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1 Introduction

Lattice Quantum Chromodynamics (LQCD) calculations are crucial to nonperturbative
determinations of Standard-Model parameters and searches for beyond-the-Standard-Model
physics in the flavor sector [1]. These calculations (see FLAG [2] for a review) typically require
renormalization of composite operators, as the hadronic matrix-elements are renormalization
scale-dependent, and must be combined with Wilson coefficients to determine renormalization-
scale-independent physical quantities. The most commonly used renormalization scheme in
phenomenological applications of QCD is the modified minimal-subtraction (MS) scheme
because of its perturbative simplicity. However, LQCD has no direct access to the MS scheme
which is only defined in dimensionally-regulated perturbation theory. Lattice perturbation
theory [3] can be used to convert bare matrix-elements computed in LQCD to MS-renormalized
matrix-elements, but tends to suffer from poor convergence properties [4]. Nonperturbative
renormalization schemes bypass these problems by renormalizing composite lattice operators in
an intermediate, regulator-independent scheme, before perturbatively matching between this
intermediate scheme and the MS scheme using dimensional regularization. A common choice
of an intermediate scheme is to impose a momentum-space renormalization condition, as is
done in the Regularization-Independent Momentum Subtraction (RI-(S)MOM) methods [5, 6].
A drawback of RI-(S)MOM schemes is that gauge-fixing is required due to the use of
gauge-noninvariant quark and/or gluon states, giving rise to additional mixing with gauge-
noninvariant operators [7, 8]. Furthermore, Gribov copies (the discrete set of intersections
between a gauge orbit and a gauge-fixing condition) introduce a systematic error to numerically
computed renormalization constants, although numerical studies often suggest that this is
practically negligible compared to statistical noise [9, 10].



To circumvent these problems, one can instead impose renormalization conditions based on
position-space correlation functions of gauge-invariant operators. In the literature this has been
called the X-space scheme [11], or the gauge-invariant-renormalization-scheme (GIRS) [12].
For multiplicatively renormalizable operators, the X-space renormalized operator OX) can
be related to the bare operator O by OX) = ZéX)(’)(O), where Z((QX) is an (often divergent)
renormalization constant. One possible X-space renormalization scheme can be defined by the
requirement that the renormalized two-point correlation function built from @) is equal to
its non-interacting (NI) value when the operators are separated by a fixed spacetime distance x:

(01 (0) 0 (2) ) = (01 (0) 09 (@) )| (11)

where V22 is the scale at which the operator is renormalized, and the non-interacting
correlation function is defined as the ag — 0 value of the correlation function.! When
implementing X-space schemes in lattice-discretized theories, the non-interacting correlator
is usually taken to be the correlator computed with propagators computed on a unit gauge
field [11], in order to supress lattice discretization artifacts. Although the scheme is gauge
invariant by definition, it requires more-complicated perturbative calculations in order to
match to other schemes in the continuum. Matching calculations from X-space schemes
to MS have been performed for light-quark bilinears [13], heavy-light quark bilinears [14],
dimension-5 operators appearing in the energy-momentum tensor [12], and supercurrent
operators in supersymmetric theories [15].

When implementing RI-(S)MOM renormalization conditions at momentum p with a
lattice discretization, there is a ‘window problem’ where Aqcp < p < a~! is required to keep
all systematic uncertainties under control. Indeed, the RI-SMOM scheme [6] was introduced
to remove infrared convergence issues in applications of the original RI-MOM scheme where
some momenta were not in the desired range. Here, a is the lattice discretization-scale
that regulates the ultraviolet (UV) behaviour of the theory and Aqcp is the typical QCD
scale that emerges through dimensional transmutation. The same window problem affects
any position-space scheme, where Va2 <« AééD is required to control perturbation-theory
errors appearing in the perturbative matching to MS, and a < v/z2 is required to control
discretization artifacts. In practice, this window problem must be investigated on a case-
by-case basis, and various investigations have been performed in X-space schemes for the
local light-quark bilinear operators using Wilson fermions [11, 16], twisted-mass fermions [17],
as well as domain-wall fermions [18]. Furthermore, numerical studies of the feasibility of
X-space renormalization conditions for renormalizing the QCD energy-momentum tensor [19],
heavy-light quark bilinear operators [20], and operators in supersymmetric field theories [21]
have been undertaken. There have also been numerical investigations of the possibility of
using position-space schemes to match between three and four-flavor QCD [22, 23].

The X-space scheme is particularly suited to renormalizing Heavy Quark Effective
Theory (HQET) operators. Choosing a reference frame in which the heavy-quark velocity

!The non-interacting correlation function in X-space schemes is sometimes referred to as ‘tree-level’, though
this is a misnomer due to the fact that the noninteracting calculation of position-space correlation functions
of composite operators involves loops. Note that the superscript labels ‘(0)’ on the operators in the r.h.s. of
eq. (1.1) are redundant as the non-interacting value for the bare and renormalised operators is the same.



has spatial components that vanish, v = (1,0,0,0)7, the bare Euclidean propagator for a
heavy quark @ in the static limit is naturally written in position space [24] as

I+

(QOVOQ @) r = 85, 5 6(—te)W O (0,05) — 1,

(1.2)

where () p indicates the path integral is performed over all the fermionic degrees of freedom
but not the gauge degrees of freedom, and W) (a,b) is the bare straight Wilson line from a
to b. A complication in lattice regularizations of the static theory is that the static-quark
self-energy has a power divergence [25], which is caused by mixing between the kinetic term
QDoQ and a mass-like term Mgt QQ, where mgiar ~ O(ag)/a is radiatively generated. The
X-space scheme proposed in this work (sections 3.1 and 3.2) utilizes ratios of three-point
to two-point position-space correlation functions to nonperturbatively cancel this power
divergence. Nonperturbatively-renormalized matrix-elements of HQET operators can thus be
extracted without needing to determine mygtat explicitly, which would otherwise constitute
another source of uncertainty.

In this work, a set of X-space schemes for renormalizing four-quark HQET operators
is proposed, and the O(ag) matching to MS is calculated in the static limit, extending
the X-space approach used in refs. [11, 12, 15]. The first set of operators that are con-
sidered are isospin-nonsinglet, four-quark operators 77 (QTqs)(q;I'Q) where I',T” are
spin-colour tensors, qf € {qu,qq} are light-quark fields, and 74 is a Pauli matrix in the
light-quark flavor space. In the Heavy Quark Expansion (HQE) formalism, matrix elements
of these AQ = 0 (heavy-quark flavor preserving) operators are known as ‘spectator con-
tributions’, and are the dominant O(1/ m%)—corrections to the inclusive lifetimes of heavy
(charm or bottom) hadrons [26, 27]. Hadronic matrix elements of these four-quark operators
currently form the dominant uncertainty in certain ratios of inclusive lifetimes (such as
7(BT)/7(Byg), 7(Ap)/7(Bg) [28]). Though working in the static limit of HQET will introduce
systematic uncertainties on these four-quark matrix elements, it is a useful framework to
use as it suppresses all power-divergent mixings with lower-dimensional operators.? The
integrals necessary to compute the X-space to MS matching factors for the AQ = 0 operators
are also immediately applicable to other sets of four-quark operators, and the matching
factors for the AB = 2 four-quark operators in HQET, relevant for determinations of B — B-
mixing [32], are presented as well. Existing LQCD studies of these four-quark operators in
HQET have utilized lattice perturbation-theory to perform matching to MS [33-36], and
the nonperturbative renormalization-conditions proposed in this work will allow for more
precise LQCD determinations of the renormalized matrix-elements [37].

The four-quark operators studied in this work do not renormalize multiplicatively but
rather mix within multiplets of operators with the same quantum numbers, and therefore
eq. (1.1) must be generalized to define a scheme that determines the entire mixing-matrix.
In order to provide a sufficient number of renormalization conditions to determine the full
mixing-matrix, the X-space scheme proposed here utilize three-point correlation functions
involving the four-quark operator with multiple choices of source and sink operators. In

2 Alternatively, gradient-flow schemes are currently being investigated as another approach to the problem
of power-divergent mixing, by replacing power-divergent coefficients scaling with a~' with coefficients that
scale with +71/2) where t is the gradient-flow time [29-31].



particular, the source and sink operators used are heavy-light mesonic operators QI'q and
heavy-light-light baryonic operators €2%¢[¢?T T ¢?|T'2Q¢ for various choices of the Dirac matrices
I',T'1, 5. Perturbative calculations of two-point correlation functions constructed from these
operators have been performed in the literature, and these can be used to determine matching
coefficients between X-space schemes and the MS scheme, which are presented to O(ag) in
section 2.1. The four-quark operators also mix into evanescent operators (operators that
explicitly vanish in d = 4) in dimensional regularization. To be able to utilize the X-space
scheme as a regulator-independent scheme for conversion of lattice matrix-elements, the
scheme is defined in terms of evanescent-subtracted operators. The X-space schemes, and
O(ag)-matching to the MS scheme for the isospin non-singlet AB = 0 operators and the
AB = 2 operators are presented in sections 3.1 and 3.2, respectively. An outlook is presented
in section 4. An overview of the conventions and integration techniques used in this paper
is given in appendix A.

2 Multiplicatively renormalizable operators

2.1 X-space schemes for heavy-light bilinear and heavy-light-light trilinear
operators

In this section, the O(ag) matching-factors between X-space-renormalized operators and
MS-renormalized operators for heavy-light mesonic, and heavy-light-light baryonic operators
in HQET are presented. Choosing the frame in which the static heavy quark propagates
purely in the Euclidean time direction, the Euclidean HQET Lagrangian used in the following
calculations is given by

1 _
L= ZFMVFMV + Z qf’y,uD,qu + QDOQa (21)
J={u,d}

with two massless light-quarks ¢, and g4, and one static heavy-quark () that satisfies
H%Q = @. To regulate the continuum theory, dimensional regularization (DR) is used,
where the dimension of spacetime is analytically continued to d =4 — ¢, and v5 = Yy17273
is treated in the 't Hooft-Veltman (HV) scheme [38] (see appendix A.1 for a review of the
conventions used). Due to the heavy-quark term in the action not containing any Dirac
matrices, in d = 4 there is an SU(2);, heavy-quark spin symmetry

Qe PNQ, Qs Qe (2.2)

that leaves the action invariant, where ; € {v1,72,73}. The resulting effect of this symmetry
is that local heavy-light mesonic operators are related by heavy-quark symmetry in the
following SU(2); doublets:
Hf(0M):q H;(07):q

7 (07) ;@ Csu@) (07) 1 7yQ 7 (2.3)

SU2)n
Hi7 (1) 1 qms7Q Hi7 (17) 1 qmi@

where the J quantum numbers of the state are listed along with the corresponding local
heavy-light operator. Note that the 4+ superscripts refer to the parity of the operator, rather



than the electromagnetic charge of the state. In eq. (2.3) and what follows, +; indexes the
(d — 1)-dimensional spatial Dirac matrices, such that v;7; = (d — 1)1.3 Since the antiparticle
is integrated out in HQET, the operators shown in eq. (2.3) form a basis for the heavy-light
bilinear operators with no derivatives in d = 4.

The heavy-light-light baryonic operators of the form e®¢[¢®T7T1¢"|T'2Q° for varying
Dirac matrices I'1, 'y and isospin matrices 7 are also multiplicatively renormalizable. In the
following, C' is the charge-conjugation matrix satisfying CWMC_I = —’yg, with an explicit
construction in dimensional regularization given in appendix A.1. The isospin matrices are

4 or symmetric 77

01 10 1 (01 00
A S S S
AL 5 5= 5, = . 2.4

Operators coupling to Ag baryons (isospin singlets) are given by

written in terms of the antisymmetric 7 matrices

A (%Jr) : ette[gT A blQ°,

Ao ({r) :Eabc[anTAC,yB,yqu]Qc’
A7 (%7) :eabc[anTACqb]Qc’

Ay (37) s el T TACT g i Q°,

SU(2)p _
A}~ (% ) L el T TACY57ig")Q° — §e (g™ T Cysya i Q°

(2.5)

The operators are labelled by their angular momentum representation and parity, J*. The
SU(2)p,-doublet {A;, A7~ } arises from decomposing the tensor product of a spin-1 light-quark
doublet with the spin—% heavy quark into irreducible spin representations. In particular,
spin-3 operators such as A}~ satisfy the condition 7;A}~ = 0 in d = 4. Operators coupling to
Y g-baryons which transforms in the isospin-triplet representation, are given by

+
D (% ) e [q* 79 Chig"1rivsQ°,
()h * §+.abcaTSC,b c 1 _abef,aT C.b,,c
1o,i \ 2 g™ 75 Cvig’)Q 3¢ (¢ Ta 'YJthYJQa
+
su@y, 4 2 (37) e gT 75 Cromg s Q°,
h +
S (37) + €®lgT 75 Cr0ma"1Q° — Fe™[qT 78 Crov; i Q°,
SU) STa (%_) s €[ 75 Cy5707i )is QF,
h *— 37\ . _abc aTSC bie 1 _abe aTSC PR Py aYe
Lei (5 ) 1€ 73 Cy5707:¢°1Q° — 5[ 73 Cy5707 47177 QS
Sra (7)1 €™la" T3 Cr0d")Q", (2.6)

where « is the isospin index and 7 is the vector index of the spin—% field. The operators
in egs. (2.5) and (2.6) form a complete basis in d = 4 for local HQET heavy-light-light

3In d = 4, where spatial Dirac matrices ~y; take values in y; € {71, 72,73}, the heavy-quark spin symmetry
is indeed SU(2);,. In dimensional regularization the spatial index 4 now varies over the (d — 1)-dimensions that
are not timelike, and formally the symmetry group is no longer SU(2). This distinction, however, does not
have any implications for the calculations presented in this section.
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Figure 1. Diagrams for the O(«ag) contributions to the two-point position space correlator shown in
eq. (2.7), when O is one of the heavy-light currents listed in eq. (2.3). The operator insertions are
represented by the filled in dots in the diagrams above. Feynman rules are derived from eq. (2.1),
double lines refer to the static-quark propagator, single lines are light-quark propagators, and curly
lines are gluons. The unlabelled positions of the interaction vertices are integrated over.

currents with no derivatives, of which the positive-parity local operators were previously
classified in refs. [39, 40].
The X-space scheme for multiplicatively-renormalizable currents is specified at a renor-

malization scale ! by the following condition:

<(9T(R’X) (—t,ﬁ) OR.X) (t,6>> _ <(9T(0) (—t, (‘)’) 0O (t,6)> (2.7)

NI

where R is a regulator (either DR or the lattice regulator), and X specifies the operators are
renormalized in the X-space scheme. The subscript NI on the right-hand side of eq. (2.7)
refers to the non-interacting value of the correlator. If the operator has additional indices
(such as isospin triplet indices « in the case of the Y-interpolating operators in eq. (2.6), or
spatial gamma-matrix indices i) these additional indices are summed over on both sides of
the renormalization condition. For example, in the 1~ mesonic channel (the B* mesons if
@ is a bottom quark), the renormalization condition is

3 (@@ (<4.0) @@ (1.9)) = 3 (@i (-4.0) @:@)® (1.0)) |
i ' (2.8)

Furthermore, the open Dirac indices of the static heavy-quark and heavy anti-quark in the

baryonic operators are traced over.

The position-space diagrams that contribute to the O(ag) determination of the two-
point correlation function for the heavy-light currents are shown in figure 1. Although
chiral symmetry is broken by the HV-prescription for 75, the massless nature of the light
quark still has consequences for the symmetries present in the renormalization factors. In
particular, the specific I'-matrix appearing in the interpolating operator O = gI'Q only
affects the two-point correlation function by a constant factor, as the correlation function
(to any order in ag) has the form

<<©(DR,0)fq(DR,O)) (—t,0) (Q(DR,O)FQ(DR,O)) (t, 6)> =ATr <1 -;’YOF’yoF>

— AP Tv (1 270rr) . (2.9

where A is a constant that does not depend on I', P € {—1,+1} is the parity of the state
(7o' = PT'yp), and T = 4oI'Tq. This is because of the fact that regardless of the number of



gluons attached to the light-quark line in the two-point correlation function, there are always
an odd number of y-matrices inserted (one for each massless propagator and one for each
vertex). For example, shown below is the case with three gluons attached to the light quark:

(_th 6) (t07 6)

Y Yz Yus

The only four-vector available for contraction is the purely timelike heavy-quark velocity v;
thus, after performing integration over loop momenta and Fourier transforming to position
space, the light-quark line is proportional to ¥ = ~9. The result of eq. (2.9) is that all
heavy-light operators gI'() renormalize multiplicatively with the same factor to all orders
of ag in the X-space scheme, regardless of the choice of T'.

The diagrams in figure 1 can be computed by first calculating the corresponding
two-loop momentum-space diagrams (also known as p-type integrals [41]) and taking a
Fourier transform; further details of this computation are given in appendix A.2. Writ-
ing (gI'Q)(PR-5) = ((DRS @OTQO) for the heavy-light currents (where S is a choice of
renormalization scheme), the X-space renormalization factors are given by*

(DR, X) o as(p)  as(p) (4 20 1 B, 2,2
Zigre) (tp) =1 - = gt g tglos (4mee p22) (2.10)
in d = 4 — € dimensions. Here, p is the scale obtained after writing the renormalized

MS _e€ (DR,MS))2
DR,MS) _ Z%,M 2g(0), where ag = (g - ) :
and g is the Euler-Mascheroni constant. It is possible to define an X-space scheme strong

coupling agDR’X) (

coupling-constant as a dimensionless object ¢

for example by fixing the two-point correlation function for the gluon
correlator), but this work focuses on the matching of composite operators between X-space
schemes and MS, and hence the ag that is used is always renormalized in MS at scale .
The MS renormalization factor

(ORMS), | _ ,  as(p)  as(p) —
Zrg) (n) =1 — o log(4me 7)), (2.11)
can be read off from eq. (2.10) as the % piece and the corresponding MS logarithms. Comparing
this to eq. (2.10), note that the MS-counterterm contains factors of +*$!£  whereas the

X-space counterterm contains corresponding factors of —=<2£. The difference in sign arises

from the d-dimensional Fourier transform of the logarithmic structure [13]. This causes
the conversion factor O(PRMS) — C(PRMSDR.X) (3 1)) O(PR.X) (1) hetween X-space and MS

to contain g factors:

(DR.MS)
NS Z (1) as(p) (4 2r2
cson0, ) Lard 0y ast) (4,207 1 o)) )
@re) Z((qDI%)X) (t, ) T 3 9 ( )

10(a%) calculations of the two-point position-space correlation function of heavy-light currents can be
found in ref. [14].



@ Cio | Co0 @ Cro | Co0
Ay a2 AT 3 2
Ay g 1 Ay AT 3 1
21,047 ZT,a,i % 1 22_704 % 1
22,04’ E;,a,i % % Eia’ ET;J % %

Table 1. O(asg) conversion factors from X-space renormalized operators to MS-renormalized operators,
for the different heavy-light-light baryonic operators. Refer to eq. (2.13) for definitions of C; o, Ca,0.
The two-point functions of the positive-parity heavy-light-light currents have previously been computed
in the context of QCD sum rules [40], but did not appear in position space explicitly.

In numerical studies utilizing X-space schemes, p should be varied to provide an indication
of the size of the error caused by truncating the perturbative series. A natural candidate
for a central value of u is given by the condition u? = e 27#t~2 which would cancel the
logarithm that appears in the matching factor.

For the heavy-light-light baryons, the O(ag) conversion factors can be parametrized
similarly as

(DR,MS;DR, X) Z((gDR’m) (1) ag 212 Cho Wve 2,2
Co (ﬂﬂ):m=1+7 01,0—1‘74—?10%(6 pt7) |, (2.13)
O ’

where the coefficients C1 0, Ca,0 are given in table 1 for O taken from eqgs. (2.5) and (2.6).°
The calculations of the conversion factors proceed similarly to those for the heavy-light mesonic
operators, by evaluating the baryonic analogues to the diagrams appearing in figure 1.

2.2 Ratios of decay constants

Before presenting the X-space conditions for the four-quark operators, it is instructive to
see how X-space conditions can be used to renormalize ratios of decay constants (where
the static quark self energy cancels) in lattice-HQET. Though computations of the decay
constants in the static limit no longer offer comparable precision to modern lattice-QCD
calculations of the decay constants utilizing relativistic heavy quarks [2], these conditions can
still be utilized to check the window problem of X-space schemes for HQET operators.
The renormalization conditions presented in section 2.1 are not directly applicable to
two-point correlation functions computed with the static heavy-quark action in Lattice-
HQET as OPRX)(¢) £ 00atX) () The reason for this disagreement is that the lattice
regulator introduces a power-divergent mixing between the static kinetic operator QDyQ
and a radiatively generated mass-term mg,tQQ where mgiar ~ O(as)/a. The relationship
between matrix elements of the operators renormalized in the two different regulators is

(- |0t (g)] ..y = emetart (. | OPRX) )]y (2.14)

5Note that Z((QDR’MS) (which contains only the < piece) can be read off as Z((QDR’MS) = —52(04,0 as the yp
factors are directly proportional to the % pole.



where | ---) represents an arbitrary state. Without an additional renormalization condition
that can be used to extract msgtat, it is not possible to match matrix elements of Olat,X)
to matrix elements in continuum renormalization schemes. There are various possibile
renormalization conditions that can extract mgiae; for instance the RI-xMOM scheme [42]
extracts mgtat as the exponential decay of the static-quark propagator in a fixed gauge at a
fixed separation. Alternatively, the Schrédinger-Functional approach to renormalizing HQET
operators constructs additional correlators using Dirichlet boundary conditions [25, 43]. In the
context of calculations of the Polyakov loop at finite temperature, various schemes have been
proposed including fixing the value of the static-quark-potential at a given separation [44].

Since the self-energy power divergence affects all the two-point correlation functions
discussed in this section in the same fashion, it is also possible to take ratios to cancel this
self-energy divergence. This allows for the extraction of static decay constants without the
need of an additional renromalization condition to compute mgta;. As an example application,
consider the following QCD matrix elements:

(01(@pyursb) PN B (p) = ipu S, (2.15)

(DR,MS) . MS
) [Ao(p,5)) = ima, Na(p, ) fhrys  (2.16)

where b is a (relativistic) bottom quark field, p, is a Euclidean four-momentum, s is the spin

<0| (eabc [anTAC'VE)qb] H%bg

of the Ay-baryon, and N, is the baryon Dirac spinor satisfying N(p, s)N(p,s’) = 2my,dss-
Here, fp, is the mesonic decay-constant, and fa,, is the normalization constant for one
of the distribution amplitudes of the Ay baryon [45]. The states in egs. (2.15) and (2.16)
have standard relativistic normalization

By () By(p) = 2E5,, x5 (7~ 7). (2.17)
<Ab(p/7 S/)’Ab(pa S)> = 2588/EAb(p,8) (27-()353(5_ ﬁ) (218)

Note that, given the conventions of egs. (2.15) and (2.16), the mass dimension of fp, is 1,
while the mass dimension of fy,, is 2 (using the normalization for distribution amplitudes
from ref. [46]). The decay constants fg,, fa,, as defined above do not have well-defined
limits as my — oo, as the relativistic normalization of states does not behave well in this
limit. The my; — oo limit can be studied by switching to a non-relativistic normalization
for the HQET states:

— -

Ne(B (0, K) By (v, k))ng = (2m)8°(F — ), (2.19)

k
NR(Ap (0, K, )| Ap (v, k, 8))NR = Oss (2)30° (K — K, (2.20)
where p, = mpuv, + ky, for H € {By,Ay}. The relativistically normalised and non-
1
my
in a static limit analysis. Furthermore, matching the QCD operators to HQET operators

relativistically normalised states additionally differ by O(=-) corrections, which are irrelevant

whilst dropping all the O(m%)) contributions gives [47]

H}DR,MS) ~ (g 75@)(13}{7@) — Dy, (1)( ﬂo%b)(DRW), (2.21)
>(DR,W)

)

NS a . (DR,MS)
APRMS) ([q T rACY56"QC €ane )

1,

= D, (1) ([0 7aC50"1 25206 cave
(2.22)



where Dy () are perturbatively computable matching coefficients. Combining the matching of
the operators and states from QCD to HQET with egs. (2.15) and (2.16) gives the relationships
imeffthamMis = D,

_ DR,MS) 47
: (1)~ /2mp, O H M [H (0, k))xr, (2.23)
ima, Na(p, ) ™ = Dy, ()7 2ma, , (OAD Y [ Ap(v, b, 9))wm, (2.24)

where the superscript ‘stat’ has been prepended to the label of the decay constants to
emphasize that O(%b) corrections have been dropped in the derivation. The matrix elements
on the right-hand sides of eqs. (2.23) and (2.24) are defined completely in the static HQET
limit, and hence have no heavy-quark mass dependence. Therefore, up to logarithmic
corrections due to the matching factors, the combinations fjsgt;t’MS\/@ and fit;f’MSmAb
are constant in the m; — oo limit.

To extract the ratio of the static decay constants using the X-space scheme as an
intermediate nonperturbative renormalization scheme, the bare two-point correlation functions

are first calculated in Lattice HQET:

Ty, (t) = (H](clat’o) (¢, G)H](clat’o)T(O,(j)) = \ZHf|26_EHft + excited states, (2.25)
Ta,(8) == > (AL @ 0)ATSV(0,0)) = |2y, 12”21 + excited states, (2.26)

and fitted at large Euclidean time-separations, ¢, to extract Zg, and Z,,. Note that the
energies Ey,, Ey, are the binding energies of the respective hadrons shifted by the static
quark mass mgtat. By renormalizing the operators in the X-space scheme at reference scale
tg 1 and then matching to the MS scheme, an expression for the ratio of the decay constants
in the MS scheme can be derived as

tat, MS 1 DR,MS;DR, X
I5, (THf(tO) TE(tO)) " Cary (to, #) x (DAl(t0)> y Zi;V2my,

5 ()= _
fls\tsf,MS Tg} (to) TA1 (to) C/]i)lR,MS;DR,X (t(]a M) DHf (to) Z

1\/ 1By

(2.27)

where the first factor renormalizes the bare operators in the X-space scheme, the second factor
converts to the MS scheme in the dimensionally-regulated continuum, and the third factor
matches the renormalized HQET operators to QCD operators in the MS scheme. All the
renormalization and matching in this expression is performed at the scale ¢y ! for simplicity,
but hybrid schemes where the renormalized operators are run before performing matching
are also possible. For instance, running the operators in MS from the scale t; L to the scale
my before matching the HQET operators to QCD is usually desirable, as this cancels the
large logarithms appearing if the ¢ ! scale is very different from my,.

3 Four-quark operators

3.1 Flavor non-singlet AQ = 0 four-quark operators

By performing an Operator Product Expansion (OPE) for the product of two weak cur-
rents and matching to HQET (a procedure known in the literature as the Heavy Quark
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Expansion [27]), the lifetimes of hadrons containing a heavy quark @ (Q = ¢,b) can be
expressed as a sum over matrix elements of operators of increasing dimension. Of the various
o1/ m%) corrections, the “spectator effects” arising for four-quark operators where a light
spectator quark ¢y in the hadron participates in the decay along with the heavy-quark are
phase-space enhanced in the OPE by a factor of 1672 [26]. In HQET, the operators of
interest are conventionally written in the basis

0f == (@, Pray) (@1 PLQ), Of == (QPLay) (@ PrQ),
Of = (QuPLTqs) @1 PLT*Q), Of = @PLT"qp) @ PrT"Q),  (3.1)

where f € {u,d}, P, = 1_2% , Pr = H% are the left /right projectors, and the T are color
matrices satisfying Tr(TATB) = %(V‘B . Note that the flavor-singlet combinations of the

operators such as O* + O% will mix with the lower-dimensional Q@ operator in a power-
divergent way. When acting on B-hadrons, QQ is the identity operator, leading to an a3
additive mixing to the operators in lattice-HQET computations. This section focuses on the
renormalization of the isospin-nonsinglet contributions such as O* — O? where the mixing with
the QQ operators cancel, and the four-quark operators are protected from power-divergent
mixing. The f-label on the four-quark operators is omitted in what follows, as it should be
understood that all operators refer to the isospin-nonsinglet versions.

In dimensional regularization, four-quark operators such as those listed in eq. (3.1) mix
with evanescent operators, which are operators that formally vanish in d = 4 due to their
Dirac structure. Different choices of basis for the evanescent operators lead to finite shifts
in the MS renormalized matrix elements [48, 49]. Working in the HV scheme, the basis of
evanescent operators appearing at O(ag) chosen here is written as

Qv Prvav89)(@V8Ya 1 PL@Q) — 401,
QP1Yav39) (@572 PrQ) — 403,
Q1 Prya8T0) (@870, PLTQ) — 403,

E1 = (
EQ = (
E3 = (
By := (QPr7a75T" ) (@157 PRT*Q) — 40.. (3.2)
The Dirac structures present in these evanescent operators occur in the one-loop diagram
with a gluon attached to the two light quarks, as shown in figure 2. In order for the proposed
X-space scheme to be regulator-independent, evanescent contributions to operators must be
subtracted for all regulators, and the renormalization conditions must be formulated for the
subtracted operators [50, 51]. In general, all operators in {O1, Oz, O3, O4} will mix with each
other, but to O(as) in MS the operators mix in sub-bases, with {01, O3, E1, E3} having the
same mixing pattern as {Oq, Oy, Fa2, E4}. The MS-renormalization conditions (not containing
the logarithmic factors included in MS) for i € {1,2} are given by

O(MS)
(0) 14 20s  _3as 0o 9s (MS)
Oi _ e 2Te 8me OH—? (33)
0y \ —os qyos o Tas [ MY
3me 4me  36me  48me (MS)
E.
i+2
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a B ddk — 1+¢ ; |
~ [ (5 o)

ab

. 3 , A i 1+9¢
(Qul'L)(@.T rQa) X ((Zg’mT )(P T TR >Cd
h b2 14+ . o 1
P i — ;i (2 Pr s TA) (TA’Y V' Tr=—5" ¢) +0()
b k ¢ e ab cd

Figure 2. The one-loop diagram in Minkowski space for the AQ = 0 operators that generates the
evanescent structures shown in eq. (3.2). The indices a, b, ¢, d are combined Dirac-color indices.

The first generation of bare evanescent operators {Ej,---, Es} themselves mix at O(ag)
with a second generation of bare evanescent operators containing even more complicated
Dirac structures (such as (QPLYa, YasYasYous @) (@ Vs Yas Yoz Yo PRQ)) [48]. Such higher-order
evanescent operators are omitted in eq. (3.3) as the matching conditions presented later
between MS and X-space schemes are not sensitive to them at O(ag).

Subtracting the % evanescent contributions to the physical operators gives evanescent-
subtracted operators O; that can be used in regulator-independent schemes. By reading off
the coefficients from eq. (3.3) they are defined to be, for i € {1,2},

~(0) 0) _ A3 (0 (0 0 s 0 Tas o)
=0y — —=—F) ) = Q0: — By — EYL.
Oz Oz 87e +2° OZ+2 Oz+2 36me ¢ 487¢e +2

As the four-quark operators being considered are AQ = 0, and the static quark can only

(3.4)

travel in the timelike direction, an X-space scheme utilising two-point correlation functions
of O; (similar to that proposed in section 2.1 for the bilinear and trilinear operators) is not
possible to define. The reason is that the corresponding two-point correlation functions are
zero (due to the 6(—tg) portion of the static heavy quark propagator shown in eq. (1.2)). A
possible way to rectify this is to compactify the time direction (for instance, in a thermal
calculation), but this would likely be significantly more complicated due to the Matsubara
sums required in the computation [52].

Instead, three-point correlation functions combining ©O; with different choices of source
and sink operators can be used to define an X-space renormalization scheme. Such an
approach was also considered, for example, in the X-space renormalization of the QCD stress-
energy tensor [12]. Taking ratios of three-point correlation functions to appropriate two-point
correlation functions cancels the renormalization factors of the source and sink operators,
provided they are multiplicatively renormalizable. In HQET, this has the added benefit of
cancelling the static-quark self-energy divergence. Writing the renormalized AQ = 0 operators
as @ER’X) (t)=2 (R.X) (t)@§0), the renormalization condition is defined here by a choice of four

ij
source-operator /sink-operator combinations (labelled as J,, K, respectively) and is given by

(I (=,0)0(0,0) K, (1, 0)) (J}(—t, 000 (0,0) K, (t,0))
T T

0 ;
VIR (4,002, (8, ) I (D) K, (8, 0) /| (TE(=4,0)Ju (8 0) (K (4,0 K (1,0)| I
(3.5)
(for all n; no sum over n implied) at a fixed ¢. In the same way as for the two-point X-space

il

condition presented in section 2.1, additional indices on the source and sink operators should
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R I el v s e e i e Wi
1 Hj? HJ? —6 | —6 0 0 3 3 0 0
2 H;_ H;_ —6 0 0 0 3 0 0 0
3 Ay [ S0 | 2v3 | V3 \_7% \_/—% —2V3 \_/—% % 3%/5
41 Y10 Y10l 6 1| -4 F | 2|32 1
B [ma] o [ 1] 4 | 3|2 2] %] 3
5|55 0ilSiaall O | —2] 0 | 3 2 0[] o
55350 Shaal O | =2 0 | 2] 2 ] 0 | ] 0

Table 2. Decomposition for the noninteracting ratio of correlation functions according to eq. (3.8),
for varying source-sink pairs (J,, K,). The source/sink pairs n = 3 and n = 3* give the same
noninteracting matrix elements (7;(7%0)) in d = 4 up to a sign, and hence may not both be chosen
as part of the set of four source/sink operators used in the renormalization condition due to the

(0)

requirement that 7; " is invertible. The same is true for n = 4,4* and n = 5,5".

be summed over on both sides of the condition, and the open spinor index is traced over if
the source and sink are baryonic. Since the source and sink operators are multiplicatively
renormalizable, this causes the Z-factors of the source and sink to cancel in these ratios, so they
are not labelled as bare or renormalized. Furthermore, the static-quark self-energy cancels in
these ratios of correlation functions with the same physical length of the Wilson line, allowing
for nonperturbative renormalization of the operators without determination of mg,t. Defining

(T} (000 (0,0) K, (¢, 0))

A0
L — =T(t) + asT)(t) + O(a?), (3.6)
VT (=2,0),, (1, 0)) (B (=1, 0) K, (2, 0) |

Tin(t) ==

Ol

where Ti(g) (t) is the noninteracting value, the X-space renormalization conditions can then
be solved as

75 = Z TN >—n7j—asZT<” O (1)} + 0(a2), (3.7)

which is well-defined as long as the four source/sink pairs are chosen so that the noninteracting
matrix Té?} (t) is invertible in d = 4.

The natural candidates for the source and sink operators are the mesonic and baryonic
currents discussed in section 2.1. The requirement that Ti(i) (t) is invertible means that it
is not possible to use four mesonic source/sink pairs, as, for any mesonic source/sink pair
(Jar, Kar), the matrix element <J}K4(—t,(_)’)@z(»0)KM(t,(_)’)>]NI vanishes for ¢ € {3,4} due to
the color trace. Chiral symmetry, heavy quark symmetry, and spin representations cause
many source/sink choices to give vanishing matrix elements with all the operators, further
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e T e o o v o W v W o R PR Y v
|| —12 | =12 | 2 2 |-10|-10| 3 -3 -5 -3 -3
2(-12] 0o | 2 |0 |-10 0| 2 | | -2l 0/|-3|0
afas | s [s|-3[% |85 -4]-3]-%|-F
elos s s |y B[Rl RIB 8884
500 -6 0|1 4 |-6]-3]3 0|40 X
0 | =6 0 | 1 | 3 | =283 ] 0|5 ]| 0]

Table 3. Decomposition for the O(ag) contribution to the ratios of correlation functions defined in
eq. (3.9). The source/sink pair index n is the same as used in table 2.

restricting the number of distinct choices. For the remaining nonzero ratios of correlation

functions, the noninteracting ratios are parametrized as

£

70 ) = 700 _1 (W67E>2+T(°’” C 10 (3-8)

?,Mm %N 7r2t3fe 4 ,M 7T2t375

In dimensional regularization, after removing factors of 64! corresponding to the d-function
in position space from the static quark propagators, T; ,(t) has dimension 3 — €, accounted
for by the factor of t~~ in eq. (3.8). The specific source/sink pairs that are studied in
this section are the negative-parity heavy-light mesonic operators and the positive-parity
heavy-light-light baryonic operators discussed in section 2.1. The values of the decomposition
for the noninteracting ratio for these source/sink operators (J, K) are tabulated in table 2.
Every choice of four linearly independent source/sink operators from this list (there are
28 different choices in total) defines a different X-space scheme. In a similar way to the
parametrization of the noninteracting contribution to the ratio of correlation functions in
eq. (3.8), the O(ag)-contribution to the ratios are parametrized by

W _poo_ L (7 ‘a1 (Ly)_ 1
T =Tin 552 (467E“) T s T lin —5ac +0(e). (3.9)

For the various source/sink pairs, the O(ag) matrix elements for the ratio have been calculated
and are tabulated in table 3.

Choosing the specific source/sink pairs n € {1,2,3,4} from the list of source/sink pairs
presented in tables 2 and 3, the X-space renormalization matrix can be calculated using
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eq. (3.7) as

(X) _
Zij,n€{1,2,3,4} =1-
2 | 24+4r2 -3 | —9424x2 -5
TE + 9 0 2me + 247 4
€ 2 | 24+44r2 —1 —3 | —6347272
aS(H) E67Et2u2 2 . 0 e + I 167 2me + 2T
4 =1y —15+dn? -1 L 90456z —1 ’
3me 54w 97 4me 1447 127
-1 —1 + —154472 -3 1 + 414416872
367 3me 541 167 4re 4327

(3.10)

where 1 is the 4 x 4 identity matrix. As a check, it can be verified that the % divergent pieces
match up with the MS counterterms presented in eq. (3.3). The corresponding conversion
factor from the X-space scheme to MS is given by

(MS X) (MS) )1 _

T
log(B) |, 4r | 8 1 3log(B) 7
| iogs) 027r 5 TJF?JF?W log(m_ﬁ 5 _TTW_S? ’
~T6r T 27T T Tsx T T tar —m
_% _10525) + 2*77T o % _% log( ) +1 18 s+ 247r
(3.11)
where § := 62'YE%. A natural choice for p is p? = 16e=27% /t? which would cancel the

factors of log(f) appearing in the matching coefficient. In principle, when converting matrix
elements computed with lattice HQET to MS-renormalized matrix elements, varying over
the different choices of source/sink pairs, as well as varying over the scale ¢ that the X-space
scheme is defined at before perturbatively running to a common scale, will give an indication
on the error due to O(a%) terms that have been neglected in this study.

3.2 AQ = 2 four-quark operators

In the Standard Model, neutral B-mesons (B", BY) mix with their own antiparticles. The
lowest-order diagram contributing to this in the Standard Model is a box diagram with the
exchange of two weak bosons, which after integrating out physics at and above the weak
scale leads to AB = 2 four-quark operators. When matching these operators to HQET, the
Lagrangian is expanded to include a static antiquark ()_ that travels in the opposite direction
to the static quark Q4 (compare to the @-propagator eq. (1.2)):

Q@0 @) r = 85,5 6(t)WO(0,25)" =2, (3.12)

where H;O Q+ = Q4. A basis of the relevant AQ = 2 operators in HQET is

O1:= (QPrg)(Q_Prq), O2:=(Q,PLT"q)(Q_P,Tq),

« & 3.13
O3 := (Q,Prq)(Q_Prq), Oy := (Q P T"q)(Q_PrT"q). (319)
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The operators O1, 02 contribute to neutral B-meson mixing in the Standard Model, and
O3, 0y are contributions that could arise from possible new physics [32]. The full basis of
AQ = 2 operators also contains {O1, Oz} with left-handed projectors swapped with right-
handed projectors (Pr, <> Pr), but these are related by parity and so renormalize with the
same factors as {O1,02}. There are also additional AQ = 2 operators when () is relativistic,
but these are related to the operators in eq. (3.13) in the static quark limit [53]:

_ _ 8 .
(QivuPra)(Q_vuPrq) = 501 + 40, in d=4. (3.14)
The evanescent operators are defined as
_ _ 32
Er = (@4 Pr1a759) (Q-Pryavsq) — 5 O1 — 1602,
_ _ 32 16
By := (Q4 PLT7075) (Q-PLT a759) — 501 = 505
B3 = (Q4 Pr7a59)(Q—PrYa59) — 403,
By = (Q PLT"va78)(Q_PrT*Ya7y39) — 404, (3.15)

where the y-matrix structure is governed by the O(ayg) diagram with a single gluon attached
to the two light quarks. The mixing pattern is given by the following MS renormalization:

14 4 O¥S
as as as
O\ 1T ome B O T || Od®
oW )~ pMs | (3.16)
2 8ag 10as —ag g %\/IS
27Tme 9me 36me 24me E2
OMS
Oy [14+2s 3os —as ) | Sls
03 . e 2me 8me 04
O as 3os —as as ;S
3me 2me 36me 24me E4
Correspondingly, the evanescent-subtracted operators are defined for i € {1,3} as
5(0) _ ~(0) | &S (0) 40) _ A0 (0) @S 1:(0)
0" =07+ —Eif, Oin= =0 + 3671'6 ~ S Litl (3.18)

Baryonic heavy-light-light currents cannot be used as source/sink pairs for the AB = 2
four-quark operators, as the corresponding three-point functions all vanish. Fortunately,
enough constraints can be derived with the mesonic heavy-light currents as source/sink pairs
to constitute a valid X-space scheme. Although chiral symmetry is formally broken by the
HV 75 scheme, the massless nature of the light quarks causes the operators to mix in the
2 x 2 subblocks presented in egs. (3.16) and (3.17). Thus, only two source/sink pairs are
needed in the X-space scheme. Using the choice (Qv5q,375Q) and (Qvivsq, 7vivsQ), the
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O(ag) matching matrices are found to be

Tlog(B) | 4x> 23  2log(B) > , 4
X)) _gas| 9 Tty T3 T3t; (3.19)
{01,029} m | 4log(8) 2x° | 8  5log(h) + 52 19 )7
27 27 27 9 9
4 25 3l C LT
o) _ g, as [los®)+ 5+ B -+ (3.20)
{03,04} T log(B) 27772 7 3log(h) + E 43 , ‘
6 27 27 4 9 18
L ) 2t2
where 3 := e¥F K.

4 Conclusion

In this work, a set of X-space renormalization schemes for isospin-nonsinglet AQ = 0 and
AQ = 2 four-quark HQET operators have been proposed, and the O(ag) matching coefficients
between these schemes and MS in the dimensionally regulated continuum have been calculated.
This allows for a gauge-invariant, nonperturbative renormalization matrix elements calculated
in lattice HQET, without the need to extract the power-divergent self-energy contribution
Mgtat- Precise computations of these matrix elements with lattice HQET will reduce theory
uncertainties on lifetimes of heavy hadrons, and help constrain physics beyond the Standard
Model. Note that, when implementing the X-space scheme for these four-quark operators
in lattice HQET, it is convenient to use Ginsparg-Wilson discretizations of the light quarks
(e.g., with the domain-wall fermion action) to avoid additional mixing between the four-quark
operators of interest and operators in other chiral representations.

Next-to-next to leading order calculations of the matching coefficients presented in
egs. (3.11), (3.19) and (3.20) at O(a%) are possible, but the computation is complicated
by the fact that, unlike p-type integrals that only have one external scale, the perturbative
calculations shown in appendix A.2 have two external scales g, Tsni corresponding to the
source and sink locations of the three-point renormalization scheme proposed. Corrections
due to finite light-quark masses are more easily calculable (though they are likely smaller
than the O(a?g) corrections on typical lattice-QCD ensembles), and require computation
of the three-loop integrals in appendix A.2 either analytically in the light-quark mass, or
by expanding in powers of the light quark mass. O(m%g) corrections are in principle also
calculable, but require considering mixing of the four-quark operators with dimension-7
operators that contain an additional covariant derivative, as well as considering the O<m%,)
corrections to the static HQET lagrangian.

The calculations and techniques used in this work can be readily applied to X-space
schemes for other classes of operators. For instance, using the auxiliary-field formalism,
nonlocal operators such as G(z)W (z,y)q(y), where W (z,y) is a Wilson line, are transformed
into products of local operators @Qy,x(m)@y,xq(y), which can be renormalized by the
techniques presented in section 2.1. The calculations of the three-loop diagrams involving
gluons attached to the light-quark propagators presented in appendix A.1 can also be applied
to renormalize massless four-quark operators such as the AS = 1 four-quark operators
relevant for kaon decays.
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A Integrals and conventions

A.1 Dimensional regularization and charge conjugation

dik
(2m)d
where d = 4 — €. ~5 is treated as in the 't Hooft-Veltman scheme [38] (75 := iy071727y3 in

The calculations in this work use dimensionally regulated integrals [ (3471;4 — ptd Ik

Minkowski signature). Charge-conjugation matrices C' are used in the construction of the
baryonic operators such as €?¢[¢®T CT¢*]Q¢ (where I is a Dirac matrix), and it is natural
to assume that the defining relation Cvy,C~1 = — /7; holds in dimensional regularization.
However, to our knowledge, an explicit charge-conjugation matrix satisfying the defining
relations for an explicit basis of infinite-dimensional y-matrices has not been constructed
previously in the literature for dimensional regularization (a construction was presented
for dimensional reduction in ref. [54]). The explicit construction shows that enforcing
C"yMC’_1 = —'y;‘f does not lead to inconsistencies in Dirac traces, unlike how naively enforcing
the anticommuting relation {vs,v,} = 0 leads to inconsistencies in certain Dirac traces.

In what follows, a construction of the d-dimensional gamma matrices as well as an
explicit charge-conjugation matrix C satisfying CVMC_I = ’yg are presented. The Minkowski-
signature gamma matrices are defined inductively following the algorithm of ref. [55] (up
to a trivial reordering that enforces (F#)7 = (—1)*7*):

1) Set
7?1) = [(1) _01] ) 7(11) = [_01 (1)] . (A1)
2) For w € Z>1, define
Aw) =790 ey (A.2)
'yé:)H) = F%) ’Ygu)] for 0<pu< 2w, (A.3)
e = L';()m w(ﬂ g l V) ﬂ A
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(—to,0) (to, 0)

_ ddp eQipotg — —>
(2m)d b p

Figure 3. Example showing how the Fourier-transform relates a position-space diagram appearing
in the (QTq(to,0)(GTQ)(—to,0)) two-point correlation function to the corresponding momentum-
space diagram.

3) The infinite-dimensional y-matrices are defined by block-diagonal copies of the finite-
dimensional construction, so that for y € Z>, choosing any w > | 5] +1,

m
Yw)
_ I
'}/M = ﬁY(w) . (A5)
The 7 matrices defined here satisfy
T} = 29, Tl =TT 7o, (A.6)
where the metric is written in the mostly-negative convention, g, = diag(+1, -1, —1,---).

With this construction, no finite product of 7 matrices will satisfy the charge-conjugation ma-
trix condition C7%,C 1= —7;‘5. Modifying the basis of y-matrices by eliminating v4, v6,7s - - -
from the basis, such that the new basis 7, is given by the relabelling

{70)’713727737747’75776a e } = {703717727737757777797 e }a (A7)

a charge-conjugation matrix can be defined. These v matrices still satisfy eq. (A.6), but
now we can define C' = ivg7y2, which satisfies

CyiCl=—l, CyuCl=9, Cc'=CT=cCl=-C (A.8)
The trace is normalized such that Tr(1) = 4. Euclidean y-matrices are obtained by defining
7(];3 = 'yo,'yZE := —i7; such that {'yf,’yf} = 20,,. The ‘E’ labels are dropped from all

Euclidean y-matrices in the main text as all calculations are presented in Euclidean space.

A.2 Integrals

Calculations were performed in Mathematica, with the aid of the Tracer package [56] for Dirac
traces in the ‘t Hooft-Veltman scheme, and HypExp [57] for expansions of hypergeometric
functions. Because three-quark baryonic sources were used in defining the X-space schemes
(which only exist in N, = 3, and introduce an €™ tensor), color traces are explicitly
evaluated without attempting to write in terms of N.. Color matrices are normalised so
that Tr(T4TP) = 1548,
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The two-point correlation functions required for renormalizing the heavy-light and heavy-
light-light operators from section 2.1 can be computed first in momentum space and then
by taking a Fourier transform, as shown in figure 3. As such, these can be evaluated by
using ‘p-type’ integrals [41]. In the chiral limit for the light quark, there is only a single
dimensionful scale p in the momentum-space integral corresponding to the momenta running
through the diagram as seen in figure 3. Hence, integration-by-parts relations based on the

identity [ %% f(k) = 0 are relatively easy to derive.

For three-point position-space functions, at O(«ayg), the diagrams can all be split up into
a number of component pieces. For example, one diagram topology that appears in the
O(ag) contribution to the three-point mesonic function (QI''q(—to,0) - (QT'1¢)(ql'rQ)(0,0) -
T'Q(t,0)) can be written as

= ><
(—to,0) (0,0) (0,0) (to,0) t L R
(5.2—4—;2 ) ,6?2—4—01.2 x Fa2alr5152rﬁlﬁzrp2p1‘

Here, «;, 3;, pi, 6; are Dirac-color indices. As well as the position-space propagators and
self-energy diagrams, there are three O(ag) diagrams to compute, corresponding to a gluon
attaching to two heavy-quark propagators, a gluon attaching on one end to a heavy-quark
propagator and on the other end to a light-quark propagator, and a gluon attaching to two
light-quark propagators. In the case of the AQ = 0 four-quark operators, the diagram with
a gluon attaching to two heavy-quark propagators can be directly calculated in Minkowski
space as follows:

1 +7ﬁ . |:1 —i—';é . 0 to Aok —jetsLk—isgk
= 1gv, 1A igu, 1A / dsL/ dsR/
|: 2 ( g ) a181 ( . ) p101 —to 0 (27‘r)d kQ
os os 1 E 2,2
= WTA]alﬁl WTA]puh *; - g 2 + log *Ze Tt , (A'g)

where the static nature of the heavy quark has been utilized to integrate the vertex insertions
at sy and sp along the line connecting the three operators. For the two diagrams involviong
gluons attaching to light-quarks, additional master integrals are required. Relabelled from
the basis from appendix A of [12], and in Minkowski space, there is a Tripod diagram T
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and a Wedge diagram W:

T 1 9 W 5
(xr) 3 (zn) (xr) ‘ - (xr)
(0) (0)
T( ) / ddpdepR ePLTL c—IPRTR (A 10)
Tr,TR;N1,N2,N3) := , .
e T T 224 (—p2)" (—(pr, — pr)2)™2(—pR)™
W(xL,xR;nl,ng,ng,n4,n5,n6) =
/ddpdededk eWPLTL o —IPRTR
2m)3d  (=p2)m(—(pL — k)2)"2(—(pr — k)?)"3(—p%)™ (—k?)" (—(pr, — pr)?)™s
(A.11)

The W master integral can be reduced to a few base cases by use of integration-by-parts
relations (derived from inserting 0 - k in front of the integrand of eq. (A.11)):
n22+(5_ - 1_) + n33+(5_ - 4_)

W(zp,zg;n) = p R —— W(zp,zR; 1), (A.12)

where @i = (n1,--- ,ng), and m*W (xp, 2, 7) = W(zp,xr, ') with 7’ = 7 for all components
except the m-th component, n), = n,, + 1 (this is the notation used in ref. [41]). Eq. (A.12)
reduces the W master integral to base cases where either no,ng or ns equals zero in the
argument of W. In these cases, the integral reduces to a p-type integral and the T master
integral, which can be performed explicitly using Schwinger parameters:

—I (% - nl) I'(d —ny — ny —n3)
['(n2)'(n3)I (g) gna+natng pd

1 4 - d 4 (o — )
/ dz(1 *$1)_%+n1+n2_1$1 TR (S —nyd—m 77127”3’7’(301:—96133512) :
0 2 2"z (1 — )

(A.13)

; = 2 \—d+ni+n2+n
T(xr,zR;n1,n2,n3) = ) LT

Explicit evaluations of T' can be performed at relevant values of n1,no and n3. Diagrams with
a gluon attaching to a heavy-quark propagator on one end and to a light-quark propagator
on the other end can be calculated in Minkowski space, for instance:

dd dd 0 i i 1+ » — ez‘p% Sr —ip%to
= [ [ as, [@MA) ] gt T
a161

(27r)2d —to P pR_}’jL 2 p161 p%
0 1+ o (o 0
. 2 A A
— dsy | YatbysT S + T(xr,zp;1,1,1 3
i ~/—to o {7 ¢76 }0‘151 [ 2 p161 8$Cé (a-f% a-fg) (xL " ) xLH((SL’Q))
xr— (10,0
A.14)
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Finally, the diagram with a gluon attaching to two light lines can be reduced to the W

master integral

o .m i = —ig? i Y TY) 0 (VA T) ps
61 P1 61 aq
/ d'prdprdik  ePLTLTPRTR o (pp — k)P (pr — k)Ppl
@2m)3d (—p})(=(pL — k)?)(—(pr — k)?)(—p%)(—k?)’

(A.15)

where the factors of pr, pr in the numerator can be handled by differentiating with respect to

xp,rg. Calculating eqs. (A.9), (A.14) and (A.15) at the relevant values of 27, and zp is the

main computation involved in calculating the O(ag) contribution to the ratios of three-point

correlation functions to two-point correlation functions presented in table 3.
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