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Key Points:

e  We discover a gas hydrate system where gas transitions to hydrate in a flat-lying

sand layer in the northern South China Sea

e Capillary sealing occurs at the sand-clay interface, preventing upward fluid

advection and causes fluids to migrate laterally

e Advecting warm fluids and gas are the primary control on the hydrate and free gas

system in this sand layer


mailto:kzg21001@163.com

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

Abstract

Most marine gas hydrate systems follow a vertical pattern with hydrate overlying
free gas. Here we document the discovery of a gas to hydrate system in a horizontal
sand layer in the Qiongdongnan Basin of the South China Sea. Eight wells were drilled
by the Guangzhou Marine Geological Survey in 2021-2022 to investigate the
occurrence and mechanisms responsible for the formation of the system. We describe a
free gas-bearing sand reservoir at the center of the system sustained by advecting hot
fluids and gas; away from the advecting zone, the cooler, surrounding sand reservoir is
filled with hydrate. Observations at this site show that advective heat has a large control
on hydrate formation in sands and may be a key mechanism which allows gas migration
within the hydrate stability zone and the formation of high-saturation hydrate in sand

layers.

Plain Language Summary

Natural gas hydrate, an ice-like substance composed of water and gas, is
commonly found in sediments under the ocean. Most marine hydrate systems follow a
vertical pattern where hydrate-bearing sediments overlie free gas-bearing sediments; in
addition, most hydrate is hosted in marine muds at low concentration. Here we
document a horizontal system that transitions from high concentrations of free gas to
high concentrations of hydrate in a horizontal sand layer in the northern South China
Sea. Two recent drilling expeditions are conducted to explore this unique system.
Seismic and logging data suggests that multiple processes including focused fluid flow,

capillary sealing and heat transfer control the formation of the system.



45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

1 Introduction

Natural gas hydrate is an ice-like substance composed of gas molecules encased
in water cages (Sloan & Koh, 2007) that is most commonly found in sediments on
continental slopes (Kvenvolden & Lorenson, 2001; You et al., 2019). On marine
seismic data, the thermodynamic boundary between hydrate and free gas is marked by
a bottom simulating reflection (BSR) which is usually a reflection roughly parallel to
the seafloor with opposite seafloor polarity (Haacke et al., 2007; Shedd et al., 2012). A
vertical distribution where hydrate is above the BSR and free gas is below the BSR is
quite common as summarized in You et al. (2019). This system is primarily controlled
by the vertical distribution of temperature where temperature increases with depth.

Herein, we describe a unique horizontal sand layer where high-saturation free gas
transitions to high-saturation hydrate in the Qiongdongnan Basin (QDNB) of the South
China Sea (SCS). While a few horizontal gas to hydrate transitions have been noted
before (Berndt et al., 2019; Biinz and Mienert, 2004), this QDNB system has
documented, high saturations in a sand layer. Sand layers with high saturations of
hydrate are of interest because they may be an energy resource and can also host a large
amount of near-seafloor subsurface carbon (Archer, 2007; Boswell and Collett, 2011).
How high-saturation hydrate forms within sand layers, however, is a topic of debate
(You et al., 2019). Direct free gas flow into a sand layer is not thought to be a main
mechanism of methane transport to sand reservoirs because hydrate will form once the
gas moves into the hydrate stability zone, reducing permeability and impeding further

gas flow into the sand layer.
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This high-saturation horizontal sand in the QDNB was drilled during two recent
drilling expeditions led by the Guangzhou Marine Geological Survey (GMGS) in May
2021 and September 2022. We document this system with 3D seismic, logging-while-
drilling (LWD) data and in situ borehole temperature measurements. We show that this
system is caused by the flow of hot fluids and gas through a vertical advective zone
which leads to a large lateral temperature gradient in the shallow sand layer. In this
system, free gas is stable near the advective zone and hydrate is stable in cooler
surrounding region.

2 Geologic Setting

The QDNB is a Cenozoic rift basin located on the northwestern slope of the SCS.
The evolution of the QDNB can be divided into two stages: an Eocene-Oligocene rift
and a Neogene-Quaternary post-rift thermal subsidence (Hu et al., 2013; Ru & Pigott,
1986). The study area is near the Lingshui (LS18-1, etc.) and Yongle (Y8-1)
conventional gas fields (Xie, 2014; Shi et al., 2019) and is located on the Songnan Low
Uplift (SLU) of the QDNB (Fig. 1a, b). Above the uplift, there is a large seismic
blanking zone associated with a gas chimney and a deep-rooted fault extends into the
overlying shallow sedimentary system (Fig. 1c). Eight wells were drilled by GMGS in
2021 (GMGSS) and 2022 (GMGS9) exploring the high-amplitude reflections above the
gas chimney.

3 Data and Methods
The seismic data was acquired in 2018 by GMGS and has a dominant frequency

of 40 Hz and an inline and crossline spacing of 50 m and 6.25 m, respectively. The
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seismic data is shown in zero-phase with positive amplitudes represented by a red and
yellow peak and negative amplitudes represented by a blue and cyan trough. During the
drilling expeditions in 2021 and 2022, LWD data was measured by Schlumberger tools,
including MicroScope HD, NeoScope, SonicScope and proVISION. In situ temperature
measurements were collected in the borehole using a Fugro temperature cone
penetrometer.

We use LWD data to identify lithologic changes and the presence of gas and
hydrate (e.g. Goldberg et al., 2010). Minerals in sediment and fluid volumes are
calculated by the Elemental Analysis (ELAN) method in commercial Techlog software
(Text S1 and Fig. SI1 in Supporting Information). The dip and azimuth of beds are
picked from 360-degree borehole resistivity images (Bonner et al., 1996). Nuclear
magnetic resonance (NMR) logging is used to measure the porosity of clay-rich
intervals and the absolute permeability is calculated by Timur-Coates equation using
NMR logging data (Yoneda et al., 2022).

4 Internal Structure

We interpret the internal structure of the flat-lying system using 3D seismic and
LWD data from seven wells (Fig. 2). On the seismic data, Horizon A is a prominent,
strong reflection that dips less than 1 degree and exhibits a phase reversal: high-
amplitude positive reflections to the southwest and northeast switch to negative
reflections at the middle of the seismic line just above the gas chimney (Fig. 2a). An
amplitude attribute extraction from Horizon A shows that positive amplitudes

concentrate in the southeast and negative amplitudes are associated with the deep-
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rooted fault and gas chimney (Fig. 2b). Seven wells were drilled into Horizon A to
understand the distribution of gas and hydrate (Fig. 2).

Wells W08, W20 and WO5 targeted the positive amplitude reflections on Horizon
A (Fig. 2a, b). Horizon A at these well locations is characterized by low gamma ray
values (~50 gAPI), high resistivity (~200 Qm) and high P-wave velocity (=3000 m/s),
which indicates that highly concentrated hydrate occurs in coarse-grained sediments
(Fig. 2c). The logs show Horizon A at the depth between 1892.6-1905.2 m below sea
level (mbsl), 127-145.9 m below seafloor (mbsf) with a thickness of 3.9-9.2 m (Figure
2).

Wells W02, W03 and W19 were drilled on the Horizon A negative amplitude
reflections (Fig. 2a). In W02 to W19, we observe changes in bulk density, neutron
porosity, resistivity and P-wave velocity in Horizon A which allow us to interpret the
presence of free gas and hydrate (Fig. 2¢). Neutron porosity measures hydrogen
concentration and when gas is present, the porosity value deceases relative to water
saturated sediments because the lower concentration of hydrogen in free gas (Ellis &
Singer, 2007); hydrate has little to no effect on neutron porosity. Bulk density notably
decreases only when there is a large amount of gas in the pore space. Bulk density also
decreases slightly when high saturations of hydrate are present (Goldberg et al., 2010).
Because of these patterns, the crossover between the neutron porosity and bulk density
logs is used as a gas indicator (highlighted with dashed boxes on Fig. 2¢). P-wave
velocity is also sensitive to free gas and drops significantly even when very small

amounts of gas are present (e.g. Murphy et al., 1993).
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The combination of low P-wave velocity (~1450 m/s), low neutron porosity (~
0.17), a noticeable decrease bulk density (near 1.5 g/cm?) and the large neutron-density
crossover indicates that there is a large amount of free gas in WO02. This agrees with the
results from ELAN and the location of W02 on the strong, negative seismic amplitude
(Fig. 2). In neighboring W03, the P-wave velocity is equally low in Horizon A, but the
neutron porosity-density crossover is smaller and only in a thin interval of Horizon A
from ~1891-1893 m. This indicates that at W03 Horizon A has a smaller amount of free
gas than in W02. The high resistivity in W03 throughout Horizon A (~200 Qm)
indicates a high concentration of hydrate is also present. Therefore, W03 is located in a
transition zone where free gas and hydrate co-exist in sands. W19, which is southeast
of W03 and just on the edge of the positive amplitude map (Fig. 2) has high
concentrations of hydrate, and possibly, a very small amount of free gas. There is a very
slight crossover between the neutron and density indicating free gas may be present,
but there is no significant decrease in P-wave velocity. Wells W08 and W20 were drilled
outside of the negative amplitudes and have only high concentrations of hydrate in
Horizon A, as shown by the high resistivity and high P-wave velocity.

W07 was drilled in the center of the gas chimney and drilling was halted due to a
significant gas flow from the borehole. Two sand layers were encountered in this well.
In the upper layer (1889.4-1892.4 mbsl, 122.1-125.1 mbsf) free-flowing gas was
observed by ROV while drilling this section. The lower Horizon A (1895.9-1903.4 mbsl,
128.6-136.0 mbsf) is inferred as a gas-bearing sand layer without hydrate because of

the dramatic increase in borehole size, the separation of the resistivity curves and a
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strong gas flow observed from the wellhead.

Overall, the well logs indicate that a high saturation free gas-bearing zone occurs
in the center of the system and is enclosed by highly concentrated hydrate. A transition
zone where free gas and hydrate co-exists occurs between the two endmembers.

5 Sedimentary Architecture

Using W05 as an example, we identify two types of important stratigraphic layers
above Horizon A: mass-transport deposits (MTDs) and hemipelagic deposits (HDs)
(Fig. 3a, b). MTDs are characterized by internal deformation (Shanmugam, 2021) and
strong basal shear (Cardona et al., 2020). They can be identified in logging data by
significant changes in the dip and/or azimuth of bedding within the MTD (Piper et al.,
1997) and by densification at the base of the MTD (Dugan, 2012; Sawyer et al., 2009).
Here, we identify three MTD units using the dip and azimuth of bedding changes and
density increases (Fig. 3b). The amplitude attribute map indicates that the MTDs
originate from the northern slope of the QDNB (Fig. 3c) and erode the underlying
channelized turbidite lobe (Horizon A) with a clear erosional boundary in the northwest
(Fig. 3d).

HDs are usually fine-grained, and generally have little deformation and consistent
physical properties within the unit. However, at this site, the low bulk density and
elevated MRP (NMR Porosity) occurred in the HDs (Fig. 3b), suggests shallow
overpressure may have developed within them. The HDs are bounded by denser MTDs
and highly concentrated hydrate-bearing sands, both of which may impede the

movement of water and allow the buildup of pressure. The degree of overpressure is
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estimated by using the method from Long et al. (2011).
6 Mechanisms Controlling the Gas Hydrate Reservoir
6.1 Vertically focused fluid flow

The free gas in Horizon A is most likely the result of the underlying efficient
focused fluid flow system that consists of the SLU, the deep-rooted fault and the
shallow gas chimney (Fig. 1c). The SLU, as the most prominent rise structure in the
region, is generally accepted to have ceased activity since 23 Ma (T60) following the
thermal subsidence throughout the QDNB (Zhou et al., 2019), although the
understanding of the evolution of the SLU is still limited.

The deep-rooted fault extending in a NE-SW direction developed along the steeper
flank of the SLU and continues to grow upwards towards the seafloor. Because the
QDNB was likely tectonically stable as the termination of SCS spreading at ~16 Ma
(Wang & Li, 2009), we suggest differential compaction may account for this growing
fault. There is about 2500~3000 m difference in depositional thickness between
Lingshui Sag and the SLU (Fig. 1c), which could cause a large differential settlement
during the long period of compaction. Tensile stress may concentrate within sediments
just above the SLU and fracturing was likely promoted during this time. As a result, the
fault along the steeper flank of the SLU was reactivated and grew upwards. Differential
compaction is also suggested by the features of flexural bending on the seismic profile
(Fig. 1c). Fluids from deeper in the sedimentary section converge towards the top of
the SLU along the fault and SLU flanks, and then continue to flow upward towards

Horizon A along the gas chimney feature, which we presume is composed of a large
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network of fractures.
6.2 Lateral fluid migration

When free gas and fluids migrating along the gas chimney reach Horizon A, the
flow shifts in a lateral direction along the sand layer. This is supported by the very sharp
increase of the resistivity in the hydrate-bearing sand layer from W05, which indicates
gas flow may be completely sealed by the overlying sediments even though its absolute
permeability is 1~10 mD (Fig. 3b). MTDs are often considered to be seals in traditional
petroleum and hydrate systems (Cardona et al., 2020; Crutchley et al., 2021). However,
in this location a HD not a MTD immediately overlies the sand layer (Fig. 3b), therefore,
we suggest capillary sealing may be the mechanism responsible. Capillary sealing
occurs at the interface between coarse (Horizon A) and fine-grained (HD3) sediments
when two fluid phases (gas and water) are present (Cathles, 2001; Revil et al., 1998).
In addition, overpressure occurred in HD3 may also enhance the seal capacity of
overlying fine-grained sediments. Finally, hydrate itself could be self-sealing part of the
Horizon A sand by blocking the pore space and preventing the migration of gas. In any
case, sealing at or near the top of Horizon A results in lateral fluid migration along
Horizon A.
6.3 Heat transfer

The in-situ borehole temperature was measured in W07 and WOl using a
temperature cone penetrometer. W07 is located in the center of the advective zone
where Horizon A has a high saturation of free gas (Figure 2) and W01 is several

kilometers outside the free gas-hydrate system (Figure 1). The temperature
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measurements indicate a geothermal gradient of 103.7 °C/km in W07 and 65.8 °C/km
in W01, with corresponding heat flows of 103.7 mW/m? and 65.8 mW/m? (assuming a
thermal conductivity of 1 W/m-°C). The heat flow in the advective area is significantly
elevated. Drilling results from W07 and W02 suggest very little or no hydrate is present
in sands within the advective zone, which indicates the heat is the result of hot fluids
and gas advection rather than the latent heat released during hydrate formation. This
process of heat transfer to the subsurface from advecting hot fluids has been observed
in the other settings such as Cascadia margin, Gulf of Mexico, Hakon Mosby Mud
Volcano and offshore Costa Rica (Wood et al., 2002; Ruppel et al., 2005; Ginsburg et
al., 1999; Kaul et al., 2006; Grevemeyer et al., 2004), however, none of these sites are
a large, flat lying free gas-hydrate reservoir.

We use a two-dimensional heat transfer model to estimate the gas flux and
temperature profile across W07 under a steady state that considers advecting methane
from deep is consumed to form hydrate on the margins (Text S2 and Fig. S2, see
detailed in the Supporting Information). The energy conservation equation is used to
predict the temperature distribution in this site, which can be expressed as:

O°AT  9°AT 0O, T 20,
oz’ ox’ 0Oz ox

=0 ().

where z is the depth, x is the distance from the center of the advective zone, T is the
geothermal temperature, A = 1 W/m-°C is the bulk thermal conductivity (Liu &
Flemings, 2006), cs=3500 J/kg is heat capacity of methane gas (Liu & Flemings, 2006),

Qg 1s the upward gas flux in the advective zone, and Qg is the lateral gas flux along

2
the sand layer. The total gas flux in the advective zone is ROy (Rc =750 m, is the
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radius of the advective zone), and Qe can be expressed as:

7R-Q,, RI-Q,,
Qg,l: = = - (2)
T-x-H x-H

where H is the thickness of the sand layer.

In this model, we quantified this upward-doming temperature field and the base of
the gas hydrate stability zone (BGHSZ) of this site (Fig. S2). Qg decreases with x
resulting in a decrease in temperature with x. From W07 to the southern edge of the
system (Fig. S2a, b), the temperature at the top of Horizon A (128 mbsf) decreases from
17.4 °C to 15.2 °C. We extract the temperature data at W07 from the model and it
shows a good match with the in situ measured data (Fig. S2¢). The BGHSZ is elevated
by 106 m (from 234 m to 128 m) in the center of the advective zone. The estimated
upward gas flux of 21 kg/m?/yr is higher than average values from the documented
seepage areas such as Hydrate Ridge, the Black Sea and the Norwegian continental
margin (Heeschen et al., 2005; Sahling et al., 2009; Felden et al., 2010). This upward-
doming temperature field controls the formation of the flat-lying transitional gas to
hydrate system in the horizontal sand layer.
6.4 System formation

The formation of the flat-lying transitional system at this site can be summarized
in four steps (Fig. 4). First, the Horizon A sand was deposited on the SLU and was
subsequently covered by HDs and MTDs. Second, hot fluids and methane gas were
funneled into the fault and gas chimney and advected toward Horizon A; differential
compaction may also have played a role in this focused fluid flow. Third, sealing

occurred at the interface of Horizon A and HD3, which prevented fluids from
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continuing their upward trajectory and redirected the fluids to migrate laterally along
Horizon A. Lastly, the heat that accompanied the advecting fluids resulted in an upward-
doming temperature field that has significantly higher geothermal temperatures in the
advective zone and lower temperatures at its margin. As a result, hydrate is not stable
in Horizon A within the advective zone, while hydrate is stable on the margins outside
of the advective zone.
6.5 Geological implications

You et al. (2019) emphasized that methane transport controls the formation of
different types of hydrate. In sand reservoirs with high saturations of hydrate, however,
heat flow and heat carried by migrating fluids has not been considered a primary
mechanism of methane transport to sand reservoirs in the hydrate stability zone. Instead,
the prevailing methane migration models for hydrate bearing sand reservoirs reviewed
by You et al. (2019) include local methane diffusion (Malinverno, 2010), diffusion with
overpressure (Nole et al., 2016), salt exclusion and salinity variations allowing free gas
flow (You and Flemings 2018), and the solidification of gas reservoirs resulting from
changing climatic conditions over time (Behseresht and Bryant, 2012). Herein, we
show that focused heat supplied through deep advecting hot fluids creates a lateral
geothermal gradient in a horizontal sand reservoir that causes a lateral transition from
free gas to hydrate. This site shows that heat flow is an important factor that controls
the distribution of the hydrate system in sand reservoirs and should be considered in
hydrate system formation and characterization.

Advecting hot fluids are certainly a key factor causing the formation of the flat-
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lying gas to hydrate transitional system, however, the occurrence of the coarse-grained
sand layer is also very important for the development of this system. Our heat transfer
model indicates high gas flux present here but the horizontal sand layer with low
capillary entry pressure (You et al., 2021) would reduce the gas column height and
pressure by lateral porous flow. Otherwise, vertical gas-driven tensile fracturing would
occur at this shallow depth and most of gas would seep out of the seafloor (Daigle et
al., 2020). Therefore, a large amount of methane gas is sequestered in this system as
free gas and hydrate rather than vent into the ocean as commonly found in mud-rich
settings.

High-amplitude seismic reflections with the polarity of the seafloor above the BSR
are generally noted as the most promising indicator for the presence of concentrated
hydrate and have been widely used in global hydrate exploration (Boswell et al., 2012;
Boswell et al., 2016; Noguchi et al., 2011; Yoo et al., 2013; Shukla et al., 2019).
However, this study suggests that high-amplitude reflections coincident with the BSR
could also indicate the presence of hydrate, especially in sand reservoirs, and cannot be
neglected in exploration.

7 Conclusions

We describe a flat-lying, free gas to gas hydrate transitional system in a sand
reservoir. Unlike gas hydrate accumulating in dipping sands in the Gulf of Mexico and
Nankai Trough where fluids can migrate upward by buoyancy along the permeable sand
layer toward the BGHSZ, a flat-lying sand reservoir changes the path of fluid migration

and also the distribution of the free gas and hydrate. The deep-sourced fluid flow not
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only provides sufficient gas but also advects a significant amount of heat to the shallow
subsurface, which results in an upward perturbation on the BGHSZ and free gas into
the regional GHSZ (defined by the background geothermal gradient of 65.8 °C/km in
WOT1). Capillary sealing leads to a lateral migration of the hot fluids and gas along the
flat-lying sand layer. Hydrate forms when the temperature decreases as the free gas
moves away from the advective zone. This site shows that temperature can have
significant control on hydrate formation in sands and may be a key mechanism which
allows gas migration within the GHSZ and hydrate formation in high-saturation hydrate
filled sands.
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Fig 1. a: Location and structural units of the study area in the Qiongdongnan Basin
(QDNB). The inset box indicates the location of Fig. 1a. b: Multibeam bathymetry map
of the QDNB and locations of the study area, seismic profile and wells. The red filled
box is the location of the inset. ¢: 3D seismic profile a-a’ showing the major structural
units including Lingshui Sag and Songnan Low Uplift, the stratigraphic framework
(modified from Cheng et al., 2021), the gas chimney and high-amplitude reflections
associated with Horizon A. Note the flexural bending occurred between T20 to T30,

which may indicate the effect of differential compaction.
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Fig 2. a: Cross-wells section showing the seismic reflection characteristics of Horizon
A and the underlying gas chimney. b: Amplitude attribute map of Horizon A indicating
the distribution of free gas (blue) and hydrate (red). The location is indicated in Fig. 1b.
Note the distribution of the deep-rooted fault (filled with red). c: Multi-well correlation
showing the log response of gas- and hydrate-bearing sands. The neutron-density
crossover marked by black dashed boxes and the associated low Vp indicates the
presence of free gas. Note the error of ELAN method is ~2%. TVDSS: true vertical
depth subsea; BS: bit size; UCAV: ultrasonic caliper average; GR: gamma ray; DEN:
bulk density; TNPH: thermal neutron porosity; RES BS: shallow button resistivity;
RES BD: deep button resistivity; RES Bit: bit resistivity; ELAN-ERROR: the error of
ELAN method; Vp: P-wave velocity; Lithology: mineral and fluid volume fraction in

sediment.
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Fig 3. a: Cross-wells section showing the seismic reflection characteristics of Horizon
A and MTDs. b: Detailed analysis of the log response of MTDs, HDs and hydrate-
bearing sands. Dynamic image: dynamic resistivity image; Dip/Azimuth: the dip and
azimuth of the sedimentary bedding; MRP: nuclear magnetic resonance (NMR)
porosity; FFV: free fluid volume; T2: NMR T2 relaxation distributions; NMR perm:
absolute permeability from Timur-Coates method; Shallow overpressure occurred in
HDs is estimated. Pn, ov and Pp is the hydrostatic, lithostatic and pore pressure,
respectively. Facies: sedimentary facies; MTD: mass transport deposit; HD: hemiplegic
deposit; c-d: Amplitude attribute along horizon S1(c) and S2 (d) in Fig. 3a showing the

distribution of the MTD and turbidite lobe.
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