavy Quark
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Expansion [27]), the lifetimes of hadrons containing a heavy quark Q (Q = c, b) can be
expressed as a sum over matrix elements of operators of increasing dimension. Of the various
O(1/m3

Q) corrections, the “spectator effects” arising for four-quark operators where a light
spectator quark qf in the hadron participates in the decay along with the heavy-quark are
phase-space enhanced in the OPE by a factor of 16π2 [26]. In HQET, the operators of
interest are conventionally written in the basis

Of
1 := (QγµPLqf )(qf γµPLQ), Of

2 := (QPLqf )(qf PRQ),

Of
3 := (QγµPLT Aqf )(qf γµPLT AQ), Of

4 := (QPLT Aqf )(qf PRT AQ), (3.1)

where f ∈ {u, d}, PL = 1−γ5
2 , PR = 1+γ5

2 are the left/right projectors, and the T A are color
matrices satisfying Tr(T AT B) = 1

2δAB. Note that the flavor-singlet combinations of the
operators such as Ou + Od will mix with the lower-dimensional QQ operator in a power-
divergent way. When acting on B-hadrons, QQ is the identity operator, leading to an a−3

additive mixing to the operators in lattice-HQET computations. This section focuses on the
renormalization of the isospin-nonsinglet contributions such as Ou−Od where the mixing with
the QQ operators cancel, and the four-quark operators are protected from power-divergent
mixing. The f -label on the four-quark operators is omitted in what follows, as it should be
understood that all operators refer to the isospin-nonsinglet versions.

In dimensional regularization, four-quark operators such as those listed in eq. (3.1) mix
with evanescent operators, which are operators that formally vanish in d = 4 due to their
Dirac structure. Different choices of basis for the evanescent operators lead to finite shifts
in the MS renormalized matrix elements [48, 49]. Working in the HV scheme, the basis of
evanescent operators appearing at O(αS) chosen here is written as

E1 := (QγµPLγαγβq)(qγβγαγµPLQ)− 4O1,

E2 := (QPLγαγβq)(qγβγαPRQ)− 4O2,

E3 := (QγµPLγαγβT Aq)(qγβγαγµPLT AQ)− 4O3,

E4 := (QPLγαγβT Aq)(qγβγαPRT AQ)− 4O4. (3.2)

The Dirac structures present in these evanescent operators occur in the one-loop diagram
with a gluon attached to the two light quarks, as shown in figure 2. In order for the proposed
X-space scheme to be regulator-independent, evanescent contributions to operators must be
subtracted for all regulators, and the renormalization conditions must be formulated for the
subtracted operators [50, 51]. In general, all operators in {O1,O2,O3,O4} will mix with each
other, but to O(αS) in MS the operators mix in sub-bases, with {O1,O3, E1, E3} having the
same mixing pattern as {O2,O4, E2, E4}. The MS-renormalization conditions (not containing
the logarithmic factors included in MS) for i ∈ {1, 2} are given by

(
O

(0)
i

O
(0)
i+2

)
=

1 + 2αS

πϵ
−3αS

2πϵ
0 αS

8πϵ

− αS

3πϵ
1 + αS

4πϵ

αS

36πϵ

7αS

48πϵ




O
(MS)
i

O
(MS)
i+2

E
(MS)
i

E
(MS)
i+2

 . (3.3)
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p1 p2

k

•(QaΓLqb)(qcΓRQd)

ad

cb

=

∫
ddk

(2π)d
−i

k2 + iε

(
1 + /v

2
ΓL

i

(/p− /k) + iε
(igγµT

A)

)

ab

×
(
(igγµT

A)
i

(/p− /k) + iε
ΓR

1 + /v

2

)

cd

=
αS

8πε

(
1 + /v

2
ΓLγ

µγνTA

)

ab

(
TAγνγµΓR

1 + /v

2

)

cd

+O(ε0)

Figure 2. The one-loop diagram in Minkowski space for the ∆Q = 0 operators that generates the
evanescent structures shown in eq. (3.2). The indices a, b, c, d are combined Dirac-color indices.

The first generation of bare evanescent operators {E1, · · · , E4} themselves mix at O(αS)
with a second generation of bare evanescent operators containing even more complicated
Dirac structures (such as (QPLγα1γα2γα3γα4q)(qγα4γα3γα2γα1PRQ)) [48]. Such higher-order
evanescent operators are omitted in eq. (3.3) as the matching conditions presented later
between MS and X-space schemes are not sensitive to them at O(αS).

Subtracting the 1
ϵ evanescent contributions to the physical operators gives evanescent-

subtracted operators Õi that can be used in regulator-independent schemes. By reading off
the coefficients from eq. (3.3) they are defined to be, for i ∈ {1, 2},

Õ
(0)
i = O

(0)
i − αS

8πϵ
E

(0)
i+2, Õ

(0)
i+2 = O

(0)
i+2 −

αS

36πϵ
E

(0)
i − 7αS

48πϵ
E

(0)
i+2. (3.4)

As the four-quark operators being considered are ∆Q = 0, and the static quark can only
travel in the timelike direction, an X-space scheme utilising two-point correlation functions
of Õi (similar to that proposed in section 2.1 for the bilinear and trilinear operators) is not
possible to define. The reason is that the corresponding two-point correlation functions are
zero (due to the θ(−tE) portion of the static heavy quark propagator shown in eq. (1.2)). A
possible way to rectify this is to compactify the time direction (for instance, in a thermal
calculation), but this would likely be significantly more complicated due to the Matsubara
sums required in the computation [52].

Instead, three-point correlation functions combining Õi with different choices of source
and sink operators can be used to define an X-space renormalization scheme. Such an
approach was also considered, for example, in the X-space renormalization of the QCD stress-
energy tensor [12]. Taking ratios of three-point correlation functions to appropriate two-point
correlation functions cancels the renormalization factors of the source and sink operators,
provided they are multiplicatively renormalizable. In HQET, this has the added benefit of
cancelling the static-quark self-energy divergence. Writing the renormalized ∆Q = 0 operators
as Õ(R,X)

i (t) = Z
(R,X)
ij (t)Õ(0)

j , the renormalization condition is defined here by a choice of four
source-operator/sink-operator combinations (labelled as Jn, Kn respectively) and is given by

⟨J†
n(−t, 0⃗)Õ(R,X)

i (0, 0⃗)Kn(t, 0⃗)⟩√∣∣⟨J†
n(−t, 0⃗)Jn(t, 0⃗)⟩⟨K

†
n(−t, 0⃗)Kn(t, 0⃗)⟩

∣∣ = ⟨J†
n(−t, 0⃗)Õ(0)

i (0, 0⃗)Kn(t, 0⃗)⟩√∣∣⟨J†
n(−t, 0⃗)Jn(t, 0⃗)⟩⟨K†

n(−t, 0⃗)Kn(t, 0⃗)⟩
∣∣
∣∣∣∣∣
NI

,

(3.5)
(for all n; no sum over n implied) at a fixed t. In the same way as for the two-point X-space
condition presented in section 2.1, additional indices on the source and sink operators should
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n Jn Kn T
(0,0)
1,n T

(0,0)
2,n T

(0,0)
3,n T

(0,0)
4,n T

(0,1)
1,n T

(0,1)
2,n T

(0,1)
3,n T

(0,1)
4,n

1 H−
f H−

f −6 −6 0 0 3 3 0 0

2 H∗−
f,i H∗−

f,i −6 0 0 0 3 0 0 0

3 Λ1 Σ2,0 −2
√
3 −

√
3 4√

3
2√
3

4√
3

1√
3

−8
3
√
3

−2
3
√
3

3∗ Λ2 Σ1,0 2
√
3

√
3 −4√

3
−2√
3 −2

√
3 −2√

3
4√
3

4
3
√
3

4 Σ1,α Σ1,α 6 1 −4 −2
3

−11
3

−3
2

22
9 1

4∗ Σ2,α Σ2,α −6 −1 4 2
3

−5
3

−1
2

10
9

1
3

5 Σ∗
1,α,i Σ∗

1,α,i 0 −2 0 4
3

2
3 0 −4

9 0

5∗ Σ∗
2,α,i Σ∗

2,α,i 0 −2 0 4
3

2
3 0 −4

9 0

Table 2. Decomposition for the noninteracting ratio of correlation functions according to eq. (3.8),
for varying source-sink pairs (Jn, Kn). The source/sink pairs n = 3 and n = 3∗ give the same
noninteracting matrix elements (T (0,0)

i,n ) in d = 4 up to a sign, and hence may not both be chosen
as part of the set of four source/sink operators used in the renormalization condition due to the
requirement that T

(0)
i,n is invertible. The same is true for n = 4, 4∗ and n = 5, 5∗.

be summed over on both sides of the condition, and the open spinor index is traced over if
the source and sink are baryonic. Since the source and sink operators are multiplicatively
renormalizable, this causes the Z-factors of the source and sink to cancel in these ratios, so they
are not labelled as bare or renormalized. Furthermore, the static-quark self-energy cancels in
these ratios of correlation functions with the same physical length of the Wilson line, allowing
for nonperturbative renormalization of the operators without determination of mstat. Defining

Ti,n(t) :=
⟨J†

n(−t, 0⃗)Õ(0)
i (0, 0⃗)Kn(t, 0⃗)⟩√∣∣⟨J†

n(−t, 0⃗)Jn(t, 0⃗)⟩⟨K
†
n(−t, 0⃗)Kn(t, 0⃗)⟩

∣∣ = T
(0)
i,n (t) + αST

(1)
i,n (t) + O(α2

S), (3.6)

where T
(0)
i,n (t) is the noninteracting value, the X-space renormalization conditions can then

be solved as

Z
(X)
ij =

∑
n

T
(0)
i,n (t)T−1

n,j (t) = 1i,j − αS

∑
n

T
(1)
i,n (t)(T (0)(t))−1

n,j + O(α2
S), (3.7)

which is well-defined as long as the four source/sink pairs are chosen so that the noninteracting
matrix T

(0)
i,n (t) is invertible in d = 4.

The natural candidates for the source and sink operators are the mesonic and baryonic
currents discussed in section 2.1. The requirement that T

(0)
i,n (t) is invertible means that it

is not possible to use four mesonic source/sink pairs, as, for any mesonic source/sink pair
(JM , KM ), the matrix element ⟨J†

M (−t, 0⃗)Õ(0)
i KM (t, 0⃗)⟩|NI vanishes for i ∈ {3, 4} due to

the color trace. Chiral symmetry, heavy quark symmetry, and spin representations cause
many source/sink choices to give vanishing matrix elements with all the operators, further
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n T
(1,0)
1,n T

(1,0)
2,n T

(1,0)
3,n T

(1,0)
4,n T

(1,1)
1,n T

(1,1)
2,n T

(1,1)
3,n T

(1,1)
4,n T

(1,2)
1,n T

(1,2)
2,n T

(1,2)
3,n T

(1,2)
4,n

1 −12 −12 2 2 −10 −10 4
3

5
6 −8

3 −8
3 −4

9 −4
9

2 −12 0 2 0 −10 0 2
3

1
6 −8

3 0 −4
9 0

3 −6
√
3 −3

√
3

√
3

√
3
2 − 8√

3 − 7√
3

7
3
√
3

5
3
√
3

4
3
√
3

2
3
√
3

10
9
√
3

5
9
√
3

3∗ 6
√
3 3

√
3 −

√
3 −

√
3
2

√
3 3

√
3

2 − 2√
3 −

√
3
2 − 4

3
√
3 − 2

3
√
3 − 10

9
√
3 − 5

9
√
3

4 18 3 −3 −1
2

22
3 −1 −43

18
5
12 −4

3 −2
9 −10

9 − 5
27

4∗ −18 −3 3 1
2 −73

3 −31
6

103
18

25
36

4
3

2
9

10
9

5
27

5 0 −6 0 1 4
3 −6 −8

9
3
2 0 4

9 0 10
27

5∗ 0 −6 0 1 4
3 −19

3 −8
9

31
18 0 4

9 0 10
27

Table 3. Decomposition for the O(αS) contribution to the ratios of correlation functions defined in
eq. (3.9). The source/sink pair index n is the same as used in table 2.

restricting the number of distinct choices. For the remaining nonzero ratios of correlation
functions, the noninteracting ratios are parametrized as

T
(0)
i,n (t) = T

(0,0)
i,n

1
π2t3−ϵ

(
π

4 eγE

) ϵ
2
+ T

(0,1)
i,n

ϵ

π2t3−ϵ
+ O(ϵ2). (3.8)

In dimensional regularization, after removing factors of δd−1 corresponding to the δ-function
in position space from the static quark propagators, Ti,n(t) has dimension 3− ϵ, accounted
for by the factor of t−(3−ϵ) in eq. (3.8). The specific source/sink pairs that are studied in
this section are the negative-parity heavy-light mesonic operators and the positive-parity
heavy-light-light baryonic operators discussed in section 2.1. The values of the decomposition
for the noninteracting ratio for these source/sink operators (J, K) are tabulated in table 2.
Every choice of four linearly independent source/sink operators from this list (there are
28 different choices in total) defines a different X-space scheme. In a similar way to the
parametrization of the noninteracting contribution to the ratio of correlation functions in
eq. (3.8), the O(αS)-contribution to the ratios are parametrized by

T
(1)
i,n = T

(1,0)
i,n

1
ϵπ3t3−2ϵ

(
π

4 eγE µ

)ϵ

+ T
(1,1)
i,n

1
π3t3−2ϵ

+ T
(1,2)
i,n

1
πt3−2ϵ

+ O(ϵ). (3.9)

For the various source/sink pairs, the O(αS) matrix elements for the ratio have been calculated
and are tabulated in table 3.

Choosing the specific source/sink pairs n ∈ {1, 2, 3, 4} from the list of source/sink pairs
presented in tables 2 and 3, the X-space renormalization matrix can be calculated using
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eq. (3.7) as

Z
(X)
ij,n∈{1,2,3,4} = 1−

αS(µ)
(

π

4 eγE t2µ2
) ϵ

2
·



2
πϵ +

24+4π2

9π 0 −3
2πϵ +

−9+24π2

24π
−5
4π

0 2
πϵ +

24+4π2

9π
−1
16π

−3
2πϵ +

−63+72π2

72π

−1
3πϵ +

−15+4π2

54π
−1
9π

1
4πϵ +

90+56π2

144π
−1
12π

−1
36π

−1
3πϵ +

−15+4π2

54π
−3
16π

1
4πϵ +

414+168π2

432π


,

(3.10)

where 1 is the 4× 4 identity matrix. As a check, it can be verified that the 1
ϵ divergent pieces

match up with the MS counterterms presented in eq. (3.3). The corresponding conversion
factor from the X-space scheme to MS is given by

C
(MS;X)
ij,n∈{1,2,3,4} :=

∑
k

Z
(MS)
ik (Z(X))−1

kj,n∈{1,2,3,4} = 1+

αS(µ)



log(β)
π + 4π

9 + 8
3π 0 −3 log(β)

4π + π − 3
8π − 5

4π

0 log(β)
π + 4π

9 + 8
3π − 1

16π −3 log(β)
4π + π − 7

8π

− log(β)
6π + 2π

27 − 5
18π − 1

9π
log(β)
8π + 7π

18 + 5
8π − 1

12π

− 1
36π − log(β)

6π + 2π
27 − 5

18π − 3
16π

log(β)
8π + 7π

18 + 23
24π


,

(3.11)

where β := e2γE µ2t2

16 . A natural choice for µ is µ2 = 16e−2γE /t2 which would cancel the
factors of log(β) appearing in the matching coefficient. In principle, when converting matrix
elements computed with lattice HQET to MS-renormalized matrix elements, varying over
the different choices of source/sink pairs, as well as varying over the scale t that the X-space
scheme is defined at before perturbatively running to a common scale, will give an indication
on the error due to O(α2

S) terms that have been neglected in this study.

3.2 ∆Q = 2 four-quark operators

In the Standard Model, neutral B-mesons (B0, B0
s ) mix with their own antiparticles. The

lowest-order diagram contributing to this in the Standard Model is a box diagram with the
exchange of two weak bosons, which after integrating out physics at and above the weak
scale leads to ∆B = 2 four-quark operators. When matching these operators to HQET, the
Lagrangian is expanded to include a static antiquark Q− that travels in the opposite direction
to the static quark Q+ (compare to the Q+-propagator eq. (1.2)):

⟨Q(0)
− (0)Q(0)

− (xE)⟩F = δx⃗E ,⃗0 θ(tE)W (0)(0, xE)
1− γ0

2 , (3.12)

where 1±γ0
2 Q± = Q±. A basis of the relevant ∆Q = 2 operators in HQET is

O1 := (Q+PLq)(Q−PLq), O2 := (Q+PLT Aq)(Q−PLT Aq),
O3 := (Q+PLq)(Q−PRq), O4 := (Q+PLT Aq)(Q−PRT Aq).

(3.13)
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The operators O1, O2 contribute to neutral B-meson mixing in the Standard Model, and
O3, O4 are contributions that could arise from possible new physics [32]. The full basis of
∆Q = 2 operators also contains {O1, O2} with left-handed projectors swapped with right-
handed projectors (PL ↔ PR), but these are related by parity and so renormalize with the
same factors as {O1, O2}. There are also additional ∆Q = 2 operators when Q is relativistic,
but these are related to the operators in eq. (3.13) in the static quark limit [53]:

(Q+γµPLq)(Q−γµPLq) = 8
3O1 + 4O2 in d = 4. (3.14)

The evanescent operators are defined as

E1 := (Q+PLγαγβq)(Q−PLγαγβq)− 32
3 O1 − 16O2,

E2 := (Q+PLT Aγαγβ)(Q−PLT Aγαγβq)− 32
9 O1 −

16
3 O2

E3 := (Q+PLγαγβq)(Q−PRγαγβq)− 4O3,

E4 := (Q+PLT Aγαγβ)(Q−PRT Aγαγβq)− 4O4, (3.15)

where the γ-matrix structure is governed by the O(αS) diagram with a single gluon attached
to the two light quarks. The mixing pattern is given by the following MS renormalization:

(
O

(0)
1

O
(0)
2

)
=


1 + 14αS

9πϵ

4αS

3πϵ
0 − αS

8πϵ

8αS

27πϵ
1 + 10αS

9πϵ

−αS

36πϵ

αS

24πϵ




OMS
1

OMS
2

EMS
1

EMS
2

 , (3.16)

(
O

(0)
3

O
(0)
4

)
=


1 + 2αS

πϵ

3αS

2πϵ
0 − αS

8πϵ

αS

3πϵ
1 + 3αS

2πϵ

−αS

36πϵ

αS

24πϵ




OMS
3

OMS
4

EMS
3

EMS
4

 . (3.17)

Correspondingly, the evanescent-subtracted operators are defined for i ∈ {1, 3} as

Õ
(0)
i = O

(0)
i + αS

8πϵ
E

(0)
i+1, Õ

(0)
i+1 = Õ

(0)
i+1 +

αS

36πϵ
E

(0)
i − αS

24πϵ
E

(0)
i+1 (3.18)

Baryonic heavy-light-light currents cannot be used as source/sink pairs for the ∆B = 2
four-quark operators, as the corresponding three-point functions all vanish. Fortunately,
enough constraints can be derived with the mesonic heavy-light currents as source/sink pairs
to constitute a valid X-space scheme. Although chiral symmetry is formally broken by the
HV γ5 scheme, the massless nature of the light quarks causes the operators to mix in the
2 × 2 subblocks presented in eqs. (3.16) and (3.17). Thus, only two source/sink pairs are
needed in the X-space scheme. Using the choice (Qγ5q, qγ5Q) and (Qγiγ5q, qγiγ5Q), the
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O(αS) matching matrices are found to be

C
(MS,X)
{O1,O2} = 1+ αS

π

 7 log(β)
9 + 4π2

9 + 23
9

2 log(β)
3 − π2

3 + 4
3

4 log(β)
27 − 2π2

27 + 8
27

5 log(β)
9 + 5π2

9 + 19
9

 , (3.19)

C
(MS,X)
{O3,O4} = 1+ αS

π

 log(β) + 4π2

9 + 25
9

3 log(β)
4 − π2

3 + 7
6

log(β)
6 − 2π2

27 + 7
27

3 log(β)
4 + 5π2

9 + 43
18

 , (3.20)

where β := e2γE µ2t2

16 .

4 Conclusion

In this work, a set of X-space renormalization schemes for isospin-nonsinglet ∆Q = 0 and
∆Q = 2 four-quark HQET operators have been proposed, and the O(αS) matching coefficients
between these schemes and MS in the dimensionally regulated continuum have been calculated.
This allows for a gauge-invariant, nonperturbative renormalization matrix elements calculated
in lattice HQET, without the need to extract the power-divergent self-energy contribution
mstat. Precise computations of these matrix elements with lattice HQET will reduce theory
uncertainties on lifetimes of heavy hadrons, and help constrain physics beyond the Standard
Model. Note that, when implementing the X-space scheme for these four-quark operators
in lattice HQET, it is convenient to use Ginsparg-Wilson discretizations of the light quarks
(e.g., with the domain-wall fermion action) to avoid additional mixing between the four-quark
operators of interest and operators in other chiral representations.

Next-to-next to leading order calculations of the matching coefficients presented in
eqs. (3.11), (3.19) and (3.20) at O(α2

S) are possible, but the computation is complicated
by the fact that, unlike p-type integrals that only have one external scale, the perturbative
calculations shown in appendix A.2 have two external scales xsrc, xsnk corresponding to the
source and sink locations of the three-point renormalization scheme proposed. Corrections
due to finite light-quark masses are more easily calculable (though they are likely smaller
than the O(α2

S) corrections on typical lattice-QCD ensembles), and require computation
of the three-loop integrals in appendix A.2 either analytically in the light-quark mass, or
by expanding in powers of the light quark mass. O( 1

mQ
) corrections are in principle also

calculable, but require considering mixing of the four-quark operators with dimension-7
operators that contain an additional covariant derivative, as well as considering the O( 1

mb
)

corrections to the static HQET lagrangian.
The calculations and techniques used in this work can be readily applied to X-space

schemes for other classes of operators. For instance, using the auxiliary-field formalism,
nonlocal operators such as q(x)W (x, y)q(y), where W (x, y) is a Wilson line, are transformed
into products of local operators qQy−x(x)Qy−xq(y), which can be renormalized by the
techniques presented in section 2.1. The calculations of the three-loop diagrams involving
gluons attached to the light-quark propagators presented in appendix A.1 can also be applied
to renormalize massless four-quark operators such as the ∆S = 1 four-quark operators
relevant for kaon decays.
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A Integrals and conventions

A.1 Dimensional regularization and charge conjugation

The calculations in this work use dimensionally regulated integrals
∫ d4k

(2π)4 → µ4−d
∫ ddk

(2π)d

where d = 4 − ϵ. γ5 is treated as in the ’t Hooft-Veltman scheme [38] (γ5 := iγ0γ1γ2γ3 in
Minkowski signature). Charge-conjugation matrices C are used in the construction of the
baryonic operators such as ϵabc[qaT CΓqb]Qc (where Γ is a Dirac matrix), and it is natural
to assume that the defining relation CγµC−1 = −γT

µ holds in dimensional regularization.
However, to our knowledge, an explicit charge-conjugation matrix satisfying the defining
relations for an explicit basis of infinite-dimensional γ-matrices has not been constructed
previously in the literature for dimensional regularization (a construction was presented
for dimensional reduction in ref. [54]). The explicit construction shows that enforcing
CγµC−1 = −γT

µ does not lead to inconsistencies in Dirac traces, unlike how naively enforcing
the anticommuting relation {γ5, γµ} = 0 leads to inconsistencies in certain Dirac traces.

In what follows, a construction of the d-dimensional gamma matrices as well as an
explicit charge-conjugation matrix C satisfying CγµC−1 = γT

µ are presented. The Minkowski-
signature gamma matrices are defined inductively following the algorithm of ref. [55] (up
to a trivial reordering that enforces (γµ)T = (−1)µγµ):

1) Set

γ0
(1) :=

[
1 0
0 −1

]
, γ1

(1) :=
[
0 1
−1 0

]
. (A.1)

2) For ω ∈ Z≥1, define

γ̂(ω) := iω−1γ0
(ω) · · · γ

2ω−1
(ω) , (A.2)

γµ
(ω+1) :=

[
γµ
(ω) 0
0 γµ

(ω)

]
for 0 ≤ µ < 2ω, (A.3)

γ2ω
(ω+1) :=

[
0 iγ̂(ω)

iγ̂(ω) 0

]
, γ2ω+1

(ω+1) :=
[

0 γ̂ω

−γ̂(ω) 0

]
. (A.4)
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• •
(−t0,~0) (t0,~0)

=

∫
ddp

(2π)d
e2ip0t0




p p

• •




Figure 3. Example showing how the Fourier-transform relates a position-space diagram appearing
in the ⟨QΓq(t0, 0⃗)(qΓQ)(−t0, 0⃗)⟩ two-point correlation function to the corresponding momentum-
space diagram.

3) The infinite-dimensional γ-matrices are defined by block-diagonal copies of the finite-
dimensional construction, so that for µ ∈ Z≥0, choosing any ω ≥ ⌊µ

2 ⌋+ 1,

γµ :=


γµ
(ω)

γµ
(ω)

. . .

 . (A.5)

The γ matrices defined here satisfy

{γµ, γν} = 2gµν , γ†
µ = γ0γµγ0, (A.6)

where the metric is written in the mostly-negative convention, gµν = diag(+1,−1,−1, · · · ).
With this construction, no finite product of γ matrices will satisfy the charge-conjugation ma-
trix condition CγµC−1 = −γT

µ . Modifying the basis of γ-matrices by eliminating γ4, γ6, γ8 . . .

from the basis, such that the new basis γµ is given by the relabelling

{γ0, γ1, γ2, γ3, γ4, γ5, γ6, · · · } = {γ0, γ1, γ2, γ3, γ5, γ7, γ9, · · · }, (A.7)

a charge-conjugation matrix can be defined. These γ matrices still satisfy eq. (A.6), but
now we can define C = iγ0γ2, which satisfies

CγT
µ C−1 = −γT

µ , Cγ5C
−1 = γ5, C−1 = CT = C† = −C. (A.8)

The trace is normalized such that Tr(1) = 4. Euclidean γ-matrices are obtained by defining
γE
0 := γ0, γE

i := −iγi such that {γE
µ , γE

ν } = 2δµν . The ‘E’ labels are dropped from all
Euclidean γ-matrices in the main text as all calculations are presented in Euclidean space.

A.2 Integrals

Calculations were performed in Mathematica, with the aid of the Tracer package [56] for Dirac
traces in the ‘t Hooft-Veltman scheme, and HypExp [57] for expansions of hypergeometric
functions. Because three-quark baryonic sources were used in defining the X-space schemes
(which only exist in Nc = 3, and introduce an ϵabc tensor), color traces are explicitly
evaluated without attempting to write in terms of Nc. Color matrices are normalised so
that Tr(T AT B) = 1

2δAB.
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The two-point correlation functions required for renormalizing the heavy-light and heavy-
light-light operators from section 2.1 can be computed first in momentum space and then
by taking a Fourier transform, as shown in figure 3. As such, these can be evaluated by
using ‘p-type’ integrals [41]. In the chiral limit for the light quark, there is only a single
dimensionful scale p in the momentum-space integral corresponding to the momenta running
through the diagram as seen in figure 3. Hence, integration-by-parts relations based on the
identity

∫ ddk
(2π)d

∂
∂kµ

f(k) = 0 are relatively easy to derive.

For three-point position-space functions, at O(αS), the diagrams can all be split up into
a number of component pieces. For example, one diagram topology that appears in the
O(αS) contribution to the three-point mesonic function ⟨QΓ†q(−t0, 0⃗) · (QΓLq)(qΓRQ)(0, 0⃗) ·
qΓQ(t0, 0⃗)⟩ can be written as

• • •
(−t0,~0) (0,~0) (t0,~0)

=


 • • •

α1β1ρ1δ1

(−t0,~0) (0,~0) (t0,~0)




×


 • •

ρ2δ2

(−t0,~0) (0,~0)


×


 • •

α2β2

(0,~0) (t0,~0)


× Γα2α1Γ

†
δ1δ2

ΓL
β1β2

ΓR
ρ2ρ1

.

Here, αi, βi, ρi, δi are Dirac-color indices. As well as the position-space propagators and
self-energy diagrams, there are three O(αS) diagrams to compute, corresponding to a gluon
attaching to two heavy-quark propagators, a gluon attaching on one end to a heavy-quark
propagator and on the other end to a light-quark propagator, and a gluon attaching to two
light-quark propagators. In the case of the ∆Q = 0 four-quark operators, the diagram with
a gluon attaching to two heavy-quark propagators can be directly calculated in Minkowski
space as follows:

• • •
α1β1ρ1δ1

(−t0,~0) (0,~0) (t0,~0)

(sL,~0) (sR,~0)

=
[1 + /v

2 (igvµTA)
]

α1β1

[1 + /v

2 (igvµTA)
]

ρ1δ1

·
∫ 0

−t0
dsL

∫ t0

0
dsR

∫
ddk

(2π)d

−ieisLk−isRk

k2

= [/vTA]α1β1 [/vTA]ρ1δ1

(
−αS

πϵ
− αS

2π

(
2 + log

(
−1
4eγE πµ2t20

)))
, (A.9)

where the static nature of the heavy quark has been utilized to integrate the vertex insertions
at sL and sR along the line connecting the three operators. For the two diagrams involviong
gluons attaching to light-quarks, additional master integrals are required. Relabelled from
the basis from appendix A of [12], and in Minkowski space, there is a Tripod diagram T
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and a Wedge diagram W :

(xL) (xR)

(0)

1 2

3

T :

(xL) (xR)

(0)

1 2 3 4

5

6

W :

T (xL, xR;n1, n2, n3) :=
∫

ddpLddpR

(2π)2d

eipLxLe−ipRxR

(−p2L)n1(−(pL − pR)2)n2(−p2R)n3
, (A.10)

W (xL, xR;n1, n2, n3, n4, n5, n6) :=∫
ddpLddpRddk

(2π)3d

eipLxLe−ipRxR

(−p2L)n1(−(pL − k)2)n2(−(pR − k)2)n3(−p2R)n4(−k2)n5(−(pL − pR)2)n6
.

(A.11)
The W master integral can be reduced to a few base cases by use of integration-by-parts
relations (derived from inserting ∂k · k in front of the integrand of eq. (A.11)):

W (xL, xR; n⃗) =
n22+(5− − 1−) + n33+(5− − 4−)

d − n2 − n3 − 2n5
W (xL, xR; n⃗), (A.12)

where n⃗ = (n1, · · · , n6), and m±W (xL, xR, n⃗) = W (xL, xR, n⃗′) with n⃗′ = n⃗ for all components
except the m-th component, n′

m = nm ± 1 (this is the notation used in ref. [41]). Eq. (A.12)
reduces the W master integral to base cases where either n2, n3 or n5 equals zero in the
argument of W . In these cases, the integral reduces to a p-type integral and the T master
integral, which can be performed explicitly using Schwinger parameters:

T (xL, xR;n1, n2, n3) =
−Γ

(
d
2 − n1

)
Γ(d − n1 − n2 − n3)

Γ(n2)Γ(n3)Γ
(

d
2

)
4n1+n2+n3πd

(−x2
R)−d+n1+n2+n3

∫ 1

0
dx(1− x1)−

d
2+n1+n2−1x

− d
2+n1+n3−1

1 2F1

(
d

2 − n1, d − n1 − n2 − n3,
d

2 ,
−(xL − x1xR)2

x1(1− x1)x2
R

)
.

(A.13)

Explicit evaluations of T can be performed at relevant values of n1, n2 and n3. Diagrams with
a gluon attaching to a heavy-quark propagator on one end and to a light-quark propagator
on the other end can be calculated in Minkowski space, for instance:

• • •
α1β1ρ1δ1

(−t0,~0) (0,~0) (t0,~0)

=
∫

ddpLddpR

(2π)2d

∫ 0

−t0
dsL

[
i

/pR

(igγµTA)
i

/pR
−/pL

]
α1β1

[1+/v

2 (igvµT A)
]

ρ1δ1

−ieip0
LsL−ip0

Rt0

p2L

=−ig2
∫ 0

−t0
dsL

[
γα/vγβT A

]
α1β1

[1+/v

2 T A
]

ρ1δ1

∂

∂xα
R

(
∂

∂xβ
R

+ ∂

∂xβ
L

)
T (xL, xR; 1,1,1)

∣∣∣∣xL→(sL ,⃗0)
xR→(t0 ,⃗0)

(A.14)
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Finally, the diagram with a gluon attaching to two light lines can be reduced to the W

master integral

• • •
α1β1ρ1δ1

xL (0,~0) xR = −ig2µ4−d(γαγµγβT a)αβ(γργµγδT a)ρδ

×
∫

ddpLddpRddk

(2π)3d

eipLxL−ipRxR pα
R(pR − k)β(pL − k)ρpδ

L

(−p2L)(−(pL − k)2)(−(pR − k)2)(−p2R)(−k2)
, (A.15)

where the factors of pL, pR in the numerator can be handled by differentiating with respect to
xL, xR. Calculating eqs. (A.9), (A.14) and (A.15) at the relevant values of xL and xR is the
main computation involved in calculating the O(αS) contribution to the ratios of three-point
correlation functions to two-point correlation functions presented in table 3.

Open Access. This article is distributed under the terms of the Creative Commons Attri-
bution License (CC-BY4.0), which permits any use, distribution and reproduction in any
medium, provided the original author(s) and source are credited.
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