

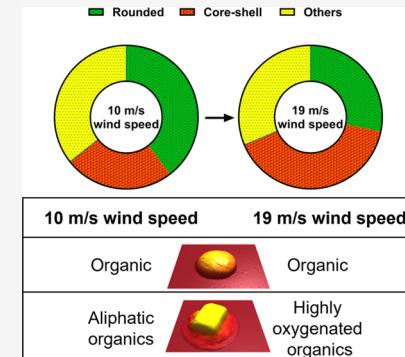
Effects of Wind Speed on Size-Dependent Morphology and Composition of Sea Spray Aerosols

Chamika K. Madawala, Carolina Molina, Deborah Kim, Dilini Kirindigoda Gamage, Mengnan Sun, Raymond J. Leibensperger, III, Lincoln Mehndiratta, Jennie Lee, Chathuri P. Kaluarachchi, Ke’La A. Kimble, Greg Sandstrom, Charbel Harb, Julie Dinasquet, Francesca Malfatti, Kimberly A. Prather, Grant B. Deane, M. Dale Stokes, Christopher Lee, Jonathan H. Slade, Elizabeth A. Stone, Vicki H. Grassian, and Alexei V. Tivanski*

Cite This: <https://doi.org/10.1021/acsearthspacechem.4c00119>

Read Online

ACCESS |


Metrics & More

Article Recommendations

Supporting Information

ABSTRACT: Variable wind speeds over the ocean can have a significant impact on the formation mechanism and physical-chemical properties of sea spray aerosols (SSA), which in turn influence their climate-relevant impacts. Herein, for the first time, we investigate the effects of wind speed on size-dependent morphology and composition of individual nascent SSA generated from wind-wave interactions of natural seawater within a wind-wave channel as a function of size and their particle-to particle variability. Filter-based thermal optical analysis, atomic force microscopy (AFM), AFM infrared spectroscopy (AFM-IR), and scanning electron microscopy (SEM) were employed in this regard. This study focuses on SSA with sizes within 0.04–1.8 μm generated at two wind speeds: 10 m/s, representing a wind lull scenario over the ocean, and 19 m/s, indicative of the wind speeds encountered in stormy conditions. Filter-based measurements revealed a reduction of the organic mass fraction as the wind speed increases. AFM imaging at 20% relative humidity of individual SSA identified six main morphologies: prism-like, rounded, core–shell, rod, rod inclusion core–shell, and aggregates. At 10 m/s, most SSA were rounded, while at 19 m/s, core–shells became predominant. Based on AFM-IR, rounded SSA at both wind speeds had similar composition, mainly composed of aliphatic and oxygenated species, whereas the shells of core–shells displayed more oxygenated organics at 19 m/s and more aliphatic organics at 10 m/s. Collectively, our observations can be attributed to the disruption of the sea surface microlayer film structure at higher wind speeds. The findings reveal a significant impact of wind speed on morphology and composition of SSA, which should be accounted for accurate assessment of their climate effects.

KEYWORDS: sea spray aerosol, atomic force microscopy, wind speed, morphology, composition, single particle

INTRODUCTION

Sea spray aerosols (SSA) are one of the most abundant types of natural atmospheric aerosols that accounts for a significant contribution to the total aerosol mass concentration in the atmosphere.¹ SSA are generated upon the bursting of air bubbles entrained in the ocean from breaking waves through wind-driven mechanisms.^{1–6} Once airborne, SSA have significant impact on Earth’s radiative budget directly by scattering and absorbing solar light, or indirectly by acting as cloud condensation nuclei (CCN) or ice nucleating particles.^{4,7–12} During bubble bursting, the organic, inorganic, and biological species in seawater and at sea surface microlayer (SML, the uppermost layer with submicrometer thickness, which is enriched in organics relative to underlying seawater) can be transferred into SSA.^{13–17} SSA can be produced via bubble-cap bursting (i.e., film drops) which are enriched with organic matter or via bubble-cavity collapse (i.e., jet drops), which are predominantly inorganic salts.¹⁸ Moreover, the SML

film structure and composition can modulate the composition and physical-chemical properties of SSA produced via film drops.^{18,19} Because of the complex chemical nature of SML, SSA are highly complex size-dependent mixtures of many chemical and biological species at various morphologies and mixing states.^{18,20–25} Under high winds (>9 m/s) spume droplet formation occurs, the production of coarse and supercoarse mode aerosols from wind shear atop a wave crest,^{26–28} but is not investigated here. Supercoarse mode particles experience extremely low residence times (on the order of a few seconds or less) and are not expected to

Received: May 3, 2024

Revised: July 2, 2024

Accepted: July 5, 2024

57 influence the results below. The initiation of wave breaking is
58 expected to cause a disruption of SML by mixing it with the
59 underlying seawater when the surface winds exceed 8 m/s.^{29,30}
60 Previous studies have shown that formation, thickness, and
61 distribution of SML is strongly influenced by wind speed
62 conditions.^{31–34} Thus, varying wind speeds can impact the
63 SML film structure, thickness, and composition, which in turn
64 can influence the SSA formation mechanism (i.e., largely film
65 drops) and may change SSA composition, morphology, and
66 mixing states.^{35,36}

67 The effects of wind speed on composition of SSA have been
68 studied previously. In particular, one study conducted by Gantt
69 et al. on wind speed dependent organic mass fraction of SSA
70 (sizes $<2.5\text{ }\mu\text{m}$) revealed a reduction in organic mass fraction
71 with increase in surface wind speeds exceeding $\sim 10\text{ m/s}$.²⁹
72 The trend was attributed to a disruption of SML film structure,
73 which results in intensive wind-driven wave breaking coupled
74 with mixing of SML and underlying water, thus leading to the
75 reduction of organic matter in SSA.²⁹ In another study, SSA
76 were mostly film drops (sizes $<0.2\text{ }\mu\text{m}$, predominantly organic)
77 at wind speeds below $\sim 10\text{ m/s}$, while SSA were largely jet
78 drops (sizes $>0.2\text{ }\mu\text{m}$) at elevated wind speeds exceeding ~ 12
79 m/s.³⁷ Noteworthy, smaller-sized jet drops were composed of
80 not just pure NaCl, but exhibited an appreciable amounts of
81 organics and other inorganic components.^{37,38} These findings
82 underscore the significant role of wind speed on composition
83 of SSA. The chemical complexity in SSA can govern their
84 direct and indirect aerosol effects in atmosphere.^{22,39–41} It was
85 observed that the composition (i.e., organic and inorganic
86 content) in SSA controls their phase state and water uptake,
87 which alters scattering of solar radiation and their cloud
88 condensation nuclei or ice nucleating abilities.^{4,5,9,39,40}
89 Furthermore, prior studies performed on real SSA revealed
90 the existence of different size-dependent morphologies (e.g.,
91 core–shell, prism-like, rounded, rod) and mixing
92 states.^{22,39,40,42–43,44,45} Identifying morphologies and mixing
93 states of SSA is critical to precisely predict their effects on
94 climate as it can dictate their optical properties, water uptake
95 and cloud condensation nuclei (CCN) ability, ice nucleating
96 potential, and atmospheric aging.^{24,46–48} Thus, the wind speed
97 is expected to change the composition, morphology, and
98 mixing states of SSA, which must be comprehensively studied
99 to accurately predict their climate-relevant effects. This is
100 particularly significant for submicrometer SSA, due to their
101 significant lifetime in the atmosphere relative to super-
102 micrometer sized aerosols.^{49,50} However, no previous studies
103 have investigated the effects of wind speed on the morphology
104 and composition of individual submicrometer SSA as a
105 function of size and their particle–particle variability. Such
106 single particle measurements may be particularly important for
107 real SSA that often display large particle-to-particle variability,
108 as previously reported in regards to their ice nucleating
109 potential.^{9,42}

110 Herein, we report the effects of wind speed on the size-
111 dependent morphology and composition of SSA. SSA were
112 generated during a month-long mesocosm experiment,
113 CHAOS (CHaracterizing Atmosphere Ocean parameters in
114 SOARS, the Scripps Ocean Atmospheric Research Simulator),
115 in summer 2022. SSA generated on the same day (August
116 15th) at two distinct wind speeds were compared: 10 m/s,
117 representing a wind lull scenario and approximately reflects the
118 global average wind speed over the ocean,^{51,52} and 19 m/s,
119 which is characteristic of wind speeds over the Southern Ocean

120 that are encountered during stormy conditions.^{53–57} Individual 121 SSA (size range 0.04–1.8 μm) generated at these two wind 122 speeds were substrate-deposited and subsequently analyzed 123 using various complementary offline methods including filter- 124 based thermal optical analysis, high-performance ion exchange 125 chromatography with conductivity detection, atomic force 126 microscopy (AFM), AFM infrared spectroscopy (AFM-IR), 127 and scanning electron microscopy coupled with energy 128 dispersive X-ray spectroscopy (SEM-EDX) characterization. 129 Our findings reveal significant and size-dependent differences 130 in the morphology and composition of nascent SSA generated 131 at these wind speeds, highlighting the importance to consider 132 the effects of wind speed for more accurate predictions of their 133 climate-related impacts.

■ MATERIALS AND METHODS

SSA Generation at Scripps Ocean and Atmospheric Research Simulator (SOARS). Seawater from the Pacific 135 Ocean at the end of the Scripps Institution of Oceanography 136 (SIO) pier in La Jolla, CA was collected and filtered through 137 sand filters on the pier to remove large grazers during the 138 summer of 2022. The seawater was pumped into a 36 m x 2.5 140 m x 2.5 m wave channel (SOARS) in the SIO Hydraulics 141 Laboratory to a typical channel height of 1.2 m. The SSA were 142 generated using an air backed paddle, forming waves with an 143 amplitude of approximately 0.5 m and peak wave frequency of 144 approximately 15 Hz that broke independently of the wind 145 speed within the channel. The wave packet was prescribed to 146 have every fourth and fifth crest break, with crests terminating 147 on a 2 m long “beach” extending from the base of the channel 148 to above the surface of the water at a 30° angle. This beach 149 included hard plastic netting to absorb and dissipate the wave 150 energy, prohibiting wave reflectance. Varying wind conditions 151 in the channel were generated through two main multiblade 152 fans. To minimize the contribution of the surrounding air, a 153 positive pressure in the channel was maintained through two 154 smaller fans that introduced purified air into the system at low 155 air flows. Wind speed measurements were collected using an 156 anemometer (TSI 9545-A VelociCalc Air Velocity Meter), 157 measured with a straight probe oriented perpendicular to the 158 air flow. The wind speeds were measured at a height of 0.6 m 159 above the water in SOARS, and extrapolated to a 10 m height 160 value using an approach described by Hsu et al.⁵⁹ Throughout 161 the manuscript, the reported wind speeds correspond to these 162 extrapolated 10 m height values. The SSA were generated on 163 August 15th under two different wind conditions of 10 and 19 164 m/s. It is noteworthy that the measurements taken at 19 m/s 165 are considered to reflect open-ocean breaking wave conditions 166 when compared to other studies.^{58,60–62} However, due to the 167 fixed wave amplitude in all other wind speeds measured during 168 CHAOS, the extent of whitecap coverage cannot be compared 169 directly to open-ocean conditions. Consequently, only the 170 relative influence of wind speed alone can be evaluated in 171 relation to the measurements at 10 m/s, which likely 172 represents a wind lull scenario over a pre-existing wave field 173 generated by higher winds. The wave field generated by the 174 paddle is roughly equivalent to an open-ocean wave field that 175 would be at equilibrium with a wind speed of 18.5 m/s,¹⁷⁶ calculated from the average whitecap coverage following 177 Monahan and O’Muircheartaigh.⁵⁸ Water salinity, water 178 temperature, and air temperature were monitored and 179 measured as ~ 32 ppt, $\sim 23\text{ }^{\circ}\text{C}$, and $\sim 25\text{ }^{\circ}\text{C}$, respectively, for 180 both wind conditions. Before SSA generation at a particular 181

182 wind speed, the wave channel headspace was run through
183 HEPA and clean carbon 16 filters to scrub out remnant SSA
184 and other particulates, and a sparging system used fresh water
185 to cleanse the headspace of SSA buildup. These protocols
186 nominally achieve a 95% efficiency of eradicating aerosols
187 within the channel headspace relative to room air concen-
188 trations.

189 **SSA Collection and Size-Dependent Organic and**
190 **Inorganic Mass Fraction Bulk Measurements.** SSA flow
191 generated at two wind speeds were pulled from the channel via
192 a nozzle located ~ 0.5 m preceding the beach and then
193 collected (at ~ 80 to 85% relative humidity (RH)) using a
194 high-flow impactor (TSI model 129) at 100 L/min flow rate
195 onto different substrates placed on three stages that have 50%
196 cutoff aerodynamic diameter ranges of 1.0–25.0 μm , 0.25–1.0
197 μm , and below 0.25 μm . Prebaked 75 mm aluminum (Al)
198 substrates were used for the two higher diameter-range stages,
199 and prebaked 90 mm quartz fiber filters (QFF, PALL Life
200 Sciences) were used for the smallest size range stage. All
201 samples were stored frozen at -20 $^{\circ}\text{C}$ until analysis was
202 conducted. No unexpected or unusually high safety hazards
203 were encountered. Organic carbon (OC) was measured via a
204 thermal optical analyzer (Sunset Laboratories, Forest Grove,
205 OR), as described previously.⁶³ The inorganic ions were
206 measured via high-performance ion exchange chromatography⁶⁴
207 with conductivity detection following aqueous extraction.⁶⁴
208 The estimation of inorganic mass was based on the measured
209 sodium mass which was converted to sea salt mass using a
210 sodium/sea salt ratio of 3.26, as reported previously.⁶⁵

211 **SSA Collection for Offline Single Particle Studies.** SSA
212 flow generated at two wind speeds were pulled from the
213 channel via a nozzle located ~ 0.5 m preceding the beach and
214 substrate-deposited via a home-built silica bead dryer (ca. 50%
215 relative humidity) using a micro-orifice uniform deposit
216 impactor (MOUDI; MSP, Inc., model 125R) at a flow rate
217 of 10 L/min onto different substrates including hydrophobi-
218 cally coated (Rain-X) silicon substrates (Ted Pella, Inc.) for
219 AFM measurements, gold-coated silicon substrates (Ted Pella,
220 Inc.) for AFM-IR measurements, and silicon substrates (Ted
221 Pella, Inc.) for SEM-EDX measurements. MOUDI stages 5, 6,
222 7, 8, and 9 were used, corresponding to 50% cutoff
223 aerodynamic diameter ranges of 1.00–1.80, 0.56–1.00,
224 0.32–0.56, 0.18–0.32, and 0.10–0.18 μm , respectively. The
225 substrate-deposited SSA samples were stored in clean Petri
226 dishes and kept inside a laminar flow hood (NuAire, Inc., NU-
227 425-400) at ambient temperature (20 $^{\circ}\text{C}$) and pressure for 2–
228 3 months prior to single particle microscopy experiments. No
229 unexpected or unusually high safety hazards were encountered.

230 **Single Particle AFM Imaging to Determine Main**
231 **Morphologies and Organic Volume Fraction (OVF) of**
232 **Core–Shell SSA at $\sim 20\%$ RH.** A molecular force probe
233 three-dimensional (3D) AFM (Asylum Research, Santa
234 Barbara, CA) was used for imaging individual substrate-
235 deposited SSA at ambient temperature (20–25 $^{\circ}\text{C}$) and
236 pressure as described previously.^{7,39,66} A custom-made
237 humidity cell was used to control RH within a range of ~ 20
238 to 80%.⁵⁰ Silicon nitride AFM tips (MikroMasch, model
239 CSC37, typical tip radius of curvature of ~ 10 nm, nominal
240 spring constant of 1.0 N/m) were used to image individual
241 SSA. AFM imaging was conducted in tapping mode at a scan
242 rate of 1 Hz. Prior to AFM imaging, a hydration/dehydration
243 cycle was first carried out to limit the effect of impaction on the
244 morphologies of deposited particles where the humidity was

245 first increased to $\sim 80\%$ RH and then after waiting at least 10
246 min, the RH was slowly (i.e., within several mins) decreased to
247 $\sim 20\%$ RH.⁶⁷ The selection of these two RH values is based on
248 the deliquescence and efflorescence RH for pure NaCl that
249 occur at ~ 75 and $\sim 40\%$, respectively.^{67,68} The AFM AC
250 (intermittent contact) imaging mode was used to collect 3D-
251 height and phase images of individual SSA to determine their
252 morphology and volume-equivalent diameter, and for core–
253 shells, quantify their organic volume fractions (OVFs) and
254 corresponding organic coating thicknesses (OCTs), as
255 described previously.^{7,67,69} The OVF is defined as the ratio
256 of the shell volume to the total particle volume. Assuming the
257 core is predominantly inorganic and shell primarily organic, the
258 single particle OVF represents the relative amount of organic
259 present in the particle.⁷ The OCT represents the projected
260 thickness of organic coating around inorganic core assuming
261 spherical particle shape.^{67,70}

262 For morphological analysis, approximately 300 individual
263 SSA were investigated for each wind speed (10 and 19 m/s) at
264 four AFM-determined (at $\sim 20\%$ RH) volume-equivalent
265 diameter ranges of 0.04–0.18, 0.18–0.56, 0.56–1.00, and
266 1.00–1.80 μm , while for the OVF and OCT analyses, at least
267 20 individual SSA core–shells within each of these size ranges
268 were investigated at both wind speeds except for the 1.00–1.80
269 μm size range at 10 m/s where data were based on two core–
270 shells due to a very limited number of core–shells observed in
271 this size range and wind speed. The relative abundance of
272 identified morphological categories (prism-like, core–shell,
273 rounded, rod, aggregate, and rod inclusion core–shell) and the
274 values of the OVF and OCT were recorded as an average and
275 one standard deviation at each size range. The observed SSA
276 morphologies, OVF and OCT studied over the same four size
277 ranges, were used to elucidate the effects of wind speed.

278 To overcome the practical limitations of studying a limited
279 number of individual SSA using atomic force microscopy, we
280 employed a statistical analysis to evaluate the statistical
281 significance of our measurements. The detailed description of
282 the approach which is based on a self-coded Monte Carlo-like
283 simulation method can be found elsewhere.^{7,71,72} The average
284 and one standard deviation were recorded for each
285 morphological type of SSA at both wind speed conditions as
286 a function of volume-equivalent diameter values. The data
287 processing and analysis were performed by using Igor Pro
288 (version 6.37, Wave metrics).

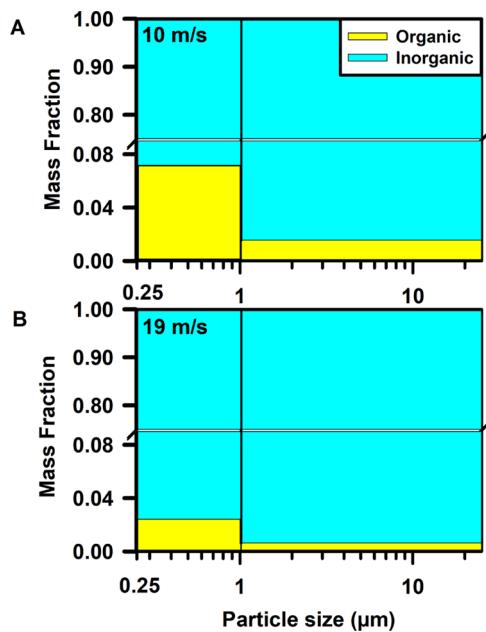
289 **Single Particle AFM-IR Measurements of SSA**
290 **Composition at ~ 20 to 30% RH.** AFM-IR spectroscopic
291 measurements were collected by using a commercial AFM-IR
292 microscope (nanoIR2, Bruker) with a tunable mid-IR quantum
293 cascade laser (QCL MIRcat-QT, Daylight solutions). Images
294 and spectra were collected at ~ 20 to 30% RH and ambient
295 temperature (20–25 $^{\circ}\text{C}$) and pressure on individual SSA
296 deposited on gold-coated silicon substrates (Ted Pella, Inc.)
297 placed on MOUDI stages 5, 6, 7, 8, and 9. Measurements were
298 conducted using silicon nitride probes with a chromium–gold
299 coating (Bruker, typical tip radius of curvature of ~ 30 nm and
300 a nominal spring constant range of 1–7 N/m). AFM imaging
301 was conducted in tapping mode at a scan rate of 0.8 Hz.
302 AFM-IR spectra were collected with a nominal spatial
303 resolution below 35 nm and a spectral resolution of 2 cm^{-1} ,
304 coaveraging over 128 laser pulses per wavenumber. A reference
305 spectrum was taken on the substrate and subtracted from all of
306 the corresponding spectra obtained on individual particles.
307 Overall, ~ 10 individual core–shells and ~ 10 individual

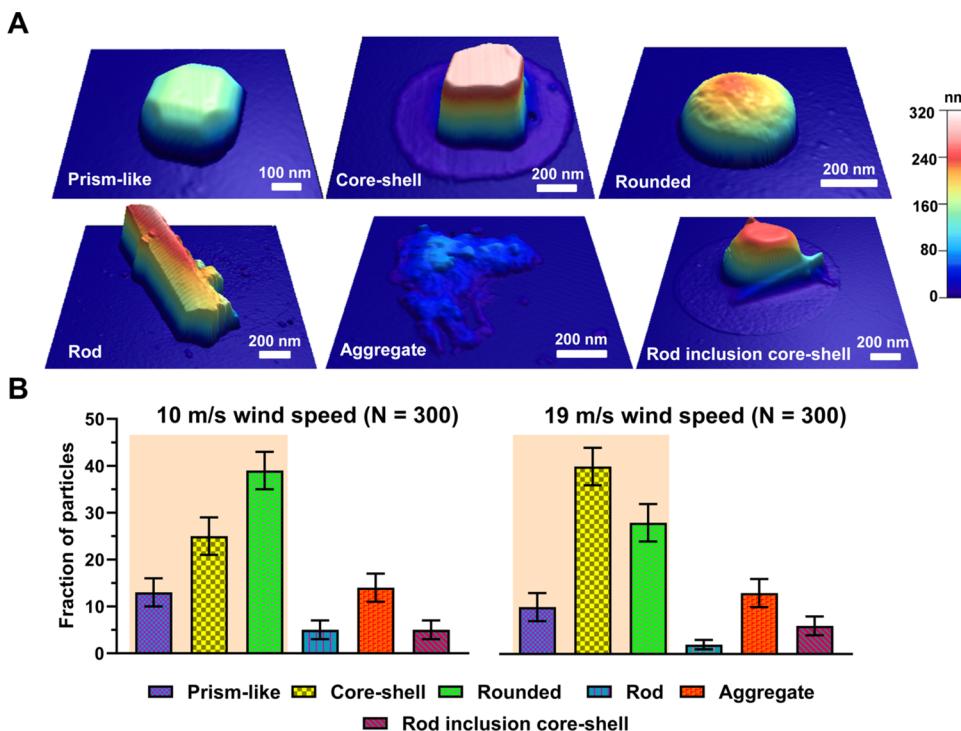
308 rounded SSA were investigated. For core–shell SSA, spectra 309 were taken at the core and shell particle regions, while for 310 rounded SSA, spectra were taken at an approximate center of 311 each particle. The IR results collected were compared between 312 the two wind speed conditions of 10 and 19 m/s.

313 **SEM-EDX Measurements of SSA Elemental Composition.** To collect SEM-EDX data, silicon wafers (Ted Pella, 314 Inc.) with deposited SSA were placed on a clean SEM stub and 315 held in place by carbon tape. The data were acquired using a 316 FEI Apreo SEM (Thermo Fisher Scientific) operating at an 317 accelerating voltage of 10 keV and a beam current of 0.1 nA. 318 For imaging, the immersion mode detector at short working 319 distances (1–2 mm) was used. The standard mode detector 320 with a working distance of ~10 mm was employed for the 321 EDX analysis. However, it should be noted that the analysis of 322 samples with less than 1 μm in thickness is challenging due to 323 the relatively low signal. To address this issue, a line scan 324 analysis over individual particles was performed, and the beam 325 current was adjusted to achieve acceptable X-ray counts per 326 second (cps) within the range of 5–15 kcps. Representative 327 particles were selected for each morphology (core–shell, 328 rounded, rod inclusion core–shell, and aggregate) to show the 329 variability of various elements across each representative 330 particle.

332 ■ RESULTS AND DISCUSSION

333 **Impact of Wind Speed on Size-Dependent Bulk 334 Organic Carbon in SSA.** Figure 1 illustrates the mass



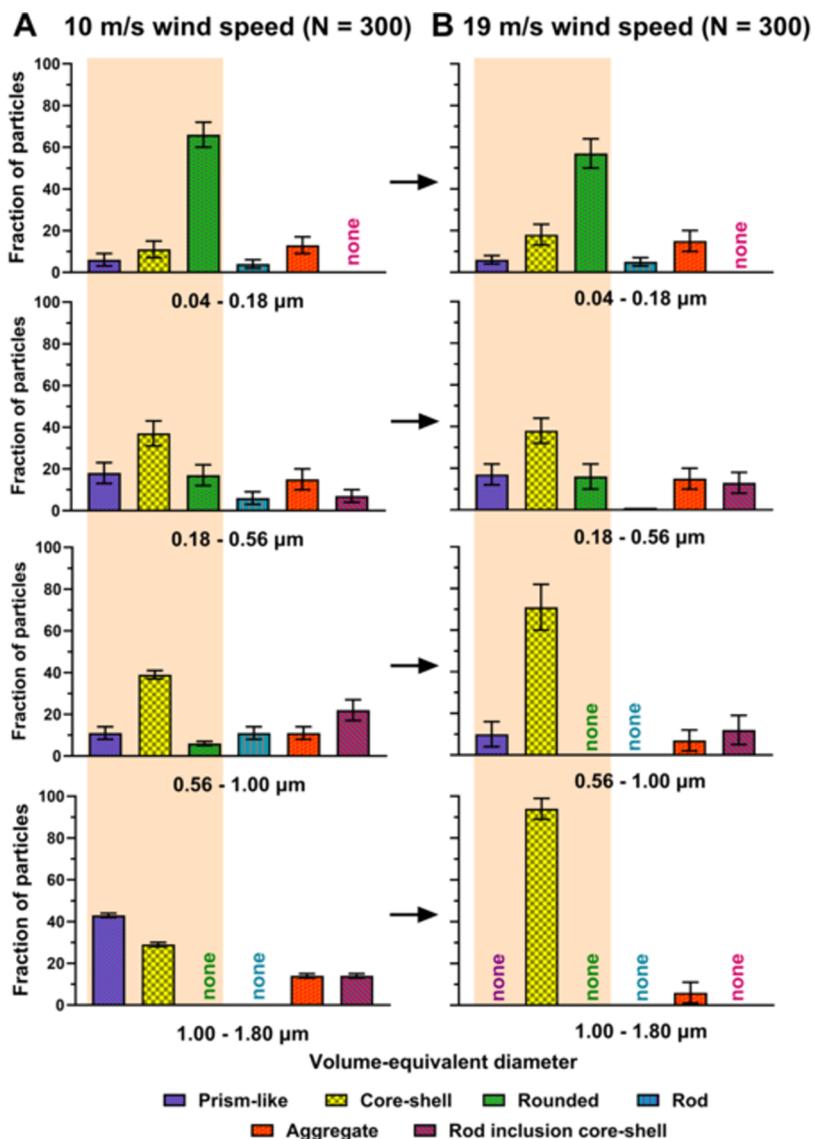

Figure 1. Organic and inorganic mass fractions versus particle size for SSA generated at (A) 10 m/s and (B) 19 m/s wind speeds.

335 fractions of organic carbon (OC) and sea salt in SSA at two 336 distinct wind speeds, the lowest wind speed of 10 m/s and the 337 highest wind speed of 19 m/s, during which the experiments 338 were conducted. In both wind speeds, mass fractions of OC in 339 SSA increased with decreasing particle size which agree well 340 with the prior studies.^{17,73,74} The mass fractions of OC present 341 in both super- and submicrometer SSA under conditions of 342 high wind speed were lower than those at low wind speed. At a 343 wind speed of 10 m/s, the mass fraction of OC accounted for

344 2% within the particle size range of 1–25 μm , exhibiting an 345 increase to 7% within the size range of 0.25–1 μm . Conversely, 345 when the wind speed was elevated to 19 m/s, the mass fraction 346 of OC decreased to 1% in the size range of 1–25 μm and 2% 347 in the particle sizes ranging from 0.25 to 1 μm . This trend of 348 decreasing OC mass fraction with increasing wind speeds is 349 expected to result from differences in the SML film structure 350 and composition under varying wind conditions. As proposed 351 by Gantt et al.,²⁹ the SML has an ordered film structure and 352 organic species concentrations at low wind speeds but breaks 353 up at higher wind speeds leading to lower organic carbon mass 354 fraction. These variations in SML composition and film 355 structure ultimately manifest in the composition of SSA, 356 leading to a decrease in the mass fraction of OC in SSA at high 357 wind speed. These findings indicate a significant effect of wind 358 speed on the selective transfer of OC to SSA. As bulk 359 measurements provide an ensemble-averaged perspective on 360 the entire SSA population and do not provide an assessment 361 on a possible particle-to-particle variability in the organic 362 enrichment, single particle measurements were next utilized to 363 further assess the effects of wind speed on the morphology and 364 composition of SSA.

365 **Impact of Wind Speed on Size-Dependent Morpho- 366 logical Distribution of SSA.** Figure 2A illustrates the 367 representative AFM 3D-height images at ~20% relative 368 humidity (RH) of six main SSA morphologies (prism-like, 369 core–shell, rounded, rod, aggregate, and rod inclusion core– 370 shell) identified for both wind speed conditions of 10 and 19 371 m/s within the AFM-determined volume-equivalent diameter 372 range of 0.04–1.8 μm .^{75,76} The classification of SSA 373 morphologies was carried out through a qualitative analysis 374 using AFM 3D- height and phase images as detailed in 375 previous studies.^{40,45,50,75,77,78} Furthermore, the rod-shell 376 morphology was also observed for both wind speed conditions 377 (Figure S1); however, the relative abundance was less than 1% 378 of the overall SSA population in each wind speed, thus not 379 considered as a main morphology class. The identified 380 morphologies of SSA are consistent with previous findings 381 from both field observations and mesocosm experi- 382 ments.^{7,39,40,45,69}

383 **Figure 2B** shows the relative distribution of morphological 384 categories at two wind speed conditions investigated over the 385 same volume-equivalent diameter range of 0.04–1.8 μm . The 386 relative distribution of each morphological category was 387 determined by performing statistical distribution analysis 388 following prior studies.⁷ From the analysis, prism-like, core– 389 shell, and rounded morphologies collectively constitute a 390 dominant proportion of the overall particle population. In 391 particular, the combined fraction of prism-like, core–shell, and 392 rounded SSA accounts for 76 and 78% at 10 and 19 m/s wind 393 speed conditions, respectively, forming the majority of the 394 particle population, consistent with previous mesocosm 395 studies.⁷ Thus, the results and discussion below will largely 396 focus on these three main morphologies (i.e., prism-like, core– 397 shell, and rounded). The relative abundances of prism-like, 398 core–shell, and rounded morphologies were statistically 399 different for SSA generated at two wind speeds. Even though 400 the aggregates had similar fractions of prism-like particles, it 401 was not considered as a main morphology as aggregates are a 402 combination of several morphology types with heights below 403 200 nm. Specifically, at 10 m/s, the majority of SSA were 404 rounded (~40%), while core–shells became predominant at 405 19 m/s (~40%). Although the exact origin of the observed 406


Figure 2. (A) Representative AFM 3D-height images at 20% RH of six main morphological categories (prism-like, core–shell, rounded, rod, aggregate, and rod inclusion core–shell) identified for SSA particles. (B) Average and one standard deviation of fraction of particles (%) from six main morphological categories at 10 m/s wind speed (total of 300 particles) and 19 m/s wind speed (total of 300 particles). For each wind speed condition, the characterized individual SSA particles had similar volume-equivalent diameter range of 0.04–1.80 μm . Statistically significant differences of three morphological categories (prism-like, core–shell and rounded) are highlighted by orange areas.

variability in the morphologies of SSA at different wind speeds remain uncertain, it likely originates from the change in SML composition and film structure due to changes in wind speed over the equilibrated wave field.²⁹ Overall, these results clearly demonstrate that the change in wind speed from 10 to 19 m/s affects the relative distribution of SSA morphologies with a significant increase in core–shells at higher wind speed conditions. Next, the morphological distribution will be further assessed as a function of the particle size.

Figure 3A,B shows the morphological categorization based on the particle size within four selected volume-equivalent ranges of 0.04–0.18, 0.18–0.56, 0.56–1.00, and 1.00–1.80 μm at two different wind speeds: 10 and 19 m/s, respectively. For both wind speeds, as the particle size decreases, a significant increase in the relative abundance of rounded particles and a concurrent decrease of core–shells was observed. Additionally, for each size range, higher wind speed conditions had a larger abundance of core–shells as compared to low wind speed. Furthermore, for the wind speed of 10 m/s, a prism-like morphology was observed across all size ranges, with a larger fraction predominantly observed in the largest size range. In contrast, at 19 m/s wind speed, the abundance of prism-like particles fluctuated as a function of size without an apparent trend. The relative abundances of rod, aggregate, and rod inclusion core–shell particles were varying with respect to the particle size but without an apparent trend. We note that similar size-dependent effects were reported on SSA generated in previous wave flume studies both in the absence and presence of a phytoplankton bloom.^{7,39,40,45,79} While the observed size-dependent morphological trends are consistent with prior studies, the relative abundancies vary across different mesocosm experiments and likely originate from differences in

seawater composition, biological activity, temperature conditions, and effects of wind-wave interactions affecting the SML film structure and aerosol generation mechanisms.^{39,41,64,79,80} Collectively, the observed bulk organic enrichment of smaller SSA at both wind conditions can be attributed to the increased abundance of rounded SSA, as determined by single particle imaging analysis, which, as we discuss below, are predominantly organic. Additionally, the observed reduction of the bulk organic mass fraction of SSA at elevated wind speed is likely due to the increase in core–shells that are offset by a relatively small reduction in rounded SSA.

To better visualize the size-dependent variability of morphologies shown in Figure 3, a simplified version is presented in Figure 4 by focusing on the three main morphologies and combining the rest into the “other” category. Specifically, Figure 4A,B shows the size-resolved particle fraction distributions of main morphological categories of SSA particles (prism-like, core–shell, rounded, and “other” which includes rod, aggregate, and rod inclusion core–shell) generated at 10 and 19 m/s wind speed conditions, respectively. For the lower wind speed of 10 m/s, there was an increase in core–shell and prism-like SSA and reduction of rounded particles with the particle size increase. In contrast, at the higher wind speed of 19 m/s, there was a remarkable enhancement of core–shells with the particle size increase. This clearly indicates that there is not a single representative morphology but a dynamic and size-dependent variability in the observed SSA particles. Further studies are needed to identify the role of environmental factors in determining size-dependent particle morphology (e.g., temperature, salinity, biological activity). We anticipate such plots may be helpful to better model a representative morphology of SSA at a

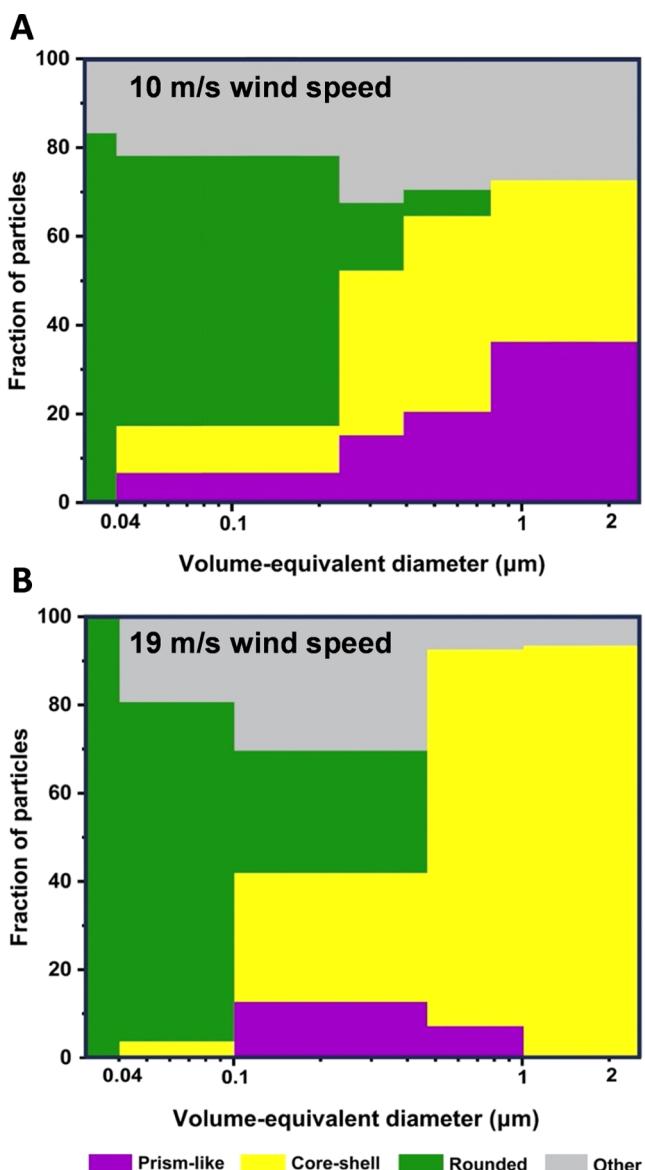


Figure 3. Average and one standard deviation of six main morphological categories of SSA particles (prism-like, core–shell, rounded, rod, aggregate, and rod inclusion core–shell) for four selected volume-equivalent diameter ranges of 0.04–0.18, 0.18–0.56, 0.56–1.00, and 1.00–1.80 μm generated at (A) 10 m/s and (B) 19 m/s wind speed conditions. The term “none” indicates absence of a particular morphology type within a specific SSA size range. Statistically significant differences of three morphological categories (prism-like, core–shell, and rounded) are highlighted by orange areas.

471 particular size range and under specific environmental
472 conditions.

473 To investigate whether the relative thickness of shells of
474 core–shells varies as a function of particle size and wind speed,
475 the AFM-based single particle size-dependent average organic
476 volume fraction (OVF) and corresponding organic coating
477 thickness (OCT) of core–shell SSA at 20% RH at two wind
478 speeds were performed with results shown in Figure 5. The
479 OVF is defined as the ratio of the shell volume to the total
480 particle volume and the OCT represents the projected
481 thickness of organic coating around inorganic core assuming
482 spherical particle shape.^{7,67,70} As will be demonstrated in the
483 next sections using SEM-EDX and AFM-IR, the core and shell
484 regions of core–shell SSA are predominantly inorganic and
485 organic, respectively.⁸¹ Overall, as the particle size decreased,
486 the average OVF increased for both wind speed conditions.
487 Specifically, as the particle size decreases, the average core–
488 shell OVF at 10 m/s wind speed increased from 0.02 ± 0.01

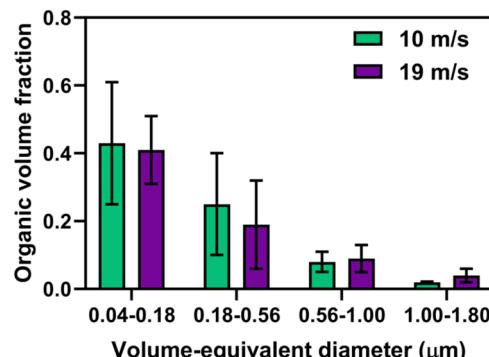
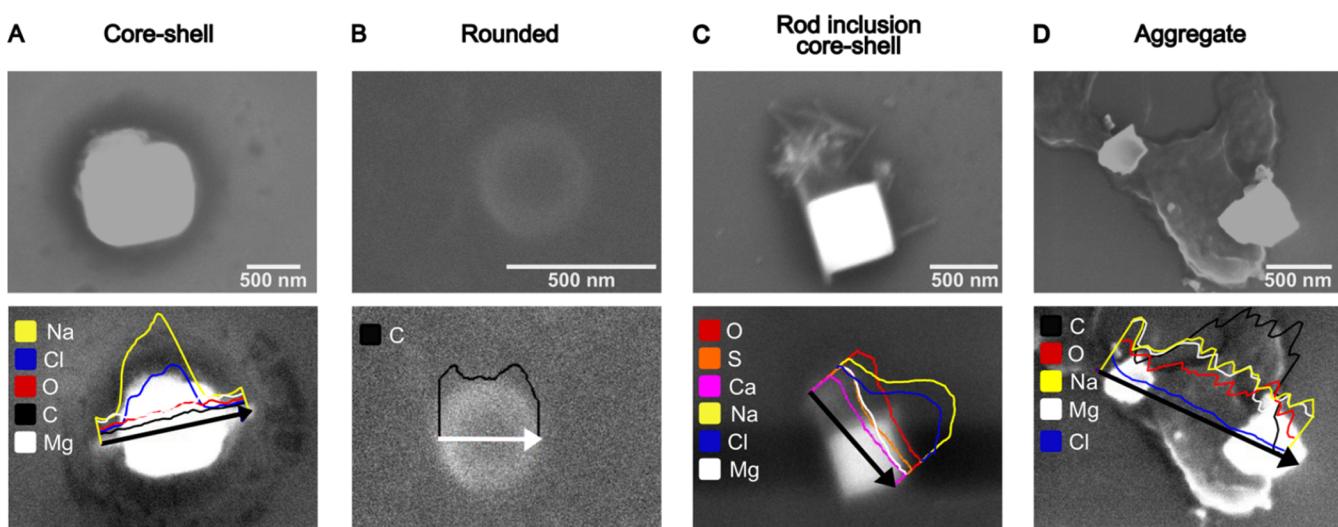
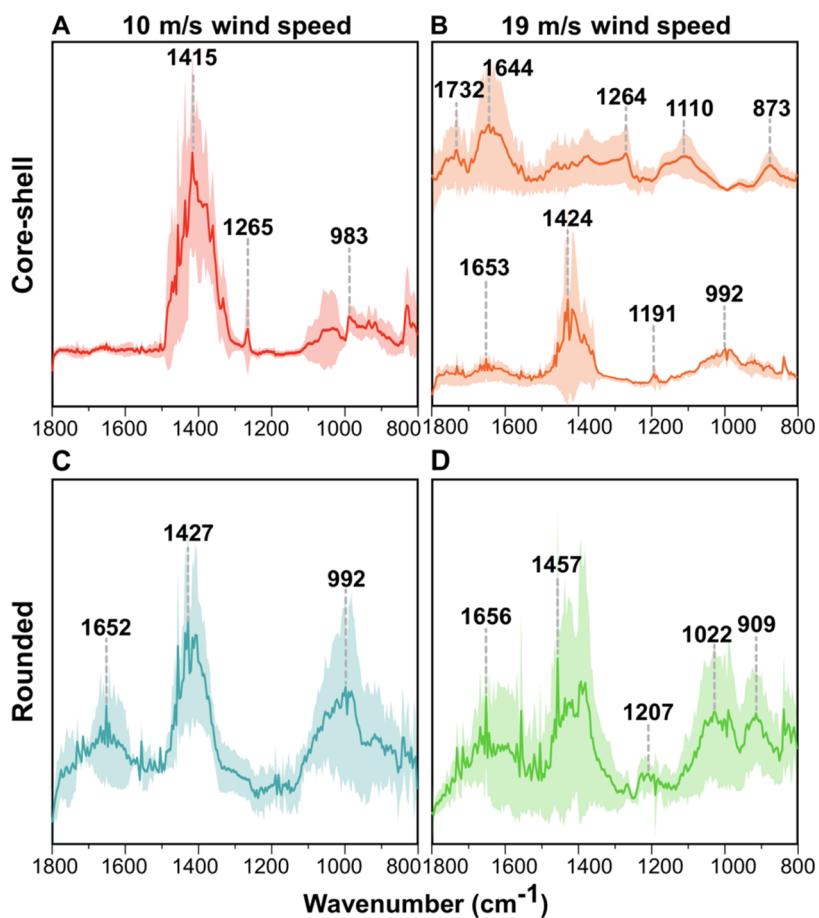

489 for the size bin 1.0–1.8 μm to 0.43 ± 0.18 for the size bin 489
0.04–0.18 μm , while that for 19 m/s increased from 0.04 ± 490
0.02 to 0.4 ± 0.1 for the same size range change. This implies 491
organic enrichment in smaller core–shell SSA, which is 492
consistent with prior wave flume experiments.³⁹ We note 493
that the organic enrichment in smaller core–shells is also 494
consistent with the observed bulk organic mass fraction 495
discussed previously. Within the reported uncertainty, there 496
appears to be no statistically significant effect of the wind speed 497
on the OVF of the core–shells. Furthermore, as the core–shell 498
OCT values do not display any clear size dependency, the 499
average value over the entire SSA studied size range of 0.04– 500
1.8 μm was calculated. The average and one standard deviation 501
of the OCT for 10 m/s were 10 ± 2 nm, while that for 19 m/s 502
was 9 ± 6 nm. Overall, both the OVF and the OCT results at 503
these two wind speeds appear to be statistically similar. Next, 504
SEM-EDX was utilized to provide a qualitative analysis of the 505

Figure 4. Size-resolved particle fraction distributions of dominant morphological categories of SSA particles (prism-like, core–shell, rounded, and other includes rods, aggregates, and rod inclusion core–shells) for the volume-equivalent diameter range of ~ 0.04 to $2\text{ }\mu\text{m}$ generated at (A) $\sim 10\text{ m/s}$ and (B) $\sim 19\text{ m/s}$ wind speed conditions.

506 elemental composition of individual SSA particles under the
507 two wind speed conditions.


508 **Scanning Electron Microscopy-Energy Dispersive X-
509 ray Spectroscopy (SEM-EDX) Elemental Composition
510 Analysis.** Figure 6 shows SEM images and EDX line scan
511 results for representative SSA morphologies (core–shell,
512 rounded, rod inclusion core–shell, and aggregate) to provide
513 a qualitative assessment of the elemental composition for
514 submicrometer SSA collected at 19 m/s wind speed (similar
515 SEM data were observed for 10 m/s). In recent years, SEM-
516 EDX has emerged as an important tool in offline particle
517 analysis for characterizing the elemental composition within
518 individual particles.^{41,82} Figure 6A shows a representative
519 core–shell with internal mixing containing a prism core and a
520 shell of organic carbon where the core is characterized as
521 sodium chloride (NaCl), with a Cl/Na ratio ranging between
522 0.4 and 0.8. This ratio is smaller than what is typically observed


Figure 5. Averaged organic volume fraction measured using AFM at $\sim 20\%$ RH for individual core–shell SSA particles at four selected volume-equivalent diameter ranges of 0.04 – 0.18 , 0.18 – 0.56 , 0.56 – 1.00 , and 1.00 – $1.80\text{ }\mu\text{m}$ at 10 m/s (green) and 19 m/s (purple) wind speed conditions. Color bars and error bars represent the average and one standard deviation, respectively.

in seawater (1.2–1.8), suggesting a depletion of chloride ions (Cl^-) may have occurred during and after sampling.^{41,83,84} Additionally, a slight increase in magnesium (Mg) around the core indicates a possible coating of magnesium chloride (MgCl_2), which is consistent with previous studies conducted on SSA core–shells.^{41,85,86} Rounded particles (Figure 6B) exhibited a high carbon content, which is often associated with organic carbon. Previous studies have reported that some rounded particles possess a carbon coating with a sulfur-rich core, but these types of particles were not observed in the current analysis.^{21,41,85} Figure 6C shows rod inclusion core–shells which contain a NaCl core, organic shell, and rods with elevated counts of oxygen, sulfur, calcium, and magnesium. These elements are likely associated with calcium sulfate (CaSO_4) and/or magnesium sulfate (MgSO_4).^{21,41,85} Last, the aggregate SSA shown in Figure 6D exhibited a diverse composition showing high counts of Na and Mg, but low counts for Cl, indicating a deficit of Cl^- .^{41,87} The aggregate also displayed high carbon and oxygen counts, suggesting a possible complexation of Na and Mg with organic compounds.^{41,88} Overall, the SEM-EDX results show that the elemental composition of two predominant morphologies (rounded and shells of core–shell) is similar between the two wind speed conditions and is predominantly composed of organics. Next, the comparative organic composition of rounded and shells of core–shell morphologies at two wind speed conditions were studied using AFM-IR spectroscopy to obtain insights into the difference in organic content between these main morphologies.

551 **Impact of Wind Speed on Single Particle SSA
552 Composition: Functional Group Analysis.** Figure 7A,B
553 shows the AFM-IR spectra collected at the shell region of
554 core–shells at wind speeds of 10 and 19 m/s , respectively, with
555 a volume-equivalent diameter ranging from 0.18 to $0.56\text{ }\mu\text{m}$.
556 Reference spectra for a few representative SSA-relevant
557 compounds are provided in Figure S3. We note that the IR
558 spectral results are not unambiguously suggesting the presence
559 of these specific reference compounds but rather indicative of a
560 mixture of numerous species contained within these broader
561 encompassing classes. The core of the core–shell is largely IR
562 inactive from 800 to 1800 cm^{-1} (likely corresponding to IR
563 inactive compounds such as NaCl, as demonstrated using the
564 SEM data above); thus, the spectra are not shown.⁶⁹ The shell
565

Figure 6. Representative SEM images (top) and EDX line scans (bottom) of various elemental compositions for (A) core–shell, (B) rounded, (C) rod inclusion core–shell, and (D) aggregate.

Figure 7. Representative AFM-IR spectra for (A) 10 m/s and (B) 19 m/s core–shell SSA, (C) 10 m/s and (D) 19 m/s rounded SSA within the volume-equivalent diameter range of 0.18–0.56 μm . Spectra were taken at shell regions for core–shell SSA and at approximately particle center for rounded SSA. The particle-to-particle variability is shown by the distinctly different spectra reported in (B) for core–shell SSA within the same volume-equivalent diameter range of 0.18–0.56 μm . Solid lines show the averaged spectra (11 individual core–shell and 7 individual rounded SSA) and shaded lines represent the 95% confidence interval.

region spectra for both wind speeds demonstrate the presence of distinct peaks associated with functional groups that have been previously observed in SSA.^{5,7,40,69,89} The peaks in the 1550–1750 cm^{-1} region are associated with $\nu(\text{C}=\text{C})$, $\nu(\text{C}=$

$\text{O})$, or $\nu_{\text{as}}(\text{COO}^-)$; peaks between 1350 and 1470 cm^{-1} are associated with $\delta(\text{CH}_2, \text{CH}_3)$ or $\omega(\text{CH}_2)$ modes. Vibrational modes in the 1000–1250 cm^{-1} region are related to $\nu(\text{C}-\text{O}-$
 $\text{C})$, $\nu(\text{C}-\text{O})$, or $\nu(\text{C}-\text{C})$ stretches; the peaks between 800

Table 1. Summary of the Chemical Composition Determined by AFM-IR for the Two Main SSA Morphologies (Rounded and Core-Shell) at 10 and 19 m/s along with the Representative AFM 3D-Height Images at 20% RH

Morphology	Rounded	Core-shell
Wind speed		
10 m/s	Organics (aliphatic compounds, fatty acids, complex sugars and in some cases traces of sulfates and carbonates)	Core: inorganic (NaCl) Shell: organic (aliphatic compounds)
19 m/s	Organics (aliphatic compounds, fatty acids and complex sugars)	Core: inorganic (NaCl) Shell: organic (aliphatic compounds, fatty acids, and complex sugars)

574 and 1000 cm^{-1} are associated with $\nu(\text{C}-\text{C})$ or $(\text{C}-\text{H})$ side
575 group deformations.^{7,69,84,90}

576 The shell spectra of core-shells at 10 m/s showed a broad
577 peak between 1350 and 1450 cm^{-1} , which corresponds to
578 aliphatic-rich compounds ($\delta(\text{CH}_2, \text{CH}_3)$), as supported by the
579 presence of peaks in the 800–1000 cm^{-1} region ($\text{C}-\text{H}$
580 wags).^{84,91,92} A similar spectrum was also observed for core-
581 shells at a 19 m/s wind speed. However, most of the particles
582 for this wind speed showed the presence of oxygenated
583 functionalized groups. Specifically, the peaks in the 1640–1732
584 cm^{-1} region indicate the presence of carboxylic acids, esters, or
585 carboxylates.⁹¹ The spectra include peaks between 1300 and
586 1470 cm^{-1} and a peak at 1110 cm^{-1} for $\delta(\text{CH}_2, \text{CH}_3)$ and
587 $\nu(\text{C}-\text{O})$ modes respectively,⁹³ showing similar peaks as for
588 fulvic acid (see Figure S3). Overall, at 19 m/s wind speed,
589 most shells of core-shells displayed the presence of oxy-
590 genated organics and a small fraction of aliphatic compounds.
591 In contrast, at 10 m/s, only aliphatic organics were observed in
592 the shells.

593 Figure 7C,D shows the AFM-IR spectra collected at the
594 approximate center of individual rounded particles at wind
595 speeds of 10 and 19 m/s with a volume-equivalent diameter
596 ranging from 0.18 to 0.56 μm . For both wind speeds, the
597 spectra showed similar peaks. Peaks near 1650 cm^{-1} are
598 associated with $\nu(\text{C}=\text{O})$, 1350–1450 cm^{-1} corresponds to δ
599 (CH_2, CH_3), and peaks between 950 and 1050 cm^{-1} show the
600 presence of $\nu(\text{C}-\text{O})$ stretches.^{94–96} Collectively, these results
601 suggest that similar functional groups are present in rounded
602 particles produced at both wind speeds, mainly composed of
603 diverse organics including aliphatic compounds, fatty acids,
604 and complex sugars.

605 Upon comparing the shells of core-shells versus rounded
606 shells, some spectral differences can be observed for SSA
607 generated at 10 m/s. Specifically, a peak at 1650 cm^{-1} was
608 observed (possibly related to alcohol, saccharides, or
609 carboxylates) (Figure S3) for rounded particles and not for
610 shells, suggesting the presence of oxygenated compounds
611 compared to shell region of core-shells. On the other hand,
612 shells of core-shells and rounded SSA generated at 19 m/s
613 wind speed showed similar peaks, suggesting similar functional
614 group composition between shells and rounded particles at this
615 wind speed. Particle-to-particle variability in the chemical
616 composition is demonstrated in Figure S2, where IR spectra

were taken on two different rounded particles at 10 m/s, each
617 with the same volume-equivalent diameter range of 0.56–1.00
618 μm that are spectrally distinct from each other and to rounded
619 particles shown in Figure 7. Particles in the 0.56–1.00 μm size
620 range showed different and more diverse types of spectra than
621 the other size ranges. Specifically, vibrational modes for
622 inorganic compounds were observed only for rounded particles
623 at 10 m/s which show carbonate at 1400–1500 cm^{-1} and
624 sulfate $\nu_{\text{as}}(\text{SO}_4^{2-})$ at 1094–1111 cm^{-1} (see Figure S2).^{90,97,98}

625 The observed differences between core-shell SSA at 10 and
626 19 m/s can be explained by variations in SML film structure
627 and in turn the mechanism of SSA formation assuming SML
628 breakup is similar in SOARS to open-ocean conditions. First,
629 under relatively calm conditions or low wind speeds, the SML
630 film structure is intact and enriched with surface-active
631 aliphatic compounds.^{13,29,99,100} As wind speed increases,
632 typically above 8 m/s as suggested by some studies, wave
633 breaking and increased turbulence causes the disruption of
634 SML structure, leading to a more homogeneous water column
635 in which the interfacial molecules contained in the SML mix
636 with the underlying more water-soluble compounds.²⁹
637 Consequently, the diversity of compounds that can be emitted
638 into the atmosphere increases, with a higher proportion of
639 water-soluble compounds being released, which are usually
640 emitted in lower quantities under calm conditions due to the
641 presence of the SML. Furthermore, the greater compositional
642 diversity of core-shell submicron SSA at higher wind speeds
643 can be attributed to the mechanism of formation. It is plausible
644 that the film drop mechanism predominates at a wind speed of
645 10 m/s, whereas the jet drop mechanism prevails at 19 m/
646 s.^{18,37,101} This finding aligns with a study demonstrating that
647 film drops exhibit a higher fraction of aliphatic species, whereas
648 particles generated through the jet drop mechanism contain a
649 larger fraction of oxygen-containing compounds.¹⁸ While the
650 exact origin for the observed difference in rounded and shells
651 of core-shells at lower wind speed remains unknown, it is
652 likely originating from a combination of several factors,
653 including a relative contribution of jet vs film drops
654 mechanisms to overall generation of SSA. Additionally,
655 core-shell SSA can form when the inorganic core undergoes
656 gas condensation and/or heterogeneous reactions at its
657 surfaces, interacting with gaseous species during transport in
658 the atmosphere.¹⁰² It has been observed that saccharides can
659

660 promote and enhance the generation of core–shell SSA,
661 whereas fatty acids have an inverse effect.¹⁰⁰ The distinctive
662 peaks corresponding to saccharides observed in core–shell
663 SSA at a wind speed of 19 m/s are also linked to the increased
664 proportion of core–shell SSA under these conditions. These
665 gas phase reactions may differ for rounded particles emitted
666 directly from the ocean without such reactions.

667 **Table 1** summarizes key AFM–IR spectroscopic results at
668 both wind speeds where shell of core–shell and rounded SSA
669 are primarily enriched with organics, and specifically at 10 m/s,
670 shell of core–shells is enriched with aliphatic compounds, and
671 at 19 m/s, more diverse/complex organics were observed such
672 as fatty acids, sugars, and aliphatic compounds. However,
673 rounded particles at both wind speeds displayed similar
674 composition with diverse organics such as aliphatic com-
675 pounds, fatty acids, and complex sugars. In addition, some
676 rounded particles at 10 m/s wind speeds showed traces of
677 sulfate and carbonate indicating the particle-to-particle
678 variability in composition.

679 **Summary and Environmental Implications.** The size-
680 dependent morphology and composition studies of nascent
681 SSA as a function of the size and wind speed conditions
682 presented herein were performed for the first time. The wind
683 speed conditions selected in this study correspond to a low
684 wind speed of 10 m/s, which is assumed to have limited or no
685 disruption to SML film structure, and elevated wind speed of
686 19 m/s, which is expected to cause a disruption of SML film
687 structure. Our results showed clear evidence of the dynamic
688 and size- and wind-dependent nature of the physicochemical
689 mixing state of SSA. AFM imaging at ~20% RH identified six
690 main SSA morphologies present in the 0.04–1.80 μm size
691 range at two different wind speed conditions: prism-like, core–
692 shell, rounded, rod, aggregate, and rod inclusion core–shell
693 where approximately 80% of SSA at both wind conditions were
694 prism-like, core–shell, and rounded particles. Moreover, at
695 both wind speeds, the majority of smaller SSA were rounded,
696 while larger SSA at 10 m/s were mostly core–shell and prism-
697 like, and in contrast, SSA at 19 m/s were predominantly core–
698 shells for SSA with a diameter greater than 0.18 μm . As evident
699 by filter-based measurements, both SSA at wind speeds showed
700 an increase in the organic mass fraction with decreasing
701 particle size. Additionally, there was a reduction in the organic
702 mass fraction with the increase in wind speed. These results
703 can be rationalized with complementary single particle
704 measurements, which showed an increase in core–shell
705 interactions that is offset by a relatively small reduction in
706 rounded SSA. AFM–IR showed that rounded SSA at both
707 wind speeds was largely organic with similar compositions that
708 contained aliphatic and oxygenated species. In contrast, shells
709 of core–shell particles showed wind-speed-dependent compo-
710 sitional variability, where predominantly oxygenated organics
711 were present at higher wind speed (19 m/s), while largely
712 aliphatic compounds were observed at lower wind speed (10
713 m/s). Additionally, SEM–EDX results of SSA at two wind
714 conditions showed similar elemental profiles that were also
715 consistent with those observed previously.⁴¹ The observed
716 differences in morphology and composition of SSA at 10 and
717 19 m/s can be attributed to the impact of varying wind speeds
718 on the SML film structure and composition, which in turn
719 influences underlying mechanisms involved in the formation of
720 SSA (i.e., film and jet drops). There could be a variability in
721 relative contributions of these formation mechanisms toward

SSA formation, which subsequently could impact the observed
722 variability in morphologies and compositions of SSA.
723

724 These findings reveal a significant variability in SSA
725 morphology, mixing states, and chemical composition with
726 respect to particle size and wind speed; thus, it is expected to
727 impact their phase state, viscosity, and water uptake, which in
728 turn would modify the diffusion time scale of various
729 atmospheric gases into the aerosol and therefore their
730 atmospheric aging.^{40,103} The observed variability in SSA
731 morphology and composition is important to consider toward
732 accurately predicting the aerosols' effects on the climate as they
733 can dictate the optical properties, CCN ability, and ice
734 nucleating potential of SSA.^{24,46} Overall, our results clearly
735 illustrate that elevated wind speeds can result in significant
736 changes of SSA's physicochemical mixing state, morphological
737 distribution, and composition. Thus, it is important to account
738 for these size-dependent properties of SSA relating the effect of
739 wind speed in future studies to better understand the impact of
740 SSA on climate-relevant processes.
740

■ ASSOCIATED CONTENT

SI Supporting Information

The Supporting Information is available free of charge at
<https://pubs.acs.org/doi/10.1021/acsearthspacechem.4c00119>.

Details of AFM image of rod-shell morphology, AFM–
IR spectra taken for spectrally distinct rounded particles,
and AFM–IR spectra taken for laboratory deposited
reference compounds (PDF)
749

■ AUTHOR INFORMATION

Corresponding Author

Alexei V. Tivanski – Department of Chemistry, University of
Iowa, Iowa City, Iowa 52242, United States; orcid.org/0000-0002-1528-2421; Email: alexei-tivanski@uiowa.edu
754

Authors

Chamika K. Madawala – Department of Chemistry,
University of Iowa, Iowa City, Iowa 52242, United States
756
Carolina Molina – Department of Chemistry and
Biochemistry, University of California San Diego, La Jolla,
California 92093, United States
758
759
760

Deborah Kim – Department of Chemistry and Biochemistry,
University of California San Diego, La Jolla, California
92093, United States
761
762
763

Dilini Kirindigoda Gamage – Department of Chemistry,
University of Iowa, Iowa City, Iowa 52242, United States
764
765

Mengnan Sun – Department of Chemistry, University of Iowa,
Iowa City, Iowa 52242, United States
766
767

Raymond J. Leibensperger, III – Scripps Institution of
Oceanography, University of California San Diego, La Jolla,
California 92093, United States; orcid.org/0009-0003-0099-6864
768
769
770
771

Lincoln Mehndiratta – Department of Chemistry and
Biochemistry, University of California San Diego, La Jolla,
California 92093, United States
772
773
774

Jennie Lee – Department of Chemistry and Biochemistry,
University of California San Diego, La Jolla, California
92093, United States
775
776
777

Chathuri P. Kaluarachchi – Department of Chemistry,
University of Iowa, Iowa City, Iowa 52242, United States;
 orcid.org/0000-0003-2538-3952
778
779
780

781 **Ke'La A. Kimble** — *Department of Chemistry and*
782 *Biochemistry, University of California San Diego, La Jolla,*
783 *California 92093, United States*

784 **Greg Sandstrom** — *Scripps Institution of Oceanography,*
785 *University of California San Diego, La Jolla, California*
786 *92093, United States*

787 **Charbel Harb** — *Scripps Institution of Oceanography,*
788 *University of California San Diego, La Jolla, California*
789 *92093, United States; [orcid.org/0000-0002-0221-4876](#)*

790 **Julie Dinasquet** — *Scripps Institution of Oceanography,*
791 *University of California San Diego, La Jolla, California*
792 *92093, United States*

793 **Francesca Malfatti** — *Scripps Institution of Oceanography,*
794 *University of California San Diego, La Jolla, California*
795 *92093, United States; Department of Life Science, Universita'*
796 *degli Studi di Trieste, Trieste 34127, Italy*

797 **Kimberly A. Prather** — *Department of Chemistry and*
798 *Biochemistry and Scripps Institution of Oceanography,*
799 *University of California San Diego, La Jolla, California*
800 *92093, United States*

801 **Grant B. Deane** — *Scripps Institution of Oceanography,*
802 *University of California San Diego, La Jolla, California*
803 *92093, United States*

804 **M. Dale Stokes** — *Scripps Institution of Oceanography,*
805 *University of California San Diego, La Jolla, California*
806 *92093, United States*

807 **Christopher Lee** — *Scripps Institution of Oceanography,*
808 *University of California San Diego, La Jolla, California*
809 *92093, United States*

810 **Jonathan H. Slade** — *Department of Chemistry and*
811 *Biochemistry, University of California San Diego, La Jolla,*
812 *California 92093, United States; [orcid.org/0000-0002-](#)*
813 *5026-4229*

814 **Elizabeth A. Stone** — *Department of Chemistry, University of*
815 *Iowa, Iowa City, Iowa 52242, United States; [orcid.org/](#)*
816 *0000-0003-0078-141X*

817 **Vicki H. Grassian** — *Department of Chemistry and*
818 *Biochemistry, University of California San Diego, La Jolla,*
819 *California 92093, United States; [orcid.org/0000-0001-](#)*
820 *5052-0045*

821 Complete contact information is available at:
822 <https://pubs.acs.org/10.1021/acsearthspacechem.4c00119>

823 Author Contributions

824 The manuscript was written through contributions of all
825 authors. All authors have given approval to the final version of
826 the manuscript.

827 Notes

828 The authors declare no competing financial interest.
829 Any opinions, findings, and conclusions or recommendations
830 expressed in this material are those of the authors and do not
831 necessarily reflect the views of the National Science
832 Foundation. The data for this publication can be retrieved
833 from the UC San Diego Library Digital Collections: <https://doi.org/10.6075/J0GF0TP5>.

835 ■ ACKNOWLEDGMENTS

836 This work was funded by the National Science Foundation
837 (NSF) through the NSF Center for Aerosol Impacts on
838 Chemistry of the Environment (CAICE) under Grant no.
839 CHE-1801971. Authors thank Prof. Christopher Cappa for
840 providing the Igor Pro wave metric code to perform the

841 statistical analysis on probability distribution. Thank you to the
842 entire CHAOS team for their hard work and especially Dr. 842
C.L., Prof. Timothy Bertram, Prof. Christopher Cappa, and 843
Prof. K.A.P. for designing and overseeing the campaign. Also, 844
the authors would like to thank the entire engineering team for 845
their hard work and especially Joseph Mayer, Robert Kildy, and 846
the team at the Scripps Institution of Oceanography Marine 847
Science Development Center who made this campaign a 848
success. 849

850 ■ REFERENCES

(1) Quinn, P. K.; Collins, D. B.; Grassian, V. H.; Prather, K. A.; Bates, T. S. Chemistry and related properties of freshly emitted sea spray aerosol. *Chem. Rev.* **2015**, *115* (10), 4383–4399.

(2) Andreae, M.; Rosenfeld, D. Aerosol–cloud–precipitation interactions. Part 1. The nature and sources of cloud-active aerosols. *Earth-Sci. Rev.* **2008**, *89* (1–2), 13–41.

(3) Bertram, T. H.; Cochran, R. E.; Grassian, V. H.; Stone, E. A. Sea spray aerosol chemical composition: elemental and molecular mimics for laboratory studies of heterogeneous and multiphase reactions. *Chem. Soc. Rev.* **2018**, *47* (7), 2374–2400.

(4) Prather, K. A.; Bertram, T. H.; Grassian, V. H.; Deane, G. B.; Stokes, M. D.; DeMott, P. J.; Aluwihare, L. I.; Palenik, B. P.; Azam, F.; Seinfeld, J. H.; et al. Bringing the ocean into the laboratory to probe the chemical complexity of sea spray aerosol. *Proc. Natl. Acad. Sci. U.S.A.* **2013**, *110* (19), 7550–7555.

(5) Cochran, R. E.; Laskina, O.; Trueblood, J. V.; Estillore, A. D.; Morris, H. S.; Jayaraman, T.; Sultana, C. M.; Lee, C.; Lin, P.; Laskin, J.; et al. Molecular diversity of sea spray aerosol particles: Impact of ocean biology on particle composition and hygroscopicity. *Chem.* **2017**, *2* (5), 655–667.

(6) O'Dowd, C. D.; De Leeuw, G. Marine aerosol production: a review of the current knowledge. *Philos. Trans. R. Soc., A* **2007**, *365* (1856), 1753–1774.

(7) Kaluarachchi, C. P.; Or, V. W.; Lan, Y.; Madawala, C. K.; Hasenecz, E. S.; Crocker, D. R.; Morris, C. K.; Lee, H. D.; Mayer, K. J.; Sauer, J. S.; et al. Size-Dependent Morphology, Composition, Phase State, and Water Uptake of Nascent Submicrometer Sea Spray Aerosols during a Phytoplankton Bloom. *ACS Earth Space Chem.* **2022**, *6* (1), 116–130.

(8) Collins, D. B.; Bertram, T. H.; Sultana, C. M.; Lee, C.; Axson, J. L.; Prather, K. A. Phytoplankton blooms weakly influence the cloud forming ability of sea spray aerosol. *Geophys. Res. Lett.* **2016**, *43* (18), 9975–9983.

(9) DeMott, P. J.; Hill, T. C.; McCluskey, C. S.; Prather, K. A.; Collins, D. B.; Sullivan, R. C.; Ruppel, M. J.; Mason, R. H.; Irish, V. E.; Lee, T.; et al. Sea spray aerosol as a unique source of ice nucleating particles. *Proc. Natl. Acad. Sci. U.S.A.* **2016**, *113* (21), 5797–5803.

(10) Forestieri, S. D.; Cornwell, G. C.; Helgestad, T. M.; Moore, K. A.; Lee, C.; Novak, G. A.; Sultana, C. M.; Wang, X.; Bertram, T. H.; Prather, K. A.; Cappa, C. D. Linking variations in sea spray aerosol particle hygroscopicity to composition during two microcosm experiments. *Atmos. Chem. Phys.* **2016**, *16* (14), 9003–9018.

(11) Gard, E.; Mayer, J. E.; Morrical, B. D.; Dienes, T.; Fergenson, D. P.; Prather, K. A. Real-time analysis of individual atmospheric aerosol particles: Design and performance of a portable ATOFMS. *Anal. Chem.* **1997**, *69* (20), 4083–4091.

(12) Forster, P.; Ramaswamy, V.; Artaxo, P.; Berntsen, T.; Betts, R.; Fahey, D.; Haywood, J.; Lean, J.; Lowe, D.; Myhre, G. Changes in Atmospheric Constituents and in Radiative Forcing. In *Climate Change*; Solomon, S.; Qin, D., Eds.; Cambridge University Press: Cambridge, 2007.

(13) Penezić, A.; Drozdowska, V.; Novak, T.; Gašparović, B. Distribution and characterization of organic matter within the sea surface microlayer in the Gulf of Gdańsk. *Oceanologia* **2022**, *64* (4), 903–905.

(14) Roslan, R. N.; Hanif, N. M.; Othman, M. R.; Azmi, W. N. F. W.; Yan, X. X.; Ali, M. M.; Mohamed, C. A. R.; Latif, M. T. 901

908 Surfactants in the sea-surface microlayer and their contribution to 909 atmospheric aerosols around coastal areas of the Malaysian peninsula. 910 *Mar. Pollut. Bull.* **2010**, *60* (9), 1584–1590.

911 (15) Engel, A.; Galgani, L. The organic sea-surface microlayer in the 912 upwelling region off the coast of Peru and potential implications for 913 air–sea exchange processes. *Biogeosciences* **2016**, *13* (4), 989–1007.

914 (16) Cochran, R. E.; Jayarathne, T.; Stone, E. A.; Grassian, V. H. 915 Selectivity across the interface: A test of surface activity in the 916 composition of organic-enriched aerosols from bubble bursting. *J. 917 Phys. Chem. Lett.* **2016**, *7* (9), 1692–1696.

918 (17) Facchini, M. C.; Rinaldi, M.; Decesari, S.; Carbone, C.; Finessi, 919 E.; Mircea, M.; Fuzzi, S.; Ceburnis, D.; Flanagan, R.; Nilsson, E. D.; 920 et al. Primary submicron marine aerosol dominated by insoluble 921 organic colloids and aggregates. *Geophys. Res. Lett.* **2008**, *35* (17), 922 No. L17814, DOI: 10.1029/2008GL034210.

923 (18) Wang, X.; Deane, G. B.; Moore, K. A.; Ryder, O. S.; Stokes, M. 924 D.; Beall, C. M.; Collins, D. B.; Santander, M. V.; Burrows, S. M.; 925 Sultana, C. M.; Prather, K. A. The role of jet and film drops in 926 controlling the mixing state of submicron sea spray aerosol particles. 927 *Proc. Natl. Acad. Sci. U.S.A.* **2017**, *114* (27), 6978–6983.

928 (19) Cunliffe, M.; Engel, A.; Frka, S.; Gašparović, B.; Guitart, C.; 929 Murrell, J. C.; Salter, M.; Stolle, C.; Upstill-Goddard, R.; Wurl, O. Sea 930 surface microlayers: A unified physicochemical and biological 931 perspective of the air–ocean interface. *Prog. Oceanogr.* **2013**, *109*, 932 104–116.

933 (20) Zeng, C.; Liu, C.; Li, J.; Zhu, B.; Yin, Y.; Wang, Y. Optical 934 properties and radiative forcing of aged BC due to hygroscopic 935 growth: Effects of the aggregate structure. *J. Geophys. Res.: Atmos.* 936 **2019**, *124* (8), 4620–4633.

937 (21) Bondy, A. L.; Bonanno, D.; Moffet, R. C.; Wang, B.; Laskin, A.; 938 Ault, A. P. The diverse chemical mixing state of aerosol particles in the 939 southeastern United States. *Atmos. Chem. Phys.* **2018**, *18* (16), 940 12595–12612.

941 (22) Schill, S. R.; Collins, D. B.; Lee, C.; Morris, H. S.; Novak, G. A.; 942 Prather, K. A.; Quinn, P. K.; Sultana, C. M.; Tivanski, A. V.; 943 Zimmermann, K.; et al. The impact of aerosol particle mixing state on 944 the hygroscopicity of sea spray aerosol. *ACS Cent. Sci.* **2015**, *1* (3), 945 132–141.

946 (23) Collins, D. B.; Ault, A. P.; Moffet, R. C.; Ruppel, M. J.; Cuadra- 947 Rodriguez, L. A.; Guasco, T. L.; Corrigan, C. E.; Pedler, B. E.; Azam, 948 F.; Aluwihare, L. I.; et al. Impact of marine biogeochemistry on the 949 chemical mixing state and cloud forming ability of nascent sea spray 950 aerosol. *J. Geophys. Res.: Atmos.* **2013**, *118* (15), 8553–8565.

951 (24) Riemer, N.; Ault, A.; West, M.; Craig, R.; Curtis, J. Aerosol 952 mixing state: Measurements, modeling, and impacts. *Rev. Geophys.* 953 **2019**, *57* (2), 187–249.

954 (25) Cochran, R. E.; Laskina, O.; Jayarathne, T.; Laskin, A.; Laskin, 955 J.; Lin, P.; Sultana, C.; Lee, C.; Moore, K. A.; Cappa, C. D.; et al. 956 Analysis of organic anionic surfactants in fine and coarse fractions of 957 freshly emitted sea spray aerosol. *Environ. Sci. Technol.* **2016**, *50* (5), 958 2477–2486.

959 (26) Monahan, E. C.; Spiel, D. E.; Davidson, K. L. A Model of 960 Marine Aerosol Generation via Whitecaps and Wave Disruption. In 961 *Oceanic Whitecaps: And Their Role in Air-Sea Exchange Processes*; 962 Springer, 1986; pp 167–174.

963 (27) Mehta, S.; Ortiz-Suslow, D. G.; Smith, A.; Haus, B. A 964 laboratory investigation of spume generation in high winds for fresh 965 and seawater. *J. Geophys. Res.: Atmos.* **2019**, *124* (21), 11297–11312.

966 (28) Ortiz-Suslow, D. G.; Haus, B. K.; Mehta, S.; Laxague, N. J. Sea 967 spray generation in very high winds. *J. Atmos. Sci.* **2016**, *73* (10), 968 3975–3995.

969 (29) Gantt, B.; Meskhidze, N.; Facchini, M.; Rinaldi, M.; Ceburnis, 970 D.; O'Dowd, C. Wind speed dependent size-resolved parameter- 971 ization for the organic mass fraction of sea spray aerosol. *Atmos. Chem. 972 Phys.* **2011**, *11* (16), 8777–8790.

973 (30) Carlson, D. J. Dissolved organic materials in surface 974 microlayers: Temporal and spatial variability and relation to sea 975 state. *Limnol. Oceanogr.* **1983**, *28* (3), 415–431.

976 (31) Falkowska, L. Sea surface microlayer: a field evaluation of 977 Teflon plate, glass plate and screen sampling techniques. Part 2. 977 Dissolved and suspended matter. *Oceanologia* **1999**, *41* (2), 223–240. 978

979 (32) Stolle, C.; Ribas-Ribas, M.; Badewien, T. H.; Barnes, J.; 979 Carpenter, L. J.; Chance, R.; Damgaard, L. R.; Quesada, A. M. D.; 980 Engel, A.; Frka, S.; et al. The Milan Campaign: Studying diel light 981 effects on the air–sea interface. *Bull. Am. Meteorol. Soc.* **2020**, *101* (2), 982 E146–E166. 983

984 (33) Wurl, O.; Miller, L.; Röttgers, R.; Vagle, S. The distribution and 985 fate of surface-active substances in the sea-surface microlayer and 985 water column. *Mar. Chem.* **2009**, *115* (1–2), 1–9. 986

987 (34) Engel, A.; Sperling, M.; Sun, C.; Grosse, J.; Friedrichs, G. 987 Organic matter in the surface microlayer: Insights from a wind wave 988 channel experiment. *Front. Mar. Sci.* **2018**, *5*, No. 182, DOI: 10.3389/ 989 fmars.2018.00182. 990

991 (35) Lewis, E. R.; Schwartz, S. E. *Sea Salt Aerosol Production: 991 Mechanisms, Methods, Measurements, and Models*; American Geo- 992 physical Union, 2004. 993

994 (36) Gong, S. L. A parameterization of sea-salt aerosol source 994 function for sub-and super-micron particles. *Global Biogeochem. Cycles* 995 **2003**, *17* (4), No. 1097, DOI: 10.1029/2003GB002079. 996

997 (37) Leck, C.; Norman, M.; Bigg, E. K.; Hillamo, R. Chemical 997 composition and sources of the high Arctic aerosol relevant for cloud 998 formation. *J. Geophys. Res.: Atmos.* **2002**, *107* (D12), AAC 1-1–AAC 999 1-17. 1000

1001 (38) O'Dowd, C. D.; Smith, M. H. Physicochemical properties of 1001 aerosols over the northeast Atlantic: Evidence for wind-speed-related 1002 submicron sea-salt aerosol production. *J. Geophys. Res.: Atmos.* **1993**, 1003 98 (D1), 1137–1149. 1004

1005 (39) Lee, H. D.; Morris, H. S.; Laskina, O.; Sultana, C. M.; Lee, C.; 1005 Jayarathne, T.; Cox, J. L.; Wang, X.; Hasenecz, E. S.; DeMott, P. J.; 1006 et al. Organic Enrichment, Physical Phase State, and Surface Tension 1007 Depression of Nascent Core–Shell Sea Spray Aerosols during Two 1008 Phytoplankton Blooms. *ACS Earth Space Chem.* **2020**, *4* (4), 650– 1009 660. 1010

1011 (40) Lee, H. D.; Wigley, S.; Lee, C.; Or, V. W.; Hasenecz, E. S.; 1011 Stone, E. A.; Grassian, V. H.; Prather, K. A.; Tivanski, A. V. 1012 Physicochemical Mixing State of Sea Spray Aerosols: Morphologies 1013 Exhibit Size Dependence. *ACS Earth Space Chem.* **2020**, *4* (9), 1604– 1014 1611. 1015

1016 (41) Ault, A. P.; Moffet, R. C.; Baltrusaitis, J.; Collins, D. B.; Ruppel, 1016 M. J.; Cuadra-Rodriguez, L. A.; Zhao, D.; Guasco, T. L.; Ebbin, C. J.; 1017 Geiger, F. M.; et al. Size-dependent changes in sea spray aerosol 1018 composition and properties with different seawater conditions. 1019 *Environ. Sci. Technol.* **2013**, *47* (11), 5603–5612. 1020

1021 (42) Morris, H. S.; Estillor, A. D.; Laskina, O.; Grassian, V. H.; 1021 Tivanski, A. V. Quantifying the hygroscopic growth of individual 1022 submicrometer particles with atomic force microscopy. *Anal. Chem.* 1023 **2016**, *88* (7), 3647–3654. 1024

1025 (43) Estillor, A. D.; Morris, H. S.; Or, V. W.; Lee, H. D.; Alves, M. 1025 R.; Marciano, M. A.; Laskina, O.; Qin, Z.; Tivanski, A. V.; Grassian, V. 1026 H. Linking hygroscopicity and the surface microstructure of model 1027 inorganic salts, simple and complex carbohydrates, and authentic sea 1028 spray aerosol particles. *Phys. Chem. Chem. Phys.* **2017**, *19* (31), 1029 21101–21111. 1030

1031 (44) Lee, H. D.; Estillor, A. D.; Morris, H. S.; Ray, K. K.; Alejandro, 1031 A.; Grassian, V. H.; Tivanski, A. V. Direct surface tension 1032 measurements of individual sub-micrometer particles using atomic 1033 force microscopy. *J. Phys. Chem. A* **2017**, *121* (43), 8296–8305. 1034

1035 (45) Pham, D. Q.; O'Brien, R.; Fraund, M.; Bonanno, D.; Laskina, 1035 O.; Beall, C.; Moore, K. A.; Forestieri, S.; Wang, X.; Lee, C.; et al. 1036 Biological Impacts on Carbon Speciation and Morphology of Sea 1037 Spray Aerosol. *ACS Earth Space Chem.* **2017**, *1* (9), 551–561. 1038

1039 (46) Li, W.; Shao, L.; Zhang, D.; Ro, C.-U.; Hu, M.; Bi, X.; Geng, 1039 H.; Matsuki, A.; Niu, H.; Chen, J. A review of single aerosol particle 1040 studies in the atmosphere of East Asia: morphology, mixing state, 1041 source, and heterogeneous reactions. *J. Cleaner Prod.* **2016**, *112*, 1042 1330–1349. 1043

1044 (47) Lim, C. Y.; Browne, E.; Sugrue, R.; Kroll, J. Rapid
1045 heterogeneous oxidation of organic coatings on submicron aerosols.
1046 *Geophys. Res. Lett.* **2017**, *44* (6), 2949–2957.

1047 (48) Molina, M. J.; Ivanov, A.; Trakhtenberg, S.; Molina, L.
1048 Atmospheric evolution of organic aerosol. *Geophys. Res. Lett.* **2004**, *31*
1049 (22), No. L22104, DOI: 10.1029/2004GL020910.

1050 (49) Gong, S. L.; Barrie, L.; Blanchet, J. P. Modeling sea-salt aerosols
1051 in the atmosphere: 1. Model development. *J. Geophys. Res.: Atmos.*
1052 **1997**, *102* (D3), 3805–3818.

1053 (50) Lee, H. D.; Ray, K. K.; Tivanski, A. V. Solid, semisolid, and
1054 liquid phase states of individual submicrometer particles directly
1055 probed using atomic force microscopy. *Anal. Chem.* **2017**, *89* (23),
1056 12720–12726.

1057 (51) Herring, D. *How Satellite Data Help Us Exploit Nature's
1058 Renewable Energy Resources*, 2001.

1059 (52) Wallcraft, A. J.; Kara, A. B.; Barron, C.; Metzger, E.; Pauley, R.;
1060 Bourassa, M. Comparisons of monthly mean 10 m wind speeds from
1061 satellites and NWP products over the global ocean. *J. Geophys. Res.:
1062 Atmos.* **2009**, *114* (D16), No. D16109, DOI: 10.1029/
1063 2008JD011696.

1064 (53) Yuan, X. High-wind-speed evaluation in the Southern Ocean. *J.
1065 Geophys. Res.: Atmos.* **2004**, *109* (D13), No. D13101, DOI: 10.1029/
1066 2003JD004179.

1067 (54) Lin, X.; Zhai, X.; Wang, Z.; Munday, D. R. Mean, variability,
1068 and trend of Southern Ocean wind stress: Role of wind fluctuations. *J.
1069 Clim.* **2018**, *31* (9), 3557–3573.

1070 (55) Hande, L. B.; Siems, S. T.; Manton, M. J. Observed trends in
1071 wind speed over the Southern Ocean. *Geophys. Res. Lett.* **2012**, *39*
1072 (11), No. L11802, DOI: 10.1029/2012GL051734.

1073 (56) Young, I. Seasonal variability of the global ocean wind and wave
1074 climate. *Int. J. Climatol.* **1999**, *19* (9), 931–950.

1075 (57) Archer, C. L.; Jacobson, M. Z. Evaluation of global wind power.
1076 *J. Geophys. Res.: Atmos.* **2005**, *110* (D12), No. D12110,
1077 DOI: 10.1029/2004JD005462.

1078 (58) Monahan, E. C.; O'Muircheartaigh, I. Optimal power-law
1079 description of oceanic whitecap coverage dependence on wind speed.
1080 *J. Phys. Oceanogr.* **1980**, *10* (12), 2094–2099.

1081 (59) Hsu, S.; Meindl, E. A.; Gilhousen, D. B. Determining the
1082 power-law wind-profile exponent under near-neutral stability
1083 conditions at sea. *J. Appl. Meteorol. Climatol.* **1994**, *33* (6), 757–765.

1084 (60) Kleiss, J. M.; Melville, W. K. Observations of wave breaking
1085 kinematics in fetch-limited seas. *J. Phys. Oceanogr.* **2010**, *40* (12),
1086 2575–2604.

1087 (61) Callaghan, A.; de Leeuw, G.; Cohen, L.; O'Dowd, C. D.
1088 Relationship of oceanic whitecap coverage to wind speed and wind
1089 history. *Geophys. Res. Lett.* **2008**, *35* (23), No. L23609,
1090 DOI: 10.1029/2008GL036165.

1091 (62) Zhao, D.; Toba, Y. Dependence of whitecap coverage on wind
1092 and wind-wave properties. *J. Oceanogr.* **2001**, *57*, 603–616.

1093 (63) Schauer, J. J.; Mader, B.; Deminter, J.; Heidemann, G.; Bae, M.;
1094 Seinfeld, J. H.; Flagan, R.; Cary, R.; Smith, D.; Huebert, B.; et al.
1095 ACE-Asia intercomparison of a thermal-optical method for the
1096 determination of particle-phase organic and elemental carbon.
1097 *Environ. Sci. Technol.* **2003**, *37* (5), 993–1001.

1098 (64) Jayaram, T.; Sultana, C. M.; Lee, C.; Malfatti, F.; Cox, J. L.;
1099 Pendergraft, M. A.; Moore, K. A.; Azam, F.; Tivanski, A. V.; Cappa, C.
1100 D.; et al. Enrichment of saccharides and divalent cations in sea spray
1101 aerosol during two phytoplankton blooms. *Environ. Sci. Technol.* **2016**,
1102 *50* (21), 11511–11520.

1103 (65) Holland, H. D. *The Chemistry of the Atmosphere and Oceans*;
1104 Wiley: New York, 1978.

1105 (66) Madawala, C. K.; Lee, H. D.; Kaluarachchi, C. P.; Tivanski, A.
1106 V. Quantifying the Viscosity of Individual Submicrometer Semisolid
1107 Particles Using Atomic Force Microscopy. *Anal. Chem.* **2023**, *95* (39),
1108 14566–14572, DOI: 10.1021/acs.analchem.3c01835.

1109 (67) Lee, H. D.; Kaluarachchi, C. P.; Hasenecz, E. S.; Zhu, J. Z.;
1110 Popa, E.; Stone, E. A.; Tivanski, A. V. Effect of dry or wet substrate
1111 deposition on the organic volume fraction of core–shell aerosol
1112 particles. *Atmos. Meas. Tech.* **2019**, *12* (3), 2033–2042, 1112
DOI: 10.5194/amt-12-2033-2019.

1113 (68) Gao, Y.; Chen, S. B.; Liya, E. Y. Efflorescence relative humidity
1114 of airborne sodium chloride particles: A theoretical investigation. *Atmos. Environ.* **2007**, *41* (9), 2019–2023.

1115 (69) Kaluarachchi, C. P.; Or, V. W.; Lan, Y.; Hasenecz, E. S.; Kim, 1115
D.; Madawala, C. K.; Dorcé, G. P.; Mayer, K. J.; Sauer, J. S.; Lee, C.; 1118
et al. Effects of Atmospheric Aging Processes on Nascent Sea Spray 1119
Aerosol Physicochemical Properties. *ACS Earth Space Chem.* **2022**, *6* 1120
(11), 2732–2744.

1121 (70) Ryder, O. S.; Campbell, N. R.; Morris, H.; Forestieri, S.; 1122
Ruppel, M. J.; Cappa, C.; Tivanski, A.; Prather, K.; Bertram, T. H. 1123
Role of organic coatings in regulating N₂O₅ reactive uptake to sea 1124
spray aerosol. *J. Phys. Chem. A* **2015**, *119* (48), 11683–11692.

1125 (71) Cappa, C. D.; Asadi, S.; Barreda, S.; Wexler, A. S.; Bouvier, N. 1126
M.; Ristenpart, W. D. Expiratory aerosol particle escape from surgical 1127
masks due to imperfect sealing. *Sci. Rep.* **2021**, *11* (1), No. 12110.

1128 (72) Cappa, C. D.; Department, S. F. O. C.; Ristenpart, W. D.; 1129
Barreda, S.; Bouvier, N. M.; Levintal, E.; Wexler, A. S.; Roman, S. A. A 1130
highly efficient cloth facemask design. *Aerosol Sci. Technol.* **2022**, *56* 1131
(1), 12–28.

1132 (73) Quinn, P. K.; Bates, T. S.; Schulz, K. S.; Coffman, D.; Frossard, 1133
A.; Russell, L.; Keene, W.; Kieber, D. Contribution of sea surface 1134
carbon pool to organic matter enrichment in sea spray aerosol. *Nat. 1135
Geosci.* **2014**, *7* (3), 228–232.

1136 (74) O'Dowd, C. D.; Facchini, M. C.; Cavalli, F.; Ceburnis, D.; 1137
Mircea, M.; De Cesari, S.; Fuzzi, S.; Yoon, Y. J.; Putaud, J.-P. 1138
Biogenically driven organic contribution to marine aerosol. *Nature 1139
2004*, *431* (7009), 676–680.

1140 (75) Ray, K. K.; Lee, H. D.; Gutierrez, M. A., Jr.; Chang, F. J.; 1141
Tivanski, A. V. Correlating 3D Morphology, Phase State, and 1142
Viscoelastic Properties of Individual Substrate-Deposited Particles. 1143
Anal. Chem. **2019**, *91* (12), 7621–7630, DOI: 10.1021/acs.anal- 1144
chem.9b00333.

1145 (76) Lee, H. D.; Tivanski, A. V. Atomic force microscopy: an 1146
emerging tool in measuring the phase state and surface tension of 1147
individual aerosol particles. *Annu. Rev. Phys. Chem.* **2021**, *72* (1), 1148
235–252, DOI: 10.1146/annurev-physchem-090419-110133.

1149 (77) Madawala, C. K.; Lee, H. D.; Kaluarachchi, C. P.; Tivanski, A. 1150
V. Probing the Water Uptake and Phase State of Individual Sucrose 1151
Nanoparticles Using Atomic Force Microscopy. *ACS Earth Space 1152
Chem.* **2021**, *5* (10), 2612–2620.

1153 (78) Bar, G.; Thomann, Y.; Brandsch, R.; Cantow, H.-J.; Whangbo, 1154
M.-H. Factors affecting the height and phase images in tapping mode 1155
atomic force microscopy. Study of phase-separated polymer blends of 1156
poly (ethene-co-styrene) and poly (2, 6-dimethyl-1, 4-phenylene 1157
oxide). *Langmuir* **1997**, *13* (14), 3807–3812.

1158 (79) Collins, D. B.; Zhao, D.; Ruppel, M.; Laskina, O.; Grandquist, 1159
J.; Modini, R.; Stokes, M.; Russell, L.; Bertram, T.; Grassian, V.; et al. 1160
Direct aerosol chemical composition measurements to evaluate the 1161
physicochemical differences between controlled sea spray aerosol 1162
generation schemes. *Atmos. Meas. Tech.* **2014**, *7* (11), 3667–3683.

1163 (80) Andreas, E. L. A new sea spray generation function for wind 1164
speeds up to 32 ms⁻¹. *J. Phys. Oceanogr.* **1998**, *28* (11), 2175–2184.

1165 (81) Bates, T. S.; Quinn, P.; Frossard, A.; Russell, L.; Hakala, J.; 1166
Petäjä, T.; Kulmala, M.; Covert, D.; Cappa, C.; Li, S. M.; et al. 1167
Measurements of ocean derived aerosol off the coast of California. *J. 1168
Geophys. Res.: Atmos.* **2012**, *117* (D21), No. D00V15, DOI: 10.1029/ 1169
2012JD017588.

1170 (82) Ault, A. P.; Peters, T. M.; Sawvel, E. J.; Casuccio, G. S.; Willis, 1171
R. D.; Norris, G. A.; Grassian, V. H. Single-particle SEM-EDX analysis 1172
of iron-containing coarse particulate matter in an urban environment: 1173
sources and distribution of iron within Cleveland, Ohio. *Environ. Sci. 1174
Technol.* **2012**, *46* (8), 4331–4339.

1175 (83) Su, B.; Wang, T.; Zhang, G.; Liang, Y.; Lv, C.; Hu, Y.; Li, L.; 1176
Zhou, Z.; Wang, X.; Bi, X. A review of atmospheric aging of sea spray 1177
aerosols: Potential factors affecting chloride depletion. *Atmos. Environ.* 1178
2022, *290*, No. 119365, DOI: 10.1016/j.atmosenv.2022.119365.

1179

1180 (84) Mirrieles, J. A.; Kirpes, R. M.; Haas, S. M.; Rauschenberg, C.
1181 D.; Matrai, P. A.; Remenapp, A.; Boschi, V. L.; Grannas, A. M.; Pratt,
1182 K. A.; Ault, A. P. Probing Individual Particles Generated at the
1183 Freshwater–Seawater Interface through Combined Raman, Photo-
1184 thermal Infrared, and X-ray Spectroscopic Characterization. *ACS
1185 Meas. Sci. Au* **2022**, *2* (6), 605–619.

1186 (85) Chi, J. W.; Li, W.; Zhang, D.; Zhang, J.; Lin, Y.; Shen, X.; Sun,
1187 J.; Chen, J.; Zhang, X.; Zhang, Y.; Wang, W. X. Sea salt aerosols as a
1188 reactive surface for inorganic and organic acidic gases in the Arctic
1189 troposphere. *Atmos. Chem. Phys.* **2015**, *15* (19), 11341–11353.

1190 (86) Bertram, T.; Thornton, J. Toward a general parameterization of
1191 N2O5 reactivity on aqueous particles: the competing effects of
1192 particle liquid water, nitrate and chloride. *Atmos. Chem. Phys.* **2009**, *9*
1193 (21), 8351–8363.

1194 (87) Schwier, A.; Rose, C.; Asmi, E.; Ebling, A.; Landing, W.; Marro,
1195 S.; Pedrotti, M.-L.; Sallou, A.; uculano, F.; Agusti, S. Primary marine
1196 aerosol emissions from the Mediterranean Sea during pre-bloom and
1197 oligotrophic conditions: correlations to seawater chlorophyll a from a
1198 mesocosm study. *Atmos. Chem. Phys.* **2015**, *15* (14), 7961–7976,
1199 DOI: 10.5194/acp-15-7961-2015.

1200 (88) Cravigan, L. T.; Mallet, M. D.; Vaattovaara, P.; Harvey, M. J.;
1201 Law, C. S.; Modini, R. L.; Russell, L. M.; Stelcer, E.; Cohen, D. D.;
1202 Olsen, G.; et al. Sea spray aerosol organic enrichment, water uptake
1203 and surface tension effects. *Atmos. Chem. Phys.* **2020**, *20* (13), 7955–
1204 7977.

1205 (89) Hasenecz, E. S.; Kaluarachchi, C. P.; Lee, H. D.; Tivanski, A.
1206 V.; Stone, E. A. Saccharide Transfer to Sea Spray Aerosol Enhanced
1207 by Surface Activity, Calcium, and Protein Interactions. *ACS Earth
1208 Space Chem.* **2019**, *3* (11), 2539–2548.

1209 (90) Olson, N. E.; Xiao, Y.; Lei, Z.; Ault, A. P. Simultaneous optical
1210 photothermal infrared (O-PTIR) and raman spectroscopy of
1211 submicrometer atmospheric particles. *Anal. Chem.* **2020**, *92* (14),
1212 9932–9939.

1213 (91) Filopoulou, A.; Vlachou, S.; Boyatzis, S. C. Fatty acids and their
1214 metal salts: a review of their infrared spectra in light of their presence
1215 in cultural heritage. *Molecules* **2021**, *26* (19), No. 6005,
1216 DOI: 10.3390/molecules26196005.

1217 (92) Wiercigroch, E.; Szafraniec, E.; Czamara, K.; Pacia, M. Z.;
1218 Majzner, K.; Kochan, K.; Kaczor, A.; Baranska, M.; Malek, K. Raman
1219 and infrared spectroscopy of carbohydrates: A review. *Spectrochim.
1220 Acta, Part A* **2017**, *185*, 317–335.

1221 (93) Lin-Vien, D.; Colthup, N. B.; Fateley, W. G.; Grasselli, J. G. *The
1222 Handbook of Infrared and Raman Characteristic Frequencies of Organic
1223 Molecules*; Elsevier, 1991.

1224 (94) Maria, S. F.; Russell, L. M.; Turpin, B. J.; Porcja, R. J. FTIR
1225 measurements of functional groups and organic mass in aerosol
1226 samples over the Caribbean. *Atmos. Environ.* **2002**, *36* (33), 5185–
1227 5196.

1228 (95) Or, V. W.; Estillore, A. D.; Tivanski, A. V.; Grassian, V. H. Lab
1229 on a tip: atomic force microscopy–photothermal infrared spectro-
1230 copy of atmospherically relevant organic/inorganic aerosol particles in
1231 the nanometer to micrometer size range. *Analyst* **2018**, *143* (12),
1232 2765–2774.

1233 (96) Yamamoto, M.; Sakurai, Y.; Hosoi, Y.; Ishii, H.; Kajikawa, K.;
1234 Ouchi, Y.; Seki, K. Structures of a long-chain n-alkane, n-C44H90, on
1235 a Au (111) surface: An infrared reflection absorption spectroscopic
1236 study. *J. Phys. Chem. B* **2000**, *104* (31), 7363–7369.

1237 (97) Du, H.; Williams, C. T.; Ebner, A. D.; Ritter, J. A. In situ FTIR
1238 spectroscopic analysis of carbonate transformations during adsorption
1239 and desorption of CO2 in K-promoted HTlc. *Chem. Mater.* **2010**, *22*
1240 (11), 3519–3526.

1241 (98) Goebbert, D. J.; Garand, E.; Wende, T.; Bergmann, R.; Meijer,
1242 G.; Asmis, K. R.; Neumark, D. M. Infrared spectroscopy of the
1243 microhydrated nitrate ions NO3–(H2O)1–6. *J. Phys. Chem. A* **2009**,
1244 *113* (26), 7584–7592.

1245 (99) Chance, R. J.; Hamilton, J. F.; Carpenter, L. J.; Hackenberg, S.
1246 C.; Andrews, S. J.; Wilson, T. W. Water-soluble organic composition
1247 of the Arctic sea surface microlayer and association with ice
1248 nucleation ability. *Environ. Sci. Technol.* **2018**, *52* (4), 1817–1826.

1249 (100) Xu, M.; Tsona Tchinda, N.; Li, J.; Du, L. Insoluble lipid film
1250 mediates transfer of soluble saccharides from the sea to the
1251 atmosphere: the role of hydrogen bonding. *Atmos. Chem. Phys.* **2023**, *23* (3), 2235–2249.

1252 (101) Nilsson, E. D.; Rannik, Ü.; Swietlicki, E.; Leck, C.; Aalto, P.
1253 P.; Zhou, J.; Norman, M. Turbulent aerosol fluxes over the Arctic
1254 Ocean: 2. Wind-driven sources from the sea. *J. Geophys. Res.: Atmos.* **2001**, *106* (D23), 32139–32154.

1255 (102) Unga, F.; Choël, M.; Derimian, Y.; Deboudt, K.; Dubovik, O.;
1256 Goloub, P. Microscopic observations of core-shell particle structure
1257 and implications for atmospheric aerosol remote sensing. *J. Geophys.
1258 Res.: Atmos.* **2018**, *123* (24), 13,944–913,962.

1259 (103) Ault, A. P.; Axson, J. L. Atmospheric aerosol chemistry:
1260 Spectroscopic and microscopic advances. *Anal. Chem.* **2017**, *89* (1),
1261 430–452.

1262

1263